
1 
 

A Variational Model for Free-Edge Interlaminar Stress Analysis in General 

Symmetric and Thin-Ply Composite Laminates  

M. Hajikazemi, W. Van Paepegem 

Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and 

Architecture, Ghent University, Technologiepark Zwijnaarde 903, Ghent, Belgium 

Abstract 

A variational model is developed to exactly determine both stress and displacement fields at free 

edges of general symmetric composite laminate strips under thermomechanical loads. By 

partitioning the total stresses in a composite with free edges into unperturbed (without free edge) 

and perturbation stresses and using the minimum complementary energy principle, the optimal 

stress and displacement fields are derived that exactly satisfy equilibrium, compatibility, boundary 

and continuity conditions. The paper extends the theory of stress-based variational stress transfer 

so that the effects of both applied traction and displacement loads can be considered. It has been 

also shown how the displacement field can be determined for a stress-based variational approach. 

The results are compared to refined finite element results. The superiority of the developed method 

over finite element method, both in terms of accuracy and computational efficiency, is discussed. 

The method is also applicable to thin-ply laminates and is computationally efficient. 

Keywords:  Thin-ply composite laminates; Free-edge; Interlaminar stress transfer; Analytical 

approach; Variational method; Delamination  

1. Introduction 

Stress concentrations like the free-edge effect may result in hazardous consequences since out of-

plane or interlaminar stresses usually face quite weak material strength properties, which can 
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eventually lead to premature failure due to corresponding interlaminar failure modes such as 

delamination. Although the free-edge problem is known from the 1970s, no analytical solutions 

exist that simultaneously satisfy the 3D elasticity governing equations along with all the traction 

free boundary conditions and the interface continuity conditions, due to the inherent complexities 

involved in the problem. Therefore, most approaches have been developed based on quasi-3D 

models or reduced 2D plate models [1] applied to a long rectangular composite laminate in which 

zero gradients along the axial coordinate are assumed. A comprehensive literature review on the 

methods proposed for determining the free-edge stress fields has been presented in Refs [1, 2]. 

Generally, approaches to the problem include the approximate elasticity solutions [3, 4], different 

modifications of Pagano’s theory [5-7] based on the Reissner variational principle, displacement-

based equivalent single-layer (ESL) models [8], displacement-based layer-wise (LW) models [9], 

LW stress-based variational models [10, 11] based on the minimum complementary energy 

principle, semi-analytical [12] and numerical [13] displacement-based approaches (e.g. FEM).  

Among the developed analytical and numerical approaches, the LW stress-based variational 

method [10, 11] based on the minimum complementary energy principle [14] is potentially more 

accurate for free-edge problems where there are zero traction boundary conditions. Contrary to 

displacement-based approaches, the approximate stress field derived with variational approaches 

satisfy exactly all the necessary equilibrium equations, interlaminar continuity and boundary 

conditions including zero-stress conditions at the free edges as well as the top and bottom surfaces 

of laminates. This approach was first introduced by Hashin [14] in 1985 for the analysis of cracked 

two-layer cross-ply laminates under uniaxial tension and further developed by many authors for 

analyzing cracked laminates with general lay-ups, see for example [15-18] as the most complete 

variational models developed so far. Kassapoglou and Lagace [10, 19] were the first who applied 
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the variational approach for analyzing stress concentrations near free edges. The reader is referred 

to the recent publications [1, 2, 16, 17] for a detailed review of the developments in variational 

approach for the free-edge [1, 2] and matrix cracking [16, 17] stress transfer problems.  

The main drawback of the available stress-based variational models is that they predict only 

stress components. It is due to this fact that the stress-based variational method based on the 

minimum complementary energy principle does not require the corresponding displacement field, 

nor does it relate the assumed stress distribution to the strain–displacement equations. Secondly, 

all of the developed variational models like other approaches discussed in this paper, have been 

formulated, not to completely resolve the free-edge or matrix cracking stress transfer problem, but 

just partially to eliminate the dependence of the stress field on the through-thickness coordinate of 

the laminate. Therefore, the interlaminar stress transfer problem can be reduced to a simple 

boundary value problem which is dependent only on the axial or transverse coordinate of the  

assumed laminate. For the variational free-edge stress transfer analysis [10, 19] unlike the 

developed variational ply cracking models [15-18], this boundary value problem leads to a set of 

non-homogeneous differential equations as the Euler’s equation(s) from the variational calculus. 

Indeed, the more layers considered, the more non-homogeneous equations will appear. Therefore, 

one difficulty in available variational models for the free-edge stress transfer problem is because 

of the increased number of non-homogeneous differential equations involved, which must be 

analytically solved. Moreover, there is not a systematic way to obtain and solve these governing 

equations and thus unlike the procedure introduced in Ref. [7], it is not possible to develop a 

software based on the current variational formulations. It simply means that the results obtained 

from the available variational models regarding the free-edge stress transfer [1, 2, 10, 19] are 

approximate and thus, do not reproduce very refined finite element results. In addition, due to 
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implementation of the minimum complementary energy principle, all of the developed stress-

based variational models either for analyzing cracked laminates or free-edge stress fields are 

formulated for traction loading conditions. However, most of the experiments for free-edge 

analysis are performed under displacement loading conditions.  

In this paper, a stress-based variational model is developed to accurately predict the complete state 

of stress and displacement in a general symmetric (possibly made of thin-ply) composite laminate 

containing free edges under uniaxial end stretching/shortening while the effects of thermally 

induced residual stresses are exactly taken into account. First, an admissible stress field containing 

some unknown functions is constructed that satisfies the stress equilibrium and all the traction 

boundary and continuity conditions. Then, by invoking the minimum complementary energy 

principle, the optimal stress state is achieved. An analytical approach is implemented to obtain the 

governing equations in a systematic way and consequently, the model can use the benefits of the 

ply refinement technique [7]. By partitioning the total stresses in a composite with free edge into 

unperturbed (without free edge) and perturbation stresses, it is possible to obtain a set of 

homogeneous fourth order differential equations with constant coefficients which are solved 

analytically. Moreover, it is shown how the strain and displacement fields can be determined when 

using a variational model based on the minimum complementary energy principle. The results 

obtained from the developed approach are compared to the available refined finite element results 

[7, 20, 21] for cross-ply, angle ply and quasi-isotropic laminates. The comparisons of stress and 

displacement fields under both mechanical and thermal loads show an excellent agreement. It 

should be mentioned that the assumed stress and displacement fields satisfy stress equilibrium, 

strain-displacement relations and all the boundary and continuity conditions and additionally, the 

minimum complementary energy principle and a ply refinement methodology are implemented to 
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approach the exact solution. Moreover, the run time of the developed model is less than one second 

for all considered cases when using a double cores Central Processing Unit (CPU) with 4 

Gigabytes Random Access Memory (RAM) in a 64-bit operating system. Thus, for stress transfer 

analysis in symmetric laminates with free edges, the present approach has both high accuracy and 

computational efficiency. 

2. Theoretical Formulation 

An arbitrary symmetric laminate having 2N perfectly bonded layers is considered. Since the 

laminate is symmetric, only the upper set of N layers will be considered, as shown in Fig. 1. A 

rectangular Cartesian coordinates system with the origin located in the mid length of the laminate 

, is selected. The x-coordinate defines the axial or loading direction, the y-coordinate defines the 

in-plane transverse (normal to free edges) direction and the z-coordinate defines the through-

thickness direction. There are N-1 interfaces at the top half of the symmetric laminate (z > 0) which 

are shown by z=zi; i=1, 2... N-1. The plane of symmetry (mid-plane) is shown by z=z0=0 and the 

external top surface is specified by z=zN=h. The total thickness of the laminate is 2h. The thickness 

of the ith ply is also specified by hi=zi-zi-1. The orientation of the ith ply is demonstrated by the 

angle i (measured counter clockwise) between the loading and the fiber direction of the layer. 

The stress and strain components and also material properties associated with the ith layer are 

denoted by a superscript or subscript i. It is assumed that the laminate is long (see Fig. 1) and can 

be infinitely extended in x directions (L>>w) where 2L and 2W are, respectively, the length and 

width of laminate. 

The laminate is subject to external uniform strain εxx and a temperature difference ΔT. In a long 

and wide laminate without any free edges, the only nonzero stress terms are σxx
0(i), σyy

0(i), σxy
0(i)

, where 

the superscript 0 defines the infinite or unperturbed laminate (without free edge) and the 
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superscript (i), i=1,2,…, N, specifies the number of the ply. In this paper, the terms “infinite 

laminate” or “unperturbed laminate” refer to a long and wide laminate which does not have any 

free edges. Following the methodology used by Hashin [14] for analysis of cracked laminates, the 

stresses in the final geometry (with free edges) can be written as a superposition of the stresses in 

the unperturbed state and some perturbation stress functions (yet unknown) appeared due to the 

presence of the free edges. 

σmn
i (X) = σmn

0(i) + σmn
p(i)(X). (1) 

where m,n=x,y,z and X=y,z. The first term in the right hand of Eq. (1) is the stress in the ith ply of 

the infinite laminate, which can be determined using an analysis based on the classical laminated 

plat theory. The second term in right hand of Eq. (1) is the perturbation stress in the ith ply, which 

unlike the stresses in the infinite laminate, is a function of location (X).  

We aim to find admissible stress and displacement fields that satisfy the stress equilibrium 

equations σmn,n
i (X) = 0 and the following stress-strain-temperature relations: 

εxx
i ≡

∂ui

∂x
= S11

i σxx
i + S12

i σyy
i + S13

i σzz
i + S16

i σxy
i + α1

i ∆T, 
(2) 

εyy
i ≡

∂vi

∂y
= S12

i σxx
i + S22

i σyy
i + S23

i σzz
i + S26

i σxy
i + α2

i ∆T, 
(3) 

εzz
i ≡

∂wi

∂x
= S13

i σxx
i + S23

i σyy
i + S33

i σzz
i + S36

i σxy
i + α3

i ∆T, 
(4) 

2εyz
i ≡

∂vi

∂z
+

∂wi

∂y
= S44

i σyz
i + S45

i σxz
i , 

(5) 

2εxz
i ≡

∂ui

∂z
+

∂wi

∂x
= S45

i σyz
i + S55

i σxz
i , 

(6) 

2εxy
i ≡

∂ui

∂y
+

∂vi

∂x
= S16

i σxx
i + S26

i σyy
i + S36

i σzz
i + S66

i σxy
i + α6

i ∆T, (7) 
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where ui, vi and wi define components of the displacement field for the ith layer in the x, y and z 

directions, respectively, and εxx
i , εyy

i  etc., represent the infinitesimal strain terms. Moreover, the 

constants Sij and αi, respectively, show the compliance and thermal expansion coefficients of the 

ith layer. In addition, the admissible stress and displacement fields must satisfy the following 

boundary and interface continuity conditions: 

1. Traction free condition on the top external surfaces z=h: 𝜎xz
N = σyz

N = σzz
N = 0. 

2. Zero out-of-plane shear stresses σxz and σyz at the mid-plane z=0 (due to symmetry with respect 

to the mid-plane). 

3. Stress and displacement continuity conditions at the location of interfaces between the plies 

(z=zi, i=1,2,…,N-1):  𝜎xz
i = σxz

i+1, σyz
i = σyz

i+1, σzz
i = σzz

i+1 and  ui = ui+1, vi = vi+1, wi = wi+1 . 

4. Traction free condition on the free edges at y=±W, i=1,2,…,N-1: σyy
i = σxy

i = σyz
i = 0.  

2.1 Admissible stress field construction 

It is noted that in the considered coordinate system where the free edges are parallel to the x-axis, 

the stress terms are independent of the axial direction because the laminate is long (L>>w). 

Moreover, we assume that the in-plane transverse and shear perturbation stresses in each ply vary 

only along the y direction, perpendicular to the free edge planes, and can be written as:  

σyy
p(i)

 (y) = −pi(y)/hi,   σxy
p(i)

(y) = −qi(y)/hi. (8) 

where pi and qi are unknown functions of the y coordinate. Using these assumed forms (Eq. (8)), 

the other stress components are derived by satisfying the equations of equilibrium. Solving the 

equilibrium equations leads to the condition that the transverse shear (σxz
p(i)

, σyz
p(i)

)  and transverse 

normal stresses (σzz
p(i)

), respectively, are linear and quadratic functions of z in each layer: 
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σyz
p(i)

 (y, z) = p′
i
(y)(z − zi)/hi + ∑ p′

j
(y)

i

j=1
, 

(9) 

σxz
p(i)

 (y, z) = q′
i
(y)(z − zi)/hi + ∑ q′

j
(y)

i

j=1
, 

(10) 

σzz
p(i)

 (y, z) = −p′′
i
(y)(z − zi)

2/2hi − z ∑ p′′
j
(y)

i

j=1
−

1

2
∑ (zj + zj−1)p′′

j
(y)

N

j=i+1
. 

(11) 

 

It should be noted that to obtain equations (9)-(11), use has been made of integrating stress 

equilibrium equations σmn,n
i (X) = 0, together with satisfying stress continuity conditions at the 

interface between plies. 

The in-plane axial strain (εxx) is one of the input loading parameters and thus has a uniform value 

in all layers of the laminate. Therefore, using Eq. (2), the perturbation in-plane axial stress can be 

defined in terms of the other perturbation stress terms, as follows: 

σxx
i = σxx

0(i) + σxx
p(i)

= (εxx − S12
i σyy

i − S13
i σzz

i − S16
i σxy

i − α1
i ΔT)/S11

i , 

  σxx
0(i) = (εxx − S12

i σyy
0(i) − S16

i σxy
0(i) − α1

i ΔT)/S11
i ,  

(12) 

 

 

σxx
p(i)

(y, z) = (−S12
i σyy

p(i)
− S13

i σzz
p(i)

− S16
i σxy

p(i)
) /S11

i , (13) 

The admissible perturbation stress field should satisfy the traction boundary conditions Nyy=0 and 

Nxy=0. This asserts that the following relations between perturbation functions must be satisfied: 

∑ pi(y) = 0,
N

i=1
       ∑ qi(y) = 0

N

i=1
. 

(14) 

It then follows that the out-of-plane shear stresses σxz and σyz are automatically zero on z=0 (due 

to symmetry with respect to the mid-plane). Moreover, the out-of-plane shear σxz, σyz and normal 

σzz perturbation stresses are automatically zero on z = ±h.  
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The representation of the admissible stress field defined by equations (8)-(11) and (13) satisfies 

all equilibrium stress equations, through-thickness traction boundary conditions and interface 

continuity conditions for any perturbation functions pi(y) and qi(y), i=1…N, characterizing stress 

transfer mechanism in any symmetric laminate. Moreover, Eq. (14) provides two additional 

interrelationships between the perturbation stress functions to balance the applied traction 

boundary conditions of the laminate. Therefore, the total number of unknown perturbation stress 

functions that need to be obtained, is 2(N-1).  

2.2 Governing differential equations 

In this section, the  most optimal functions will be evaluated that minimize the complementary 

energy. By partitioning the total stresses into unperturbed and perturbation stresses, the total 

complementary energy Ucom of a laminate subject to displacement boundary condition and thermal 

residual stresses can be  simplified as follows [22]: 

Ucom = Ucom
0 + Up,      where   Up =

1

2
∫ 𝜎𝑝𝑇

 s
V

σ𝑝dV. 
(15) 

where Ucom
0  is the complementary energy of the laminate without free edges, which does not 

contribute to the variation. Moreover, s is the compliance tensor and V denotes region of the 

considered laminate.  

For a laminate with free edges, we will minimize the perturbation complementary energy 

functional (Up) over the volume of width 2W bounded by two free edges, such that |y| ≤

W and |z| ≤ h. As the laminate is symmetric, only the upper part  0 ≤ 𝑧 ≤ ℎ will be considered. 

Consequently: 

Up = 2 ∑ (∫ ∫
1

2
{σp(i)}

T
[S(i)]{σp(i)}dzdy

zi

zi−1

W

−W

)

N

i=1

, 
(16) 
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where ][ )(iS is the compliance tensor of layer (i). Substituting the equations for the perturbation 

stress terms (Eqs. (8)-(13)) in Eq. (16) and using the rotated compliance matrices, it is possible to 

perform the integration over z . It should be mentioned that unknown perturbation functions are 

not independent. Indeed, one out of any N unknowns of pi and qi , i=1,2,…N,  can be eliminated 

using Eq. (14). Therefore, the result of integration over z in (16) would be written in the following 

form, based on the independent unknown perturbation functions: 

Up = ∫ F(y, {p}, {p′}, {p′′}, {q}, {q′})dy,
W

−W
  where (17) 

 F(y, {p}, {p′}, {p′′}, {q}, {q′}) =  {p}T[A11
00]{p} + {q}T[A22

00 ]{q} + {p}T[A12
00]{q} + {p′}T[A11

11 ]{p′} 

  +{q′}T[A22
11 ]{q′} + {p′}T[A12

11 ]{q′} + {p′′}T[A11
20]{p} + {p′′}T[A12

20]{q} + {p′′}T[A11
22]{p′′} 

(18) 

where {p} and {q} are vectors of independent unknown perturbation functions and the coefficient 

matrices [A11
00], etc., can be easily evaluated analytically in terms of ply properties.  

The independent unknown perturbation functions {p} and {q} will be evaluated from the 

minimization of the perturbation complementary energy functional. It is well understood that 

taking a variation from the complementary energy functional leads to the Euler-Lagrange 

equations [15-18]. For the complementary energy functional defined in Eq. (17), the Euler-

Lagrange equations as the governing equations of the problem have the following forms: 

∂F

∂{p}
−

d

dy
(

∂F

∂{p′}
) +

d2

dy2 (
∂F

∂{p′′}
) = 0 ,    (19) 

∂F

∂{q}
−

d

dy
(

∂F

∂{q′}
) = 0 . 

(20) 

Considering the functional (F) defined in Eqs. (17) and (18), the above Euler-Lagrange 

equations can be written as follows: 

[T1]{p′′′′} + [T2]{p′′} + [T3]{p} + [T4]{q′′} + [T5]{q} = 0 (21) 
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[T4]T{p′′′′} + [T5]T{p′′} + [T6]{q′′} + [T7]{q} = 0 (22) 

where 

[T1] = [A11
22] + [A11

22]T,   [T2] = [A11
20] + [A11

20]T − [A11
11 ] − [A11

11 ]T, [T3] = [A11
00] + [A11

00]T,           

[T4] = −[A12
11 ] + [A12

20],    [T5] = [A12
00],   [T6] = −[A22

11 ] − [A22
11 ]T,    [T7] = [A22

00 ] + [A22
00 ]T   

(23) 

It can be clearly seen that the Eqs. (21) and (22) are a coupled systems of homogeneous ordinary 

differential equations with constant coefficients. There are many methods to analytically solve 

these differential equations. The reader is referred to Ref. [15] to find details about solving these 

differential equations. Moreover, it is noted that the coupled system in Equations (21) and (22) is 

very similar to the equations which has been derived by McCartney [23] using a stress transfer 

model for general symmetric laminates containing ply cracks. The method of numerically solving 

the system of differential equations (21) and (22) is described by Hannaby [24]. The reader should 

also refer to these publications [23, 24] for more details. 

Having the general solution for these differential equations (Eqs. (21) and (22)), the final step 

is determining arbitrary constants of the solution implementing the traction boundary conditions 

at free edges. These coupled systems (Eqs. (21) and (22)) require 6(N-1) boundary conditions.  

The traction free conditions for each layer on the free edges y=±W, can be written 

σyy
i (𝑦 = ±𝑊) = 0,       σxy

i (𝑦 = ±𝑊) = 0,    σyz
i (𝑦 = ±𝑊) = 0.    (24) 

The above equation can be simplified in terms of the perturbation functions: 

pi(y = ±W) = σyy
0(i)hi,      qi(y = ±W) = σxy

0(i)hi ,      p′i(y = ±W) = 0. (25) 

There are clearly 6(N-1) of these traction free boundary conditions, as needed.  

It is noted that by partitioning the stress field for a laminate with free edges into unperturbed 

(solution of classical laminated plate theory) and perturbation stresses (due to the presence of free 
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edges), the effects of the actual mechanical and thermal loads come through these constant fields 

in the boundary conditions at free surfaces. 

2.3 Displacement fields 

As shown in the previous sections, the variational model needs only stress components. Indeed, in 

order to determine the solution, the variational approach makes use of the minimum 

complementary energy principle, which does not require corresponding displacement fields. 

However, it has been shown by Rosen [25] that of all stress fields which satisfy equilibrium 

throughout the region and boundary conditions on portions of the surface over which tractions are 

prescribed, the set that yields a compatible set of displacements minimizes the complementary 

energy. In this section, following the approach developed by McCartney [26] for stress transfer in 

cracked laminates, an attempt is made to derive corresponding displacement fields for the 

variational model based on the admissible stress fields (Eq. (8)-(11)). 

The laminate is assumed to be under generalized in-plane strain conditions for which the 

displacement field in each layer (i) of the laminate is of the following form 

ui = f1
i(y, z) + εxxx + εxy

0 y,        vi = f2
i (y, z) + εyy

0 y + εxy
0 x,        wi = f3

i (y, z),       (26) 

where εyy
0  and 2εxy

0  are the transverse and shear strains in the infinite laminate (without free edge) 

when the laminate is under the uniform axial strain εxx and a temperature difference ΔT. 

It is noted that the functions fk
i , k = 1, 2, 3, i = 1…N, that are to be determined, are all independent 

of x. These functions are identically zero for the infinite laminate (without free edge). It is evident 

that the assumed displacement field (Eq. (26)1) satisfies Eq. (2) automatically, because of the 

relations (12) and (13). 

It follows from Eqs. (4), (8), (11) and (12) that, for zi−1 < z ≤ zi and i = 1…N, 
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wi = −
(S33

i − S13
i 2

/S11
i ) (z − zi)

2

2hi
[
(z − zi)

3
p′′

i
(y) + hi ∑ p′′

j
(y)

i

j=1
] 

− (S33
i − S13

i 2
/S11

i ) (z − zi) [
1

2
∑ (zj + zj−1)p′′

j
(y)

N

j=1+i
+ zi ∑ p′′

j
(y)

i

j=1
] 

+(z − zi) [εzz
0(i)

−
(S23

i −S13
i S12

i /S11
i )pi(y)

hi
−

(S36
i −S13

i S16
i /S11

i )qi(y)

hi
]+Wi(y). 

(27) 

In the above equation, Wi(y) which arises from the integration over z, is the out-of-plane 

displacement (to be defined later) at the interface z=zi. Moreover, εzz
0(i)

 is the out-of-plane axial 

strain in the ith ply of a symmetric laminate without free edges. 

It follows from Eq. (5), (9)-(13) and (27) that, for zi−1 < z ≤ zi and i = 1…N, 

vi = (S33
i −

S13
i 2

S11
i

) (z − zi)
3 [

(z − zi)

24hi
p′′′

i
(y) +

1

6
∑ p′′′

j
(y)

i

j=1
] 

+ (S33
i −

S13
i 2

S11
i

) (z − zi)
2 [

1

4
∑ (zj + zj−1)p′′′

j
(y)

N

j=1+i
+

1

2
zi ∑ p′′′

j
(y)

i

j=1
] 

+
(z − zi)

2

2hi
[S44

i p′i(y) + S45
i q′i(y) + (S23

i −
S13

i S12
i

S11
i

) p′i(y) + (S36
i −

S13
i S16

i

S11
i

) q′i(y)] 

+(z − zi) [S44
i ∑ p′

j
(y)i

j=1 + S45
i ∑ q′

j
(y)i

j=1 ]-(z − zi)W′
i(y) + Vi(x, y), 

(28) 

where Vi(x, y), arising from the integration over z, is the in-plane transverse displacement at z=zi. 

Similarly from Eq. (6), (9)-(13) and (27) that, for zi−1 < z ≤ zi and i = 1…N, 

ui = (z − zi)S45
i [

(z − zi)

2hi
p′

i
(y) + ∑ p′

j
(y)

i

j=1
] 

                           +(z − zi)S55
i [

(z − zi)

2hi
q′i(y) + ∑ q′

j
(y)

i

j=1
] + Ui(x, y), 

(29) 
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where Ui(x, y), arising from the integration over z, is the in-plane axial displacement at z=zi. The 

functions Wi(y), Vi(x,y) and Ui(x,y), i=1…N, will be defined in terms of the perturbation functions 

pi(y), qi(y), by three recurrence relations, as presented in Appendix. 

3. Results and Discussion 

In order to validate the developed methodology and the associated software implementation, the 

results predicted by the present model are compared with the well-known 3D finite element results 

of Wang and Crossman [20, 21] for [0/90]s, [45/-45]s and [45/-45/90/0]s laminates. The following 

material and geometrical properties are used for this investigation [20, 21]: 

 𝐸A= 137.9 GPa,           ET=14.48 GPa,             GA=GT=5.86 GPa,       tply=0.19mm 

𝜐A=𝜐T=0.21,             αA=0.36×10-6 0C-1,           αT=28.8×10-6 0C-1,     2W=16× tply 

(30) 

As mentioned earlier, the formulation is derived in a systematic way and thus, a software is 

developed to deal with general symmetric laminates with arbitrary number of plies. It is possible 

to implement a ply refinement technique in order to improve the accuracy of predictions based on 

the variational approach. Thus, each ply is divided into 5 elements of equal thickness. Due to the 

high stress concentration at the interface between plies near free edges, it is useful to further sub-

divide the elements adjacent to both the interfaces so that the stress singularities can be resolved. 

The elements adjacent to both interfaces have been successively divided in fourth, three times. 

Figs. 2a and 2b show, respectively, the transverse distribution of interlaminar normalized axial 

(σzz/εxx) and shear (σyz/εxx) stresses at the 0/90 interface of a [0/90]s laminate under uniform 

extension εxx. Fig. 3a shows the transverse distribution of normalized transverse displacement (-

v/tply/εxx) at top surface (z=h) of the [0/90]s laminate. Moreover, Fig. 3b shows through thickness 

distribution of the normalized transverse displacement (-v/tply/εxx) at free edge (y=W) of the [0/90]s 

laminate. Figs. 4a and 4b also show, respectively, the transverse distribution of interlaminar 
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normalized axial stresses (σzz/εxx) at the mid-plane (z=0) and at the 0/90 interface of a [45/-

45/0/90]s laminate under uniform extension εxx. The general observation is that there is an excellent 

agreement between the results obtained from the current formulation and those of FEM [20] which 

verifies the accuracy of the developed method in predicting both stress and displacement fields 

near free edges of a symmetric laminate under uniaxial tension.  

Figs. 5a and 5b show, respectively, the transverse distribution of interlaminar normalized axial 

(σzz/ΔT) and shear (σxz/ΔT) stresses at the 45/-45 interface of a [45/-45]s laminate under uniform 

thermal load ΔT. There is again an excellent agreement with FEM results [21] which verifies the 

accuracy of the derived stress-based variational model for thermal loading condition. However, 

these agreements are not very surprising as the derived analytical formulation is superior to FEM 

not only in terms of computational efficiency but also in terms of accuracy. It is noteworthy to 

mention that the assumed displacement and stress fields satisfy exactly stress equilibrium, strain-

displacement relations and all the boundary and continuity conditions and also, the minimum 

complementary energy principle and a ply refinement technique are employed to approach the 

exact solution. The derived approach, when implemented together with a ply refinement technique, 

can be considered as a stress-based super element, where highly accurate result can be delivered 

and continuity of tractions and displacements at all element ply interfaces can be assured. 

Moreover, contrary to FEM (see Fig. 2b) which is generally a displacement-based approach, the 

derived stress fields exactly satisfy zero traction boundary conditions at free edges and upper and 

lower surfaces.  

To further show the high computational efficiency and accuracy of the present model, the results 

obtained from the developed approach are compared with the refined 3D finite element results of 
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Saeedi et. al [7], very close to the free edges for [±10]s and [±20]s laminates made of carbon/epoxy. 

The following material and geometrical properties are used for this investigation [7]: 

CTE1/T700:       EA= 153.82 GPa,           ET=10.61 GPa,             GA=GT=5.58 GPa,  

                     𝜐A=𝜐T=0.315,               tply=0.13 mm,               2W=20 mm. 

(31) 

Figs. 6 shows across the width distribution of the normalized interlaminar shear (σxz/Exx/εxx) 

stresses at the –θ/θ interface of [±θ]s laminates (θ=100, 200) under uniform extension εxx. It is noted 

that Exx is the axial stiffness of the laminate. It should be mentioned that the finite element mesh 

is considerably refined at the interface near the free edges to obtain accurate results. The size of 

the elements in this zone is almost 1 micron [7]. The variational model is implemented with two 

different amounts of ply refinement. First, each ply is divided into 20 elements of equal thickness 

(n=20). Second, in addition to uniform ply refinement, the elements adjacent to both interfaces 

have been successively divided in half, three times. In both laminates, far from the free edge, the 

results obtained from three models are in perfect accordance. However, a large discrepancy 

between the refined variational and FEM results can be seen, very close to the free edge. Indeed, 

the variational model with regular ply refinement (n=20) is as accurate as 3D FEM, but the very 

refined variational model (with the proposed additional ply refinement near interfaces) is much 

more accurate than the 3D finite element method. 

Finally, the problem of interlaminar free edge stress transfer in thin ply composite laminates is 

discussed. A [0/90]s laminate with standard thickness (tply=0.13 mm) and a [0 90⁄ ]5s laminate with 

thin plies (tply=0.13/5=0.026mm) made of CTE1/T700 (Eq. (31)) are considered. In order to have 

the converged results, each ply is first divided into 5 elements with the same thickness and the 

elements adjacent to both interfaces have been successively divided in fourth, three times, for both 

standard and thin-ply laminates. Therefore, 28 and 212 ply elements are used to accurately model 
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interlaminar stress transfer in standard and thin-ply laminates, respectively. Fig. 7a shows the 

through thickness distribution of the normalized interlaminar axial (σzz/εxx) stresses at the free-

edge location (y=W) for both standard and thin-ply laminates under uniform extension of εxx. Fig. 

7b also shows across the width distribution of normalized interlaminar shear (σyz/εxx) stresses at 

0/90 interface for both standard (z=0.13mm) and thin-ply (z=0.208, interface with highest 

interlaminar stresses) laminates. It can be clearly seen that free-edge stresses in thin-ply composite 

laminates are remarkably lower than standard laminates. Therefore, it is expected that thin-ply 

laminates have much more strength against free-edge delamination. It is noteworthy that the use 

of finite element approach when dealing with interlaminar free-edge stress analysis in thin-ply 

composite laminates is a very difficult task due to the complexity of the required meshes near free 

edges and interfaces between the plies. Therefore, the current model with capability of modeling 

more than 200 plies with different orientations can be a very good design tool to anticipate stacking 

sequence effects on free-edge delamination in thin-ply composite laminates. 

 4. Conclusion 

A novel variational model based on the concept of minimum complementary energy is developed 

to accurately predict both stress and displacement fields in general symmetric laminates containing 

straight free edges under a uniform longitudinal extension and a uniform temperature change. The 

approach can only be applied to laminate strips where the length is much larger than the width. 

The methodology has been formulated analytically and can be applied to free-edge stress analysis 

of thin-ply composite laminates with arbitrary number of layers. The comparison of results with 

available FEM results in the literature shows an excellent agreement. The assumed 

stress/displacement fields satisfy accurately stress equilibrium, strain-displacement relations and 

the boundary and continuity conditions and also, the minimum complementary energy principle 
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and a ply refinement methodology are employed to approach the exact solution. The derived 

approach, when implemented together with a ply refinement technique, can be considered as a 

stress-based super element, where highly accurate result can be delivered and continuity of 

tractions and displacements at all element ply interfaces can be assured. The formulation can be 

enhanced to deal with un-symmetric laminates and bending loads by considering more stress 

perturbation functions [16]. This certainly necessitates a future detailed research work. 
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Appendix A. 

The admissible displacement fields should satisfy the following displacement boundary and 

continuity conditions: 

1- Symmetry with respect to x=0 (mid-plane): 
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w1 =0,       on           z=0 (A.1) 

2- Displacement continuity condition at the interface between the plies 

ui = ui+1,        vi = vi+1,          wi = wi+1,     on x = xi,     i = 1 … N − 1.         (A.2) 

On substituting z=zi-1 in (27) and considering Eqs. (A.1) and (A.2)3, the following recurrence 

relation is derived for the functions Wi(y), for i=1…N: 
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(A.3) 

On substituting z=zi-1 in (28), considering continuity condition in Eq. (A.2)2 and then eliminating 

εyy
0  and εxy

0  by subtraction, the following recurrence relation can be derived for the functions 

∆Vi(y) ≡ Vi(x, y) − VN(x, y) which must be independent of x, for i=N…2: 
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(A.4) 

On substituting z=zi-1 in (29), considering continuity condition in Eq. (A.2)1 and then eliminating 

εxx and εxy
0  by subtraction, the following recurrence relation can be derived for the functions 

∆Ui(y) ≡ Ui(x, y) − UN(x, y) which must be independent of x, for i=N…2: 
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(A.5) 

The functions VN(x, y) and UN(x, y) defined (A.4) and (A.5), can be calculated using through-

thickness averages of the Eqs. (3) and (4). 

 

Fig. 1. Geometry of an arbitrary symmetric laminate containing free edges (only the upper set 

of N layers (z>0) is shown).  
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Fig. 2. Distribution of a) the normalized interlaminar axial σzz and b) shear σyz stresses in y-

direction from edge to edge at the 0/90 interface of [0/90]s laminate under εxx. 

 

Fig. 3. a) Across the width distribution of the normalized transverse displacement at top 

surface (z=h). b) Through thickness distribution of the normalized transverse displacement at 

free edge (y=W) of [0/90]s laminate under εxx. 
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Fig. 4. Distribution of the normalized interlaminar axial σzz stresses across the width from 

edge to edge a) at the mid-plane (z=0) and b) at the 0/90 interface of [45/-45/90/0]s laminate 

under εxx. 

 

Fig. 5. Distribution of a) the normalized interlaminar axial σzz and b) shear σxz stresses in y-

direction from edge to edge at the 45/-45 interface of a [45/-45]s laminate under ΔT. 
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Fig. 6. Distribution of the normalized interlaminar shear stress 𝜎𝑥𝑧 versus normalized distance 

from free edge at the interface θ/-θ of [-θ/θ]s laminates made of CTE1/T700 under εxx. 

 

 

Fig. 7. a) Through thickness distribution of normalized interlaminar axial stress σzz at free-

edge (y=W). b) Across the width distribution of normalized shear stress σyz at 0/90 interface. 

 


