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We report the electrical properties of 60� dislocations originating from the þ1.2% lattice mismatch

between an unintentionally doped, 315 nm thick Ge0.922Sn0.078 layer (58% relaxed) and the

underlying Ge substrate, using deep level transient spectroscopy. The 60� dislocations are found to

be split into Shockley partials, binding a stacking fault. The dislocations exhibit a band-like distri-

bution of electronic states in the bandgap, with the highest occupied defect state at �EVþ 0.15 eV,

indicating no interaction with point defects in the dislocation’s strain field. A small capture cross-

section of 1.5� 10�19 cm2 with a capture barrier of 60 meV is observed, indicating a donor-like

nature of the defect-states. Thus, these dislocation-states are not the source of unintentional p-type

doping in the Ge0.922Sn0.078 layer. Importantly, we show that the resolved 60� dislocation-states act

as a source of leakage current by thermally generating minority electrons via the Shockley-Read-

Hall mechanism. Published by AIP Publishing. https://doi.org/10.1063/1.5034573

Ge1�xSnx, an alloy of Ge and a–Sn, has instigated a tran-

scendental interest in below 10 nm technology nodes due to

two notable characteristics.1–3 Firstly, Ge1�xSnx has a larger

bulk lattice constant in comparison to Ge and Si. As a result,

Ge1�xSnx strain relaxed buffers3 could allow the tuning of

longitudinal tensile strain in Ge channels for n-type fin field

effect transistors (FinFETs).3,4 Secondly, the band structure of

Ge1�xSnx can be tuned as a function of the misfit strain and

the Sn content, and a transition from the indirect-L to direct-C
bandgap can occur.5,6 The possibility of a narrow direct

bandgap makes it alluring for p-type tunnel FETs (TFETs)7

and infrared optical components like photo-detectors,8 light

emitting diodes and lasers.2,5 However, the Sn content

required to observe indirect to direct transition increases with

the magnitude of compressive strain,2,5,6 thereby impelling

the use of strain-relaxed Ge1�xSnx. The high compressive

strain due to the lattice mismatch between Ge1�xSnx and Ge/

virtual-Ge or Si substrates is released above a critical epitaxial

layer thickness. The relaxation usually occurs by introduction

of extended defects (EDs), comprising linear defects (disloca-

tions), planar defects (e.g., stacking faults, twins) and

3-dimensional islands.2,9 Though strain-relaxed Ge1�xSnx is

advantageous for certain device applications, the EDs are det-

rimental to both optical and electrical devices. EDs are known

to (i) generate excess current in transport based devices via

Shockley-Read-Hall (SRH) generation, trap assisted tunneling

and 1-D conduction,10 (ii) act as powerful trap/recombination

sites,11,12 thereby degrading the efficiency of lasers and photo-

detectors, and (iii) alter free carrier concentrations.12,13

For quantifying the impact of ED on devices’ performances,

their electronic signature is often obtained using deep level

transient spectroscopy (DLTS).14–18 The defect’s electronic

signature consists of, but is not limited to, the activation

energy (ET), the capture cross-section (rn, rp), the defect con-

centration (NT), the donor-acceptor nature, and the field

dependent emission.

Rather surprisingly, very little work has been done in

obtaining the signature of defects in Ge1�xSnx epitaxial

layers. Ryu et al.19 have studied strain-relaxed Ge0.94Sn0.06

grown on a Si substrate and suggested the presence of 2 shal-

low acceptor-like defect-states with activation energies of

7.5 meV and 140 meV based on the experimental fitting

of the Hall mobility. Takeuchi et al.20 have studied strain-

relaxed Ge1�xSnx for 0.013� x� 0.032 grown on Si and Ge

wafers and reported several deep and shallow levels.

However, in both studies, the exact source of the reported

defects and their signature were not clarified. In this work,

we bridge this knowledge gap by providing the first detailed

report on the signature of EDs (in particular, clean 60� dislo-

cations) in Ge0.922Sn0.078, epitaxially grown on a Ge sub-

strate using Fourier Transform DLTS. A dislocation is

regarded as clean when it exhibits intrinsic properties and is

not influenced by external perturbations. These perturbations

result from the interaction of a dislocation with point defects,

e.g., jogs, kinks or reconstruction defects in the dislocation

core, or from impurities segregated in dislocation’s long

range strain field, in the Cottrell atmospheres.12,17,21

Figure 1(a) shows the cross-sectional view of the p�

Ge0.922Sn0.078/nþGe junction diode investigated in this work.

Ge0.922Sn0.078 is grown using chemical vapor deposition

(CVD)9 on a high quality heavily doped n-type (100) Ge-

wafer (Nþd ¼ 3:5� 1018 cm�3). The dopant concentration in

the Ge substrate is confirmed using a four-point probe and

scanning spreading resistance microscopy (SSRM) measure-

ments. Prior to the epi-growth, the Ge substrate is subjected

to an ex-situ 2% HF dip and an in-situ bake under H2 ata)Electronic mail: somya.gupta.ext@imec.be
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650 �C, to remove any residual oxide. The Ge0.922Sn0.078 epi-

taxial layer is subsequently grown at 320 �C using Ge2H6

and SnCl4 as precursors and N2 as the carrier gas. The diode

is prepared by e-beam evaporation of an Al circular top con-

tact of 600 lm diameter, using a hard-mask. The ohmic con-

tact to the backside of the Ge substrate is made with 100 nm

of Au, deposited by thermal evaporation. The diode area is

defined by reactive ion mesa-etching using SF6 and O2 as

precursor gases at 100 W and 80 mTorr, with an etch depth

of �195 nm and Al top contacts as the hard mask.

The Ge0.922Sn0.078 layer is nominally undoped; however,

a residual p-type doping is observed. Using scanning capaci-

tance microscopy (SCM), a phase shift of 180� is obtained

between the n-type Ge substrate and the epitaxial layer, indi-

cating that Ge0.922Sn0.078 has p-type conductivity [Fig. 1(b)].

From the capacitance-voltage (1/C2-V) plot (not shown here)

at 1 MHz and room temperature (RT), a hole concentration

(p ¼ N�A � NþD ) of 2� 1016 cm�3 is extracted for the

Ge0.922Sn0.078 epitaxial layer. N�A and NþD are the ionized

acceptor and compensating donor concentrations, respectively.

In comparison, using SSRM, a hole concentration, p¼(3.5

6 1)� 1016 cm�3 is obtained. It is to be noted that a p-type Ge

calibration sample is used for estimating p; yet, good agree-

ment is found with more accurate C-V measurements.

Figure 2(a) shows the asymmetric reciprocal space map

(RSM) acquired around the Ge (224) reciprocal lattice point.

The relative position of the Bragg peaks indicates that the

Ge1�xSnx epitaxial layer is partially relaxed with respect to

the Ge substrate. In-plane (aL;k) and out-of-plane (aL;?) lat-

tice parameters of the Ge1�xSnx epitaxial layer are calcu-

lated, using equations from Ref. 22. The substitutional Sn

content in Ge1�xSnx is calculated by solving Eqs. (1) and (2)

re-iteratively until convergence. b is the bowing parameter

with a value of 0.00435 nm (Ref. 9) and � is the Poisson’s

ratio given by the linear interpolation between the values of

a-Sn and Ge [�¼ 0.3xþ 0.271(1–x)]

aGeSn ¼ �
aL;?ð� � 1Þ � 2aL;kð�Þ

1þ � ; (1)

aGeSn ¼ aGeð1� xÞ þ xaSn þ bxð1� xÞ: (2)

The bulk lattice constant, aGeSn¼ 0.575 nm, is then obtained

using Eq. (2). The degree of strain relaxation, DSR¼ (aL;k
� aGe)/(aGeSn� aGe), the misfit f ¼ ðaGeSn � aGeÞ=aGe, and

the compressive strain ek ¼ ðaL;k � aGeÞ=aGe associated with

the Ge0.922Sn0.078 layer are calculated to be þ58%, þ1.2%,

and �0.5%, respectively.

In the diamond-like lattice of Ge(Sn), when the misfit

is less than 2%, strain relaxation occurs predominantly by the

formation and glide of stable 60� dislocations. The presence

of 60� misfit dislocations (MD) at the Ge1�xSnx/Ge hetero-

interface is confirmed by high-resolution TEM (HR-TEM)

[Fig. 2(b)]. Figure 2(c) shows the high-angle annular dark field-

scanning TEM image (HAADF-STEM) of the region in the

proximity of the Ge1�xSnx/Ge hetero-interface, where the 60�

dislocations are found to be dissociated into Shockley partials12

separated by a stacking-fault, of about 5 nm–20 nm wide.

Figure 2(d) shows a HAADF-STEM image of an

observed V-shaped defect, with one missing lattice plane on

either side. Such V-shaped defects can be associated with (1)

a Lomer-Cottrell (L-C) dislocation with a sessile edge charac-

ter, a reaction product of 2 dissociated Shockley partials,11,23

or with (ii) closely spaced pairs of 60� dislocations with inter-

secting glide planes and parallel screw components.24

However, since the separation between 60� dislocation pairs

can be as small as 3j~bj on average,24 the distinction between a

L-C dislocation and a 60� dislocation pair cannot be made. In

the statistics of our TEM observations, the V-shaped defects

are observed in much lower concentrations as compared to

dissociated Shockley partials. Therefore, we use the Burgers

vector (j~bj) of a 60� dislocation for estimating the dislocation

density, using DLTS later in this work. We estimate a TD

density of �2� 107 cm�2 from the plan-view TEM image

[Fig. 2(e)].

FIG. 1. (a) Cross-sectional schematic. The bias is applied to the Ge sub-

strate. (b) dC/dV phase values obtained across the cross-section of the sam-

ple, using SCM. The scan speed is 0.5 Hz and the AC bias voltage is 2 V.

FIG. 2. (a) (224) RSM using an incident beam aligned in the ½1�10� direction. Qx and Qz are given in reciprocal lattice units (rlu¼ k/2dhkl), where dhkl is the

spacing between the diffracting planes. Incident CuKa1 (k¼ 0.154056 nm) radiation was employed. Loci of points representing the fully relaxed, partially

relaxed and fully strained Ge1�xSnx layer for various Sn content are also shown by the (*) symbol. (b) Bright Field [220] cross-sectional TEM showing an

array of MDs. (c) HAADF-STEM showing the stacking faults bound by Shockley partials, with an average width of 12 nm. (d) Missing planes on either side of

the V-shape defect. [Inset shows the Dark Field (DF)-STEM of the V-shaped defect.] (e) Plan-view DF-STEM showing TDs (marked with arrows). The bright

spots are due to surface defects which are not discussed in this work.
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We probe the defect-states in the space charge region

(SCR) using DLTS, by applying a quiescent reverse bias

(VR) of þ1 V and a filling pulse bias (VP) of 0 V, at the bot-

tom contact to the nþGe substrate [see Fig. 1(a)]. At the stud-

ied biases, the SCR is varied from 216 nm to 267 nm,

obtained using (W ¼ �r�0A=CR), where A is the device area.

Due to the low Sn content, the relative permittivity of Ge

(�r¼ 15.8) is used for the calculations.25 �0 is the vacuum

permittivity. The duration of the filling pulse is denoted as tp.

By using VP � 0, we ensure that the defect-states capturing

majority carriers (holes) in the lowly doped side of a p� nþ

junction (i.e., p� Ge0.922Sn0.078) are measured.

A hole trap (labeled as H1) is revealed in the DLTS

spectra, as shown in Fig. 3(a). Any resolved shoulders or

additional peaks are absent, indicating that there is only one

dominant type of hole trap, in the explored temperature

range.

We attribute the H1 peak to extended defects, in particu-

lar, here 60� dislocations, based on two observations: (i)

asymmetrical peak broadening at the low temperature

tail14–16 and (ii) dependence of the DLTS signal intensity on

tp.16 Schr€oter et al.16,17 suggested that defect-states associ-

ated with dislocations can be classified into two categories:

localized and band-like. The localized states have been asso-

ciated to the interaction of the dislocation with the point

defects, while band-like states are the unperturbed internal

states of clean dislocations.16–18 The distinction between the

two can be made by studying the qualitative features of the

DLTS spectra.16,17 Evidently, in Fig. 3(a), (i) the peak posi-

tion shifts to lower temperatures with increasing tp and (ii)

the DLTS signals for different tp coincide at the high temper-

ature side. These features of the H1 defect are characteristic

of defect-states with a band-like distribution in the bandgap

with rapid inter-state exchange of carriers,16,17 as further

explained below. Hence, we conclude that the corresponding

dislocations are clean.16,17

The filling of the defect-states is determined by their

position relative to the Fermi-level, EF. Under a given bias,

EF in p� Ge0.922Sn0.078 moves closer to the valence band-

edge as the temperature decreases [Eq. (3)]. In Eq. (3), k is

the Boltzmann constant, NV is the valence band density of

states and EV is the position of the valence band edge

EF ¼ EV þ kTln NV=ðN�A � NþD Þ
� �

: (3)

As a result, the defect-states lying closer to the valence

band edge are filled with holes only at low temperatures. For

short tp, the low hole-energy states are preferentially filled14,15

and at longer tp, a higher population of defect-states, including

the high hole-energy states are filled. Consequently, the

DLTS peak will broaden on its low temperature side and

exhibit a higher peak amplitude, as the tp is increased. This is

indeed observed [Fig. 3(a)]. Unequivocally, the dominant

contribution to the high-temperature edge of the spectra is

linked to the low hole-energy states, which are filled for both

short and long tp. Therefore, the DLTS signal coincides at the

high temperature side of the spectra, as observed in Fig. 3(a).

Figure 3(b) shows the Arrhenius plot. For a point defect,

one obtains a straight line in an Arrhenius plot and its slope

gives the activation energy. However, owing to the extended

nature of the H1 defect, a straight line is not observed in the

Arrhenius plot. The activation energies are therefore

extracted from the first order derivative, dðlnðspvth;pNVÞÞ=
dð1=kTÞ. The highest (electron) energy state (ET) is found

to lie at �EVþ 0.15 eV and the distribution of defect-states

is illustrated in Fig. 4(a). The band diagram is obtained at

VR¼ 0.1 V, at 300 K using a Sentaurus Device from

Synopsys (version J-2014.09). The Sentaurus device is a

semi-classical simulator which allows to simulate the device

properties, e.g., electrostatics, electrical and optical behavior,

using predefined models. For obtaining the band-diagram, it

is sufficient to use basic mobility models and the definition

of bandgap. Since there is no measurable shift in the position

of the valence band at the Ge/GeSn interface,26 an electron

affinity (v¼Eg � EV) of 4.1 eV is used for the Ge0.922Sn0.078

layer (at �k ¼ �0:5%). The defect-states in Ge are not stud-

ied in this work, due to higher n-type doping and therefore

are only shown for the illustration purpose in Fig. 4(a).

The association of the H1 peak with EDs (stacking faults

and partials) is further confirmed using isothermal DLTS,

where a logarithmic capture behavior is observed over 2 deca-

des (for tp of 1 ls–100 ls) as shown in Fig. 4(b) (pt/NT vs. tp
plot). For long tp, the holes that are going to be captured expe-

rience a repulsive charge due to already captured holes. This

built-up charge manifests itself as a capture barrier, /(tp),

which increases to a saturation value, when all the defect-

states are filled by holes. The /(tp) is extracted using Eq. (4)14

and a saturation value of �60 meV is obtained [Fig. 4(b)]

/ðtpÞ ¼ kTln
ðNT � ptÞphvth;pirpðtpÞ

dpt=dtp

 !
: (4)

In Eq. (4), pt is the concentration of defect-states occupied

by holes, NT is the total defect concentration, vth,p is the ther-

mal velocity and rp is the hole capture-cross section. rp of

(1.5 6 0.2)� 10�19 cm2 is obtained by adopting the proce-

dure described by Omling et al.,15 from the slope of the lin-

ear capture at short tp [Fig. 4(c)]. A hole mass of 0.22 m0 (at

�k ¼ �0:5%)27 is used to calculate vth,p, where m0 is the elec-

tron rest mass. Since the temperature dependence of the hole

mass of Ge1�xSnx is not known, the hole mass at RT is used

for the calculation.

FIG. 3. DLTS spectra of (a) different tp, revealing H1 defect. DC is the tran-

sient amplitude. CR is the reverse bias capacitance and TW is the window time

during which the capacitance transient is recorded. (b) Arrhenius plot for vari-

ous tp. sp is the hole emission time constant. The inset shows the activation

energies as extracted from the 1st order derivative, dðlnðspvth;pNVÞÞ=dð1=kTÞ.
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Logarithmic capture behavior can also be observed for

point defects in the case of slow capture in the Debye-tail of

carriers (the k-region).13,28 This effect, however, cannot

explain the logarithmic tp dependence observed in Fig. 4(b)

in the 1� 10�6 s to 1� 10�4 s range, as we show through

simulations. The simulation algorithm includes the effect of

both slow capture and carrier re-emission.28 Figure 4(d)

shows two simulated curves for capture by point defects: one

corresponding to the uniform trapping rate and one including

slow capture in the k region. It is clear that the impact of

slow capture is mainly observable for tp values greater than

1� 10�4 s. Furthermore, for shorter tp (<1� 10�5 s), both

models for point defects disagree with experiment, highlight-

ing the effect of the capture barrier /(tp). H1 should there-

fore indeed be interpreted as an extended defect.

The small capture cross-section suggests that the H1

defect acts as a donor-like repulsive center. Due to the

donor-like nature, H1 defect-states would act as compensat-

ing donors ðNþD Þ. Therefore, the nature and the properties of

shallow defects leading to p-type unintentional doping

(p ¼ N�A � NþD ) remain unknown. However, positron annihi-

lation spectroscopy studies associate p-type doping with

vacancy clusters in epitaxial GexSn1�x.29 These vacancies

can be introduced owing to non-equilibrium epitaxial

growth20 and the movement of dislocations via jogs.12

The concentration of the H1 defect can be estimated using

the peak amplitude of the DLTS spectra [Fig. 3(a)], corre-

sponding to the longest filling pulse (tp¼ 10 ms), which is the

representative of complete occupation of defect-states. The

complete occupation of defect-states (i.e., pt¼NT) at tp¼ 10 ms

is indicated by the plateau in the capture kinetics, as shown in

Fig. 4(b). A NT value of 1.1� 1015 cm�3 is obtained using Eq.

(5). Here, the pulse correction factor, PCF 	ðVR þ VbiÞ=
ðVR � VPÞ, employs the k-correction for the capture at the

edge of the depletion region.13,30 Vbi is the built-in potential

NT ¼ 2ðN�A � NþD Þ
DC

CR
PCF: (5)

A dislocation density (qT) of �4.2� 107 cm�2 is obtained

under the assumption of one state per inter-atomic distance

along a 60� dislocation (qT ¼ NT :j~bjÞ. The magnitude of qT

is comparable to that measured using a TEM (2� 107 cm�2).

The direct-C and indirect-L bandgaps of the Ge0.922Sn0.078

layer are calculated to be equal to 0.585 eV and 0.549 eV,

respectively.6 Although Ge0.922Sn0.078 at the given strain and

Sn content is an indirect semiconductor, a significant increase

in the reverse-bias current density (JR) associated with minor-

ity electrons is observed above 160 K [Fig. 5(a)]. From the

Arrhenius analysis of the reverse bias current, an activation

energy (EA) of 0.42 eV is obtained [Fig. 5(b)] for T> 160 K.

We suggest that the EA of 0.42 eV is associated with the SRH

generation of minority electrons via the band of defect-states,

since EC � ET ’ 0:43 eV, as shown in the inset of Fig. 5(b).

Below 125 K, as shown in Fig. 5(b), the current is nearly inde-

pendent of temperature and is possibly associated with con-

duction of carriers in the dislocation-states followed by

defect-state to band tunneling.10 In the transition temperature

range, 125–160 K, the slope continuously changes, and there-

fore an activation energy in the range of 0.16 eV–0.26 eV is

obtained. However, peaks in addition to H1 are not observed

in the DLTS spectra [Fig. 3(a)], suggesting that the

FIG. 4. (a) Schematic of the spread of band-like states associated with H1 defect in the bandgap of the Ge0.922Sn0.078 epitaxial layer. (b) Capture kinetics at

constant temperature (T ¼ 140 K; DT < 0:1 K; VR ¼ 1 V; VP ¼ 0 V; TW ¼ 5:12 ms). Occupied defect-states, pt, normalized with respect to the total concen-

tration, NT, as a function of the filling pulse duration tp (red circles) and Coulomb barrier height (/) evaluated vs. tp (blue squares). The dotted line is only a

guide for the eye. (c) Hole capture behavior for short tp for the H1 defect. (d) Simulated capture kinetic of a point defect with slow capture and with uniform

capture (without slow capture). Experimental data (empty circles) for H1 defect are shown for comparison.

FIG. 5. (a) Current-voltage (I-V) characteristics normalized with respect to

area (JA) at different temperatures. (b) Arrhenius plot of the reverse-bias cur-

rent density (JR) at V¼ 0.4 V. The inset shows a schematic of minority car-

rier generation via the SRH mechanism from the band-like states of H1

defect in the GeSn bandgap. en is the electron emission rate, and cp and ep

are the hole capture and emission rates, respectively.

022102-4 Gupta et al. Appl. Phys. Lett. 113, 022102 (2018)



intermediate activation energy is associated with a minority

carrier (electron) defect in p� Ge0.922Sn0.078. Further investi-

gations will be needed using injection-DLTS.

In conclusion, clean 60� dislocations lead to donor-like

repulsive states with a band-like distribution in the bandgap

of Ge0.922Sn0.078. These 60� dislocations are found to be split

into Shockley partials, bound by a stacking fault. They are

not responsible for the unintentional p-type doping in

Ge0.922Sn0.078. However, they are electrically active and gen-

erate excess current in the junction diode, via the SRH mech-

anism. We speculate that the nature of the 60� dislocations

will not change considerably with the Sn content and the

DSR; therefore, it is imperative to prevent their propagation

to the active regions.
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