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Abstract 

This paper presents classification methods for electroencephalography (EEG) signals in imagination of direction 
measured by a portable EEG headset. In the authors’ previous studies, principal component analysis extracted 
significant features from EEG signals to construct neural network classifiers. To improve the performance, the 
authors have implemented a Stacked Autoencoder (SAE) for the classification. The SAE carries out feature 
extraction and classification in a form of multi-layered neural network. Experimental results showed that the SAE 
outperformed the previous classifiers. 
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1. Introduction 

Electroencephalography (EEG) is a non-invasive way 
for measuring human brain activity. A lot of studies on 
Brain Machine Interface (BMI) have make use of EEG 
because of its greater availability than invasive ways. In 
addition, portable and low-cost EEG devices have been 
developed and readily accessible nowadays. Having 
said that, there are unclear points in the accuracy of 
those portable EEG devices,1,2 hence the potential of 
applications using them should be explored. 

Seto et al. had studied on classification of EEG 
signals in imagination of direction measured by a 
medical EEG device.3 Following their study, we 
employed a portable EEG headset to record EEG signals 
in imagination of direction, and implemented feature 

extraction with Principal Component Analysis (PCA) 
and several neural networks for the classification.4,5 We 
validated the classification performance and confirmed 
that the best classification rate of the method using the 
medical EEG device was still better than those of our 
methods. 

To achieve higher classification rate, we have 
implemented a Stacked Autoencoder (SAE) for feature 
extraction and classification of EEG signals in 
imagination of direction measured by the portable EEG 
device. G. E. Hinton et al. said that deep autoencoder 
networks can reduce the dimensionality of data much 
better than PCA.6 Therefore, we introduced a SAE to 
our study. Here we describe the SAE implemented for 
EEG signal classification and show results of 
comparative experiments that validate its effectiveness. 
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2. EEG Data Acquisition and Preprocessing 

Fig. 1 shows a wireless portable EEG headset developed 
by Emotiv Inc., named EPOC.7 We used the headset for 
EEG data acquisition in our preceding study.4,5 EPOC 
has 14 electrodes and two reference electrodes, 
recording EEG signals at a sampling rate of 128 Hz. 
The electrodes are placed on the scalp according to an 
extended 10-20 system for EEG measurement as shown 
in Fig. 2. 
 

 
 

Fig. 1.  Emotiv EPOC (wireless portable EEG headset) 
 

 
Fig. 2.  Electrode placement of EPOC 

 
Nine male university students participated in 

experiments as subjects for EEG data acquisition. Their 
average age was 21.9 years. Fig. 3 shows the 
experimental environment. During the experiments, a 
subject imagined one figure of arrows shown in Fig. 4. 
The obtained EEG signals were preprocessed to produce 
input vectors to a classifier. Fig. 5 is a flowchart of the 
preprocessing. The input vectors are composed of 23 
elements. See Refs. 4 and 5 for more details about the 
EEG data acquisition and preprocessing. 

 

 
Fig. 3.  Experimental environment 

 

 
Fig. 4.  Arrows indicating directions 

(up, down, right, and left) 
 
 

 
Fig. 5.  Flowchart of preprocessing 
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3. Classification with Stacked Autoencoder 

In our previous studies,4,5 we applied PCA to the 
preprocessed EEG data for reducing the dimension, and 
trained three-layered neural networks using the data as 
feature vectors. This classification method is called 
“PCA-NN” in this paper. 

We introduced deep neural networks in order to 
achieve better classification performance. Although 
training a deep neural network was difficult for 
backpropagation due to vanishing gradient problem, 
pretraining weights between nodes of a deep neural 
network can be a solution to the problem. 

Stacked Autoencoder (SAE) is a way of 
constructing a deep neural network, in which deep 
architectures are initialized by stacking pretrained 
autoencoders. Fig. 6 illustrates a typical autoencoder 
that is an hourglass-shaped three-layered neural network. 
This neural network has the same number of nodes in 
the input and output layers, and it is trained so that it 
can yield output values equal to given input ones by 
backpropagation. As mentioned above, autoencoders 
can be used for dimensionality reduction. The anterior 
part between the input and hidden layers of autoencoder 
works as an encoder, compressing input signals and 
extracting important information from them. The 
encoder parts of pretrained autoencoders are stacked for 
initializing a deep neural network. We trained the 
autoencoders with the preprocessed EEG data for 1000 
epochs. 
 

 
Fig. 6.  Autoencoder 

 
We constructed initial SAEs with the pretrained 

autoencoders and then performed fine-tuning for 1000 

or 10000 epochs. Fig. 7 shows the architecture. The 
SAE has an input layer, two hidden layers, and an 
output layer. Input vectors to the SAE are composed of 
23 elements produced from the EEG signals obtained 
through the preprocessing shown in Fig. 5. The output 
layer has four nodes in order to classify given EEG 
signals into the four directions: up, down, right, and left. 
The number of nodes of the first and second hidden 
layers were tentatively set to 20 and 10, respectively. 
Searching the optimum number of hidden layers and 
their nodes is a future work. 
 

 
 

Fig. 7.  Stacked Autoencoder with two hidden layers 

4. Results and Discussion 

The classification rates of the classifiers were evaluated 
with 5-fold cross validation. Table 1 and Table 2 show 
the evaluation results for the EEG signals obtained from 
one of the subjects. In the PCA-NNs, the PCA kept 
features with a 90% cumulative contribution ratio, and 
trimmed off the others. In the result, 17-dimensional 
feature vectors were produced. Therefore, the NNs of 
the PCA-NN were composed of 17-17-4 nodes in the 
input, hidden, and output layers. On the other hand, the 
structure of the SAEs were 23-20-10-4; the number of 
the input nodes is 23 that is equal to the dimension of 
the preprocessed input vector. 

As shown in Table 1, the maximum classification 
rate by the PCA-NNs was 35.0% at FC5 electrode. It 
appears that overfitting caused the poor performance in 
some of the PCA-NNs trained for 10000 epochs. 

Table 2 shows the classification rates of the SAEs. It 
clarified that the SAEs achieved better classification 
performance than the PCA-NNs. One of the SAEs 
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realized 61.7% classification rate at FC5 electrode. 
Nevertheless, the work by Seto et al. using a medical 
EEG device3 is still better than the results obtained in 
this study. 

It would be expected for improvement that a deeper 
SAE could provide superior performance than the SAEs 
with only two hidden layer used in this study. In 
addition, we will use denoising autoencoders8,9 to 
extract more relevant features for the classification of 
EEG signals. 
 

Table 1.  Classification rate percentages of PCA-NN 

Electrode Epoch 1000 Epoch 10000 
AF3 25.8 25.8 
F7 29.2 26.7 
F3 26.7 29.2 

FC5 35.0 25.8 
T7 33.3 26.7 
P7 31.7 27.5 
O1 25.0 25.8 
O2 25.0 25.0 
P8 34.2 28.3 
T8 30.0 25.8 

FC6 25.8 26.7 
F4 27.5 24.2 
F8 24.2 24.2 

AF4 26.7 23.3 
 

Table 2.  Classification rate percentages of SAE 

Electrode Epoch 1000 Epoch 10000 
AF3 35.8 34.2 
F7 56.7 49.2 
F3 41.7 40.0 

FC5 55.8 61.7 
T7 40.8 40.8 
P7 37.5 41.7 
O1 30.0 33.3 
O2 28.3 30.8 
P8 24.2 29.2 
T8 45.0 32.5 

FC6 39.2 34.2 
F4 34.2 33.3 
F8 35.0 32.5 

AF4 36.7 35.0 
 

5. Conclusion 

We implemented the SAEs for classification of EEG 
signals in imagination of direction, and compared the 
performance with those of the NNs trained using the 
feature vectors extracted by PCA. The results 

demonstrated that the SAEs achieved the improvement, 
however the achievement of the preceding study using a 
medical EEG device is still better than ours using the 
portable EEG headset. There remains much to explore a 
way to select the number of layers in the SAEs and to 
adopt denoising autoencoders as future work. 
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