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1. Antimicrobial use in livestock production 

1.1. Livestock production and the issue of antimicrobial resistance 

The past few decades, major efforts have been made by the agricultural community to increase 

livestock production and productivity in order to keep up with the ever-growing demand for food. 

Figure 1 shows the evolution of the size of the food-producing population in 30 European countries 

between 2010 and 2015, in population correction unit (PCU). The PCU is estimated for each animal 

category by multiplying numbers of food-producing animals (e.g. dairy cows, sheep, sows) and 

slaughtered animals (e.g. pigs, cattle, poultry) by the theoretical weight at the most likely time for 

treatment (EMA, 2017a). From 2010 to 2015, the total PCU (estimated weight at treatment of livestock 

and slaughtered animals) was relatively stable for most countries.  

Figure 1. Changes in the PCU for food-producing animals, in 1000 tons, by country, between 2010 and 2015, in 

30 European countries. Adopted from EMA (2017a). 

(Tons) 

(Tons) 
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The regular use of antimicrobials in animal production has been fundamental for the treatment and 

prevention of bacterial infections and for the improvement of production efficiency (antimicrobial 

growth promotion) in food-producing animals. The latter practice is forbidden in the European Union 

since 2006 (EC, 2003), but it is still commonly performed in countries like the United States and China 

(OIE, 2017).  

Antimicrobials are natural, semi-synthetic or synthetic chemical compounds that, through various 

mechanisms of action, can inhibit bacterial growth or kill bacteria. Despite their paramount importance 

in treating bacterial infections, both in humans and animals, the efficacy of these drugs is seriously 

threatened by the emergence of acquired antimicrobial resistance. Acquired antimicrobial resistance 

is the ability of a microorganism to multiply or persist in the presence of an antimicrobial agent relative 

to the susceptible counterpart of the same species (FAO, 2016). In other words, acquired resistance 

refers to a situation where the microorganism (bacterium) has acquired a characteristic that makes 

the antimicrobial less or no longer effective. Besides acquired, resistance can also be intrinsic (or 

natural). Intrinsic resistance is a trait of all bacteria belonging to a specific taxon (e.g. species, genus) 

and may be due to an inherited or functional characteristic of the bacteria resulting in the inability of 

an antimicrobial to attack or eliminate the bacterium adequately (Boerlin and White, 2013). 

Focusing on acquired resistance, there are three ways it can be acquired. Firstly, it can be acquired 

through a stepwise mutation of the genes affecting the production of necessary products for 

physiological cell metabolism. The spectrum of activity of these genes becomes narrower (e.g. leading 

to the production of less products needed for cell metabolism). A second way for bacteria to acquire 

resistance is through a mutation or a series of mutations resulting in resistance against inhibitory 

effects of the antimicrobials. These two ways concern the vertical (chromosomal) transmission of 

resistance. A third way for bacteria to acquire resistance is by the integration of resistance genes, 

located on chromosomal DNA, into mobile genetic elements like plasmids or transposons. This is called 

horizontal gene transfer (HGT) (Schwarz and Chaslus-Dancla, 2001). Antibiotic resistance gene transfer 

through HGT happens most often through conjugation – the transfer of DNA between bacterial cells 

through direct contact between donor and recipient cell. HGT is a particularly worrisome phenomenon 

as it can occur between many different types of bacteria and in nearly all matrices (e.g. soil, water, gut 

or food). In HGT, genes can be transferred between different bacterial strains or between different 

species (Rosi et al., 2014).  

Antimicrobial resistance may be transferred from animals to humans and vice versa. Livestock-

associated Methicillin-Resistant Staphylococcus aureus (LA-MRSA) is an example of such a zoonotic 

bacterium. LA-MRSA is an originally human-associated bacterium which was introduced into the 
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animal population by humans. Following, the bacterium adapted itself, depending on the animal host 

(pigs, calves, etc.), and emerged in livestock and human populations (Larsen et al., 2016; Filippitzi et 

al., 2016). Besides bacteria, antimicrobial resistant genes can also be transmitted between animals and 

humans (Rolain, 2013; EFSA, 2017a). For instance, a Salmonella species that has acquired resistance in 

the gut of a pig from exposure to antibiotics given to that pig, will not lose its resistant characteristics 

when transmitted to a human and will remain equally resistant to certain antibiotics in the human gut 

microbiota (Dewulf, 2018). 

An exchange of antimicrobial resistance from animals to humans and vice versa may occur by three 

different transmission routes (Figure 2) (Marshall and Levy, 2011; FAO, 2016): a. Resistant traits 

(bacteria or genes) may be transferred from animals to humans and vice versa through direct contact; 

b. through the consumption by humans of food of animal origin that contains resistant bacteria or 

genes; c. through the environment (e.g. using manure as a fertiliser, or by irrigating with contaminated 

water).  

 

Figure 2. Flow diagram of antibiotic resistance determinants among the different reservoirs. Light blue indicates 

points of anthropogenic antimicrobial selection pressure (EFFORT, 2018a).  

It therefore becomes obvious that all actions to counter the selection and spread of antimicrobial 

resistance fit in the broader principle of “One Health” (OH) (Robinson et al., 2016). OH is a strategic 

framework that has been established in 2008 to combat the spread of infectious diseases that emerge 

(or re-emerge) from the interfaces between animals and humans and the ecosystems in which they 

live in (FAO, OIE and WHO, 2010). Regarding antimicrobial use and resistance, antimicrobial 

compounds used to treat or prevent diseases  in animals are essentially the same as those in human 

medicine, even though some antimicrobials are reseved for use in human medicine only. The World 
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Health Organization (WHO) recommends the restricted use of antimicrobials judged as essential for 

human medicine (WHO, 2016), while the same accounts for essential antimicrobials for veterinary 

medicine (e.g. pleuromutilines) (OIE, 2015). In Belgium, starting from 2011, the Belgian centre for 

Antimicrobial Consumption and Resistance in Animals (AMCRA) has set the goal to achieve a general 

reduction of antimicrobial use in animals of 50% by 2020, a  75% reduction of critically important 

antimicrobials for human medicine (e.g. 3rd and 4th generation cephalosporines, quinolones) by 2020 

and a 50% reduction of antimicrobial premixes by 2017. Indicatively, the total national consumption 

of antimicrobial compounds for veterinary use (pharmaceutical and premixes) in Belgium per class of 

antimicrobials between 2011 and 2016 is shown in Figure 3. 

 

Figure 3. Total national consumption of antibacterial compounds for veterinary use in Belgium for the 

years 2011-2016 (tons active substance). Adopted from BelVet-SAC (2017). 

1.2. Quantification of antimicrobial use in livestock production 

The overall use of antimicrobials clearly plays a role in the selection, spread and persistence of 

antimicrobial resistance and, thus, in the fight against it, avoiding unnecessary antimicrobial use is set 

as a priority (WHO, 2015). The concerns about the spread of resistance have led to the monitoring of 

trends in antimicrobial consumption in animals in several European countries through databases on 

antimicrobials sales such as Denmark, Norway, Sweden and Belgium (DANMAP, 2016; NORM-VET, 

2016; Swedres-Svarm, 2016; BelVet-SAC, 2017). The importance of these monitoring procedures is 

very high, since only on the basis of adequate quantification of antimicrobial use, benchmarking is 

possible and informed actions can be further taken. Benchmarking refers to the categorization of a 
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party’s (e.g. farm, country) antimicrobial use following comparison with the antimicrobial use of a 

predefined population of similar parties, with antimicrobial use for all parties being quantified in a 

similar manner (AACTING, 2018). 

At global level, OIE is responsible for data collection on the amount of antimicrobial agents sold or 

imported for use in animals (in mg/kg biomass) (OIE, 2017). At European Union (EU) level, the 

European Medicines Agency (EMA) collects national consumption data from EU countries in the 

European Surveillance of Veterinary Antimicrobial Consumption (ESVAC) project since 2010. For 

normalization of sales data, the Population Correction Unit (PCU) is used, which takes into account the 

size of the animal population and the average theoretical weight of the animal species at the time of 

treatment. The sales data of antimicrobial veterinary medicinal products normalized by the PCU are 

expressed in mg of active ingredient by PCU (mg/PCU) and 1 PCU equals 1 kg of livestock (EMA, 2017a). 

In Belgium, the antimicrobial consumption is described annually since 2011 in the BelVet-SAC (Belgian 

Veterinary Surveillance of Antibiotic Consumption) report (Daeseleire et al., 2016). This report 

presents national data from food-producing and companion animals, expressed in mg/kg biomass, a 

comparable measurement to the one used from ESVAC (BelVet-SAC, 2017).  

These quantification methods, though, have limitations. A first limitation of these is that the potency 

of an antimicrobial product is not taken into account (Jensen et al., 2004). Secondly, the estimation of 

antimicrobials consumption based on sales data can be compromised, since off-label use is a common 

practice (EMA, 2017b) and the sold antimicrobials may not have been eventually administered to 

animals. Furthermore, these estimations refer to all animals with no allocation to specific species, as 

the majority of antimicrobial products are licensed for several species.  

Currently, the preferred reference values to compare antimicrobial use between herds, countries and 

animal species are normalisations with the harmonized Defined Daily Doses Animal (DDDA) and 

expressed as number of DDDA per defined time period (e.g. 100 days). This quantification system 

allows also for comparison of use within countries and between herds and prescribers. However, these 

assigned DDDA values are often a compromise, as doses can differ between countries, indications, and 

formulations (Postma et al., 2015). Another technical unit of antimicrobial use measurement is the 

Used Daily Dose Animal (UDDA), which can be used when very detailed information at herd level is 

available providing information on the exact amount of treatment dose and the exact weight of the 

animals at the moment of treatment (Timmerman et al., 2006; Callens et al., 2012). This information 

(i.e. amount of antimicrobials purchased or administered, weight of animals treated) together with 

information on the number of animals treated and on the period the animals at risk receive an 

antimicrobial treatment can be used to calculate a treatment incidence (TI) (Timmerman et al., 2006). 
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A detailed description of indicators to quantify antimicrobial usage based on sales, deliveries or 

reimbursement data has been provided by Collineau et al. (2017). Currently, there are 29 monitoring 

systems of antimicrobial use at herd level, developed and used from 16 countries (AACTING, 2018).  

Collecting objective data per species, even when they are not yet fully comparable, is a crucial step in 

the development of targeted reduction strategies. Therefore in most countries, including Belgium, 

there is a need for species-specific data on antimicrobial use. For this purpose, the ESVAC scientific 

guidelines paper on the collection of reliable and standardized data on the consumption of 

antimicrobial agents by animal species describes a methodology to be used to provide estimates on 

antimicrobial consumption for the actual species at the national level, in tons, per weight group (EMA, 

2013). In Belgium, DDDA values have been calculated for pigs (Callens et al., 2012), veal calves (Pardon 

et al., 2012) and poultry (Persoons et al., 2010) and, therefore, could be used for an extrapolation of 

the antimicrobial use per species at the national level and a (relative and in absolute values) 

comparison among them, to target the highest users. Recently, Carmo et al (2017), compared 

antimicrobial consumption estimates for cattle and pigs (in mg/kg biomass) in Switzerland and 

Denmark, in order to distinguish species-specific patterns and trends in consumption. 

2. Antimicrobial use in pig production 

The EU is the world’s second biggest producer of pork, after China. Over 257 million pigs were 

slaughtered in 2016 in the EU and the production of pork amounted to 23.4 million tons (EUROSTAT, 

2016). The EU region with the major production, accounting for 30% of EU sows, extends from 

Germany (Nordrhein-Westfalen) to Belgium (Flanders region). In Belgium, pig production is one of the 

most important agricultural sectors (Institute for National Accounts, 2015). Belgian farmers housed 

6.01 million pigs in 2016, with 95% of total Belgian pig production being located in Flanders (Statistics 

Belgium, 2017).  

The pig production sector is believed to be amongst the highest users of antimicrobials in current 

animal husbandry production, in absolute values and in terms of treatment incidence (Bos et al., 2013; 

DANMAP, 2016). In pig production, as well as in broiler and calf production, animals have a short 

lifetime and younger animals demand relatively more treatment with antimicrobials, as they are more 

susceptible to diseases (Bondt et al., 2012; Sjölund et al., 2016). This might partially result into a 

relatively higher use per time period in pigs compared to sectors with longer production cycles, for 

instance beef cattle.  

A detailed description and comparison of the antimicrobials used in pigs, their dosage prescriptions 

and their most common routes of administration in Belgium, France, Germany and Sweden, has been 

performed by Postma et al. (2015). Moreover, Callens et al. (2012) collected and quantified herd level 
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data on the group use of antimicrobial agents in Belgian pig herds. The results of these studies provided 

a first basis to understand the patterns followed in antimicrobial use in pigs, in terms of substances 

used, routes of administration, dosage and indications of use, treatment duration. 

2.1. Oral group medication of pigs 

Antimicrobials can be administered to pigs via different ways, including the oral route (feed or water 

medication), the topical route (i.e. administration to the site of infection) or the parenteral route. The 

latter theoretically includes intravenous, intramuscular and subcutaneous injection (EPRUMA, 2014). 

In pig production, mostly subcutaneous and intramuscular injections are given. The choice of 

administration route is usually related to the purpose of treatment and location of the infection 

(Schwarz et al., 2001).  

Antimicrobial treatments applied to animals can serve the following purposes: (a) prophylaxis, which 

is applied to groups of animals to prevent bacterial infections and bacterial disease outbreak at the 

farm; (b) methaphylaxis, which is applied to a number of animals in the group to treat (after diagnosis) 

bacterial infections and to prevent further spread towards the pen-mates; (c) therapy, which mostly 

involves individual treatment of a limited number of animals; and (d) growth promotion, which is 

banned in the EU since 2006 (EC, 2003). Callens et al. (2012) observed that prophylactic group 

treatment, a solely preventive measure, was applied in 93% of all group treatments in the herds they 

visited in Belgium, whereas metaphylactic or therapeutic treatments were applied in only 7% of the 

cases. For practical reasons, group treatments are generally achieved through oral administration of 

the antimicrobial via the feed or drinking water (Schwarz et al., 2001). 

When considering the distribution of sales of the various pharmaceutical forms of veterinary 

antimicrobials for food-producing animals in the EU, oral treatments represent the most common 

route of antimicrobial administration for livestock species (>90%) (Figure 4). Based on the data 

collected from nine EU countries, although variation existed between countries, in total 70% of 

antimicrobial treatments of pigs were administered via the oral route (EFFORT, 2018b). The results 

from the study by Callens et al. (2012) in Belgian pig farms, show that antimicrobial treatments 

administered to groups of pigs via the oral route represent the most common way of antimicrobial 

administration to these species in Belgium, in terms of treatment incidence (TIUDDA, oral = 176.5, while 

TIUDDA, injectable = 24.2). In the same study, group treatments were primarily administered orally in 

piglets after weaning via the feed or drinking water, whereas the parenteral route was mostly used in 

sucking piglets. These antimicrobial treatments administered before the age of ten weeks, correspond 

to an average of 80% of antimicrobial treatments in pig production (Callens et al., 2012). Postma et al. 

(2015), having collected data from Belgium, France, Germany and Sweden, identified that most 
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licensed antimicrobial products for pigs are administered orally, via the feed or water (49.3%), 

compared to other routes of administration.  

 

 

Figure 4. Distribution of sales, in mg/PCU, of the various pharmaceutical forms of veterinary antimicrobial agents 

for food-producing animals, aggregated by the 30 European countries for 2015. Adopted by the ESVAC Report 

2015 (EMA, 2017a). Premixes, oral powders and solutions are the biggest-selling antimicrobial veterinary 

medicinal products for food producing animals in the EU. This also the case for pigs (Callens et al., 2012; Postma 

et al., 2015). * Others: Oral pastes, boluses and intrauterine preparations.  

However, the oral administration of the antimicrobials via the feed or drinking water depends on the 

eating and drinking behavior of the animals and, therefore, this route does not always guarantee an 

accurate dosage and treatment duration, in contrast to the parenteral treatment. These elements 

(administration route, dosage, treatment interval and treatment duration), together with the type of 

antimicrobial chosen for treatment and the total amount of antimicrobial used in a population, have 

an effect on antimicrobial resistance development, selection, spread and persistence of antimicrobial 

resistance.   

2.2. Effect of antimicrobial residues in the gastro-intestinal tract on antimicrobial resistance  

Current treatment strategies with antimicrobials exert a selective pressure not only on the pathogen 

where the treatment was intended for, but also on commensal microbiota, including the intestinal 

microbiota, for which the treatment was not intended (Devreese et al., 2014). The intestinal microbiota 

is exposed to residues of antimicrobials due to incomplete absorption of antimicrobials when these 

are administered orally (i.e. incomplete oral bioavailability) as well as through excretion, via the bile 

and secretion from blood to gut, of the parent antimicrobial and/or its active metabolites (Riviere and 

Papich, 2009; De Smet et al., 2017). The extent of oral bioavailability of an antimicrobial is largely 
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determined by the chemical nature of the drug and the related physicochemical properties, the 

prandial state of the animal, while interspecies variations can also occur (Martinez and Modric, 2010). 

In contrast to oral administration, parenteral administration of antimicrobials is assumed to have less 

impact on the exposure of the intestinal microbiota to residues as there is no effect of incomplete 

absorption (Baggot and Giguère, 2013).  

As already mentioned, antimicrobial compounds of different classes show different pharmacokinetic 

behavior due to differences in their chemical nature (Baggot and Giguère, 2013). While some 

antimicrobial agents are almost entirely eliminated by renal excretion (aminoglycoside, most beta-

lactam antibiotics), others are eliminated by biliary excretion (e.g. macrolides) whether or not 

preceded by (hepatic) biotransformation. Some antimicrobials are also metabolised to variable 

degrees from the parent drug form to inactive metabolites (e.g. sulphonamides) (Prescott and Dowling, 

2013). Therefore, the use of different antimicrobials administered leads to variable levels of residues 

in the GI tract of animals.  

The tissue (in this case, the gut) concentration of antimicrobial residues thrives selective pressure on 

bacteria (Prescott and Dowling, 2013; Baggot and Giguère, 2013). The degree of absorption of 

antimicrobials in the upper gastrointestinal (GI) tract after oral administration may also influence the 

selection pressure exerted on the microbiota of the large intestine (Chantziaras et al., 2017a). When 

an entire animal population is treated, the odds of dilution of resistance selection to occur will be lower 

than in the case of treatment of a single animal, and a commensal reservoir of resistance genes can be 

formed (Levy and Marshall, 2004). Moreover, the transfer of resistant bacteria might occur more 

rapidly to animals being treated, due to disturbance of the commensal microbiota (Barza and Travers, 

2002).   

To date, only limited specific (e.g. in terms of species, antimicrobials used) research data on the effect 

of different administration routes on resistance selection and spread are available. For instance, the 

effect of route of administration of fluoroquinolones on resistance selection in commensal E.coli 

strains in poultry was recently assessed by Chantziaras et al. (2017b) through a series of in vivo 

pharmacodynamic experiments. They concluded that the use of oral treatment seems to select more 

for fluoroquinolone resistance, compared to the parenteral one. On the other hand, De Smet et al. 

(2017) observed in pharmacokinetic studies no difference between oral (p.o.) and intramuscular (i.m.) 

administration of sulfadiazine and trimethoprim on pig gut exposure. In a recent experiment by Burow 

et al. (2018), it was observed that all untreated contact animals of orally enrofloxacin-treated animals 

showed enrofloxacin concentrations in their blood serum, while only a part of the contact animals of 

parenterally treated ones did. They also observed in the orally treated and their contact pigs, an 
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increase of E. coli resistant to antimicrobials other than quinolones (e.g. ampicillin). This evidence 

points out that effect of administration route on resistance selection is rather compound specific, 

depending on its physicochemical properties and pharmacokinetic characteristics.  

Studies comparing the effect on gut and intestinal exposure of different doses administered also 

remain scarce. An in vivo experiment by Devreese et al. (2014) demonstrated that elevated doses of 

enrofloxacin, a fluoroquinolone, administered in broilers leads to higher exposure in the gut. However, 

there was no significant difference in gut concentration between p.o. and i.m. administration of the 

same elevated dose. According to the previously mentioned in vivo study by Chantziaras et al. (2017b), 

who tested the faecal shedding of E.coli strains, no significant effect of enrofloxacin dosing was seen 

on resistance selection to this antimicrobial, indicating that the same resistance selecting effect is 

obtained independently of the administered dose (i.e. half, correct, double). This constitutes new 

additional evidence to the suggestion that an increase or decrease of dosage to some extent selects 

for resistance. Besides, a dosage is always defined in function of a certain (pathogenic) bacterium in a 

specific target organ. Consequently, even if the antibiotic treatment is perfectly targeted and kills the 

pathogenic bacterium, many other (commensal) bacteria are simultaneously influenced, resulting in 

the formation of a reservoir of resistance, that will interact with the next pathogen introduced (Dewulf, 

in prep.).  

Oral antimicrobial treatments, and especially those administered via feed (in contrast to water 

administration), are generally expected to be under-dosed due to eating habits of animals (e.g. 

reduction or loss of appetite of sick pigs or impact of social rank) (van Krimpen, 2007; Soraci et al., 

2014).  Callens et al. (2012) found at the Belgian pig farms they visited, that oral administrations of 

antimicrobials were mostly under-dosed (47.3% under-dosed, 23.3% correctly dosed, 29.4% 

overdosed). The consumption of feed cross-contaminated with antimicrobial residues is also another, 

relatively neglected case of unintended antimicrobial under-dosing (Peeters et al., 2016). What is 

worrisome is that, even in exposure of the GI tract of pigs to very low antimicrobial (e.g. doxycycline) 

concentrations (e.g. 1 mg/L intestinal content), a selection towards antimicrobial resistance has been 

observed (e.g. in E.coli) (Brewer et al., 2013; Peeters et al., 2017, 2018a).  

Currently, the level and the conditions of use of feed and water antimicrobial treatments of pigs at the 

farm level is only anecdotally specified. Acquiring extensive and detailed, including quantitative, 

information on these treatments would enable us understand the extent of consequences from this 

use, in terms of pig exposure to antimicrobial residues and resistance selection and spread. 

3. Residues from antimicrobial use in pig production 
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Antimicrobial use in pig production may result in the presence of residues (smaller fraction of an initial 

amount) in meat, in the GI tract of animals and in manure. For the purposes of this thesis, we will focus 

on the antimicrobial residues in the GI tract and in manure of pigs, as a result of oral treatments applied 

to this species, including the exposure of pigs to cross-contaminated non-medicated feed. 

3.1. Medicated and cross-contaminated feed  

Medicated feed is defined as a mixture of one or more veterinary medicinal products or intermediate 

products with one or more feeds which is ready to be directly fed to animals without further 

processing. An intermediate product (also called premix) is defined as a mixture of one or more 

veterinary medicinal products with one or more feedingstuffs, intended to be used for the 

manufacture of medicated feed (EC, 2014). 

Carry-over is, in this context, the transfer of traces of a substance contained in a medicated feed to a 

non-target feed and results in the cross-contamination of this feed (EC, 2014). Cross-contamination of 

feed can occur at the feed-mill, in the transport truck delivering the feed to the farm or/and at the 

farm (AFSCA, 2013). Currently, the level of cross-contamination at these three different levels is 

limitedly studied, with very few quantitative data on antimicrobial residual concentrations being 

available in published literature (Putier, 2010; Stolker et al., 2013), while there is no information on 

the situation at the farm. At farms where antimicrobial medicated feed is used, in the vast majority of 

cases, the same silo and feeding lines are used for the storage and administration of medicated and 

non-medicated feed, creating conditions for cross-contamination of the non-medicated feed with 

antimicrobials retained at different points of equipment used (Figure 5). 

The issue is that feeding animals cross-contaminated feed may lead to unintended low dosage 

medication of the animals with residues of antimicrobials (Mc Evoy, 2002). An estimation of the 

amount of non-target feed which is cross-contaminated with antimicrobial residues due to 

antimicrobial medicated feed production in a country would help us estimate the level of exposure of 

pigs to this cross-contaminated feed. This would be particularly interesting, as these residues cause a 

public and animal health concern associated with antimicrobial resistance selection and development 

(AFSCA, 2013; EC, 2016). 

Peeters et al. (2016) recently showed that high concentrations of tetracyclines in caecal and colonic 

content and feces of pigs at steady-state conditions can be reached at low antimicrobial carry-over 

level (i.e. 3% carry-over) in the feed. In vitro experiments with E. coli (Peeters et al., 2018a) as well as 

ex vivo experiments simulating the pig caecum (Peeters et al., 2017) showed that intestinal doxycycline 

concentrations corresponding to approximately 1% and 3% carry-over level in the feed, both select for 

a tet(A) carrying doxycycline resistant E. coli strain compared to a blank control. A cross-contamination 
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level of 1% is proposed by the EU to be established as maximum carry-over level for antimicrobials, 

while 3% is the proposed maximum carry-over level for other active substances (EC, 2016). To prevent 

feed cross-contamination at the feed-mills in Belgium, a covenant was made between the Federal 

Agency for the Safety of the Food Chain (AFSCA-FAVV) and the Belgian Feed Association (BFA) in 2013, 

according to which the antimicrobial premixes used for the production of medicated feed should no 

longer be added and mixed in the main mixer, but rather in the dedicated end-of-line mixer, reducing 

the level and probability of cross-contamination at the feed mill level (BFA, 2013).  

Currently, there is no information available regarding the exposure of pigs to cross-contaminated feed 

with different carry-over levels (e.g. 1%, 3%). This information, expressed in a quantitative manner, 

combined with estimations on potential for resistance selection pressure, depending on the 

antimicrobial used, would be very relevant and timely for the discussion over the maximum carry-over 

level allowed. As previously mentioned, the European Commission (EC) has presented a proposal for a 

regulation regarding medicated feed, which is not in force yet, suggesting a 1% carry-over limit for 

antimicrobials in non-target feed (EC, 2014). However, some stakeholders (feed-mill companies, 

farmers) and the delegated EC AGRI (Agriculture and rural development Committee) have reacted to 

it, by suggesting that the proposed general limits (1% for antimicrobials and 3% for other active 

substances) should be amended to 3%, regardless of the active substance. A 1% limit was found to be 

too stringent and not viable (EC, 2016). 

Moreover, there is no information available regarding any differences in the exposure of pigs of 

different production stages (i.e. piglets, sows and fattening pigs) to cross-contaminated feed. Should 

any difference between these stages be observed, targeting those with a higher risk of exposure to 

cross-contaminated feed would be valuable to prevent this phenomenon in an informed way. Finally, 

there is a lack of a full set of recommendations to prevent carry-over at different levels (i.e. feed-mill, 

truck, farm), so a comparison of different control options is needed. 
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Figure 5. Feed silo and feeding lines used for the administration of feed at pig farms. Source: M. Filippitzi, 

Groupmedipig project. 

3.2.  Medicated drinking water 

Drinking water is another way of animal group treatment with antimicrobials (Rosengren et al., 2008), 

which has been mainly used and described in poultry industry (de Costa et al., 2008; van der Horst et., 

2013). Recently, a trend has been observed in pig industry towards an increased use of water 

medication over the use of medicated feed (Peeters, 2018b). This can be largely attributed to four 

important advantages that characterize water medication: the flexibility of therapy start and duration; 

the possibility to select smaller groups of animals for therapy; the fact that water uptake of sick animals 

tends to be more stable than feed uptake; and the generally better absorption of antimicrobials from 

drinking water than from feed (van Krimpen, 2007; AFSCA-FAVV, 2013).  

Compared to medicated feed, this method requires some more effort from both the veterinarian and 

the farmer because several factors need to be taken into consideration to determine the correct 

dosage. Some of these factors include the average water consumption and physicochemical properties 

of water and antimicrobials in water. In fact, few antimicrobials are water-soluble, while the 

pharmaceutical formulation including the excipientia can also play a role in their solubility. Drinking 

water systems that are not maintained properly can lead to transfer of variable antimicrobial doses of 

residues between different points in drinking-water pipes (van Krimpen, 2007; Page and Gaultier, 

2012). Additionally, different methods of preparing water medication and cleaning the water systems 

at the farm can have a different effect on the level of removal of residues (Figures 6). Corrosion at 

many points of this equipment creates possible points of retainment of antimicrobial residues. The 

reaction of antimicrobials with the wall of metal pipes, for example, can also pose problems (AFSCA-

FAVV, 2013). Besides the use of antimicrobials, the source and quality of water used for antimicrobial 
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administration can also be associated with resistance. A recent study by Dorado-García et al. (2015) 

observed that pigs that drank water from the public supply instead of from a private source had 

increased probability for Methicillin-Resistant Staphylococcus aureus (MRSA). The quality of water, for 

example in terms of hardness and pH can affect the solubility of different antimicrobials and can lead 

to carry-over of residues (De Backer, 2015). 

So far very few published studies have focused on the use of water medication in pigs. For instance, 

the study by Rosengren et al. (2008) provided information on the frequency of administration of 

antimicrobials via water to pigs, per production stage, in Canada. In the ten farms where antimicrobials 

were administered by water, six producers reported use in nursery pigs only, two in nursery and grow-

finish pigs, one in grow-finish pigs only, and one in sows. In nursery and grow-finish pigs, the most 

commonly used antimicrobial was penicillin G. Preliminary information is also available from Germany 

(Burow et al., 2018). Despite the common use in pigs of water medicated with antimicrobials, this 

information is currently unknown for many countries, including Belgium. Therefore, information 

regarding the use and preparation of water medication at pig farms in Belgium needs to be collected. 
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Figure 6. Examples of equipment used for preparation of water medication at Belgian farms visited throughout 

this study. Source: M. Filippitzi, Groupmedipig project. 

3.3. Antimicrobial residues in manure 

A large fraction of the overall administered antimicrobials to livestock are excreted unchanged or as 

(active) metabolite via the feces and urine (Amábile-Cuevas, 2016) and are therefore transferred to 

the manure pit. 

Recently, concerns are growing regarding the level of antimicrobial residues or their active metabolites 

that end up, via manure application, in soil, and following in groundwater and surface water, and their 

role in the development and spread of antimicrobial resistance in the environment. Recent research 

suggest that the antimicrobial residues present in manure may select for resistance in pathogens and 

commensal bacteria, which may enter the environment after fertilization of soil (Du and Liu, 2012; 

Rasschaert et al., 2017). Manure may also serve as a reservoir for antimicrobial resistance genes and 

mobile genetic elements (Binh et al., 2008; Whitehead and Cotta, 2013; Wang et al., 2018). 

Investigation of the effects of pig manure and sulfadiazine on bacterial communities in soil microcosms 

using two soil types showed that in both soils manure and sulfadiazine positively affected the quotients 

of total and sulfadiazine-resistant culturable bacteria (Heuer and Smalla, 2007). The resistant bacteria 

present in manure may exchange antimicrobial resistance genes (e.g. sul2, a sulfadiazine-resistance 

gene) with soil bacteria, a process even further enhanced by the presence of antimicrobial residues 

(e.g. sulfadiazine) (Heuer et al., 2008, 2011). However, in a study by Topp et al. (2016), the macrolide 

antibiotics erythromycin, clarithromycin and azithromycin were dissipated significantly more rapidly 

in soils with a history of field exposure to 10 mg/kg macrolides, and erythromycin and clarithromycin 

were also degraded more rapidly in field soil exposed to 0.1 mg/kg macrolides. The authors highlight 

that the potential accelerated degradation of these drugs in soils amended with manure and sewage 

sludge, compared to untreated soil, should be investigated further. Figure 7 gives a brief overview of 

the possible fates of antimicrobial residues and mechanisms of antimicrobial resistance gene 

acquisition and dissemination by bacteria, beginning with land application of animal manure as the 

source of entry of medicines, bacteria and resistance genes into the soil environment. 

Although research focusing on the spread of antimicrobials in the environment is growing, it is still 

limited (e.g. Allen et al., 2010; Wellington et al., 2013). For instance, the amount of these residues 

present in each compartment (i.e. manure, soil, water), which is an important piece of information to 

assess the risks associated specifically with the use of veterinary antimicrobials and to develop 

methods to reduce emissions to the environment, has only very limitedly been studied. Recently 

national projects started attempting to deal with this issue, e.g. in the Netherlands (Zuidema et al., 
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2014; RIVM, 2017) and in Belgium (VMM, 2018; Rasschaert et al., 2018). In Belgium, an on-going study 

attempts to quantify antibiotic residues in pig and veal manure. In 100 samples tested, doxycycline, 

lincomycin and sulfadiazine were detected in more than 70% of samples (Rasschaert et al., 2018). A 

study be Berendsen et al. (2018) investigated the fate of a broad scope of antimicrobials during storage 

of pig, veal and boiler manure. They concluded that oxytetracycline, doxycycline, flumequine and 

tilmicosin can be expected to end up in environmental compartments. A thorough understanding of 

the pharmacokinetics in pigs and in the manure of antimicrobials commonly used in pigs is therefore 

fundamental and would enable us to suggest control options regarding this risk. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Conceptual view of the possible fates of antimicrobial residues and mechanisms of antimicrobial 

resistance gene acquisition and dissemination by bacteria, beginning with land application of animal manure as 

the source of entry of medicines, bacteria and resistance genes into the soil environment. Adopted from Chee-

Sanford et al. (2009).*AB= antimicrobial, ABR= antimicrobial resistance. 

4. Mathematical modelling for assessment of risks 

Mathematical modelling is placed in the core of quantitative risk assessment, which relies on the use 

of mathematics, especially probability and statistics. ‘Risk assessment’ refers to a scientifically based 

methodology that allows to estimate, either qualitatively or quantitatively, the probability and the 

potential impact of some risk (Vose, 2003). The risk assessment of chemicals, including antimicrobials, 

in food and feed is a process consisting of four steps: hazard identification, hazard characterization, 

exposure assessment and risk characterization (EFSA, 2007; CODEX, 2015). The term ‘risk analysis’ is 

applied to the whole process from hazard identification, through qualitative and quantitative risk 
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assessment, to the resultant management decisions and communication to the various stakeholders 

of the assessment of that risk and the decision that has been or is to be made (EFSA, 2006; CODEX, 

2015).  

4.1. Usefulness and challenges of mathematical models 

Mathematical modelling is a relatively new field that is enjoying a rapid growth in popularity amongst 

governments and researchers world-wide, due to its usefulness in disease prevention and promotion 

of public and animal health. Yet, it does not come without some challenges (Basu end Andrews, 2013; 

Metcalf et al., 2015). A number of common and important strengths and challenges of this method in 

relation to its role in public and animal health are presented below (Metcalf et al., 2015; Filippitzi, 

2017a). 

Strengths of mathematical modelling: 

 Provides quantitative estimations of the probability of occurrence and/or the magnitude of a 

risk. It can answer otherwise unanswerable questions and greatly expand our knowledge base 

from actual study data. 

 Can help to assess potential risks and their impacts early in the process, and later allow for 

interpretation of data from complex and multifactorial systems. As such, these models can be 

critical tools in guiding public health action and also raise awareness on a new topic. 

 Simulates different strategies and predicts the results of each of them. This supports policy 

makers in informed risk management (EFSA, 2006). It can also play an increasingly important 

role in helping to guide both the most high impact and cost-effective strategy to prevent or 

control a health-related risk.  

 Separate models, corresponding to smaller parts of a process (e.g. behavior or antimicrobials 

in different environmental compartments), can be assessed independently (i.e. modular 

model) and later be combined with other components of the same process for a full 

assessment of a risk. For this it is important to ensure mathematical continuity in the risk being 

assessed. 

Challenges of mathematical modelling: 

 It is important to build simple (but not simplistic) models. Complex models are not necessarily 

more accurate or reliable simply because they can more easily fit real-world data than simpler 

models. In complex models, parameter estimation can prove problematic and difficult to be 

detected. 

  All logical and mathematical components of a model must be soundly based on valid research 

(CODEX, 2015). In absence of certain data, assumptions can be made, given that they are 
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explicitly described and justified in a transparent manner. Communicating the limits of 

modelling and communicating how model projections depend on underlying assumptions is 

essential, as problematic assumptions can lead to flawed public health projections. 

 Integrating modellers and model-building into the policy process can often be quite 

challenging. The creation of an environment where modellers successfully communicate 

clearly how models can and should be used (e.g. for scenario comparison and not projection; 

burden estimation, rather than prediction) and policy makers successfully communicate 

questions they want answers to, is essential (EFSA, 2017b; Filippitzi, 2017b).  

 Maintaining the value of models in the face of long term horizons is important. Models that 

are more flexible in how they are built, following a detailed stepwise approach, can be easily 

updated using new information.  

 

4.2. Methodological steps 

4.2.1. Principles of quantitative risk assessment (QRA) modelling 

Mathematical modelling is part of quantitative risk assessment, which is a structured process for 

evaluating the risk (or risks) resulting from a hazard and involves a series of logical steps. In practice, 

these steps include: framing the question to be answered, identify all the potential hazards, outline 

the pathway (sequential steps leading to the risk) or the model framework (sum of components 

influencing the risk) and collect the information (OIE, 2004). Based on the results of the model 

developed, the risk is then assessed (Figure 8). In cases where not a full assessment of a risk is required 

and a specific question is posed to the risk assessors on a certain hazard, then the process can begin 

with the hazard characterization and the outline of pathways of exposure to this hazard. 

Obtaining feedback within the environment of a team of experts and adopting an iterative approach 

throughout this process are highly recommended (EFSA, 2006). Given the numerical nature of 

quantitative risk assessment, it usually proves useful to also undertake a sensitivity analysis, which 

indicates those data inputs with the greatest effect (or impact) on the final output of the model.  
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Figure 8. Summary of steps of the risk assessment process. These steps are followed in both quantitative and 

qualitative risk assessments. Eventually, the risk is assessed based on the results of the model (i.e. mathematical 

relationship of the inputs) developed. 

4.2.2. Concepts of quantitative risk assessment (QRA) modelling 
 

4.2.2.1. Deterministic and probabilistic modelling 
 

All the steps in a pathway or model framework will have a number of input and output variables that 

must be calculated using available data and appropriate mathematics. There are two approaches that 

may be used for these calculations, a deterministic and a probabilistic approach.  In the deterministic 

approach, each of the input variables is described by single (point) values. In using point values for the 

inputs, the output estimate of risk is also a single value. On the other hand, the probabilistic (or 

stochastic) approach uses probability distributions to describe the input variables. These distributions 

represent the range of possible values that a variable can take. Using the probabilistic approach means 

that the output of risk will also be probabilistic (take a range of possible estimates) (OIE, 2004; FAO, 

2014).  

Since the rapid increase in powerful computer technology, there are a range of commercially available 

software packages, often based on spread-sheet modeling (e.g. within Microsoft Excel®), to assist in 

the development of probabilistic quantitative risk assessment (QRA) modelling. The best known 

examples of these add-on packages are @Risk® (Palisade Corporation) and Crystal Ball® (Oracle). 

Another example of statistical software package which includes probability distribution functions is R® 

(The R Foundation). All three packages utilize the Monte-Carlo simulation method. Monte-Carlo 
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simulation is a technique whereby each input probability distribution is randomly sampled a set 

number of iterations (times) to produce hundreds (or thousands) of possible scenarios. In simple 

words, any iteration of a QRA model must be a scenario that could physically occur (Vose, 2003). These 

scenarios are collected together and built up into an output distribution which can be illustrated 

graphically and analyzed statistically (e.g. estimate mean value of output). There is a wide range of 

probability distributions (e.g. Binomial, Beta, Pert) which are fundamental to the development of QRAs 

and are described elsewhere (e.g. Vose, 2003; OIE, 2004; Rees, 2009). Indicatively, the Beta distribution 

can be used to model the distribution for the probability of occurrence of some discrete event. The 

binomial distribution gives the probability distribution P(n|N) of obtaining exactly n successes out of 

N trials.  

4.2.2.2. Uncertainty and variability  

As previously mentioned, in the probabilistic modelling approach, inputs are defined using probability 

distributions to reflect the range of possible values they can take. In this respect, two key concepts 

need to be defined, uncertainty and variability.  

Input uncertainty reflects the degree of knowledge about an input. The more information is available, 

the smaller the resulting uncertainty. Input uncertainty, therefore, can be reduced by collecting 

additional information. On the other hand, variability is an inherent characteristic of the model input 

or output being modelled. Variability therefore cannot be reduced by extra experimentation or data 

collection since it occurs naturally. The uncertainties and variabilities of the model inputs should be 

presented and described in detail in the QRA (FAO, 2014).  

4.3. Assessment of risks due to residues in feed and animal manure 

In Europe, the responsible body for execution of risk assessment in animal health and food and feed 

safety is the European Food Safety Authority (EFSA) (EC, 2002). The EFSA Panel on Contaminants in the 

Food Chain (CONTAM Panel) in the one carrying out risk assessments (qualitative and quantitative) on 

contaminants in feed. The Panel assesses if the exposure to a contaminant in feed is likely to be 

associated with adverse health effects in farm animals, fish and pets in Europe, or to represent a risk 

to the consumer of foods of animal origin (EFSA, 2012). Although risk assessments on residues of feed 

contaminants/additives (e.g. coccidiostats used in poultry and rabbits (Dorne et al., 2013)) have been 

previously performed by EFSA from a toxicological and food safety point of view, only recently a 

scientific opinion has been published on the risk for the development of antimicrobial resistance (AMR) 

due to feeding on farm of calves with milk containing residues of antimicrobials (EFSA, 2017c). The 

approach followed in the latter opinion was qualitative due to the lack of data. Therefore, the 

development of a quantitative methodology to assess the level of exposure of pigs to feed cross-
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contaminated with antimicrobial residues and to assess the possible associated adverse effects related 

to AMR development, would be very relevant and timely.  

Guidelines for environmental risk assessment (ERA) of pharmaceutically active compounds in Europe 

are available from the European Medicines Agency (EMA, 2004). Assessment of the environmental 

impact of medicinal products is a legal obligation, and must be performed to evaluate and limit 

potential adverse effects of medicines on the environment. The ERAs of medicinal, including 

veterinary, products is to be performed by pharmaceutical companies during the development of new 

medicines. The outcome of an ERA will serve as the basis for minimising the amount of medicinal 

product released into the environment by appropriate measures and identifying specific risk-

minimisation activities to be taken by the user of the medicine (EMA, 2004). Pharmaceutical 

companies, in their ERA on veterinary antimicrobials, they assume a total excretion of veterinary 

antimicrobials administered to animals into the produced manure. This is a safe approach when 

looking at the ecotoxicity effect only. However, this approach does not take into account the effects 

of these medicines on environmental pollution from an AMR point of view. So far, little is known 

regarding these effects of antimicrobial residues and resistant genes on the environment and, 

especially, by manure fertilization, while the absence of quantitative data is a major gap for the 

development of risk models as also indicated in literature (Ashbolt et al., 2013; Marti et al., 2013; 

Wellington et al., 2013; FAO, 2016)). For example, Ashbolt et al. (2013) attempted to perform a human 

health risk assessment for environmental development and transfer of antibiotic resistance, which was 

hampered by the lack of knowledge on the exact mechanisms that lead to the development of 

antimicrobial resistance bacteria in the environment in presence of resistance genes, and their 

quantitative relationship. Therefore, the estimation of the level of residues of orally administered AM 

that end up in pig manure and following in soil would be a very important first step for the assessment 

of the associated risks and of the suggestion of possible control measures.  
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In highly productive pig farming, group treatments are often used to administer antimicrobial agents 

orally, via the feed or drinking water. These treatments can lead to the presence of antimicrobial 

residues (smaller fraction of an initial amount) in the gastro-intestinal tract (GI) and manure of pigs. 

Following, antimicrobial residues can spread via manure onto agriculturally used areas. 

Practices related to the preparation and administration of oral treatments via medicated feed can 

further lead to cross-contamination of non-medicated feed with residues of antimicrobials, which also 

end up in the GI tract of pigs. These practices concern different levels: the feed-mill, the transport truck 

and the farm.  

Antimicrobial residues in different matrices, such as the GI tract of pigs and pig manure, may cause a 

public and animal health concern associated with the potential for selection and dissemination of 

antimicrobial resistance.  

Currently, in Belgium, there is lack of information regarding the following aspects related to oral group 

antimicrobial medication of pigs: 

(a) amount of antimicrobials consumed in group, including oral, treatments by the pig population 

at country level; 

(b) frequency and conditions of use of oral antimicrobial treatments of pigs, via feed and water; 

(c) exposure of Belgian pigs to residues of antimicrobials, due to cross-contaminated feed; 

(d) exposure of Belgian soil amended with pig manure, to residues of antimicrobials administered 

to pigs via the oral route.  

This dissertation aims to fill the aforementioned gaps, by trying to answer and validate the following 

questions, in a quantitative manner: 

1. What is the estimated amount of antimicrobials consumed in group treatments (oral and/or 

parenteral) by the national pig population in Belgium per year? How much does it differ from the 

amount of antimicrobials consumed by other species (i.e. poultry, veal calves)?  

2. How often are antimicrobials administered to groups of pigs via feed compared to water in 

Belgian farms? Which are the practices and conditions of preparation and administration of 

antimicrobials via these routes at the farm level? 

3. What is the estimated amount of cross-contaminated pig feed produced in Belgium per year? 
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4. How many pigs of different production stages (i.e. piglets, sows and fattening pigs) are 

estimated to be exposed to cross-contaminated feed in Belgium? What is the extent of the effect of 

this cross-contaminated pig feed on resistance selection to different antimicrobials? 

5. What is the estimated amount of residues of antimicrobials, administered to pigs in Belgium 

via the oral route, which is present in manure applied onto Belgian soil? 
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CHAPTER 3  

Antimicrobial use in pigs, broilers and veal calves in Belgium 
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Filippitzi M. E., Callens B., Pardon B., Persoons D., Dewulf J., 2014. Antimicrobial use in pigs, broilers 

and veal calves in Belgium. Vlaams Diergeneeskundig Tijdschrift, 83(5): 215-224. 
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1. Abstract 

Given the risks associated with antimicrobial resistance and its link with antimicrobial use, available 

data on antimicrobial use in the Belgian pig, broiler and veal calf production were compared. To allow 

for comparison of the data available from three peer-reviewed scientific articles, the unit of 

measurement for antimicrobial use was the Treatment Incidence (TI), defined as the number of 

animals per 1000 treated daily with one ‘defined’ (DDDA) or ‘used daily dose animal’ (UDDA). 

Moreover, extrapolation of farm-level data to national-level data was attempted according to the 

European Surveillance of Veterinary Antimicrobial Consumption (ESVAC) methodology, to estimate the 

amount of antimicrobials used in Belgium per species. Although, among the three species, the highest 

TI was observed in veal calves (TIDDDA=414, TIUDDA=379), based on the extrapolation, it was estimated 

that most antimicrobials were administered to pigs (159.4 tons). Thus, the most rapid decline in the 

total use could potentially be achieved by targeting the pig sector. During the process of data collection 

for comparison and calculation, it became obvious that there is a need for harmonized monitoring 

programs. 
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2. Introduction 

The benefits of antimicrobials hardly need to be reiterated. Since their introduction, they have 

revolutionized the approach to the treatment, control and prevention of human and animal infections, 

and have contributed to major advances, ranging from increased disease treatment and life 

expectancy to intensified modern food production. However, for many years, antimicrobials have been 

prescribed pointlessly and have often been used with an imprudent prodigality. In animal production, 

they used to be added to feed for growth promotion (banned in Europe since 2006) (EC, 2005). They 

have often been administered unnecessarily or overused especially in group treatments, which are 

generally preferred over individual treatment due to their easier application. Antimicrobials have also 

been purchased and used as an easier and cheaper solution to prevent or treat conditions, instead of 

investments in infrastructure or disinfection of the farm. Inevitably, their use has resulted in a 

decreasing effectiveness in treating common infections and the emergence of multi-resistant strains 

of bacteria, such as methicillin resistant Staphylococcus aureus (MRSA) and extended- spectrum beta-

lactamase producing Enterobacteriaceae (ESBL) (Anses, 2014). 

Evidence is mounting that much of the antimicrobial resistance problem is rooted in the inappropriate 

and excessive use of antimicrobial agents. This link between antimicrobial use and the emergence of 

resistance can be demonstrated at different levels, including the in vitro level, at which mutations have 

been observed to occur in genes of Salmonella Typhimurium experimental mutants, leading to an 

increase of the minimum inhibitory concentration (MIC) of the antimicrobial and confirming resistance 

(Giraud et al., 1999; Cloeckaert and Chaslus-Dancla, 2001); the individual animal level, at which Berge 

et al. (2005) observed a shift to increasingly multiple resistant fecal E. coli of feedlot steers in response 

to florfenicol treatment; and the farm, at which higher levels of resistance at group level are related 

to increased antimicrobial usage (Dewulf et al., 2007; Costa et al., 2008; Persoons et al., 2010). The link 

between use and resistance can also be shown at the animal sector level, at which Casteleyn et al. 

(2007) observed that the animal sectors characterized by a high administration of antimicrobials, i.e. 

poultry and pig sector, demonstrate higher levels of resistant E. coli than dairy cattle and wild hares; 

and the country level, at which Chantziaras et al. (2013) clearly demonstrated that in countries with 

high antimicrobial usage, higher levels of resistance are also observed in indicator bacteria. 

The far-reaching burden of antimicrobial resistance, both from a human health and veterinary 

perspective, could be summarized as different levels of therapeutic and prophylactic failure, coupled 

with an increase of treatment costs for resistant infections (Laxminarayan, 2013). Consequently, a 

global concern for resistance has arisen. The 2013 World Economic Forum highlighted antimicrobial 

resistance as a major global risk with the ability to destabilize health systems (World economic forum, 
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2013). Within the same framework, the European Council called upon the member states to 

strengthen surveillance systems and improve data quality regarding the resistance and use of 

antimicrobials in human and veterinary medicine (EC, 2008, 2012). 

Given the risks associated with antimicrobial resistance, the possible transmission pathways of 

resistant bacteria between animals and humans, e.g. via direct contact, food or environment, 

(Wooldridge, 2012) and the overwhelming evidence that antibiotic use has been a powerful selector 

of resistance (Acar and Moulin 2012; Chantziaras et al., 2013), it is crucial that the levels of 

antimicrobial consumption in animals are monitored for the animal species and at the national level. 

Besides, the quantification of antimicrobial use is currently performed at a European level, at which 

consumption data of antimicrobials in veterinary medicine are collected from the member states by 

the European Medicines Agency (EMA) in the framework of the European Surveillance of Veterinary 

Antimicrobial Consumption (ESVAC) project. 

With a view to contributing to the above cause, this study aims to: (1) give an overview of the 

antimicrobial consumption in veterinary medicine in Belgium in recent years, overall and per sector, 

i.e. pigs, broilers, veal calves. Additionally, the type of antimicrobial agents used, their administration 

routes and whether they are over or under-dosed are also in focus; (2) make comparisons regarding 

antimicrobial consumption among the aforementioned animal sectors and over time, based on the 

data selected and described to address aim (1); (3) attempt to extrapolate farm-level data to national-

level data of antimicrobials consumed by the Belgian pig, broiler and veal calf populations, in order to 

make estimations of the total use per sector in the country. 

3. Materials and Methods 

3.1. Selection of scientific data sources 

The data to address the objectives of this review were retrieved from the 2012 Belgian Veterinary 

Surveillance of Antimicrobial Consumption (BelVet-SAC) report (BelVet-SAC, 2012), as well as from the 

study results of Callens et al. (2012), Pardon et al. (2012) and Persoons et al. (2012) for pigs, veal calves 

and broilers, respectively. The aforementioned report and scientific articles were considered 

representative to provide recent and relevant data on antimicrobial consumption in three important 

sectors of intensive livestock production in Belgium. 

In detail, the data provided by the 2012 BelVet SAC report consist of all veterinary antimicrobials sold 

to pharmacists and veterinarians in Belgium, i.e. antimicrobial pharmaceuticals, and of antimicrobial 

premixes incorporated in medicated feed, between 2007 and 2012. Likewise to the 2007-2009, 2010 

and 2011 reports, in the 2012 BelVet-SAC report, yearly consumption figures of antimicrobials and 

antimicrobial premixes (mg) are put versus the animal production expressed as produced biomass (kg), 
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according to the methodology described by Grave et al. (2010). The biomass is calculated as the sum 

of the amount of pork, beef and poultry meat produced in a year, plus the number of dairy cattle in 

Belgium, times 500kg of metabolic weight per head. Although horses, small ruminants, companion 

animals and rabbits (accounting for 6% of the total biomass) are covered in the collected data on 

antimicrobial use, they are not taken into account when calculating the biomass. 

Regarding the specific individual species, i.e. pigs, veal calves, broilers, the articles selected (Callens et 

al., 2012; Pardon et al., 2012; Persoons et al., 2012) all used similar methodologies and expressed 

antibiotic use based on the same quantitative measurement (the treatment incidence), which allows 

to compare results and draw conclusions. The treatment incidence (TI) is defined as the number of 

animals per 1000 that are treated daily with one defined daily dose animal (DDDA) or used daily dose 

animal (UDDA). The DDDA corresponds to the average maintenance dose for the main indication in a 

specified species, while the UDDA reflects the dose actually administered to the animal by the 

producer or the veterinarian. 

The following formulas were used to calculate the TIs: 

TIDDA= [total amount of drug administered (mg)] / [DDDA(mg/kg) × number of days at risk × kg of 

animal] × 1000 

TIUDDA= [total amount of drug administered (mg)] / [UDDA (mg/kg) × number of days at risk × kg of 

animal] × 1000  (Timmerman et al., 2006). 

The data retrieved from Callens et al. (2012) concern the prophylactic, i.e. the administration of an 

antimicrobial drug to healthy animals known to be at risk, and metaphylactic, i.e. the administration 

of antimicrobial drugs to clinically healthy animals in contact with animals with detected clinical signs, 

use of antimicrobials in group treatments between birth and slaughter, i.e. one production cycle, in 

Belgian pig herds, and were collected retrospectively from 50 closed and semi-closed herds between 

January and October 2010. Data concerning sows were not included. Persoons et al. (2012) collected 

antimicrobial consumption records from 32 randomly selected Belgian broiler farms during two non-

consecutive production cycles, in 2007 and 2008, while Pardon et al. (2012) collected prospective 

antimicrobial consumption data from 15 white veal farms in Belgium, between 2007 and 2009, with 

the complete production cycle as the study period. 

3.2. Data used 

The data of interest to address the aims of this article retrieved from the studies by Callens et al. 
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(2012), Pardon et al. (2012), Persoons et al. (2012) and the BelVet-SAC report (2012) include: 

quantitative information on the consumption of antimicrobials for veterinary use in Belgium, overall 

and per species, i.e. pigs, veal calves, broilers, expressed in tons of active substance per year, in mg of 

active substance used per kg of biomass produced or as treatment incidence; quantitative information 

on the relative use of the different active substances, overall and per species; and qualitative 

information regarding the administration route and the correctness of dosing, according to the 

Summary of Product Characteristics (SPC). 

3.3. Extrapolation of farm-level data to the national level 

Based on the data of Callens et al. (2012), Pardon et al. (2012) and Persoons et al. (2012), an 

extrapolation to the national level of antimicrobial consumption by the respective animal sectors was 

attempted. The objective of this extrapolation was to provide estimates on antimicrobial consumption 

for the actual species at the national level, and was made according to the methodology described at 

the ESVAC scientific guidelines paper on the collection of reliable and standardized data on the 

consumption of antimicrobial agents by animal species (EMA, 2013a), which can be summarized as 

follows: 

Amount of antimicrobials administered nationally, per species (tons) = amount of antimicrobials used 

in the studied population (tons) × [whole national population (number of animals)]/[studied 

population (number of animals)] 

To calculate the total amount of antimicrobials administered in pigs on an annual basis, available data 

on the total number of pigs slaughtered in Belgium in 2008 were used (Eurostat, 2014a). To calculate 

the same value for broilers, available data for the total number of broilers slaughtered in Belgium in 

2008 were considered (VEPEK, 2012). As for veal calves, the average total number of animals 

slaughtered in Belgium between 2009-2012 was used (Eurostat, 2014b). 

4. Results 

4.1. BelVet-SAC national results 

According to the BelVet-SAC report, in 2012, the total national consumption of antimicrobial 

pharmaceuticals for farm and companion animals in Belgium reached 222.5 tons of active substance, 

while the consumption of antimicrobial premixes incorporated in medicated feed was 55.4 tons. When 

the above figures were put versus the amount of biomass produced in the same year (calculated as 

2.033.855 tons), this gave 109.39 mg of active substance/kg biomass for antimicrobial pharmaceuticals 

used and 27.22 mg/kg for medicated premixes. 
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Compared to 2011, a substantial decrease of 7.2% in the total veterinary consumption of 

antimicrobials was observed in Belgium in 2012 (BelVet-SAC, 2012). During that year, the consumption 

of antimicrobial pharmaceuticals decreased by 7.9%, while the use of antimicrobial premixes 

decreased by 3.5%. Looking further backward, a promising decreasing trend of 20.3% in the total 

consumption can be observed between 2007 and 2012, when the first Bel- Vet-SAC data collection 

procedures were started (Figure 1).  

The antimicrobial compounds most frequently used in 2012 were the combination of sulphonamides 

and trimethoprim, followed by the antimicrobial classes of penicillins and tetracyclines (Table 1). 

Compared to 2011, the use of the last two was reduced by 6.1% and 13% respectively, in 2012, whereas 

the use of sulphonamides and trimethoprimwas increased by 1.6%. 

Compared to 2011, the consumption of cephalosporins (especially of the third and fourth generation) 

and quinolones (especially the fluoroquinolones) was increased in 2012 (2.7% and 3.1%, respectively). 

Even though this increase was limited in absolute values of active substance, it is of concern since these 

groups of antimicrobials are listed as critically important for resistance selection in both humans and 

animals by the World Health Organization (WHO) (WHO, 2011) and the World Organization for Animal 

Health (FAO/WHO/OIE, 2008). Moreover, this trend has been observed for a second year in a row.  

Table 1. Antimicrobial compounds most frequently used in Belgium, overall (BelVet-SAC, 2012) and per livestock 

species (% in the total of antimicrobials used) (Callens et al., 2012; Pardon et al., 2012; Persoons et al., 2012). For 

pigs, figures are given for both oral and injectable compounds. 

 

a LA=long acting. 

 

 

 

 

Pigs 
Broilers White veal calves Overall 

Oral Injectable 

Colistin (30.7%) Tulathromycin 

(45%) 

Amoxicillin (43%) Oxytetracycline 

(23.7%) 

Trimethoprim/sul

phonamides 

(31.1%) 

Amoxicillin 

(30%) 

Ceftiofur LAa 

(40.1%) 

Tylosin (30%) Amoxicillin (18.5%) Penicillins 

(29.7%) 

Trimethoprim/s

ulpho-namides 

(13.1%) 

Amoxicillin (8.4%) Trimethoprim/sulpho-

namides (18%) 

Tylosin (17.2%) Tetracyclines 

(26.3%) 
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 Figure 1. Total national consumption of antimicrobial compounds for veterinary use in Belgium from 2007 till 

2012 (tons of active substance) (BelVet-SAC, 2012). 

4.2. Antimicrobial use in Belgian pig farms 

Callens et al. (2012) quantified the antimicrobial drug consumption in Belgian fattening pig farms 

expressed in TI. The average values for TIDDDA and TIUDDA were 235.8 and 200.7. This means that on 

average, 235 pigs were treated with one DDDA and 200 were treated with one UDDA. These values 

were higher than the values calculated by Timmerman et al. (2006), which were based on data 

collected in the same way in 2003 (178.1 and 170.3, respectively). In particular, TIUDDA increased by 

almost 18%. It should also be mentioned that a large variation among the treatment incidences of 

different herds has been observed (Callens et al., 2012) (Figure 2). 

The oral and injectable antimicrobials most frequently used in pig production are shown in Table 1. 

They are expressed as a percentage of the total amount of antimicrobials used. Callens et al. (2012) 

found that the majority of group treatments are administered during the farrowing and battery period, 

while much less treatments are administered during the fattening period. On average, 80% of 

antimicrobial treatments in pig production are administered before the age of ten weeks. Callens et 

al. (2012) also concluded that prophylactic antimicrobial group treatment was applied in 93% of all 

group treatments, whereas metaphylactic or curative treatments were applied in only 7% of the cases. 
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The main reasons for antimicrobial use include digestive disorders and streptococcal infections in 

piglets, as well as respiratory problems during the second half of the battery period (Callens et al., 

2012). In the study, group treatments were primarily administered via the parenteral route in sucking 

piglets and orally in piglets after weaning via the feed or drinking water. Generally, oral treatments 

were more common than injectable ones (TIUDDA, oral =176.5, while TIUDDA, injectable, =24.2). Injectable 

treatments were frequently overdosed (79.5% overdosed, 8.2% correctly dosed, 12.3% underdosed), 

while oral administrations were often underdosed (47.3% underdosed, 23.3% correctly dosed, 29.4% 

overdosed). 

Based on the data of Callens et al. (2012), the extrapolated amount of antimicrobials consumed by the 

national pig population is estimated to be 159.4 tons. It should be noted that this value refers to 

(prophylactic and metaphylactic) group treatments in fattening pigs only, and does not include 

therapeutic use nor antimicrobials used in sows. 

 

  

  

 

Figure 2. Treatment incidence based on the “used daily dose animal” (UDDA) and the “defined daily dose animal” 

(DDDA) in 50 pig farms in Belgium (Callens et al., 2012). 

 

4.3. Antimicrobial use in Belgian broiler farms 

Persoons et al. (2012) estimates that the average treatment incidences based on the defined daily dose 

(TIDDDA) and the actual dose applied (TIUDDA) equal 131.8 and 121.4 daily treated broilers per 1000, 

respectively. Likewise to pig farms, considerable variations exist in antimicrobial use between farms 

(Figure 3). Twenty two percent (7/32) of the farms in the study managed to grow broilers without using 

10 1 20 30 40 50 
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antimicrobials in both of the production rounds monitored. In the treated farms, antimicrobials were 

used in 75% of the production cycles and were almost exclusively administered via drinking water in 

group treatments. Individual treatment in poultry is practically difficult and therefore not performed. 

The antimicrobials most frequently used in broiler production are given in Table 1. In particular, 

amoxicillin and tylosin were administered in more than half of the treatments examined by Persoons 

et al. (2012). They are both classified as critically important antimicrobials (class I) for both human and 

animal health by WHO (WHO, 2011) and OIE (Anonymous, 2008). 

The main reasons for antimicrobial administration in broilers are necrotic enteritis and dysbacteriosis, 

followed by feet disorders, coccidiosis and respiratory problems (Persoons, 2012). In the average flock 

of the study, most of the antimicrobials administered were usually dosed within the range of correct 

dosing. However, tylosin was usually underdosed, while amoxicillin and trimethoprim-sulphonamide 

were slightly overdosed. 

According to the ESVAC methodology and based on the data of Persoons et al. (2012), the annual 

amount of antimicrobials consumed by the Belgian broiler population is estimated to be 26.5 tons. 

 

Figure 3. Treatment incidence based on “used daily dose animal” (UDDA) and “defined daily dose animal” (DDDA) 

in 32 broiler farms in Belgium in two non-consecutive production cycles (Persoons et al., 2012). 

 

4.4. Antimicrobial use in Belgian veal calf farms 

Pardon et al. (2012) calculated the TI, based on the DDDA (TIDDDA) and the UDDA (TIUDDA) and 

considering the actual live weight of the animals, as 414 and 379 calves treated with one daily dose of 
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antimicrobial agents per 1000 animals, respectively. Also in the veal calf sector, a relatively large 

variation between farms regarding antimicrobial use was observed (Figure 4). 

Table 1 includes the most frequently used antimicrobials for group treatments of white veal calves, 

which are classified as critically important for public health (Pardon et al., 2012). Thirteen percent of 

the antimicrobial group treatments were administered prophylactically and 87% metaphylactically. 

The main indication for administration was respiratory disease (53%). Other common indications were 

arrival prophylaxis (13%), diarrhea (12%) and dysbacteriosis (12%). Group treatments were used in 

97.9% of the cases and were all orally administered in milk. 

The antimicrobials were mostly overdosed (TIUDDA < TIDDDA). However, likewise to pigs, over 40% of 

group treatments were underdosed. Especially oxytetracycline and tylosin, when used to treat 

dysbacteriosis, were systematically and significantly underdosed. 

The data of Pardon et al. (2012) were considered representative to be used for extrapolation to the 

national level, based on which the annual antimicrobial consumption in white veal calves is estimated 

to be 25.2 tons. 

Figure 4. Treatment incidence based on “used daily dose animal” (UDDA) and “defined daily dose animal” (DDDA) 

in 15 white veal calf farms in Belgium (Pardon et al., 2012). 
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Figure 5. Comparison of the treatment incidences among Belgian broilers, pigs and veal calves. 

 

 

Figure 6. Left column: estimated amount in tons of antimicrobials used annually in Belgian pigs, broilers and veal 

calves at the national level, after extrapolating farm-level data from selected studies. Right column: total amount 

in tons of antimicrobials and medicated premixes used in Belgium in 2009 (BelVet-SAC, 2012). 

 

5. Discussion 
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When it comes to interpreting antimicrobial consumption data, the unit of measurement as well as 

the use of standard measurement units for time at risk and average weight of animals at time of 

treatment, are crucial. The scientific data sources selected for this study provide data on the 

consumption of antimicrobials for veterinary use in Belgium, and are expressed in different ways. 

Firstly, the BelVet-SAC report provides overall data for farm and companion animals expressed in tons 

of active substance per year and in mg of active substance used per kg of biomass produced. This 

approach is similar to the one used by the European Medicines Agency (EMA) in the ESVAC reports, 

where consumption data from EU countries are presented in mg of active substance per population 

correction unit (PCU), a unit of quantification of animal production comparable to the biomass. 

Although crude and not detailed enough for between-species differentiation, the BelVet-SAC report 

data provide an interesting insight into the evolution of the total antimicrobial use of the past years. 

In contrast to the 2012 BelVet-SAC report, the selected scientific articles provide data per species, i.e. 

pigs, veal calves, broilers, quantified as treatment incidence (TI) of antimicrobials, at the end-user level. 

Being based on a sample of herds, these studies do not give a complete overview of the total 

antimicrobial consumption in Belgium as the BelVet-SAC report does. Additionally, the sampled farms 

were partially selected according to the willingness of the farmers to cooperate. Hence, there is an 

inherent risk of bias that should be taken into account. However, the sampled farms provide an insight 

into the antimicrobial use per species, which is detailed in terms of including data on the microbial 

agents used, their dosages, indications for administration, and also show a wide, and skewed 

distribution in use between herds and production types. This signifies that some herds manage to grow 

their animals without using antimicrobials, while others do not. 

Since all three articles used a similar methodology, i.e. TI, the data they provide can be compared, 

despite referring to different sectors, sample sizes and years of data collection. Based on a general 

comparison of the TIs estimated for pigs, broilers and veal calves, it was observed that antimicrobial 

use is more frequent in veal calves (TIDDDA= 414.0, TIUDDA=379.0), followed by pigs (TIDDDA=235.8, 

TIUDDA=200.7) and broilers (TIDDDA= 131.8, TIUDDA=121.4) (Figure 5). The very high usage in veal calf 

production is most likely explained by the typical organization of the veal industry and more 

specifically, by the way veal calves are collected. Furthermore, it is known that the incidence of 

antimicrobial treatments in veal calves is much higher than in conventional dairy and beef cattle, 6.3 

and 5.4 per 1000 cattle, respectively (Pardon et al., 2012). 

From a methodological point of view, the use of TI as an indicator of antimicrobial consumption is more 

relevant in terms of estimating selection pressure for antimicrobial resistance than the total weight of 

antimicrobials consumed. Moreover, this method overcomes the issue of differences in molecular 
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weight between different antimicrobial products. If antimicrobial use is systematically quantified in 

the same way and converted to the same denominator, comparable data may be available and can 

then be used to follow up the amount of antimicrobials used in different sectors or farms and over 

time (Timmerman et al., 2006). Besides, in a European framework, an equivalent indicator to the TIs, 

i.e. the number of defined daily dose animals (DDDA) consumed by weight group/1000 animals 

produced or livestock/ year, is proposed by the EMA to be used in a standardized manner for reporting 

the consumption of antimicrobial agents by species (EMA, 2013a). At this point, it should be pointed 

out that the average animal weight at treatment used in the calculation of TI has a large influence on 

the obtained results. Therefore, this weight should always be examined with caution to prevent over 

or underestimation of the TI. Although the use of actual weights of the animals at treatment is 

laborious, it provides more accurate estimates of TIs. 

The difference in methodologies does not allow for immediate comparisons between the BelVet-SAC 

report and the scientific articles. However, extrapolation from the farm-level data to the national-level 

data was attempted, based on the methodology described at the ESVAC scientific guidelines paper on 

the collection of reliable and standardized data on the consumption of antimicrobial agents by animal 

species (EMA, 2013a). 

According to this extrapolation attempt, pigs (sows not included) consume most antimicrobials at the 

national level in Belgium, i.e. 159.40 tons annually, followed by broilers (26.53 tons) and white veal 

calves (25.18 tons), which, as already shown, have the highest TI. The relative contribution of the 

different animal species to the total use is shown in Figure 6, where the results are compared to the 

total use in 2009, the year considered as the most suitable in accordance with the years of data 

collections. It should be noted that this value remained almost constant from 2008 till 2011 (Figure 1). 

According to the gathered data and estimations, the use of antimicrobials in pigs, broilers and veal 

calves corresponds to 69.4% of the total use in Belgium. Yet, the extrapolation and the relative 

contribution should be interpreted with caution and only be seen as indicative. Several sources of 

uncertainty are possible, which are related to the representativeness of the sampled herds and to the 

fact that treatments in sows and curative treatments were not taken into account at the pig herds. 

Hence, caution is urged in concluding that the difference between the two columns reflects the 

antimicrobial use in dairy and beef cattle, small ruminants, horses, layers and companion animals. 

Despite these calculations being rough due to the limited data available, it is important to attempt 

such extrapolations of data to the national level or even to the regional level, depending on the 

country. The results may prove useful, since they can provide estimates on sales and consumption of 

antimicrobials at the species level, and possibly per weight category and production type, as well as on 
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data pools for further (combined) analyses, e.g. ecological or economic analyses. Overall, they could 

be used to support the targeting of monitoring procedures and efforts to reduce antimicrobial usage. 

Regarding the antimicrobial compounds, those belonging to the WHO critically important list are 

frequently administered in all three species (Callens et al., 2012; Pardon et al., 2012; Persoons et al., 

2012). Despite the overall decrease in antimicrobial consumption in Belgium in recent years, the use 

of molecules of critical importance for human medicine has remarkably increased for a second year in 

a row. 

In this study, a number of needs regarding antimicrobial consumption data and related practices were 

observed. A wide and more detailed data collection covering all production sectors is needed and is 

important for benchmarking, monitoring and analysis of trends. Additionally, it would be appropriate 

to use differentiating statistics per animal production sector when comparing different countries, 

where the type of production system may differ (intensive, extensive). This monitoring work should be 

repeated every year in a harmonized manner, using the same quantification units. In line with this, 

scientific articles and reports, in which a more or less uniform methodology is used, would allow 

broader and more accurate comparisons, e.g. between countries. In addition, it seems that clear 

guidance on correct dosing needs to be provided on a regular basis to veteranarians, farmers and other 

stakeholders responsible for antimicrobial administration to animals. 

According to the third ESVAC report of EMA for 2011, Belgium holds the sixth position in terms of sales 

volume of antimicrobials over 25 EU countries (EMA, 2013b). The previous year, Belgium was in third 

place. Since there was virtually no change in use in Belgium between 2010 and 2011, the change in 

positioning is solely the result of the addition of new countries with a higher consumption in the 

dataset, which had not provided data previously. Both places are high. For that reason, the reduction 

in the antimicrobial use observed by the BelVet-SAC in 2012 is hoped to be maintained (BelVet-SAC, 

2012). This reduction in antimicrobial consumption in Belgium (BelVet-SAC, 2012) and also in Europe 

(EMA, 2013b) over the last few years is a promising trend. However, this reduction should not be taken 

for granted and efforts should be continued towards this direction. At the Belgian level, the Centre of 

Knowledge for Antimicrobial Consumption and Resistance in Animals (AMCRA) aims to promote the 

prudent use of antimicrobials, and has produced a list of guidelines on responsible antimicrobial 

consumption, where the various antimicrobial classes are differentiated in terms of importance for 

public and animal health according to the WHO and OIE lists (WHO, 2011; OIE, 2014). 

In other words, antimicrobials need to be used sustainably. From a Belgian perspective and given that 

the use in the three major livestock species accounts for a large proportion of the total use, this could 

be translated to sector targeting actions. Besides, it has been shown here, that despite of the veal 

sector demonstrating the highest frequency in use per animal head, the pig sector demonstrates the 
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highest consumption in absolute values at the national level (Figures 5 and 6). Simultaneously and next 

to this quantitative approach, it is very crucial that producers of smaller industries, e.g. the veal calf 

sector, embrace active responsibility in this global health issue, and that all sectors endorse 

antimicrobial stewardship. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



68 
 

6. References 

 

Acar JF, Moulin G, 2012. Antimicrobial resistance: a complex issue. Rev - Off Int Epizoot.  31 :23-31. 

(Anses) French Agency for Food, Environmental and Occupational Health & Safety, 2014. Avis de 

l’agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail relatif aux 

Risques d’émergence d’antibiorésistances liés aux modes d’utilisation des antibiotiques dans le 

domaine de la santé animale (in french). p1-240. http://www.anses.fr/  

(BelVet-SAC) Belgian Veterinary Surveillance of Antimicrobial Consumption, 2012. National 

Consumption Report. http://www.belvetsac.ugent.be  

Berge ACB, Epperson WB, Pritchard RH, 2005. Assessing the effect of a single dose florfenicol treatment 

in feedlot cattle on the antimicrobial resistance patterns in faecal Escherichia coli. Vet Res 36:723-734. 

Callens B, Persoons D, Maes D, Laanen M, Postma M, Boyen F, Haesebrouck F, Butaye P, Catry B, 

Dewulf J, 2012. Prophylactic and metaphylactic antimicrobial use in Belgian fattening pig herds. Prev 

Vet Med. 106:53-62. 

Casteleyn C, Dewulf J, Catry B, de Kruif A, Maes D, 2007. Antimicrobial resistance in Escherichia coli 

from livestock, hare, sewage and surface water in Flanders. Vlaams Diergeneeskd Tijdschr. 75:23-30. 

Chantziaras I, Boyen F, Callens B, Dewulf J, 2013. Correlation between veterinary antimicrobial use and 

antimicrobial resistance in food-producing animals: a report on seven countries. J Antimicrob 

Chemother. 69:827-834. 

Cloeckaert A, Chaslus-Dancla E, 2001. Mechanisms of quinolone resistance in Salmonella. Vet Res. 

32:291-300. 

Costa PMD, Vaz-Pires P, Bernardo F, 2008. Antimicrobial resistance in Escherichia coli isolated in 

wastewater and sludge from poultry slaughterhouse wastewater plants. J Environ Health. 70:40-53. 

Dewulf J, Catry B, Timmermen T, Opsomer G, de Kruif A, Maes D, 2007. Tetracycline-resistance in 

lactose-positive enteric coliforms originating from Belgian fattening pigs: Degree of resistance, 

multiple resistance and risk factors. Prev Vet Med 78:339-351. 

 (EC) Council of the European Union, 2008. Conclusions on Antimicrobial Resistance (AMR). 

Luxembourg, 10 June 2008. p1-5. http://www.eu2008.si/   

(EC) Council of the European Union, 2012. Conclusions on the impact of antimicrobial resistance in the 

human health sector and in the veterinary sector – a “One Health” perspective. Luxembourg, 22 June 

2012. p1-6. http://www.consilium.europa.eu/    



69 
 

(EC) European Comission, 2005. Ban on antibiotics as growth promoters in animal feed enters into 

effect. Press Release. http://europa.eu/rapid/press-release_ IP-05-1687_en.htm  

(EMA) European Medicines Agency, 2013a. Revised ESVAC reflection paper on collecting data on 

consumption of antimicrobial agents per animal species, on technical units of measurement and 

indicators for reporting consumption of antimicrobial agents in animals. p1-29. 

http://www.ema.europa.eu/   

(EMA) European Medicines Agency, 2013b. Third ESVAC report on sales of veterinary antimicrobial 

agents in 25 EU/EEA countries in 2011. p1-98. http://www.ema.europa.eu/    

Eurostat,  2014b. Meat production and foreign trade- annual data. http://ec.europa.eu/eurostat  

Eurostat, 2014a. Statistic on the pig population, slaughtering and pig meat production. 

http://ec.europa.eu/eurostat  

(FAO/WHO/OIE) 2008. Joint FAO/WHO/OIE Expert Meeting on Critically Important Antimicrobials. 

FAO, Rome, Italy and WHO, Geneva, Switzerland, 26–30 November 2007. p1-67. 

http://www.fao.org/home  

Giraud E, Brisabois A, Martel JL, Chaslus-Dancla E, 1999. Comparative studies of mutations in animal 

isolates and experimental in vitro- and in vivo-selected mutants of Salmonella spp. suggest a 

counterselection of highly fluoroquinoloneresistant strains in the field. Antimicrob Agents Chemother. 

43:2131-2137. 

Grave K, Torren-Edo J, Mackay D, 2010. Comparison of the sales of veterinary antibacterial agents 

between 10 European countries. J Antimicrob Chemother. 65:2037-2040. 

Heuer H, Smalla K, 2007. Manure and sulfadiazine synergistically increased bacterial antibiotic 

resistance in soil over at least two months. Environ Microbiol. 9:657–66. 

Laxminarayan R, Duse A, Wattal C, Zaid, A, Wertheim H, Sumpradit N, 2013. Antibiotic resistance -the 

need for global solutions. The Lancet Infectious Diseases Commission, Version 1. 

(OIE) World Organisation for Animal Health, 2014. List of antimicrobial agents of veterinary 

importance. p1-9. http://www.oie.int  

Pardon B, Catry B, Dewulf J, Persoons D, Hostens M, De Bleecker K, Deprez P, 2012. Prospective study 

on quantitative and qualitative antimicrobial and anti-inflammatory drug use in white veal calves. The 

J Antimicrob Chemother. 67:1027-1038. 



70 
 

Persoons D, Dewulf J, Smet A, Herman L, Heyndrickx M, Martel A, Catry B., Butaye P, Haesebrouck F, 

2010. Prevalence and persistence of antimicrobial resistance in broiler indicator bacteria. Microb Drug 

Resist. 16:67-74. 

Persoons D, Dewulf J, Smet A, Herman L, Heyndrickx M, Martel A, Catry B, Butaye P, Haesebrouck F, 

2012. Antimicrobial use in Belgian broiler production. Prev Vet Med 105:320-325. 

Timmerman T, Dewulf J, Catry B, Feyen B, Opsomer G, de Kruif A Maes D, 2006. Quantification and 

evaluation of antimicrobial drug use in group treatments for fattening pigs in Belgium. Prev Vet Med 

74:251-263. 

(VEPEK) Verboond voor pluimvee, eieren en konijnen, 2012. Overzicht van de Belgische pluimvee en 

konijnenhouderijen 2008. p1-109. http://www.agripress.be  

(WHO) World Health Organization, 2011. Critically important antimicrobials for human medicine. p1-

48. http://www.who.int  

Wooldridge M, 2012. Evidence for the circulation of antimicrobialresistant strains and genes in nature 

and especially between humans and animals. Rev - Off Int Epizoot. 31:231-247. 

World economic forum, 2013. Global risks 2013. An initiative of the risk response network. 8th Report, 

Cologny/Geneva. p1-80. http://www3.weforum.org/    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



71 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



72 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



73 
 

CHAPTER 4  

Patterns of antimicrobial use in pigs via feed and water: A field-study 

in pig farms in Belgium 
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1. Abstract 

In intensive pig farming, group treatments are often used to administer antimicrobial agents via the 

feed or drinking water. Unfortunately, problems can arise when administrating medication via the oral 

route, such as the cross-contamination of compound feed and water due to carry-over of antimicrobial 

residues. To date, no data are available regarding the frequency and level of this problem (and other, 

e.g. homogeneity) occurring at the farm level. Therefore, a field study was performed in 52 pig farms 

in Belgium, with the aim of examining the level of use and the conditions of preparation and 

administration of antimicrobials via the feed and water. In the farms visited, water medication was 

used more (n=47 farms) than in-feed medication (n=36). Per production stage, water medication was 

used more in piglets (87.5%) and fattening pigs (91%), while top dressing was mainly used in sows 

(55%). More differences between production stages were observed in relation to the administration 

of medicated feed (e.g. type of feed), rather than the administration of water medication. Although 

the preparation of water medication is labor intensive and specific concerns are present (e.g. 

precipitation), it can be considered as a better choice for antimicrobial administration, compared to 

in-feed medication, with regard to less carry-over and more animals receiving a correct dose of 

medication are expected when using water medication. However, technical issues (e.g. possibility of 

blockage of the water pipe due to insufficient cleaning) should be prevented. 

2. Introduction 

In intensive pig farming, group treatments are often used to administer antimicrobial agents via the 

feed or drinking water (BelVet-SAC, 2017). Also deworming agents are often administered via this 

route. In terms of treatment incidences (TI) of antimicrobial compounds, expressed as the daily 

number of treated pigs per 1000 animals with a used daily dose animal (TIUDDA), a TIUDDA of 176.5 for 

oral treatment, compared to a TIUDDA of 24.2 for parenteral treatment of pigs in Belgium, was estimated 

by Callens et al. (2012), indicating that oral therapy is by far more commonly used than parental 

therapy. Based on the data of Callens et al. (2012) and according to an extrapolation exercise (Filippitzi 

et al., 2014), the amount of antimicrobials consumed by the national pig population of fattening pigs 

in prophylactic and metaphylactic group treatments was estimated to be 159.4 tons, representing 

52.4% of the total antimicrobial use in Belgium. Even though a downward trend in terms of 

antimicrobial use, including premixes, has been observed in Belgium the past years (BelVet-SAC, 2017), 

oral group treatments of pigs remain the most common route of antimicrobial administration to this 

species (Postma et al., 2015). The most commonly used antimicrobial classes administered orally to 

pigs in Belgium are penicillins, tetracyclines, sulphonamides and macrolides (BelVet-SAC, 2017).  
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There are five ways for administering medication, including antimicrobials, to groups of animals, 

including pigs, via the oral route. The first is the mixing of medicated premixes in compound feed by 

approved manufacturers of medicated animal feed (1), after the prescription of a veterinarian. In 

Belgium, since 1/1/2014, the mixing of antimicrobials by the manufacturer only takes place in an end-

of-line mixer or via a fine dosing system at the moment of delivery to the farmer (BFA, 2013). The 

second and third possibilities for oral treatment include topdressing (2) and the use of an automatic in 

feed dosing system (3), respectively. When topdressing is used, the pig farmers receive the required 

amount of medication according the veterinarian's prescription and, then, they add the desired 

amount of medication with, for instance, a measuring cup over the feed. If necessary, they also mix 

the medication as good as possible in the feed. When an automatic dosing system is used, the 

medication is added into the feed at the feed line. Finally, treatment of groups of animals can also be 

performed with the use of drinking water medication, via a water tank (4) or a dosing pump at the 

waterline (5). Currently, there are no data available on the distribution and frequency of use of these 

methods in Belgium.  

Unfortunately, problems can arise in relation to the administration of antimicrobials via any of these 

aforementioned routes. One of these problems is the cross-contamination of compound feed due to 

carry-over of remaining residues (Borràs et al., 2011), which is associated with the potential for 

antimicrobial resistance selection (Peeters et al., 2017, 2018). Other problems concern the potential 

carry-over of residues in water, the insufficient homogeneity and stability of medication in the feed or 

water (Stolker et al., 2013), the segregation of antimicrobial (in the feeders/water pipes), and issues 

of solubility of the drug in the drinking water (AFSCA/FAVV, 2013). To be able to identify the level of 

occurrence of these problems at pig farms in Belgium, there is first a need for scientific research with 

the aim of examining the level of use and the conditions of preparation and administration of 

antimicrobials via the feed and water.   

The aim of this study was to perform a field study at pig farms in Belgium, in which different types of 

available systems for oral group treatment with antimicrobials would be identified and studied, 

providing a solid base for further research into the homogeneity, stability and carry-over of medicated 

feed and medicated drinking water. At each of the participating farms visited, the process of mixing 

and storage of medicated feed and water are described in detail, while the group size of the treatment 

group and the frequency of oral administration of antimicrobials are also recorded. Moreover, this 

study offers a unique insight into the experiences of pig farmers with the use of medicated feed and 

water and reveals which practical problems often occur, which are the preferred oral treatment 

options and how effective these treatments are. 
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3. Materials and methods 

3.1. The questionnaire 

A survey, containing both open and closed-ended questions, was conducted in collaboration with pig 

veterinarians. The questionnaire was subdivided into 6 sections: general information about the farm, 

construction of drinking water/feeding system, cleaning and disinfection, group treatment via feed 

and drinking water, preparation of feed and water medication and finally personal experience with 

drinking water/feed medication. In total, the survey contained 46 questions, of which the answers to 

21 of these questions are presented and analyzed, of which 7 were open and 14 were closed. The full 

questionnaire is available in Annex in dutch and french. A pre-test was conducted regarding content 

and consistency of the questions.  

3.2. Farm visits  

Herd veterinarians were found on the internet, using contact details of the Belgian branch of 

International Pig Veterinary Society (IPVS). First, an e-mail was sent, followed by a phone call to explain 

the study objectives and to verify the veterinarian’s willingness to participate. The farms were visited, 

accompanying the veterinarian when he or she went on a visit to the farm. The purpose of the study 

was explained to the pig farmer and it was emphasized to the farmers that questionnaires would be 

processed anonymously. A face-to face questionnaire interview was combined with a visit at the farm 

site. All visits and interviews were conducted by the first author between February and October 2017.  

3.3. Data processing and analysis 

All information from the survey, coded numerically to assist analysis, was entered into Microsoft Excel, 

2010 and recoded into categorical data. Descriptive statistics were performed in SPSS v.24.0 (SPSS Incl., 

Chicago, IL).  

4. Results 

4.1. General information about the farms 

Fifty two (52) farms participated in the field study. Table 1 shows the average size of the participating 

farms (i.e. total number of sows, piglets and fattening pigs and boars present at the farm). A detailed 

description of all practices and personal experiences regarding feed and water administration of 

antimicrobials is provided in the following section. The results for feed and water antimicrobial 

administration are presented together, one after the other, per question.  

Table 1. Descriptive statistics for the pig farms participating in the field study. 



78 
 

 

 

Notes: For presentation purposes, the mean values of the number of pigs are rounded.  * Eleven (11) 

of these farms are closed farms keeping pigs of all three production stages. 

 

4.2. Practices related to administration of antimicrobials via feed and water  

Frequency of use of feed/water medication 

Antimicrobials were administered to pigs via the feed in 69% of the visited farms (n=36). In this dataset, 

in-feed medication was most often used in piglets (75%; n=12), followed by sows (65%; n=13) and 

fattening pigs (59%; n=26).  

Antimicrobials were administered to pigs via water in 81% of the visited farms (n=42). This method 

was very often used in piglets (81%; n=13) and fattening pigs (84; n=37). In this dataset, it was not used 

much in sows (70% of farms with sows did not use this method; n=14).  

Construction of feeding/water system 

Type of feed for sows, piglets and fattening pigs 

In the 20 farms with sows, the most common type of feed administrated to sows was pellets (75%), 

followed by meal (35%) and wet/dry feed (15%). In 5 farms with sows, more than one type of feed was 

used. 

In the 16 farms with piglets, the most common type of feed administered was meal (76%), while 

grains/pellets (2 farms) and crumb (2 farms) were less used. One of these farms used two types of feed 

for piglets (meal and pellets).  

In the 44 farms with fattening pigs, meal and grain/pellet feed were equally used (43% each), followed 

by wet/dry feed (6 farms) and wet/mush feed (1 farm). Ten of the 44 farms used two types of feed and 

in all cases these were meal and pellets. 

Pig 
production 
stage kept at 
farm 

Number of farms 
keeping pigs in each 

production stage 

Number of pigs in a production stage in all types of 
farms keeping pigs in this production stage 

Mean Median Minimum Maximum 

Sows  20 315 200 80 757 

Piglets  16 1,156 725 248 4,000 

Fattening 
pigs  

44 1,866 1,275 250 10,000 

Total number 
of farms  

52* 
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Drinking water for sows, piglets and fattening pigs 

In 90% (n=18) of farms with sows, well water is used. In very few farms, tap (n=2) or drainage water 

(n=1) is used. In one farm, both well and tap water is used. Surface and rain water was not used in any 

of the visited farms.  

In 94% (n=15) of farms with piglets, well water is used. In one farm, tap and drainage water is used. In 

two farms using well water, tap water is also used in one of them, and drainage water and rain water 

in the other. Surface water was not used in any of the visited farms. 

The vast majority of farms with fattening pigs also used well water for fatteners (89%; n=39). Four 

farms used tap water, one of which also used drainage water. Few of the 39 farms using well water, 

also used  tap, drainage, rain or surface water (total number of these uses=5).  

Oldest and newest part of feed/water installation 

The oldest and newest parts of the installation for feed supply have been present at the farms visited 

for, in average, 29.31 years (SD=0.19) and for 10.1 years (SD=7.6), respectively. Regarding the 

installation for water supply, the oldest and the newest parts of the installation have been present for, 

in average, 25 years (SD=0.4) and for 8 years (SD=5.2), respectively. 

Cleaning and disinfection (cleaning and disinfection) 

Cleaning and disinfection frequency of different parts  

Silo: 65% of farms never clean or disinfect the silo. Fewer farms do so once each or every two years 

(19%), twice a year (14%) or more than twice a year (2%). 

Feed tank: In 51 out of 52 farms, there was no feed tank present. The one farm that had one, cleans it 

once a month. 

Feeding troughs: 54% of farms clean and disinfect the feeding troughs after the end of a production 

cycle. Some farms clean and disinfect at weaning (these are farms with sows) (10%), once a year (4%) 

or 3-6 times a year (2%). Two farms report that they clean and disinfect with a variable frequency. A 

percentage of 27% of farms never clean or disinfect the feeding troughs. 

Water lines: 62% of farms clean and disinfect the water lines. Most farms of these farms do so when 

there are visible problems or dirt (35%) or once/twice a year (29%). In a few farms, cleaning and 

disinfection is performed permanently (n=4), 3-4 times a year (n=2), at the end of round, vacancy or 

before new round (n=2), after therapy (n=2), once a month (n=1). The rest 38% of farms never clean 

and disinfect the water lines.   
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Cleaning piping before and after feed/water medication 

The vast majority of farms (94%; n= 33) using feed with antimicrobials did not clean or disinfect the 

pipelines before the use of this feed. The same pattern was seen for cleaning and disinfection of 

pipelines after the use of feed with antimicrobials (97%; n=34 do not clean or disinfect). Most farms 

using water medication, although in a smaller percentage than the farms using feed medication (79%; 

n=33), never clean the piping system before administering antimicrobials in water; some always clean 

it (19%; n=8) and one farm sometimes does so. Most of the same farms (55%; n=23) never clean the 

piping system after administering water medication, a number of them always clean it (31%; n=13) and 

fewer farms sometimes do so (n=6). 

Cleaning of tools used for feed and water medication 

In 71% (n=10) of farms preparing medicated feed at the farm, the tools used to make this feed are 

never cleaned afterwards. The practice of cleaning these tools is rare (two farms always clean them, 

two farms sometimes do). On the contrary, at the farms where water medication is used, the used 

tools are always cleaned in 69% of cases (n=29), while these tools are sometimes cleaned in 19% (n=8) 

and never cleaned in 12% (n=5) of them. 

Group treatment via feed/ drinking water 

Combination of antimicrobials in feed/water 

In 3 farms, combinations of antimicrobials in feed (i.e. doxycycline-trimethoprim-sulphonamides) were 

used. 

In farms using water medication, no combination of compounds was used in the majority of cases 

(51%). In some cases (21%), a combination of amoxicillin and acetylic acid was used. In the few times 

that combinations of antimicrobials were used, these included combinations of amoxicillin, 

trimethoprim and sulphonamides (n=2), amoxicillin and colistin (n=2), doxycycline and tylosin (n=1), 

amoxicillin and doxycycline (n=1).  

Smallest group of sows, piglets and fatteners for feed/water medication 

In the majority of the farms administering medication to sows via feed, the sows received the feed 

individually (46%; n=6). Other farms administered this feed at pen (23%; n=3) or stable level (n=3). In 

one of these farms, the medicated feed was administered per sow compartment (n=1). There was a 

large variation in the number of sows per group at the farms visited. On the other hand, in the majority 

of the farms administering medication to piglets via feed, the piglets received the feed at stable level 

(50%; n=6) and less commonly at compartment (n=3) or pen level (n=1). Medication via feed was 
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administered to fattening pigs at stable level in 81% of farms with fattening pigs (n=21), whereas in 

fewer cases, it was administered at compartment (n=5 times) or pen level (n=2 times). An general 

indication of the group size for piglets and fattening pigs at the visited farms is 300 animals per stable, 

150 per compartment and 15 per pen. 

In the farms using water medication in sows, water medication was administered at the stable level in 

three farms, at the compartment level in two farms and at the pen level in one farm. According to the 

farms using water medication in piglets, water medication was administered at the compartment level 

in 62% of farms (n=8) and at the stable level in 39% of farms (n=5). In the farms using water medication 

in fatteners, water medication was administered at the stable (54%; n=20) or the compartment (46%) 

level.  

Separate pipeline for feed/water 

None of the farms administering medication via feed (n=36) had a separate pipeline for medicated and 

non-medicated feed. As for farms using water medication, the majority of them do not have a separate 

piping (72%), while the rest do. 

Preparation of feed/water medication  

Method/device used for preparation of medicated feed/water 

At the farms using medicated feed, medicated feed was purchased from the feed manufacturer in 69% 

of cases (n=30). Top dressing was used in 25% of cases (n=11; farms with sows), while in a few cases 

(7%; n=3) a dosing device on the feed line was used at the farm. Some farms used more than one 

method. 

At farms using water medication, the device used the most to prepare it was a mechanical dosing pump 

(54%; n=26), followed by an electric dosing pump (25%). In 19% of cases, drinking water medication 

was prepared by mixing a premix in a small amount of water (the pre-solution), which was then added 

to a drinking water reservoir. Some farms used more than one devices to prepare water medication. 

Frequency of preparing medication and daily administration pattern 

When medicated feed is prepared at the farm (based on 7 answers received from 14 farms preparing 

it at the farm), it is prepared once a day in most of these farms (86%; n=6) or when the stock solution 

is finished (n=1). The feed with medication, when used, is mainly administered during the whole day 

(76%; n=28). In fewer cases (24%) it is administered for a few hours a day. 

In the farms using water medication, water medication is mostly prepared once a day (60%; n=25). In 

other farms, it is prepared two times a day when amoxicillin is used (n=9), or when the pre-solution is 
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finished (n=4), twice a day (n=2), once every 14 days (n=1) or every 4-6 hours, depending on the need 

(n=1). In the majority of cases (72%; n=31), water medication is administered throughout the day, 

while in some cases (26%) for several hours during the day. 

4.3. Farmers’ experience with administration of antimicrobials via feed and water  

Ease of use 

The majority of the farmers (92%; n=33) reported no problems regarding the ease of use of medicated 

feed.).  The few issues that were reported are heavy workload due to the individual animal treatment 

with medicated feed (n=3), and the limited amount of registered products available for preparation of 

this feed (n=1). 

No problems were reported from 77% of farmers (n=36) regarding the ease of use of water medication. 

In some cases, issues mainly related to the workload of preparing water medication were reported: in 

six farms medicated feed is preferred and is considered easier to use while requires less work; in one 

farm it is said that stirring requires more work; in another farm the rinsing of the pump is necessary 

and therefore requires more work; in a last farm, it is reported that a lot of work is required, when 

piglets and fattening pigs need to be treated with water medication at the same time. 

Practical problems 

Twenty-two out of the 30 farmers (73%) reported to encounter no practical problems during the 

execution of the therapy. The problems that were reported are  that sick pigs stop eating (n=4), that 

medicated feed is less tasteful (n=2), that the timing of feed administration is not flexible (n=1) and 

that sometimes the day of treatment can be forgotten (n=1). 

No practical problems were reported from 19 farmers (40%) regarding the execution of therapy when 

using water medication. Eleven farmers (23%) reported the issue of precipitation of antimicrobials. 

Other issues were also sometimes raised, including solubility problems (n=6), the reduction of the 

amount of water consumed by ill pigs (n=5) and clogged nipples (n=2). Further issues involve the 

responsible person forgetting to switch off the water disinfection before administration of water 

medication (n=2), forgetting to switch off the faucets from normal to medicated water (n=1) or 

accidentally adding medication in water (n=1). The necessary rinsing of the pump (n=2), the fact that 

the medicated water is less tasteful (n=1), the difficulty of cleaning a large reservoir (n=1) and the lack 

of infrastructure allowing the treatment of more than one stable at once (n=1) were also reported as 

practical issues during the execution of therapy with water medication. 

Effectiveness 
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Most farmers who have been using antimicrobial medicated feed regularly (n =18), find the treatment 

to be usually effective (61%; n= 11), or reasonably effective (n=5), in contrast to few of them reporting 

regular relapse of animals (n=2). Likewise, most farmers using antimicrobials in water report that the 

treatment administered via this route is mostly effective (56%; n=23). Thirteen of them suggest that 

the treatment is moderately effective but there are often relapses, while five of them suggest that the 

treatment is reasonably effective but sometimes the treated animals relapse.  

5. Discussion 

5.1. Limitations 

Fifty two (52) farms agreed to participate in this study. This is a limited number of pig farms, but they 

were selected to include farms using all different ways of administration of in-feed and water 

medication in Belgium. However, any extrapolation attempts based on this data should be cautiously 

made. In some cases, a certain level of information bias might be included, as the interviewed person 

could not provide an answer (e.g. the responsible person was not present at the time of visit, or has 

changed).  

5.2. Comparison between feed and water medication 

In the total 52 farms visited, antimicrobials were administered in more farms via water (n=42) than via 

feed (n=36), although both methods of administering medication were widely used. Per production 

stage, water medication was used more in piglets and fattening pigs, while top dressing was mainly 

used in sows. In terms of differences between production stages, more differences were observed in 

relation to the administration of medicated feed, rather than the administration of water medication. 

In the latter case, the patterns in the practices observed were generally applied per farm as a whole 

rather than per production stage.  

The type of feed and the quality of water used for the administration of antimicrobials affect the carry-

over level of residues, the stability and homogeneity of both the feed and water medication. As 

expected, piglets are usually fed with meal, which is generally the first type of feed used. In terms of 

carry-over, the powder form of meal makes it more difficult to purge the equipment at the feed-mill, 

the truck and the farm, between batches (Strauch and Freil, 2008). Meal is also highly used to feed 

fattening pigs. Moreover, it is more difficult to add antimicrobials in pellets, as the feed is heated 

before being pressed into pellets and this damages the antimicrobilas. 

In case water medication is used, the drinking water quality is very important in keeping the drinking 

water medication stable and homogeneously mixed, as well as ensuring sufficient water uptake. 

Drinking water quality depends on various reasons, including the source, the filtration and treatment 
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(e.g. acidification) of the water, and the condition of the water pipelines, as sludge and residues from 

previous treatments could result in clogging and contamination of the waterlines and nipples. A sample 

to determine the drinking water quality should be taken at least once a year, which is not the case at 

the moment. If the water quality is good, in terms of hardness, pH, level of coliforms (De Backer, 2015), 

and the antimicrobial compounds used have good solubility in water, less carry-over and better 

homogeneity would be expected from the use of water medication, compared to feed. However, 

precipitation of antimicrobials in water is often reported. Results from sample testing of feed and 

water, would allow us to compare in an informed way the levels of carry-over, the stability and the 

homogeneity between feed and water medication.  

Regarding the frequency of preparing the medicated feed/water at the farm, this is usually done once 

a day both for feed and water medication, when administered. However, all farmers (n=42) using 

antimicrobial medication in water prepare it themselves at the farms, whereas fewer farmers (n=14) 

prepare medicated feed at the farm. When used, in the majority of cases, feed and water medication 

is administered to animals throughout the day. 

Comparing the frequency of cleaning and disinfection in relation to the preparation and administration 

of in-feed and water medication, it was mainly observed that cleaning and disinfection of the feed silo 

and feeding troughs was not a common practice in the majority of the farms visited. Exception to this 

was the cleaning and disinfection of feeding troughs after the end of a production cycle (54%). On the 

contrary, cleaning and disinfection of waterlines, which improves water quality and prevents carry-

over, was practiced more often (62% of farms).  

Focusing on the personal experience of the farmers with each of these methods, most of them find it 

easier to use in-feed medication, rather than water medication, due to the workload involved in the 

preparation of the latter method. However, from the point of view of antimicrobial use, the ease of 

use is contra-indicated as it results in over use of antimicrobials. Therefore, a more laborious 

preparation and use of medication would normally result in a more cautious use of antimicrobials. 

Regarding the execution of treatment when using water medication, the farmers report more 

problems, with precipitation being the most common problem stated. The farmers report a similar 

level of effectiveness for both methods, however few farmers using medicated feed provided an 

answer to the respective question. Regular relapse is reported, although limitedly (n=2), only in 

relation to the use of in-feed medication. 

5.3. Conclusion 

In all farms of this dataset, medication (mainly antimicrobials) is administered to pigs via the oral route. 

Water medication was used in more farms than in-feed medication. Although the preparation of water 
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medication is labor intensive and specific concerns are present, it can be considered as a better choice 

for antimicrobial administration, compared to in-feed medication, with regard to carry-over and 

dosing. In case of using water medication, less carry-over can be expected. Moreover, more animals 

are expected to receive a correct dose of medication (e.g. sick pigs drink water, adjustment of dosage 

is possible). However, extra attention must also be paid to the possibility of blockage of the water pipe 

and/or nipples, so thorough checking and cleaning of these parts is a must. More research is required 

to estimate the carry-over levels at the farm with sample testing, and to assess other important issues, 

such as the homogeneity and stability of antimicrobials in feed and water.  
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CHAPTER 5  

Risk of cross-contamination due to the use of antimicrobial 

medicated feed throughout the trail of feed from the feed mill to the 

farm 
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1. Abstract 

The cross-contamination of non-medicated feed with residues of antimicrobials causes an animal and 

public health concern associated with the potential for selection and dissemination of resistance in 

commensal bacteria and potentially zoonotic bacteria. To identify the extent of this situation, we built 

a risk model that provides a way to estimate the percentage of cross-contaminated feed in total and 

at different levels where cross-contamination may occur (i.e. the feed mill, the transport truck, the 

farm), depending on the level of antimicrobial medicated feed produced in a country per year. The 

model, estimated that, when antimicrobial medicated feed represents a hypothetical xi=2% of the total 

feed produced in a country per year, then 5.5% (95%CI 3.4% ; 11.4%) of the total feed produced in a 

year could be cross-contaminated with different levels of antimicrobials due to practices related to 

medicated feed. In detail, 1.80% (95%CI 0.2% ; 7.7%) of the total feed produced in such a country 

would be cross-contaminated due to antimicrobial carry-over occurring at the feed mill level, 1.83% 

(95%CI 1.3% ; 2.0%) at the transport truck level and 1.84% (95%CI 1.2% ; 2.0%) at the farm level. The 

model also demonstrated that, even in cases where antimicrobial medicated feed would be produced 

in end-of-line mixers or fine dosing system on trucks, the risk of cross-contamination would not be 

negligible; the percentage of cross-contaminated feed produced in a country (where xi=2%) per year 

would be 3.7% (95%CI 2.9% ; 4.0%) and 2.4% (95%CI 1.6% ; 2.7%), respectively. Therefore, the risk, 

being the result of factors occurring at different levels, is hard to be reduced to zero and the use of 

antimicrobial medicated feed should be avoided as much as possible to reduce selection pressure. 
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2. Introduction 

The transfer of traces of an active substance contained in a medicated feed (e.g. antimicrobials or anti-

parasites) to a non-medicated feed is referred to as “carry-over”. The carry-over of any unintended 

substance in feed can result in its “cross-contamination” (European Commission 2014a). The batches 

usually cross-contaminated are the ones obtained just after production of a medicated feed that 

rightfully contains the substance (Borras et al. 2011). Contamination may occur in one piece of 

equipment, or it may result from a combination of residues throughout the entire system of mixing, 

manipulation and storage operations at the feed mill. As a consequence, cross-contamination is not a 

risk concerning the feed production solely, since it can also occur during the transport and delivery of 

the feed and its storage and distribution at the farm. 

The occurrence and levels of cross-contamination can be affected by various factors including human 

error, production practices (e.g. under-filling of the mixer), handling procedures and properties of the 

compounds (e.g. adhesive strength, particle size, electrostatic properties) (McEvoy et al. 2002; Strauch 

& Freil 2006a, 2006b, 2008a, 2008b). For instance, antimicrobials in powder form make it more difficult 

to purge the equipment at the feed mill, the truck and the farm, between batches. Fast production 

lines, deficiencies in plant layout and worn equipment parts (especially lifting screws and elevators) 

may also cause residual quantities of medicated feed to be retained at various points along the 

production line (Vukmirovic et al. 2010; European Commission 2014a). 

The consequent consumption of cross-contaminated batches may lead to presence of residues in the 

animals fed (Segato et al. 2011), which can possibly be transferred to animal products (Leeman et al. 

2007). In Belgium 99.6% of antimicrobial premixes are produced for pigs (BelVet-SAC 2014). Smaller 

percentages of antimicrobial medicated feed are also administered to poultry and rabbits (e.g. 0.4% in 

Belgium (BelVet-SAC 2014)), depending on the country (European Commission 2010),. Zuidema et al. 

(2012) estimated that once a year 11% of piglets, 38% of pigs (<50kg) and 100% of lactating sows used 

to be exposed to cross-contaminated flushing batches in the Netherlands, before the voluntary 
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cessation of medicated feed production in 2011. These percentages represent a minimum estimation, 

since they only consider the cross-contamination occurring during manufacturing of the feed. 

The cross-contamination of supposedly non-medicated feed with residues of antimicrobial compounds 

causes an animal and public health concern associated with the potential for selection and 

dissemination of resistance in commensal bacteria (e.g. Enterobacteriaceae, Enterococcus spp) and 

potentially zoonotic bacteria (e.g. Campylobacter spp) (Berends et al. 2001; MARAN 2010; European 

Commission 2014a). The antimicrobial compounds mostly used for the preparation of medicated feed 

in the European Union (EU) belong to the group of sulphonamides, penicillins and tetracyclines, which 

are considered essential against specific infections, with no sufficient therapeutic alternatives and that 

are listed as veterinary critically important antimicrobial agents (VCIA) by the OIE (OIE 2014). 

Tetracyclines are further listed as highly important antimicrobials for human medicine by the WHO 

(WHO 2011). Besides resistance selection, cross-contamination may also cause the presence of 

antimicrobial residues in the meat. If present in the meat and following processing, cooking and 

digestion, antibacterial residues are in general expected to be at a too low concentration for posing 

adverse effects to human health (Baptista et al. 2010). However, few reported cases indicate that 

highly sensitive individuals might present allergic reactions to penicillin residues in meat (Dewdney et 

al. 1991). 

Taking these risks into consideration as well as the omissions of the current Council Directive 

(90/167/EEC) on manufacture, commercialization and use of medicated feed, the European 

Commission (EC) has recently proposed its revision. With the proposed Regulation, EU wide residue 

limits for veterinary medicines in ordinary feed will be established at a limit to avoid the development 

of antimicrobial resistance (European Commission 2014a, 2004b). Where no specific carry-over limits 

have been set for an antimicrobial active substance, 1% of the active substance is suggested as the 

maximum limit allowed in the last batch of medicated feed or of intermediate product produced 

before the production of non-target feed (European Commission 2014a). It is stated that the new 
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Regulation shall also apply to the transport of feed, with no further details provided, while no mention 

has been made of the cross-contamination occurring at the farm level. 

The need for modernization of medicated feed production and related practices (e.g. manufacture 

quality control, storage, transport) is further emphasized by the high sales of antimicrobial premixes 

in the EU (EMA 2014; JIACRA 2015). According to the most recent European Surveillance of Veterinary 

Antimicrobial Consumption report (EMA 2014), antimicrobial premixes were the biggest-selling 

antimicrobial veterinary medicinal product (VMP) for food-producing animals in the EU, accounting for 

35.5% of the overall sales (mg/PCU) in 2012. Yet, the situation varies substantially between countries. 

In Belgium for example, antimicrobial premixes represented 19.6% of the overall sales (mg/kg of 

biomass) of antimicrobial VMP in 2014, after a reduction of 8.7% had occurred since 2011 (BelVet-SAC 

2015).  

There is very limited to no quantitative information available in the literature on the estimated impact 

of the production, delivery and storage of antimicrobial medicated feed on cross-contamination. 

Therefore, and given the risks associated with antimicrobial residues in animal feed (Borras et al. 2011; 

European Commission 2014a), there is a need to quantitatively assess this impact. Aiming at this, the 

study examined all possible pathways of exposure of animals to feed which is cross-contaminated with 

traces of antimicrobials from previously produced, transported and stored medicated feed, in order to 

estimate the percentage of cross-contaminated feed produced per year. Based on the Belgian case 

and focusing on pig feed, the study attempted to build an approach applicable to a broader extent of 

cases (e.g. other countries, other species).  

3. Materials and methods 

3.1. Hazard identification 

Traces of antimicrobials may be incorporated into batches of non-medicated feed during their 

production, transport, unloading and/or storage at the farms, before being fed to animals. Therefore, 

these potentially cross-contaminated batches of non-medicated feed, which are produced, delivered 



95 
 

and/or stored directly after batches of medicated feed, were considered as the hazard in this study. 

The model attempted to estimate the percentage of this cross-contaminated feed in the form of 

batches, in the total feed produced in a country per year.  

3.2. Model description 

The potential carry-over of antimicrobial traces from the firstly produced medicated feed to the 

following produced non-medicated feed was assessed along the complete production chain from the 

feed mill over the transport truck, and the storage and distribution at the farm level (Figure 1). The 

model was therefore subdivided in three modules, one for each level (i.e. the feed mill, the transport 

truck and the farm) and five exposure pathways were considered: the pathway 1, referring to cross-

contamination occurring at the feed mill; pathways 2 and 3, referring to cross-contamination related 

to the transportation and unloading of the feed; and pathways 4 and 5, describing the potential cross-

contamination in the farm silo and during the distribution of the feed, respectively (Figure 1). 

We assumed that the antimicrobial medicated feed represents a hypothetical level of 40% of the 

medicated feed produced (60% antiparasitic) and 2% of the total animal feed produced in a country 

per year. Regarding the antimicrobials used as medicated feed premixes, it was assumed that a 50% 

of their total amount belongs to the sulfonamides, 25% to the penicillins, 15% to the tetracyclines and 

10% to other groups (e.g. macrolides, polymyxines). These numbers are roughly based on the Belgian 

reality in 2014 (BFA pers.comm.; BelVetSac 2014). The model provides a way to estimate the 

percentage of cross-contaminated feed in total and per module, for different levels of antimicrobial 

medicated feed produced in a country per year.  
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Figure 1. Flowchart of the model: (a) MF stands for medicated feed; (b) although usually three flushing batches 

are produced after MF, the model took into consideration only the first flushing batches, since they can contain 

considerably higher levels of antimicrobial residues than the second and the third. The grey blocks indicate the 

risky point of cross-contamination at each pathway separately. Of course, cross-contamination of a feed batch 

can occur at more than one points. 
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3.1. Cross-contamination at the feed mill 

Within a feed mill, different compound feeds can be manufactured in the same production line and 

pass through the main mixer. In these cases, the potential cross-contamination can occur at one or 

more different points throughout the production line, such as the main mixer, the surge bin, the bucket 

elevator, the holding bins, the pellet mill, the pellet cooler and the holding bins before loading onto 

the delivery trucks. In order to clean out the mixing and conveying systems, batches of plain feed 

(usually three) are produced directly after the production of medicated feed (Stolker et al. 2013). These 

so-called flushing batches, which may be cross-contaminated to a certain level, are then transported 

to farms, stored and fed to pigs (BFA 2013) (pathway 1).  

In this first module, the weight of cross-contaminated feed to which pigs could be exposed to in a year 

through pathway 1 (feed mill) was estimated using data published by Stolker et al. (2013), for a 2% 

level of antimicrobial medicated feed produced in a country per year (Equation 2). Stolker et al. (2013) 

have published data on the occurrence and the levels of antimicrobial carry-over in flushing batches. 

The data was retrieved from 21 feed mills visited, after the collection and analysis of samples from 140 

first-flushing feed batches and 29 second- and third- flushing batches. The model presented here took 

into account only the first flushing batches, since, according to the study, their cross-contamination 

was much more frequent and high in antimicrobial (AB) levels. The mean probability of cross-

contamination of a flushing batch at the feed mill (p1), assumed to equal that of a first flushing batch, 

was estimated as 0.86 (95% CI 0.73; 0.95), with the AB concentrations ranging from 0.1 to 154 mg/kg 

(Table 1).  

Assuming that one flushing batch is produced after each batch of medicated feed (MF), the number of 

cross-contaminated flushing batches (i.e non-MF batches) produced in a country i per year via pathway 

1 (NIi) was estimated as:  

NIi = RiskBin (Nai, p1), Equation (1) 



98 
 

where Nai is the number of flushing batches produced in a country i per year and p1 is the probability 

of cross-contamination of a flushing batch at the feed mill.  

The weight of cross-contaminated flushing batches (i.e. non-MF batches) produced in a country i per 

year (WIi) was estimated using the following formula: 

WIi= NIi * wfl, Equation (2) 

where and wfl is the weight of one flushing batch.  

Table 1. Detailed summary of the first module (pathway 1) of the exposure model: variables, probability 

calculation of the input parameters, equations and main sources. 

Process  Vari-
able 

Description Probability 
calculation 

Reference 

Feed mill: 
production 
of a 
flushing 
batcha (i.e. 
non-AB 
MFb batch) 
after the 
production 
of an AB 
MF batch  

p1 Probability of cross-contamination of a 
flushing batch at the feed mill 

̴beta d 

 
Stolker et al. 
2013 

 Weight of one flushing batch (tnc) ̴discrete e 

(0.5, 2, 4) 
BFA 
(pers.comm) 
 

 Weight of one batch of AB MF (tn) ̴discrete f 

(1, 4) 
BFA 
(pers.comm.) 

 Weight of the total feed produced in a country 
per year (tn) 

e.g. 6,500,000 
tn for BE g 

 

BFA 
(pers.comm.) 

 Level of AB MF produced in a country per year 
(%) 
  

e.g. 2% for BE BFA 
(pers.comm.) 

Nai Number of flushing batches produced in a 
country per year h 

 

  

NIi Number of cross-contaminated flushing 
batches produced in a country per year  

̴binomial i 

(Nai, p1) 
 

WIi Weight of cross-contaminated flushing 
batches produced in a country per year (tn) 

= NIi *   

 

Note: a. AB MF stands for antimicrobial medicated feed; b. the model considered only first flushing batches of feed produced; 

c. 1tn= 1,000 kg ; d. the beta distribution describes the uncertainty about p1, given a number of first flushing batches being 

tested with a number of them found cross-contaminated;  e. the discrete distribution describes wfl that can take one of 



99 
 

several explicit discrete values (most likely the value of 2tn); f. the discrete distribution describes wmf that can take one of 

several explicit discrete values (most likely the value of 4tn);  g. BE stands for Belgium; h. assumed to equal the number of 

MF batches produced in a country per year; i. the binomial distribution shows the number of cross-contaminated flushing 

batches produced (NIi) where there is a probability p1 of cross-contamination of a flushing batch. 

3.3. Cross-contamination during the transport and unloading of the feed 

It is generally accepted that this type of carry-over only concerns the first batch transported 

immediately after medicated feed and may occur following two distinguished pathways (Putier 

(Tecaliman) pers. comm.). Cross-contamination may take place in the bin of the delivery truck during 

successive loading of feed into the same bin (intra-bin contamination) (pathway 2). It may also take 

place in the transfer system, when traces of previously transported medicated feed remain in the 

conveyor screws and cross-contaminate the non-medicated feed (non-MF) subsequently delivered to 

a farm (inter-bin contamination) (pathway 3) (Putier 2010).  

In this second module, data described by Putier (2010) were used. In the study, batches of non-

medicated feed transported right after the transport of medicated feed were tested for antimicrobial 

residues under worst-case test conditions (e.g. longest transfer circuit in the truck, other bins empty 

to reduce effectiveness of the air blow cleaning systems). Samples were taken from nine different 

types of delivery trucks and showed that the levels of carry-over were lower in shorter and modern 

trucks, compared to longer and older ones. It is suggested that the intra-bin contamination (pathway 

2) concerns the first 25-50 kg of non-medicated feed placed in the truck (Putier (Tecaliman) pers. 

comm.). It is also claimed that it is usually 20-30 kg of feed (Putier 2010)) that remain in the conveyor 

screws of the trucks and persist during the subsequent delivery posing a risk for potential inter-bin 

contamination (pathway 3).  

According to Putier’ s (2010) experiment, traces of antimicrobials were detected in almost all trucks 

tested. The mean probability of cross-contamination of a non-MF batch was estimated as p2= 0.83 

(95% CI 0.25 ; 0.99) via pathway 2, and p3= 0.91 (95% CI 0.4 ; 1) via pathway 3. In terms of antimicrobial 

concentrations, inter-bin contamination (i.e. between bins) appears to be higher (levels of 
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contaminations ranged between 0.04% and 1.41%) than intra-bin contamination (i.e. inside the bins) 

(levels of contaminations ranged between 0.00% and 0.44%).  

For this model exercise it was hypothesized that after each batch of medicated feed a batch of non-

medicated feed is transported via the same truck. Therefore, the number of cross-contaminated non-

MF batches produced in a country i per year via pathway 2 (N2i) was calculated as: 

N2i= RiskBin (Nbi, p2), Equation (3) 

where Nbi is the number of non-MF batches produced and delivered directly after a MF batch in a 

country i per year, assumed to equal to the number of flushing batches produced per year (Nai); p2 is 

the probability of cross-contamination of a non-MF batch via pathway 2 (Table 2).  

The number of cross-contaminated non-MF batches produced in a country i per year via pathway 3 

(N3i) was estimated as: 

N3i= RiskBin (Nbi, p3), Equation (4) 

where Nbi is the number of non-MF batches produced and unloaded directly after a MF batch in a 

country i per year, assumed to equal to the number of flushing batches produced per year (Nai); p3 is 

the probability of cross-contamination of a non-MF batch via pathway 3 (Table 2).  

The weight of cross-contaminated feed that pigs could be exposed to in a year via pathways 2 (W2i ) 

and 3 (W3i ) was calculated based on the following formulas (Equations 5, 6): 

W2i = N2i * wn-mf, Equation (5) 

W3i = N3i * wn-mf, Equation (6) 

where wn-mf is the weight of a non-MF batch, assumed to equal the weight of a MF batch (wmf) (Table 

2). 

Given that pathways 2 and 3 may occur simultaneously, the following assumed probabilities of 

occurrence were considered in order to estimate the weight of cross-contaminated batches via module 
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2 (WIIi) as a whole: the probability of only intra-bin cross-contamination occurring (pI), where pI = 0.30; 

the probability of only inter-bin cross-contamination occurring (pII), where pII = 0.30; and the 

probability of both intra- and inter-bin cross-contamination occurring simultaneously (pIII), where pIII = 

0.40. Consequently, WIIi was calculated as follows: 

WIIi = (W2i * pI) + (W3i * pII) + (W(2,3)i * pIII), Equation (7) 

The weight of cross-contaminated batches of non-MF produced in a country i per year when intra- and 

inter- bin contaminations occur simultaneously (W(2,3)i) was estimated as: 

W(2,3)i= RiskBin (Nbi, p2* p3│2) * wn-mf, Equation (8) 

where p3│2 is the conditional probability of cross-contamination of a batch of n-AB MF due to pathway 

3 given that pathway 2 is occurring (Table 2).  

Table 2. Detailed summary of the second module (pathways 2 and 3) of the exposure model: variables, 

probability calculation of the input parameters, equations and main sources. 

Process Variable Description Probability 
calculation 

Reference 

Transport 
truck: 
delivery 
of 
batches 
of n-AB 
MFa) 
directly 
after the 
delivery 
of AB MF 
in the 
same 
truck 

p2 Probability of cross-contamination of a batch of n-AB 
MF, due to feed remaining in the bin of the truck 

̴beta Putier 
2010 

p3 

 
 

Probability of cross-contamination of a batch of n-AB 
MF, due to feed remaining in the conveyor screws of 
the truck 

̴beta 
 

Putier 
2010 
 

p3│2 Probability of cross-contamination of a batch of n-AB 
MF due to pathway 3 given that pathway 2 is 
occurring 

̴beta 
 
 

Assumed 

wn-mf 
b Weight of a batch of n-AB MF (tn) 

 
= wmf  Table 1 

Nbi 
 Number of batches of n-AB MF delivered directly after 

a batch of AB MF 
 

= Nai Table 1 

N2i
 Number of intra-bin cross-contaminated batches of n-

AB MF produced in a country per year 
 

̴binomial  
(Nbi, p2) 
 
  

 

N3i Number of inter-bin cross-contaminated batches of n-
AB MF produced in a country per year 

̴binomial (Nbi, 
p3)  
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N(2,3)i Number of cross-contaminated batches of n-AB MF 
produced in a country per year, when pathways 2 and 
3 occur simultaneously 
 

̴binomial  
(Nbi, p2* p3│2) 

 

W2i Weight of intra-bin cross-contaminated batches of n-
AB MF produced in a country per year due to feed 
delivery (pathway 2)(tn) 
 

= N2i * wn-mf  

W3i Weight of inter-bin cross-contaminated batches of n-
AB MF produced in BE per year due to feed delivery 
(pathway 3)(tn) 
 

= N3i * wn-mf  

W(2,3)i Weight of cross-contaminated batches of n-AB MF 
produced in a country per year due to feed delivery, 
when intra- and inter- bin contamination occur 
simultaneously (tn) 
 

= N(2,3)i * wn-mf  

WIIi 
 

Total weight of cross-contaminated batches of n-AB 
MF produced in BE per year due to feed delivery 
(module 2)(tn) 
 

= (W2i * 0.3)+ 
+(W3i * 0.3)+ 
+(W(2,3)i * 0.4)d 
 

 

 

Note: a. n-AB MF stands for non-antimicrobial medicated feed; b. assumed to equal the weight of a MF batch 

(wmf); c. 1tn= 1,000 kg; d. assumed pI= 0.30 for only intra-bin contamination occurring, pII= 0.30 for only inter-bin 

contamination occurring, pIII= 0.40 for both types of contamination occurring simultaneously. 

3.4. Cross-contamination at the farm 

Cross-contamination is also possible at the farm level, where ‘carry-over’ of antimicrobial traces can 

occur at the farm silo, when non-medicated feed is stored subsequently to medicated feed (pathway 

4). Cross-contamination may also occur during the distribution of the feed in the farm (pathway 5). 

Since no data were found on the carry-over potentially occurring at the storage facilities or means of 

distribution used for feed at the farm, it was assumed to approach pathway 4 (storage at the farm silo) 

likewise to pathway 2, and pathway 5 (in-farm distribution of feed) to pathway 3.  

Similarly to module 2, it was assumed for the purposes of this model that a batch of non-medicated 

feed is stored and in-farm distributed after each batch of medicated feed in the same silo and using 
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the same equipment, respectively. The number of cross-contaminated non-MF batches produced in a 

country i per year via pathway 4 (N4i) was calculated as: 

N4i=  RiskBin (Nci, p4), Equation (9) 

where Nci is the number of non-MF batches produced and stored at the farms after a batch of MF in a 

country i per year, assumed to equal Nai; p4 is the probability of cross-contamination of a non-MF batch 

via pathway 4 (Table 3). 

The number of cross-contaminated non-MF batches produced in a country i per year via pathway 5 

(N5i) can be estimated as follows: 

N5i= RiskBin (Nci, p5), Equation (10) 

where Nci is the number of non-MF batches produced and distributed within the herd after a batch of 

MF in a country i per year, assumed to equal Nai ; p5 is the probability of cross-contamination of a non-

MF batch via pathway 5 (Table 3).  

The weight of cross-contaminated feed that pigs could be exposed to in a year via pathways 4 (W4i) 

and 5 (W5i) was calculated based on the following formulas (Equations 11, 12): 

W4i = N4i * wn-mf, Equation  (11) 

W5i = N5i * wn-mf, Equation ( 12) 

where wn-mf is the weight of a non-MF batch, assumed to equal the weight of a MF batch (wmf) (Table 

3). 

At the farm level (module 3 as a whole), it is logical to expect that, in the majority of cases, the cross-

contamination potentially occurring during the distribution of feed concerns the same batches 

previously stored. Since this is not always the case though – as the pathways concern different 

equipment- the following assumed probabilities of occurrence were considered: the probability of 

cross-contamination occurring only during storage at the farm silo (pa), where pa= 0.25; the probability 
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of cross-contamination occurring only during the feed distribution within the farm (pb), where pb = 

0.25; and the probability of both types of cross-contamination occurring simultaneously (pc), where 

pc= 0.5. Consequently, WIIii was calculated as follows: 

WIIIi = (W4i * pa) + (W5i * pb) + (W(4,5)i * pc), Equation (13) 

The weight of cross-contaminated batches of non-MF produced in a country i per year when both types 

of cross-contamination at the farm level occur simultaneously (W(4,5)i) was estimated as: 

W(4,5)i= RiskBin (Nci, p4* p5│4  ) * wn-mf, Equation (14) 

where p5│4  is the conditional probability of cross-contamination of a batch of n-AB MF due to pathway 

5 given that pathway 4 is occurring (Table 3).  

Table 3. Detailed summary of the third module (pathways 4 and 5) of the exposure model: variables, probability 

calculation of the input parameters, equations and main sources. 

Process Variable Description Probability 
calculation 

Reference                   

Farm: 
storage  
and in-
farm 
distributi
on of 
batches 
of n-AB 
MFa) 
directly 
after the 
delivery 
of AB MF, 
in the 
same silo 
and using 
the same 
equip-
ment  

p4 
b Probability of cross-contamination of a batch of n-AB 

MF, due to its storage in the farm silo directly after a 
AB MF batch 

̴beta Table 2 

p5
 b Probability of cross-contamination of a batch of n-AB 

MF, due to its in-farm distribution directly after a AB 
MF batch 
 

̴beta Table 2 

p5│4 

 
Probability of cross-contamination of a batch of n-AB 
MF due to pathway 5 given that pathway 4 is 
occurring 
 

̴beta Assumed 

wn-mf 
 Weight of a batch of n-MF (tnc) 

 

= wmf  Table 1 

Nci 
 Number of batches of n-AB MF stored at the farm, 

and later distributed, directly after a batch of AB MF 
 

= Nai Table 1 

N4i Number of cross-contaminated batches of n-AB MF 
produced in a country per year due to storage in the 
farm silo 
 

̴binomial  
(Nci, p4) 
  

 

N5i Number of cross-contaminated batches of n-AB MF 
produced in a country per year due to their in-farm 
distribution 

̴binomial  
(Nci, p5) 
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N(4,5)i Number of cross-contaminated batches of n-AB MF 
produced in a country per year, when pathways 4 and 
5 occur simultaneously 
 

̴binomial  
(Nci, p4* p5│4) 

 

W4i Weight of cross-contaminated batches of n-AB MF 
produced in a country per year due to pathway 4 (tn) 
 

= N4i * wn-mf  

W5i Weight of inter-bin cross-contaminated batches of n-
AB MF produced in BE per year due to pathway 5 (tn) 
 

= N5i * wn-mf  

W(4,5)i Weight of cross-contaminated batches of n-AB MF 
produced in a country per year at the farm level, when 
pathways 4 and 5 occur simultaneously (tn) 
 

= N(4,5)i * wn-mf  

WIIIi Total weight of cross-contaminated batches of n-AB 
MF produced in BE per year at the farm level (module 
3) (tn) 
 

= (W4i * 0.25)+ 
+(W5i * 0.25)+ 
+(W(4,5)i * 0.5)d 

 

 

Note: a. n-AB MF= non-antimicrobial medicated feed; b. in the absence of data concerning the cross-

contamination occurring at the farm, it was assumed that p4 = p2 and p5= p3 (Table 2); c. 1tn= 1,000 kg; d. assumed 

pa= 0.25 of only pathway 4 occurring, pb= 0.25 for pathway 5 occurring, pc= 0.5 for both types of contamination 

occurring simultaneously.  

3.5. Model implementation 

The model was built using @Risk® software (Palisade Corporation®) and was run at 10,000 iterations 

per simulation. The weight of cross-contaminated batches of feed that pigs are exposed to in a year in 

a country i (WTi), under the described circumstances, was calculated in total, based on the estimations 

for each module: 

WTi = WIi + WIIi + WIIIi, Equation (15) 

Where WIi the weight of cross-contaminated batches produced in a country i per year at the feed mill 

level, WIIi the weight of cross-contaminated batches produced in a country i per year at the truck level 

and WIIIi the weight of cross-contaminated batches produced in a country i per year at the farm level. 

Based on our initial assumptions, 50% * WTi of the total feed produced in a country is expected to 

contain residues of sulfonamides, 25% * WTi penicillins and 15% * WTi tetracyclines. 
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Subsequently, the percentage of cross-contaminated feed produced in a country i per year was 

calculated as follows: 

C1i = WTi / Ti *100, Equation (16) 

Where Ti is the weight of the total feed produced in a country per year.    

The same formula was also used to estimate the percentage of cross-contaminated feed due to each 

module separately, by replacing WTi with WIi, WIIIi or WIIIi.  

The relative percentages of cross-contaminated feed attributed to each module y were also estimated 

using the following formula: 

Cyi = Wyi / WTi *100, Equation (17) 

Along with a ‘worst-case’ scenario, comprising the occurrence of all possible pathways, two ‘what-if’ 

scenarios were considered. They were generated based on the fact that in some cases (e.g. in Belgium) 

the antimicrobial premixes used for the production of medicated feed are no longer added and mixed 

in the main mixer, but rather in the end-of-line mixer or a mobile mixer fixed on the truck (i.e. fine 

dosing system (FDS)) (BFA 2013). 

The first scenario considered the occurrence of cross-contamination through the transport-related and 

farm storage- and distribution- related pathways, when medicated feed is only produced in a dedicated 

end-of-line mixer, and by doing so cross-contamination at the feed mill is avoided. In this case, the 

following formula was used to estimate the percentage of cross-contamination of batches of feed in 

the total weight of feed produced per year (C2i): 

C2i= (WIIi +WIIIi)/Ti *100, Equation (18) 

The second scenario explored the effect of using FDS trucks on cross-contamination levels. Using the 

FDS trucks, the cross-contamination at the feed mill (pathway 1) and inside the bin of the truck 
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(pathway 2) is averted and the following formula could be then used to estimate the percentage of 

cross-contamination of batches of feed in the total weight of feed produced per year (C3): 

C3i = [(W3i * pII)+ WIIIi]/Ti *100, Equation (19) 

where W3i is the weight of cross-contaminated batches produced in a country i per year via pathway 3 

(inter-bin cross-contamination) and pII  is the probability of only pathway 3 occurring (pII = 0.30). The 

aforementioned variables and equations are summarized in Table 4. 

Table 4. Detailed summary of the variables and equations considered, by taking into account all modules and 

different scenarios. 

Variable Description Formulaa 

WTi Total weight of cross-contaminated batches of non-
medicated feed produced in a country i per year (tnb) 
 

= WIi + WIIi + WIIIi   

WABi  Total weight of batches of non-medicated feed produced 
in a country i  per year, cross-contaminated with: 
 

 
  

Sulfonamides (tn)  
 
Penicillins (tn) 
 
Tetracyclines (tn) 
 

= 50% * WTi 

 

= 25% * WTi 

 

= 15% * WTi 

C1i Percentage of cross-contaminated feed in the total of feed 
produced in a country i per year c 

 

= (WTi/Ti)*100 d 

Cy Percentage of cross-contaminated feed in the total of 
cross-contaminated feed produced in a country i per year, 
per module y 
 

= (Wy/ WTi)*100 
 

C2i Percentage of cross-contaminated feed in the total of feed 
produced in a country i per year for Scenario 2 (end-of-line 
mixer) 
 

= (WIIi +WIIIi)/Ti *100   

C3i Percentage of cross-contaminated feed in the total of feed 
produced in a country i per year for Scenario 3 (FDS truck) 

= [(W3i * pII)+ WIIIi]/Ti *100 

 

Note: a. For details on the variables of the formulas see previous tables; b. 1tn= 1,000 kg; c. feed in the form of 

batches; d. the same formula can be used to estimate this percentage per module, by replacing WTi with the 

respective weight. 
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4. Results 

Figure 2 gives an overview of the estimated percentage s of cross-contaminated feed produced in a 

country i per year, in total and per module, against the total feed and the total cross-contaminated 

feed produced. This model estimated that, given our assumptions, when xi=2% of the feed produced 

in a country per year is antimicrobial medicated feed, C1i= 5.5% (95%CI 3.4% ; 11.4%) of the total feed 

produced in a year (T1i) is cross-contaminated with different levels of antimicrobials due to practices 

related to medicated feed, with a high uncertainty. In detail, 1.80% (95%CI 0.2%; 7.7%) of T1i in such a 

country would be due to module 1, 1.83% (95% CI 1.3%; 2.0%) due to module 2 and 1.84% (95% CI1.2%; 

2.0%) due to module 3.  

The percentage of cross-contaminated feed produced in a country per year when xi=2% was found to 

have a mean value of C2i= 3.7% (95% CI2.9%; 4.0%) of T1i when medicated feed is produced in end-of-

line mixers (scenario 1) and C3i= 2.4% (95% CI 1.6%; 2.7%) of T1i when FDS trucks are used (scenario 2). 

These figures showed a 29.6% reduction in percentages of cross-contamination due to scenario 1 and 

a 53.9% reduction due to scenario 2, from the baseline scenario considering all pathways. 

In order to indicatively provide figures on the total weight of cross-contaminated batches in total (WTi) 

and per module (WIi, WIIi, WIIIi), we considered T1i= 6,500,000 tons, which equals the total feed 

produced in a year in Belgium. The distributions of WTi, WIi, WIii and WIIIi along with their mean values 

are shown in figure 3. 
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Figure 2. Percentage (%) of cross-contaminated feed in the total feed produced (Ti) produced in a country i per 

year and in the total of cross-contaminated feed produced in a country i per year, per module (Cy). Note: The 

mean values are rounded for presentation purposes. 
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Figure 3. Distributions of the weight of cross-contaminated feed batches produced in a country i per year via module 1 (feed 

mill) (WIi), module 2 (WIIi), module 3 (WIIIi) and in total (WTi) (tons). Note: The calculations were performed using Belgian data 

for a level of antimicrobial medicated feed produced xi= 2% and total feed produced in a year Ti= 6,500,000 tn.  

5. Discussion 

In spite of the many unknowns that did not allow the risk estimation in a more detailed way than the 

worst-case approach, the model showed a real risk of cross-contamination of feed due to production, 

distribution and storage of medicated feed. The risk, being the result of factors occurring at different 
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levels, is hard to be fully excluded and thus, the use of medicated feed should be avoided as much as 

possible. The model can be used to provide estimations for various situations (i.e. for different levels 

of AB MF, for different policies applied) and should then be informed with data after carefully 

considering the specific situation. It should be emphasized though that a high degree of uncertainty is 

included in the model’s estimations and its results should be interpreted with caution. The main reason 

for the high level of uncertainty is the very limited amount of quantitative data available, since only a 

minimal number of published studies investigated the issue of cross-contamination of feed with 

antimicrobials. The studies by Stolker et al. (2013) and Putier (2010) for Tecaliman (i.e. Technical centre 

by and at the service of the French Feed Industry) were the only sources of data for the respective 

subjects, while a total absence of publications was observed on the carry-over occurring at the farms.  

The model was therefore built upon a number of assumptions. The assumptions on the level of AB MF 

produced (i.e. 2% represents the situation in Belgium) and the levels of antimicrobials used as premixes 

were driven by data provided by the Belgian Compound Feed Industry Association (BFA, pers. comm.) 

and the European Commission (European Commission 2010). The latter assumption, concerning 

antimicrobials as premixes, does not represent all countries. It is the case for Belgium for instance, 

where approximately 50% of the antimicrobial premixes used contain sulfonamides, but at EU level 

the most-selling premixes contain tetracyclines. Focusing on the feed mill pathway, only the first 

flushing batches were considered, as they contain considerably higher levels of antimicrobial residues 

than the second and third. Due to lack of detailed data on the feed delivery rates, it was hypothesized 

that each time a batch of medicated feed is delivered to a farm, a batch of non-medicated feed is 

delivered right after by the same truck. Therefore, the weight of cross-contaminated batches through 

the delivery-related pathways might be slightly overestimated. The major assumption of the model 

concerns the farm-related pathways, which were likewise of the delivery-related ones (i.e. considering 

the same probabilities of cross-contamination), given the absence of published research. As for the 

probabilities of occurrence assumed to estimate the total weight of cross-contaminated batches of n-

AB MF produced in Belgium per year due to feed delivery (WIIi)(module 2) and at the farm level (module 
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3)(WIIIi), they were considered to avoid an overestimation of the number of cross-contaminated 

batches, since at the truck and farm levels the cross-contamination via the different pathways concerns 

in most cases the same batches of feed. The probability of concurrent occurrence of pathways was 

assumed to be higher at the truck level, compared to the farm level, as in the first case, the possible 

contamination is related to one piece of equipment (i.e. the truck as a whole). 

Another important piece of information missing, in association with the link to resistance, concerned 

the destination of feed. Thus it was not possible at this stage to model the species and age categories 

exposed to the cross-contaminated feed. Regarding feed delivery, there is no regulation in place 

defining the destination of batches transported right after medicated feed. Consequently, these 

batches can reach finisher pigs for instance. The lack of detailed data on the antimicrobial (AB) 

concentrations detected did not allow us to estimate the weight of cross-contaminated batches for 

different concentration levels (e.g. AB concentration >1%; >2.5%), and as a consequence we combined 

all cases with an assumed level of cross-contamination above zero. If more data become available , as 

part of the iterative nature of risk assessment, the respective variables of the model could be re-

estimated and the result could be refined. 

The model also demonstrates that a considerable risk of cross-contamination can be avoided when 

medicated feed is not produced in the main mixing line of feed mills, as it is the case for Belgium. An 

even higher reduction of risk can be achieved with the use of FDS trucks, a so far limited use due to 

their cost. Nevertheless, even in cases where the aforementioned scenarios would be actually 

implemented, the risk would not be completely removed given that sources of cross-contamination 

also still exist at the truck and farm levels and hence should not be overlooked.  

All in all, carry-over of antimicrobials even at detection limit seems unavoidable and a rather 

challenging concept with regard to the technical and economic possibilities the feed industry has 

today. Thus, compliance with the rules of good manufacturing practice (GMP) is of outmost 

importance to control the phenomenon. At the feed mill, the carry-over can be reduced in different 
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ways targeting, for instance, the practices (i.e. flushing after medicated feed production) (Strauch & 

Freil 2008), the process (i.e. reducing the process length), the feed (i.e. sequencing medicated feed 

production) and/or the active product used (i.e. choosing non dusty products). To minimize the risk 

during feed delivery, the use of new trucks, the use of back bins to reduce the length of the circuit and 

mainly the careful purging after delivery are crucial preventive measures. Raising the awareness of the 

farmers and their personnel on the matter and the importance of purging is also essential to avoid any 

cross-contamination occurring at the farm. The use of a separate silo for medicated feed would be 

optimal. Yet, the ultimate and most efficacious way to avoid cross-contamination is through the 

reduction of the production and use of medicated feed. The recent EC proposal (2014) on medicated 

feed provides a prohibition on the preventive use of antimicrobials included in medicated feed, which 

is the main reason for group treatments. Therefore, although medicated feed has the main advantage 

of ensuring higher homogeneity and stability of the antimicrobial in the feed, alternative solutions (i.e. 

water medication and top dressing/mixing of ready-to-use veterinary medicines into feed) seem to 

gain ground (European Commission 2010).   

Topics for further research should include the levels of cross-contamination occurring at the farm level, 

the potential consequences of antimicrobial carry-over in animals, as well as the possible risks of the 

alternatives of medicated feed. 
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CHAPTER 6  

Probabilistic risk model to assess the potential for resistance 

selection following the use of antimicrobial medicated feed in pigs 
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1. Abstract  

The cross-contamination of non-medicated feed with residues of antimicrobials (AM) causes a public 

and animal health concern associated with the potential for selection and dissemination of resistance. 

To analyze the associated risks, a probabilistic model was built using @Risk® (Palisade Corporation®) 

to show the potential extent of the effect of cross-contaminated pig feed on resistance selection. The 

results of the model include estimations of the proportion of pigs per production stage with residues 

of doxycycline, chlortetracycline, sulfadiazine and trimethoprim in their intestinal contents from 

caecum and colon, as a result of exposure to cross-contaminated feed with different carry-over levels, 

in Belgium. By using a semi-quantitative approach, these estimations were combined with 

experimental data on AM concentrations associated with potential for resistance selection pressure. 

Based on this model it is estimated that 7.76% (min=1.67; max=36.94) of sows, 4.23% (min=1.01; 

max=18.78) of piglets and 2.8% (min=0.51; max=14.9) of fatteners in Belgium have residues of 

doxycycline in their intestinal tract due to consumption of feed with at least 1% carry-over. These 

values were estimated to be almost triple for sulfadiazine, but substantially lower for chlortetracycline 

and trimethoprim. Doxycycline concentrations as low as 1 mg/L (corresponding to consumed feed with 

at least 1% carry-over) can select for resistant porcine commensal E. coli in vitro and in vivo. 

Conclusions on this risk could not be drawn for the other AM at this stage, due to lack of literature data 

on concentrations associated with resistance development. However, since the possibility of resistance 

mechanisms (e.g. co-selection) occurring cannot be excluded, the results of this model highlight that 

the use of AM medicated feed should be minimized where possible. In case of medicated feed 

production, good practices should be thoroughly followed at all levels of production, distribution, 

storage and administration, with a special focus on the feed distributed to piglets and sows. 
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2. Introduction 

The use of antimicrobial (AM) medicated feed (MF) can lead to cross-contamination of non-medicated 

feed produced, transported and in-farm distributed directly after MF (Putier et al. 2010; Stolker et al. 

2012). A previously developed exposure model (Filippitzi et al. 2016) estimated that, in a country, 

where MF represents 2% of the total feed produced in a year, a non-negligible 5.5% (95% CI = 3.4%; 

11.4%) of the total feed produced in a year can contain residues of antimicrobials due to practices 

related to the production of medicated pig feed. This level corresponds, in the case of Belgium, to a 

mean weight of 356.541 tons of batches of pig feed cross-contaminated with various levels of 

antimicrobials. In the case of consumption of this cross-contaminated feed by pigs, their intestinal 

microbiota is exposed to low, sub-clinical concentration levels of antimicrobials (e.g. tetracycline, 

tylosin, sulfamethazine), which can induce selection of resistant bacteria as demonstrated in vitro 

(Gullberg et al. 2011, 2014) and in vivo (Brewer et al. 2013).  

The levels of AM contained in the cross-contaminated batches of feed vary considerably (Zuidema et 

al. 2010; Putier et al. 2010; Stolker et al. 2012). According to the recent proposal for a European 

Commission Regulation on medicated feed, 1% of an active AM compound of the last produced batch 

of MF  is suggested as the maximum carry-over limit allowed in the next batch produced (EC, 2014). 

So far, the Member States have followed different approaches. Some have no official values for 

tolerated carry-over, while others apply the zero tolerance principle (BFA 2013; EC 2016).  

With a view to determine the intestinal fecal concentrations of chlortetracycline (CTC), doxycycline 

(DOX) and sulfadiazine-trimethoprim (SDZ-TRIM) after administration of cross-contaminated feed to 

pigs, Peeters et al. (2016) set up an in vivo experiment, showing that the mean concentrations of 

10mg/L CTC and 4 mg/L DOX reached in the feces were higher than concentrations that have been 

shown to cause resistance selection. Specifically for DOX, a 3% carry-over level in the feed resulted in 

porcine fecal concentrations of approximately 4 mg/L. Two studies that followed from the same 

research group (Peeters et al. 2017, 2018) aimed to determine the effect of these residual DOX 
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concentrations. The conclusion was that DOX intestinal concentrations of 1 and 4 mg/L, caused by feed 

cross-contamination levels of approximately 1% and 3% respectively, can select for resistant porcine 

commensal Escherichia coli (E. coli) in vitro as well as in vivo. Even much lower concentrations of 

tetracycline (i.e. 15 ng/ml and 45 ng/ml) have been shown to select for resistance in vitro, based on 

competition experiments between resistant and susceptible strains (Gullberg et al. 2011, 2014). But 

also in vivo, Brewer et al. (2013) found that concentrations of tetracycline and sulfamethazine as low 

as 1 μg/mL in intestinal contents increased the frequency of transfer of resistance genes in pigs. This 

suggests that unintended low antimicrobial concentrations can possibly exert selective pressure on 

resistant bacteria present and may co-select for other resistance genes carried by these bacteria, and 

consequently poses a serious concern for animal and public health and calls for targeted actions. 

Therefore, the first objective of this study was to build a probabilistic model that could be used to 

compare the extent of the exposure of piglets, sows and fattening pigs to cross-contaminated feed 

considering different antimicrobials and different carry-over levels (e.g. 1%, 3%). The second objective 

was to combine these with estimations on potential for resistance selection pressure, depending on 

the substance used. For illustration purposes, doxycycline was the substance used as example. The 

model was parametrized using data available in the literature and national data on feed production 

and antimicrobial use in Belgium. 

3. Materials and Methods 

3.1. Hazard identification 

Traces of antimicrobials may be incorporated into batches of non-medicated feed during their 

production, transport, unloading and/or storage and distribution at the farms. These cross-

contaminated batches of non-medicated feed are fed to pigs. The consumption of feed containing 

certain carry-over levels of some antimicrobials has been shown to result in residual antimicrobial 

concentrations in the intestinal content from caecum and colon and feces of pigs (Peeters et al. 2016), 

which can potentially select for resistance in vitro (Gullberg et al. 2011, 2014; Peeters et al. 2018) and 
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in vivo (Brewer et al. 2013; Peeters et al. 2017). Therefore, as the hazard in this study, were considered 

the antimicrobial residues contained in intestinal content of pigs which have consumed feed cross-

contaminated due to practices related to the use of medicated feed. 

3.2. Model design 

Figure 1 shows the model framework designed in order to estimate the number and proportion of pigs 

per production stage, which consume cross-contaminated feed and end up containing antimicrobial 

residues in their intestinal contents, in a country. If the concentration of these residues is equal or 

higher than concentrations associated with resistance selection pressure, the model concludes that 

there is potential for resistance selection. Tables 1 and 2 describe the different variables of the model 

and the respective distributions, formulas or parameters used to estimate them. These tables 

represent a scenario that considers the presence of an antimicrobial in cross-contaminated batches in 

any possible concentration higher than zero (AM > 0; scenario A). The scenarios of 1% (scenario B) and 

3% (scenario C) AM carry-over levels were also considered (Tables 3 and 4, respectively), as they lead 

to different concentration of residues in pigs and, therefore, to different potentials for resistance 

selection pressure. 
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Figure 1. Model framework designed to estimate the number of pigs per production stage, which consume cross-contaminated feed and end up containing antimicrobial residues in their 

intestinal contents, in a country, and to whether there is potential for resistance selection. Notes: 1 For piglets, sows and fattening pigs;  2 if the concentration of these residues is equal or higher 

than minimum known concentrations associated with resistance selection pressure, the model concludes that there is potential for resistance selection (see Table 1).  
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Number of pigs, per production stage, exposed to cross-contaminated feed, in a country (Ni) 

The number of pigs, per production stage, exposed to cross-contaminated feed, in a country (Ni) was 

estimated using the following equation (1): 

N(i) = WT’(i) / b(i) , (1) 

where WT’(i) is the total weight of cross-contaminated pig feed produced in a country i per year, 

reaching the pigs of different production stages, and b(i)  is the intake of cross-contaminated feed per 

pig during a production stage i (Table 1). 

To estimate WT’(i), the equation (2) that follows was used: 

WT’(i) = (WT* Pa(i))/ y, (2) 

where WT is the total weight of cross-contaminated pig feed produced in a country per year, Pa(i) is the 

probability of the cross-contaminated feed WT being administered to pigs of certain production stage 

i (i.e. piglets until 20kg, sows, fattening pigs) (Table 2) and y is the number of production rounds per 

production stage in a random pig farm in a country, per year. 

To estimate the intake of cross-contaminated feed per pig during a certain production stage (b(i)), the 

following equation was used: 

b(i) = bd*da*n = (wb*n) / nb , (3) 

where bd refers to the daily feed intake of a pig at different production stages, da refers to the days of 

administration of a cross-contaminated feed batch, per production stage and equals da = wb / (bd * nb), 

n is the number of deliveries of cross-contaminated feed batches to a random farm, per production 

stage, wb is the weight of a cross-contaminated feed batch and nb is the number of pigs in a batch, per 

production stage in a farm, in a country.  

Table 2 presents in detail the estimation of Pa(i)  (i.e. the probability of the cross-contaminated feed WT 

being administered to pigs of certain production stage i), which is based on the equation: 

Pa(i) = WT(i) / WT , (4) 
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where WT(i) is the total weight of cross-contaminated pig feed administered to pigs of a certain 

production stage i, per year and WT is the total weight of cross-contaminated pig feed produced in a 

country per year. The total weight of cross-contaminated pig feed administered to pigs of a certain 

production stage i (WT(i)) was calculated as: 

WT(i) = y*n* w(b)*k, (5) 

with y as the number of production rounds in a random pig farm in a country, per year, n as the number 

of deliveries of cross-contaminated feed batches to a random farm, per production stage, w(b) as the 

weight of a cross-contaminated feed batch and k as the number of farms with pigs of certain 

production stages in a country. The latter variable k was estimated based on the level of each pig farm 

production type in a country (e.g. percentage of single site farrow-to-finish farms, which have piglets, 

sows and fattening pigs; percentage of fattening pig farms, which grow only fattening pigs; etc).  

For the parametrization of this model regarding WT , we used the estimations of a previously developed 

risk model (Filippitzi et al. 2016), which concerned a country where antimicrobial medicated feed 

production represents 2% of the total feed produced per year. The results of this model were based 

on available data regarding the feed production in Belgium. This is also the case for the current model, 

which is parametrized based on: available, published (i.e. weight of total and medicated feed produced 

in Belgium, averages suggested by BFA (e.g. BFA, 2014) and unpublished (i.e. weight of a medicated 

and non-medicated feed batch) data from the Belgian Feed Association (BFA); available data from two 

on-going research projects on Belgian pig farms focusing on the distribution of pig production (i.e. data 

on number of production rounds per production stage, number of pigs per production stage) and on 

the use of antimicrobial treatments of pigs via feed (i.e. frequency of feed deliveries, method of oral 

administration of antimicrobials); and expert opinion (three researchers with expertise in porcine 

health management and veterinary epidemiology and two swine practitioners, based in Belgium). 

Probability of residues of an antimicrobial used for pig medicated feed production, being found in 

intestinal contents of pigs exposed to cross-contaminated feed (PT) 
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With a view to estimate the probability of residues of an antimicrobial (AM) used, to be found in 

intestinal contents of pigs exposed to cross-contaminated feed (PT), the following mathematical 

expression was employed:  

PT = P * Puse, (6) 

where P is the probability of residues of an AM being found in intestinal contents of a pig exposed to 

cross-contaminated feed, while Puse is the probability of this AM being used for the production of pig 

medicated feed in a country (Table 1).  

For this model, we estimated P by replacing in a Beta distribution (Table 1), data from Peeters et al. 

(2016) regarding the concentrations of chlortetracycline (CTC), doxycycline (DOX) and sulfadiazine-

trimethoprim (SDZ-TRIM) found in feces, caecum and intestinal contents of pigs, after administration 

of feed containing a 3% carry-over level of these antimicrobials. In absence of other similar published 

experimental data and by considering prior research on bioavailabilty of antimicrobials in pigs (Riviere 

and Papich 2009), we assumed the same P for any other carry-over level, for the purposes of this 

model. This is supported by the fact that these AM undergo linear kinetics. 

For the calculation of Puse for the aforementioned antimicrobials, we fitted a Beta distribution (Table 

1) based on the Belgian national data on antimicrobials premixes used for the production of medicated 

pig feed, from the 2016 Belgian Veterinary Surveillance of Antibacterial Consumption report (BelVet-

SAC 2017). The AM premixes used for pigs represent the 99.3% of the total amount of AM premixes 

used in Belgium.  

Number of pigs, per production stage, having residues of an AM in their intestinal contents, as a result 

of exposure to cross-contaminated feed, in a country (NRes) 

The number of pigs, per production stage, with residues of an AM being found in their intestinal 

contents as a result of exposure to cross-contaminated feed, in a country (NRes(i)) can be estimated as 

follows: 

NRes(i) = N(i) * PT , (7) 
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with N(i) denoting the number of pigs, per production stage i, exposed to cross-contaminated feed, in 

a country i and PT denoting the probability of residues of an antimicrobial used for pigs medicated feed 

production, being found in intestinal contents of pigs exposed to cross-contaminated feed (Table 1). 

This model estimated the NRes(i) of piglets, fattening pigs and sows using Belgian data, per antimicrobial 

(i.e. CTC, DOX, SDZ, TRIM). Subsequently, the uncertainty over the probability of a pig of a certain 

production stage having residues of an AM, as a result of exposure to cross-contaminated feed, in a 

country (PRes(i)) was estimated using the beta distribution: 

PRes(i)    ̴ RiskBeta (NRes(i)+1, S(i) - NRes(i) +1), (8) 

with S(i) denoting the pig populations per production stage i in a country (in one production round) 

(Statistics Belgium 2017).  

The proportion of pigs of a certain production stage i having residues of an AM in their intestinal 

contents, as a result of exposure to cross-contaminated feed, in a country (L(i)) was then estimated as: 

L(i) = PRes(i) * 100 (9) 

3.3. Model implementation 

The quantitative part of model, with PRes(i) as its final estimate, was built using @Risk® software 

(Palisade Corporation®) and was run at 10 000 iterations per simulation. Following a semi-quantitative 

approach, the model reaches a binary outcome over the potential for resistance selection (i.e. risk 

yes/negligible). According to it, there is a potential for resistance selection (RS1), if: 

PRes(i)  > 0 and CC1, (10) 

where C is the concentration of residues of an AM found in intestinal contents of pigs, as a result of 

exposure to cross-contaminated feed, C1 is the minimum known concentration of an AM associated 

with potential for resistance selection pressure, while PRes is estimated as shown in equation (8). We 

refer to a potential, as more factors seem to play a role in resistance development. 

On the other hand, there is negligible potential for resistance selection (RS2), if: 
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PRes(i)  > 0 and C<C1, OR PRes(i)  = 0 (11) 

Thanks to availability of experimental data (Peeters et al., 2017, 2018), doxycycline was the substance 

used as the example to discuss over the potential for resistance selection (equations 10, 11).  

In the case of the scenarios of 1% (scenario B) and 3% (scenario C) AM carry-over levels, the estimation 

of the probabilities of a pig of a certain production stage having residues of an AM in its intestinal 

contents, as a result of exposure to cross-contaminated feed with at least 1% (PRes i(1)) or 3% (PRes i(3)) 

AM carry-over level in a country, followed the same logic as the estimation of PRes (Table 1). The only 

difference concerned the estimation of the total weights of cross-contaminated pig feed produced per 

year, with at least 1% (WT(1)) or 3% (WT(3))  AM carry-over level. In case of scenario B (Table 3): 

WT(1) = WI *p1 + WII *p2 + WIII *p3, (12) 

where WI, WII and WIII are the weights of cross-contaminated batches of non-antimicrobial medicated 

feed (non-AM MF) produced in a country per year at the feed-mill, the transport truck and the farm 

level, respectively, as described in Filippitzi et al. (2016); p1, p2 and p3 are the probabilities of a feed 

batch being cross-contaminated with at least 1% AM carry-over level at the feed mill, the transport 

truck and the farm level, respectively. Beta distributions were used to estimate p1 and p2, based on 

data from available literature (Putier et al. 2010; Stolker et al. 2012), while due to absence of data, p3 

was assumed to equal p2. In case AM MF represents 2% of the total feed produced in a country, as it 

is the case for Belgium (Filippitzi et al. 2016), then equation (12) can be replaced by the formula: 

WT(1) = 0.3*WT*p1 + 0.35*WT*p2 + 0.35*WT*p3, (13) 

where WT is the total weight of cross-contaminated pig feed produced in a country per year. 

In case of scenario C (Table 4), the total weight of cross-contaminated pig feed produced per year, with 

at least 3% AM carry-over level (WT(3)) is calculated as: 

WT(3) =  WI*p4, (14) 
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with WI being the weight of cross-contaminated batches of non-AM MF produced in a country per year 

at the feed-mill level and p4 being the probability of a feed batch being cross-contaminated at the feed 

mill with at least 3% AM carry-over level. For this scenario, only the feed-mill level is taken into 

consideration, as AM carry-over levels of over 3% have not been observed at the transport or farm 

levels. For the estimation of p4 a beta distribution is used, based on data regarding the cross-

contamination of the first batches produced directly after batches of AM MF (Stolker et al. 2012). These 

so-called first flushing batches, which are produced to clean the production lines, can contain the 

higher AM concentrations compared to the second or third. As explained for equation (12), in case AM 

MF represents 2% of the total feed produced in a country, then WT(3) equals: 

WT(3) = 0.3*WT*p4, (15) 

where WT is the total weight of cross-contaminated pig feed produced in a country per year. 

Moreover, in order to study the impact of the different model variables on NRes(i) (i.e. number of pigs, 

per production stage, with residues of an AM being found in their intestinal contents as a result of 

exposure to cross-contaminated feed, in a country; equation 7) sensitivity analyses were performed.  
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Table 1. Detailed summary of distributions and formulas used to estimate the model variables, 

considering the presence of an antimicrobial in cross-contaminated batches in any possible 

concentration higher than zero (AM > 0) (scenario A) 

Variable Description Distribution / Formula / 
Parameter estimate 

Reference 

WT Total weight of cross-contaminated pig feed 
produced in a country per year 

=  5.5%*T 1 

For BE: 

 R̴iskLognorm(146586,6;86253;
RiskShift(209139)) 

Filippitzi et al., 
2016 

Pa(i) Probability of the cross-contaminated feed 
WT being administered to pigs of certain 
production stage i 2 

Pa(pigl)= 0.782 (mean value) 
Pa(sow)= 0.015 (mean value) 
Pa(fatt)= 0.201(mean value) 

See Table 2 

WT’(i) Total weight of cross-contaminated pig 
feed, administered per pig production stage 
i, in one production round 

= (WT* Pa(i))/ y  

y Number of production rounds per 
production stage in a random pig farm in a 
country, per year 

y(pigl) = 7.2 
y(sow) = 1 
y(fatt) = 2.5 

Unpublished 
data from 
Belgian 
project; expert 
opinion 

b (i) Intake of cross-contaminated feed per pig 
during a production stage i 

= bd*da*n = (wb*n) / nb  

bd Feed intake per pig at different production 
stages, per day 

  

da Days of administration of a cross-
contaminated feed batch3, per production 
stage 

= wb / (bd * nb)  

wb Weight of a cross-contaminated feed batch 
(tn) 

 R̴iskDiscrete(1, 4) 4
 BFA 

(pers.comm.) 

n Number of deliveries of cross-contaminated 
feed batches to a random farm, per 
production stage 

n(pigl)  R̴iskPert(1;1;2) 
n(sow)  R̴iskPert(0;0;1) 
n(fatt) = 1 

Unpublished 
data from 
Belgian 
project; expert 
opinion 

nb Number of pigs in a batch, per production 
stage in a farm, in a country 

= nf / z  

nf Number of pigs per production stage in a 
farm, in a country 

nf(pigl)  R̴iskPert(200;800;950)  
nf(sow)  R̴iskPert(200;400;600) 
nf(fatt)  R̴iskPert(200;750;900) 

Unpublished 
data from 
Belgian 
project 5; 
expert opinion 

z Number of batches of pigs per production 
stage in a farm, in a country6 

z(pigl)  R̴iskPert(1;2;2) 
z(sow)=3 
z(fatt)  R̴iskPert(1;1;2) 

Unpublished 
data from 
Belgian 
project; expert 
opinion 
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N(i) Number of pigs, per production stage i, 
exposed to cross-contaminated feed7 

= WT’(i) / b(i)  

S(i) Pig populations per production stage i in a 
country (in one production round) 

S(pigl) = 1 533 564 
S(sow) = 416 877 
S(fatt) = 4 061 013 

Landbouwgeg
evens, 2017 

P Probability of residues of an AM being 
found in intestinal contents of a pig 
exposed to cross-contaminated feed 

  R̴iskBeta (c+1, d-c+1) 
 

 

c Number of samples8 from pigs receiving 
cross-contaminated feed, found with 
residues of an AM 

c(CTC)= 54; c(DOX)= 54; c(SDZ)= 54; 
c(TRIM)= 2 9 

Peeters et al., 
2016 

d Total number of samples8 from pigs 
receiving cross-contaminated feed, tested 
for residues of an AM 

d(CTC)= 54; d(DOX)= 54; d(SDZ)= 54; 
d(TRIM)= 54 

Peeters et al., 
2016 

Puse Probability of an AM being used for the 
production of pig MF in a country 

  R̴iskBeta(e+1, f-e+1) 
 

 

e Amount of an AM used as premix for 
medicated pig feed (kg) 

e(CTC)= 36 kg; e(DOX)= 4 975 kg;  
e(SDZ)= 14 181 kg; e(TRIM)= 2 836 
kg 

BelVet Sac 
data, 2017 

f Total amount of all AM used as premixes for 
medicated pig feed (kg) 

35 698 kg 
 

BelVet Sac 
data, 2017 

PT  Probability of residues of an AM used for 
pig MF production, being found in intestinal 
contents of pigs exposed to cross-
contaminated feed 

= P * Puse  

NRes (i) Number of pigs per production stage i 
having residues of an AM in their intestinal 
contents, as a result of exposure to cross-
contaminated feed, in a country7 

= N(i) * PT  

PRes(i)  Probability of a pig of a certain production 
stage having residues of an AM in its 
intestinal contents, as a result of exposure 
to cross-contaminated feed, in a country  

  R̴iskBeta (NRes(i)+1, S(i) - NRes(i) 
+1)  
 

 

L(i) Level of pigs of a certain production stage i 
having residues of an AM in their intestinal 
contents, as a result of exposure to cross-
contaminated feed, in a country 

= PRes(i) * 100  

C1 Concentration of residues of an AM is 
associated with potential for resistance 
selection pressure (minimum known 
concentration) 

e.g. for DOX, 1 mg/L  Peeters et al., 
2017 

RS1 Risk of potential for resistance selection10  If PRes > 0 and CC1,  
where C is the concentration of 
residues of an AM found in 
intestinal contents of pigs, as a 
result of exposure to cross-
contaminated feed 

 

RS2 Negligible risk of potential for resistance 
selection10 

If PRes > 0 and C<C1, OR 
If PRes = 0 
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Notes: 1T is the total weight of feed produced or used (if feed is imported/exported) in a country where 

2% of T is AM medicated feed and 5.5 is the mean value of this level; 2piglets, sows and fattening pigs; 

3assumed to equal the days of administration of a feed batch, per production stage; 4the discrete 

distribution describes wb that can take one of several explicit discrete values (most likely the value of 

4tn); 5max values were lowered to avoid overestimation of nf; 6corresponds to the number of pig 

batches fed from the same mixing line and silo; 7for sows, that live over a year, this estimation is per 

year; 8 samples of caecum, intestinal content and feces; 9CTC= chlortetracycline, DOX=doxycycline, 

SDZ=sulfadiazine, TRIM=trimethoprim; 10we refer to a potential, as more factors seem to play a role in 

resistance development. 

Table 2. Summary of the distributions and formulas used to estimate the probability of cross-

contaminated feed being administered to pigs of certain production stage (Pa(i)) 

Variable Description Distribution / Formula Reference 

WT(i) Total weight of cross-contaminated pig 
feed administered to pigs of a certain 
production stage i, per year 

WT(i) = y*n* w(b)*k  

y Number of production rounds in a 
random pig farm in a country, per year 

 
 

See Table 
1 

n Number of deliveries of cross-
contaminated feed batches to a 
random farm, per production stage 

 See Table 
1 

w(b) Weight of a cross-contaminated feed 
batch  

 See Table 
1 

k Number of farms with pigs of certain 
production stages in a country 

k(pigl) = 70%*m 
k(sow) = 70%*m 
k(fatt) = 60%*m, 
where m is the total number of pig 
farms in the country 

Expert 
opinion1 

WT Total weight of cross-contaminated pig 
feed produced in a country per year 

WT = WT(pigl)+ WT(sow)+WT(fatt)
2  

Pa(i) Probability of cross-contaminated feed 
being administered to pigs of certain 
production stage 

= WT(i) / WT 
3 

 
 

 

Notes: 1This is based on the type of production in Belgian pig farms (e.g. percentage of single site 

farrow-to-finish farms, of fattening pig farms etc); 2assumed that WT is administered to piglets, sows 
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and fattening pigs. The weight distributed to pigs of each production stage is estimated using the 

formula for WT(i); 3after replacing all variables in the equation, the specification of m is not needed. 

Table 3. Detailed summary of distributions and formulas used to estimate the model variables 

in case of scenario B (i.e. AM carry-over level of at least 1%)  

Variable Description  Distribution / Formula Reference  

WT(1) Total weight of cross-
contaminated pig feed 
produced per year, with at 
least 1% AM carry-over level 

=  WI *p1 +  WII *p2 +  WIII *p3 
1= 

= 0.3*WT*p1 + 0.35*WT*p2 + 
0.35*WT*p3

  2, 3 

Filippitzi et al., 
2016 

p1 Probability of a first flushing 
batch being cross-
contaminated at the feed mill 
level with at least 1% AM carry-
over level 

̴beta(69+1, 140-69+1) 
 

Zuidema et al., 
2010 
Stolker et al., 
2013 

p2 Probability of a non-AM 
medicated feed batch being 
cross-contaminated at the 
transport truck level with  at 
least 1% AM carry-over level 

̴beta(1+1, 20-1+1) 
 

Putier et al., 
2010 
 

p3 Probability of a non-AM 
medicated feed batch being 
cross-contaminated at the 
farm level with  at least 1% AM 
carry-over level 

 b̴eta(1+1, 20-1+1) 
 

Assumed  

WT’(1) Total weight of the cross-
contaminated pig feed 
produced per year, with at 
least 1%  AM carry-over level, 
administered to pigs of a 
certain production stage i  

= WT(1) *  Pa(i) See Table 2 

Ni(1) Number of pigs, per 
production stage, exposed to 
cross-contaminated feed with 
at least 1% AM  carry-over 
level, in a country  

= WT’(1) / b(i) See  Table 1 

NRes i(1) Number of pigs per production 
stage i having residues of an 
AM in their intestinal contents, 
as a result of exposure to cross-
contaminated feed, with at 
least 1% AM  carry-over level, 
in a country  

= Ni(1) * PT  See  Table 1 

PRes i(1) Probability of a pig of a certain 
production stage having 
residues of an AM in its 

  R̴iskBeta(NRes i(1) +1,S(i) - NRes i(1) +1) See  Table 1 
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intestinal contents, as a result 
of exposure to cross-
contaminated feed, with at 
least 1% AM  carry-over level, 
in a country   

 

Notes: 1 These are the weights of cross-contaminated batches of non-AM MF produced in a country 

per year (where AM MF is 2% of total feed produced) at the feed-mill level (WI), the transport truck 

level (WII) and the farm level (WIII); 2 rounded values; 3 WT is the total weight of cross-contaminated 

feed produced in a country per year. 

Table 4. Detailed summary of distributions and formulas used to estimate the model variables in case 

of scenario C (i.e. AM carry-over level of at least 3%)  

 

Variable Description Distribution / Formula Reference 

WT(3) Total weight of cross-contaminated pig 
feed produced per year, with at least 3% 
AM carry-over level 

=  WI
1 *p4 = 0.3*WT*p4 

2 Filippitzi et 
al., 2016 
 

p4 Probability of a feed batch3 being cross-
contaminated at the feed mill with  at 
least 3% AM carry-over level 

 R̴iskbeta(28+1, 140-28+1) Zuidema et 
al., 2010; 
Stolker et 
al., 2013 

WT’(3) Total weight of the cross-contaminated 
pig feed produced per year, with at least 
3%  AM carry-over level, administered to 
pigs of a certain production stage i  

= WT(3) *  Pa(i) See Table 2 

Ni(3) Number of pigs, per production stage, 
exposed to cross-contaminated feed 
with at least 3% AM  carry-over level, in 
a country  

= WT’(3) / b(i) See  Table 1 

NRes i(3) Number of pigs per production stage i 
having residues of an AM in their  
intestinal contents, as a result of 
exposure to cross-contaminated feed, 
with at least 3% AM  carry-over level, in 
a country  

= Ni(3) * PT  See  Table 1 

PRes i(3) Probability of a pig of a certain 
production stage having residues of an 
AM in its intestinal contents , as a result 
of exposure to cross-contaminated feed, 
with at least 3% AM  carry-over level, in 
a country   

  R̴iskBeta(NRes i(3) +1,S(i) -NRes i(3) 

+1) 
See  Table 1 
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Notes: 1 This is the weight of cross-contaminated batches of non-MF produced in a country per year 

(where MF is 2% of total feed produced) at the feed-mill level; 2 rounded value; 3 corresponds to first 

flushing batches of feed, produced directly after batches of medicated feed, to clean the production 

lines. 

4. Results 

Tables 5 and 6 show the number (NRes) and the proportion (%) (L(i)) of piglets, sows and fattening pigs 

in Belgium having residues of chlortetracycline (CTC), doxycycline (DOX), sulfadiazine (SDZ) and 

trimethoprim (TRIM) in their intestinal content (from caecum and colon), as a result of exposure to 

cross-contaminated feed, estimated using respectively equations 7 and 9. This is estimated for the 

different scenarios A, B and C. Indicatively, the distributions of NRes(piglets,1) and L(piglets,1) with at least 1% 

carry-over level of DOX are shown in Figure 2. 

For each of the three scenarios, it was estimated that the majority of pigs with residues in their 

intestinal content due to cross-contaminated feed (NRes) contain residues of SDZ, followed by DOX. 

Much fewer pigs were estimated to contain residues of CTC and TRIM. For all scenarios and AM, the 

highest proportion of pigs with residues (L(i)) was estimated for sows, followed by piglets and fattening 

pigs, while in absolute values the order was reversed.   

Using equation 10 for the case of doxycycline (DOX) and given that: (a) the probability of a piglet, sow 

or fattening pig having residues of DOX, as a result of exposure to cross-contaminated feed (PRes(i)) in 

Belgium has a positive value (Table 5); and that (b) the concentration of DOX residues found in 

intestinal contents of these pigs as a result of exposure to cross-contaminated feed (C) in case of 

scenario B is estimated to be higher than the minimum known concentration of DOX associated with 

potential for resistance selection pressure (C1 = 1 mg/L) (Peeters et al. 2017, 2018), it is concluded that 

there is a risk of potential for DOX resistance selection in Belgium (RS1: yes), considering the 

assumptions of the model.  
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The results of the sensitivity analysis performed for the number of piglets with residues of DOX being 

found in their intestinal contents as a result of exposure to cross-contaminated feed with at least 1% 

carry-over level, in Belgium (NRes(piglets,1)) are shown in Figure 3. Similar pattern in terms of variables and 

ranking were also observed in the case of other production stages and AM.  
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Table 5. Min, mode, mean and max values of the number of pigs per production stage having residues of chlortetracycline (CTC), doxycycline (DOX), 

sulfadiazine and trimethoprim (SDZ-TRIM) in their intestinal contents, as a result of exposure to cross-contaminated feed, in Belgium, for different scenarios 

(i.e. AM>0 (scenario A), at least 1% (scenario B) and 3% AM carry-over levels (scenario C)). 

AM/Scenarios NRes(piglets) NRes(sows) NRes(fatteners) 

min mode mean max min mode mean max min mode mean max 

CTC 
Scenario A 461 1 786 2 341 15 820 223 624 1 182 8 930 997 2 404 4 101 21 925 

Scenario B 867 204 499 4 073 39 149 248 1 468 155 571 860 6 037 

Scenario C 31 70 144 760 15 37 72 347 50 148 249 1 861 

DOX 

Scenario A 76 346 169 007 310 674 2 013 987 35 295 91 595 157 109 736 312 116 196 320 425 536 733 2 943 168 

Scenario B 13 548 45 195 65 468 444 481 5 805 18 086 33 404 273 115 21 185 61 977 113 086 1 126 081 

Scenario C 3 892 8 804 18 897 132 342 1 767 4 372 9 552 42 915 7 052 18 509 33 176 161 028 

SDZ 

Scenario A 224 425 519 542 881 644 4 477 727 104 619 242 285 448 736 2 518 046 344 660 786 368 1 538 395 8 245 206 

Scenario B 41 322 79 556 184 343 972 388 16 407 53 199 93 272 540 265 52 316 178 628 325 431 1 764 878 

Scenario C 13 156 32 287 53 947 354 529 4 826 16 253 27 523 143 193 20 010 57 137 94 325 490 433 

TRIM 

Scenario A 235 5 849 9 564 66 119 106 1 735 4 907 38 116 738 4 222 16 820 101 521 

Scenario B 41 860 2 058 14 863 2 174 1 025 12 006 46 1 723 3 530 28 161 

Scenario C 14 250 586 5 093 6 120 298 1 912 25 561 1 043 11 793 

 

Notes: Most values are rounded. The values for the number of sows with residues (NRes(sows)) are estimated per year and should be interpreted 

as “at least” values.  
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Table 6. Min, mode, mean and max values of the level (%) of pigs per production stage having residues of chlortetracycline (CTC), doxycycline 

(DOX), sulfadiazine and trimethoprim (SDZ-TRIM) in their intestinal contents, as a result of exposure to cross-contaminated feed, in Belgium, for 

different scenarios (i.e. AM>0 (scenario A), at least 1% (scenario B) and 3% AM carry-over levels (scenario C)). 

AM/Scenarios L(piglets) L(sows) L(fatteners) 

min mode mean max min mode mean max min mode mean max 

CTC 

Scenario A 0.03 0.07 0.15 0.82 0.05 0.19 0.29 1.56 0.02 0.06 0.1 0.55 

Scenario B <0.01 0.02 0.03 0.19 <0.01 0.03 0.06 0.32 <0.01 0.01 0.02 0.13 

Scenario C <0.01 <0.01 <0.01 0.05 <0.01 <0.01 0.02 0.12 <0.01 <0.01 <0.01 0.04 

DOX 

Scenario A 5.33 10.57 20.13 94.39 9.24 20.38 34.75 99.74 3.45 9.21 13.17 49.26 

Scenario B 1.01 2.79 4.23 18.78 1.67 4.57 7.76 36.94 0.51 1.29 2.8 14.9 

Scenario C 0.27 0.87 1.23 5.47 0.41 1.31 2.3 12.1 0.19 0.53 0.81 3.93 

SDZ 

Scenario A 15.71 28.94 46.15 99.99 28.39 54.83 64.49 99.69 8.28 17.91 35.27 99.67 

Scenario B 2.42 5.91 12.01 57.73 4.28 10.19 22.4 98.90 1.81 6.42 7.99 38.95 

Scenario C 0.74 2.76 3.52 19.64 1.28 4.22 6.55 40.17 0.37 1.09 2.32 10.74 

TRIM 

Scenario A 0.03 0.41 0.63 4.91 0.07 0.41 1.15 13.51 <0.01 0.19 0.41 6.38 

Scenario B <0.01 0.05 0.13 1.25 <0.01 0.08 0.25 2.73 <0.01 0.06 0.09 0.56 

Scenario C <0.01 0.02 0.03 0.34 <0.01 0.04 0.07 0.58 <0.01 0.01 0.02 0.21 

 

Notes: The values of L(sows) are estimated per year. 
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Figure 2. Distribution of the number (NRes(piglets)) and level (%) of piglets (L(piglets)) in Belgium  having residues of doxycycline (DOX) in their intestinal 

contents, as a result of exposure to cross-contaminated feed with at least 1% carry-over level. 
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Figure 3. Sensitivity analysis performed for the number of piglets with residues of doxycycline (DOX) being found in their intestinal contents as a result of exposure to cross-

contaminated feed with at least 1% carry-over level, in Belgium (NRes(piglets,1)). Notes: The details of each variable are presented in Tables 1, 2 and 3: wb stands for the weight 

of a cross-contaminated feed batch, WT is the total weight of cross-contaminated pig feed produced in a country per year, p2  is the probability of a non-AM MF batch being 

cross-contaminated at the transport truck level with at least 1% AM carry-over level, nb(piglets) is the number of piglets in a batch in a farm, nf(piglets) is the number of piglets in a 

farm, n(piglets) is the number of deliveries of cross-contaminated feed batches to piglets at a farm,  p1 is the probability of a first flushing batch being cross-contaminated at the 

feed mill level with at least 1% AM carry-over level, Puse(DOX) is the probability of doxycycline being used for the production of pig MF in a country, P(DOX) is the probability of 

residues of doxycycline being found in intestinal contents of a pig exposed to cross-contaminated feed.
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5. Discussion 

The model estimated that mean proportions (L(i)) of 7.7% of sows, 4.2% of piglets and 2.8% of fattening 

pigs in Belgium have residues of DOX in their intestinal contents (caecum and colon), due to 

consumption of feed cross-contaminated with at least 1% carry-over. Almost triple proportions of pigs 

were estimated to have residues of SDZ, for the same scenario (Table 6). On the contrary, the 

estimated proportions of pigs with residues of chlortetracycline (CTC) and trimethoprim (TRIM) were 

negligible (mean values of L(i) <1) in all production stages and for all scenarios. In Belgium, CTC is the 

AM used the least as premix, while SDZ is the AM used the most (BelVet-SAC 2017). SDZ and TRIM, 

generally administrated in combination in a ratio TRIM:SDZ = 1:5, are both AM with high bioavailability 

(Nielsen et al. 1994; Baert et al. 2001). However, expected lower residual concentrations in intestinal 

content and feces have only been observed for TRIM (Peeters et al. 2018), as it has been shown that 

in the case of SDZ an excretion of the AM from blood back to the gut takes place (De Smet et al. 2017).  

The proportion of animals having residues of the different antimicrobials due to consumption of cross-

contaminated feed was estimated to be higher for sows and piglets. This observation for sows, 

compared to piglets and fattening pigs, can be attributed largely to the lower population of sows in a 

production round (S(i)). To a less extent it can be attributed to the higher number of batches of sows in 

a farm (z) which are linked to different feed silos, usually filled in at different feed deliveries (Table 1). 

Focusing only on carry-over at the farm level, the latter comment mainly concerns farms that use 

medicated feed in sows and not top dressing, which is another method often used for sow treatments. 

The higher proportion observed for piglets compared to fattening pigs can be mainly attributed to the 

estimation of the probability of the cross-contaminated feed being administered to pigs of each 

production stage (Pa(i)). In detail, the number of production rounds per year (y) and the number of 

farms with pigs of a certain production stage in Belgium (k) were higher for piglets and contributed to 

a higher estimation of Pa for this production stage (Table 2). These observations suggest that an initial 

targeting of sows and especially piglets, in terms of prevention of AM resistance related to cross-
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contaminated feed, is required. In absolute values, the reversed order compared to proportions (i.e. 

higher number of pigs exposed to cross-contaminated feed estimated for fattening pigs, followed by 

piglets and sows) is mainly due to the differences in the size of the population of each production 

stage. The sensitivity analysis revealed that, for the same scenario and antimicrobial, the number of 

pigs in a batch, per production stage in a farm (nb) was the variable affecting the outcome NRes the 

most. Fortunately, this is a variable that was relatively easy to estimate and therefore with a relatively 

high accuracy. 

The semi-quantitative approach followed allowed us to conclude that, for the case of doxycycline, 

there is a potential for resistance selection (RS) in Belgium, since the concentration of DOX residues 

estimated to be found in pigs that have consumed cross-contaminated feed with at least 1% carry-over 

level (C, is associated with potential for resistance selection pressure (Peeters et al. 2017, 2018). This 

is of course only one item playing a role in the development of resistance selection, as other factors 

have been suggested to also affect this complex and multifactorial process (e.g. the environment of 

the porcine intestinal microbiota, the dosage, frequency or route of administration, biosecurity-related 

factors) (Burow and Käsbohrer 2017). When experimental results allowing to specify P and C1 become 

available, conclusions over RS could be also drawn for other commonly used antimicrobials (e.g. 

penicillins) and/or other antimicrobials resistance to which may be transmitted from pigs to humans 

(e.g. pleuromutilins (Alban et al. 2017)).  

The quantitative part of the model is built in a way that allows its applicability to different countries. 

Therefore, in case of application, the legal framework in a country should be considered, given the 

current absence of a uniform European approach. For instance, since for the purposes of this paper, 

the model is parametrized with Belgian data, there is a possible overestimation of NRes for fatteners, as 

in Belgium, the administration of the first and second flushing batches of feed produced at the feed 

mill directly after medicated feed to pigs > 80kg is forbidden (BFA 2013). Additionally, the estimation 

of NRes for sows is possibly underestimated and should be interpreted as “at least”, as in most cases 
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sows live longer than a year, while the value of WT used (i.e. total weight of cross-contaminated pig 

feed produced in a country) is estimated per year. Finally, to estimate WT  in another country it is 

recommended to consult the previous model (Filippitzi et al., 2016) which allows to take into account 

any differences among countries (e.g. level of medicated feed produced compared to total feed 

produced, level of import/export of total feed produced if it occurs, etc). 

The fact that low cross-contamination levels have the potential for resistance selection to certain AM, 

poses a further risk of group level resistance selection (e.g. co-selection of resistance genes conferring 

resistance to additional agents due to genetic linkages or other adaptations). And even though the 

presence of residues of other AM in intestinal contents of pigs is lower (e.g. TRIM) (De Smet et al. 2017) 

the possibility of co-resistance or cross-resistance, mechanisms that affect different AM classes or 

different AM of the same class, respectively, cannot be excluded. Very low antibiotic levels (e.g. of 

tetracycline) found in animals might in fact also be sufficiently high to maintain multiresistance 

plasmids, while they can result in resistance selection in combination with other compounds (i.e. other 

AM or metals) present in feed (Baker-Austin et al. 2006; Gullberg et al. 2014; Pal et al. 2015). The 

presence of AM residues in intestinal contents and feces of pigs due to consumption of cross-

contaminated feed, adds up to the amount of AM residues present in pig manure, which may select 

for antibiotic resistance in pathogens and commensal bacteria that may enter the environment after 

fertilization. The cross-contaminated batches can practically reach any pig, even in farms that do not 

use medicated feed, causing a risk of wider concern. This means that the use of AM medicated feed 

should be avoided as much as possible, especially for preventive use. The use of water medication 

could be an alternative, as with this method, less carry-over and more animals receiving a correct dose 

of medication are expected. In case of medicated feed production, good practices (e.g. regular cleaning 

of equipment) should be thoroughly followed at the feed-mill, during transport and unloading, as well 

as storage and distribution at the farm. The use of an end-of-line mixer for the production of medicated 

feed at the feed-mill, a fine-dosing-truck and the use of a separate silo for medicated and non-

medicated feed are also ways to reduce cross-contamination at the different levels. 
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CHAPTER 7  

Quantitative risk model to estimate the level of antimicrobial 

residues that can be transferred to soil via manure, due to oral 

treatments of pigs 
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1. Abstract 

Veterinary antimicrobials can spread via manure onto agricultural fields, representing an emission 

of these products or their active metabolites into the environment. This causes concerns regarding 

the role of antimicrobial residues in the development, selection and spread of resistance. Aiming 

to approach this issue quantitatively, first a literature review was performed on the bioavailability 

and extent of in vivo biotransformation of twelve antimicrobials commonly administered orally in 

pigs, and on the level of their persistence in manure. This information was then used in a model 

estimating the level of each of these administered antimicrobials that is present in manure at the 

end of common storage durations in pits and, thus, readily applied onto soil. The model estimated 

that at least 18.42% of the total amount of these orally administered antimicrobials is present in 

manure which is readily applied onto soil. Based on sales of antimicrobials, it was estimated that 

this percentage corresponds to over 25, 000 kg of antimicrobial residues in pig manure in Belgium. 

If export and processing are considered, the aforementioned percentage is reduced to at least 

9.67%. From the studied antimicrobials, the highest level of residues in stored manure was 

estimated for doxycycline, as a combining result of its high use in pigs, low bioavailability and high 

stability in manure. However, even for antimicrobials not expected to be found in manure at the 

end of maximum storage, certain levels of these can be present in fractions of manure stored for 

shorter duration. Other antimicrobials are readily degraded and therefore pose less threat. The 

results of this study highlight the importance of rational antimicrobial use and of further research 

on biodegradation kinetics of antimicrobials and their degraded products in different 

environmental compartments, to efficiently control the spread of residues and/or resistance genes 

from manure to these matrices.  
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2. Introduction 

Antimicrobials (AM) are widely used in livestock farming for the prevention or treatment of diseases. 

According to recent attempts to estimate AM use at species level, one of the highest uses of AM in 

livestock concerns treatments administered to pigs (Filippitzi et al., 2014; Carmo et al., 2017) via the 

oral route (Callens et al., 2012; Postma et al., 2015). It has been estimated that a large fraction of the 

overall administered AM are excreted unchanged via the feces and urine (Amábile-Cuevas, 2016) and 

are, thus, present in the animal manure produced. Indicatively in Flanders (Dutch-speaking part of 

Belgium, representing 95% of the pig production in the country), 39.5 million kg nitrogen (N) of pig 

manure was produced in 2016, 52.4% of which was brought onto Flemish agricultural land without 

prior processing (VLM, 2017). The AM residues present in manure may select for antimicrobial 

resistance in pathogens and commensal bacteria (Rasschaert et al., 2017) which may enter the 

environment after fertilization of soil (Du and Liu, 2012). Manure may also serve as a reservoir for AM 

resistance genes and mobile genetic elements (Binh et al., 2008; Whitehead and Cotta, 2013). Further, 

the resistant bacteria present in manure may exchange antimicrobial resistance genes with soil 

bacteria, a process even further enhanced by the presence of AM residues (Heuer et al., 2008, 2011). 

Therefore, concerns are growing regarding the level of AM residues or their active metabolites that 

end up in soil, and following in groundwater and surface water, and their role in the development and 

spread of AM resistance. This risk of AM resistance development and spread due to the presence of 

AM residues from veterinary use in the environment, could have serious implications for both animal 

and public health, given that many AM are used in veterinary as well as in human medicine and co-

selection may occur. 

However, research focusing on the spread of AM for veterinary use in the environment is still in its 

infancy. To which amount and extent these residues are present in each compartment (i.e. manure, 

soil, water) is only limitedly studied although it is an important piece of information to assess the risks 

associated with the use of veterinary AM and to develop methods to reduce emissions to the 
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environment. This study focuses on the first compartment of the fate of veterinary AM in the 

environment, the manure, and the behavior in this matrix of some commonly used AM administered 

orally to pigs. By developing a quantitative risk model, this study aims to estimate the level of these 

residues which are present in liquid pig manure that is readily available to be applied onto land (i.e. at 

the end of its storage) and at the time of its disposal on soil. Given the availability of data on the 

amount of veterinary AM used in Belgium (BelVet-SAC, 2017), this country was used as an example to 

illustrate the results of the model. 

3. Materials and Methods 

To ultimately estimate the level of AM residues from oral use in pigs which are present in pig manure 

at the end of storage (E) and the level of residues in pig manure that is applied onto soil (ES) compared 

to the initial amounts of AM administered, a modular approach was followed. Based on this approach, 

the level of residues of each AM being excreted in freshly produced manure (X) (module 1, “animal 

level”) was first estimated. Following, the level of residues of each AM being still present in manure 

after common storage duration was estimated (Z) (module 2, “stored manure level”). Finally, the level 

of residues of each AM which are present in manure applied on soil, considering also manure 

processing, was estimated (EP) (module 3, “applied manure level”). Figure 1 shows the model 

framework designed to estimate E and ES. A detailed summary of the variables and equations of the 

model developed is presented in Table 1. 

To investigate the availability of information that would allow us to run such a model, literature was 

reviewed on the behavior of commonly used AM within the pig after oral administration 

(pharmacokinetics) and in the manure produced, stored and processed. The focus was on the AM used 

the most in pigs per os (p.o.) in Belgium. The initial list of nine AM was formulated based on data from 

the Belgian Veterinary Surveillance of Antibacterial Consumption (Bel-Vet SAC) database for 2016 

(results based on this data can be found in BelVet-SAC (2017)) and a table by Postma et al. (2016) and 

included: oxytetracycline, doxycycline, amoxicillin, sulfadiazine, trimethoprim, lincomycin, tylosin, 
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colistin and spectinomycin. It was supplemented by three more AM, i.e. tilmicosin, flumequine, 

tiamulin, residues of which have also been found in manure samples tested during an experiment 

conducted in Belgium (Rasschaert et al., 2018; manuscript in preparation). The use of these twelve AM 

corresponds to around 62% of the total amount of AM used in Belgium in 2016. 
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Figure 1. Model framework designed to estimate the level of residues of an antimicrobial (AM) from oral use in pigs which are present in pig manure that is 

readily available to be applied onto land (E) / Notes: The same framework is used for both the individual pit and the country level; a a is percentage of the total 

manure produced that is directly applied on land after storage; b b is the percentage of the total manure produced that is processed before being applied on 

land. 
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Table 1. Summary of the variables and formulas of the model. 

Variable Description Formula Reference 

W Amount of an antimicrobial (AM) 
administered orally to the pigs (kg)a 

  

W’ Total amount of an AM administered 
orally to the pigs in a country (kg) 

 For Belgium: 2016 BelVet-
SAC database; see section 
"Amounts of AM used orally 
in pigs” 

Module 1 – animal level 

F Bioavailability of an AM 
administered to pigs orally 

 Multiple, per AM; see Table2 

Y Level of further metabolization in 
the body, of the absorbed fraction F 

  

X Level of residues of an orally 
administered AM being excreted in 
freshly produced manure as parent 
drug 

X= (1-F) + F*(1- Y)  

B Total amount of each AM being 
excreted in freshly produced manure 
as parent drug, in a country (kg) 

B = W’ * X  

Module 2 – stored manure level 

A(0) Concentration of an AM in freshly 
produced manure 

  

Ai AM concentration in stored manure 
after a time period  

Ai =A(0)*e (-k*Ti) Assuming first-order kinetics 

(Riviere and Papich, 2009) 

k First order rate constant of an AM in 
manure 

k= ln(2)/DT50 Assuming first-order kinetics 
(Riviere and Papich, 2009) 

Ti Manure storage duration (days) e.g. T1≤30 d 
30 d < T2 ≤ 120d 
120 d < T3 ≤ 180 d 
 

See section “Estimation per 
manure pit” 

Ci Level of change in AM concentration 
during a storage durationb 

Ci = = e(-k*Ti) -1  

Zi Level of an AM found in manure at 
the end of a storage duration (e.g. 
after 2 months), compared to the 
concentration of this AM in freshly 
produced manure 

Zi = 1 – Ci  

Zi,Δt Level of an AM present in manure 
stored for a certain duration (e.g. 
between 2 – 4 months), compared to 
the concentration of this AM in 
freshly produced manure 

 ̴RiskUniform(min, max) 

min= Zi(fin) ; max= Zi(beg); OR 

 ̴RiskPert(min, most likely, 

max) 

min= most likely=Zi(fin) ; 

max= Zi(beg); 

See section “Estimation per 
manure pit” 

DT50 50% disappearance time of an AM in 
pig manure (days) 

 Multiple, per AM; see Table3 

DT90 90% disappearance time of an AM in 
pig manure (days) 

DT90= ln(10)/k Assuming first-order kinetics 
(Riviere and Papich, 2009) 
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Vi Fraction of manure stored for each 
of the different durations  

Vi =   See section “Estimation per 
manure pit” 

Di Amount of an AM in manure at the 
end of a storage duration in an 
average pit (kg) 

Di = Vi * W * X * Zi  

Di,Δt Amount of an AM present in manure 
stored for a certain duration in an 
average pit (kg) 

Di,Δt = Vi * W * X * Zi,Δt See section “Estimation per 
manure pit” 

DT Total amount of an AM present in 
manure after storage in an average 
ready-to-be-emptied pit 

DT =  

 

 

E Level of an AM found in manure 
after storage, compared to the 
concentration of this AM initially 
administered orally to pigs 
producing the manure 

E = DT / W  

 Total amount of each AM 
administered orally to pigs that is 
present in manure at the end of 
storage, at country level 

 = Vi * B * Zi,Δt  

E’ Level of an AM found in manure 
after storage, compared to the total 
amount of this AM administered 
orally to pigs, at country level 

E’ / W’ ,  
 
with =  

 

Module 3 - applied manure level 

ET Level of an AM initially administered 
orally that is present in pig manure 
after storage, readily applied onto 
land 

ET = a * E’  

a Percentage of the total manure 
produced that is applied on land 
after storage without prior 
processing 

For Belgium (BE), 
a=0.525 

Flemish Land Agency  

(VLM, 2017) 

EP Level of an AM initially administered 
orally that is present in processed 
pig manure  

EP = b *c * d * E’  

b Percentage of the total manure 
produced that is processed before 
being applied on land 

For BE, b=0.47 Flemish Land Agency  

(VLM, 2017) 

c Percentage of pig manure which is 
processed using a specific method 

For BE, c=0.845 
(biological treatment) 

Flemish Coordination Centre 
for Manure Processing 
(VCM, 2016) 

d Level of an AM present in manure 
after processing depending on the 
method used 

e.g. dSDZ=0.43; dDOX=0.08 Van den Meersche et al. 
(2017) (for biological 
treatment) 

ES Level of residues of an AM in manure 
applied on land, compared to the 
total amount of this AM 
administered orally to pigs, at 
country level 

ES = ET + EP  
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Notes: a Refers to pigs producing manure that is stored in the same pit; b corresponds to a concentration 

reduction. 

3.1. Literature review 

To collect information to be used in the model, a structured literature review was performed in 

PubMed using, first, the following search string: (antibiotic or antimicrobial) AND (bioavailability OR 

degradability OR persistence OR transformation OR processing) AND (manure OR feces) AND (pig OR 

swine). The 118 publications retrieved using the search string were submitted to a first manual 

screening for their relevance on title and abstract. Those considered relevant were subject to second 

screening eligibility on the full text. The references of the retrieved publications were also checked and 

reviewed when found to be relevant. Regarding the bioavailability and the extent of in vivo 

biotransformation of the veterinary AM, the book Veterinary Pharmacology and Therapeutics (Wiley-

Blackwell® 2009) was also used as reference, as well as the Summary of Product Characteristics (SPC) 

per AM. Following, PubMed was screened using the same search string structure as previously 

mentioned, by replacing (antibiotic or antimicrobial) with the name of each AM from the list of 

compounds of interest. 

3.2. Amounts of AM used orally in pigs 

The BelVet-SAC database for 2016 provides detailed information on veterinary AM use in Belgium. In 

terms of amounts of AM used, the database does not include exact information on use per species, 

but it includes, for each compound, the species it is administered to. Therefore, in case a compound 

was used for pigs, cattle and poultry, it was assumed that 50% of the total amount used would be 

administered to pigs. In case a compound was used for pigs and bovine or pigs and poultry, it was 

assumed that 70% or 64% of the total amount used would be administered to pigs, respectively. These 

percentages were calculated based on the amounts of antimicrobials per class per kg biomass for 

bovine, pigs and poultry in Belgium, also available from BelVet-SAC. This approach was followed for 

AM compounds administered orally excluding premixes (e.g. tablets, oral solutions, powders). In the 
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case of AM compounds used orally as premixes, the 99.3% of their total amounts used were considered 

to be administered to pigs.  

3.3. Model description 

3.3.1. Fraction of antimicrobials excreted in manure (module 1, “animal level”) 

The extent of systemic exposure after administration of a drug is defined as bioavailability or absolute 

availability, usually denoted as F. The intravenous injection is the only route of administration that 

guarantees that 100% of the dose is systemically available (F = 1.0). In the case of oral drug 

administration, a fraction of the administrated drug is absorbed (F ≤ 1.0) and the non-absorbed fraction 

(1-F) of the initial dose will remain in the gut and will be excreted in the manure assuming no 

gastrointestinal degradation.  Of the absorbed fraction F, a proportion will be metabolized in the body 

(Y) whereas the non-metabolized fraction of the parent drug (1-Y) will be excreted again (e.g. renal 

excretion, biliary excretion) and will therefore also end up in the manure. To provide an estimate of 

the level of residues of an orally administered AM being excreted in freshly produced manure as parent 

drug (X) the following equation was used:  

X= (1-F) + F*(1- Y), Eq. (1) 

where F is the oral bioavailability of the specific drug and Y is the extent of drug metabolization in the 

body. The specification of F and Y for each AM of interest to this study was based on data available in 

the literature. In case more than one estimations of F or Y for an AM were found, their average value 

was used in the above equation. 

For the use of equation (1), no degradation of the compound and no binding in the gastrointestinal 

tract are assumed. Moreover, it is assumed that its metabolites are microbiologically inactive. First-

order pharmacokinetics are also assumed, meaning that the fractional rate of drug excretion is 

constant. 

3.3.1.1. Estimation at country level 
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Given the availability of data allowing the estimation of the amount of each AM administered orally to 

pigs in Belgium, the total amount of each AM being excreted in freshly produced manure in this country 

as parent drug can be estimated. The formula used was: 

B = W’ * X, Eq. (2) 

where W’ is the total amount of an AM administered orally to the pigs in Belgium (kg) and X is the 

fraction of this AM being excreted in freshly produced manure as parent drug, estimated as shown in 

equation 1. 

3.3.2. Fraction of  antimicrobials present in stored manure (module 2, “stored manure level”) 

3.3.2.1. Estimation per common storage durations 

In conventional manure management, pig manure is long-term stored in pits under anaerobic 

conditions until field application. The average storage duration of manure before being applied on soil 

is estimated by expert judgement to be on average four to six months (max = 6 months), especially 

during winter (VLM, 2014). During summer, some pits are partly emptied every few weeks (e.g. manure 

stored up to one month). Since fresh manure is added to the pit and is mixed with previously stored 

material, it can be expected that fractions of the manure are usually stored for different durations; for 

instance, for up to one month, from one up to four months, and from four up to six months. During 

storage, the AM residues present in fresh manure are generally degraded at different levels in the 

course of time, depending on various factors (e.g. characteristics of the AM itself, conditions of oxygen 

present or temperature, animal source of manure). A commonly used measure to specify the level and 

time of degradation of a compound (e.g. an AM) in a matrix (e.g. manure) is the 50% (DT50) 

disappearance time, that is in this case the time needed for the degradation of 50% of the initial 

concentration of an AM in the manure (Riviere and Papich, 2009). When information was not available 

for certain compounds, but was available for the group they belong to, the latter was used for the 

estimations of this model as AM belonging to the same group are expected to behave in a similar way 

in the majority of cases.  
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To estimate the level of change in the concentration of an AM during different storage durations Ti (i.e. 

up to one month, from one up to four months, and from four up to six months) (Ci), the AM 

concentration in stored manure after each period (Ai) was estimated first, assuming first-order kinetics: 

Ai =A(0)*e (-k*Ti), Eq. (3) 

where A(0) is the concentration of an AM in freshly produced manure and k is the first order rate 

constant estimated as k= ln(2)/DT50 for each AM (Riviere and Papich, 2009). Each of the different 

manure storage durations is denoted by Ti.  

Therefore, the level of change in AM concentration during different storage durations (Ci), 

corresponding to a concentration reduction, can be estimated as: 

Ci =  = e(-k*Ti) -1,  Eq. (4) 

The level of an AM found in manure after (each) storage duration, compared to the concentration of 

this AM in freshly produced manure (Zi), can then be calculated as: 

Zi = 1 – Ci, Eq. (5) 

To perform the above calculations, we used DT50  values per AM found in literature, in order to estimate 

k for each AM, as previously described. In case more than one estimation of DT50 for an AM was found, 

their average value was used to estimate k and replace it in the above equations.  

In order to provide also an estimation of the time period that residues of each AM of interest could 

still be found in stored manure, the DT90 (90% disappearance time) values for each AM in manure were 

calculated as follows: 

DT90= ln(10)/k , Eq. (6) 

where the k first order rate constant, estimated as previously described (Riviere and Papich, 2009). 

3.3.2.2. Estimation of residues in manure stored in an average pit 
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Assuming that an average pit is filled with manure in a constant rate until the pit is full and it is emptied 

at once after 6 months, then this ready-to-be-emptied pit contains different fractions of manure stored 

for different durations (Vi): 16.7% of manure stored up to 1 month, 50% of manure stored >1 up to 4 

months and 33.3% of manure stored >4 to 6 months. Therefore, the amount of each AM in manure at 

the end of the different storage time periods (e.g. after one month) (kg) in an average pit (Di) can be 

estimated as: 

Di = Vi * W * X * Zi, Eq.(7) 

where Vi is the fractions of manure stored in the pit for a certain duration i; W is the amount of the 

AM administered orally to the pigs producing this manure (kg); X is the level the orally administered 

AM being excreted in freshly produced manure as parent drug, estimated using equation 1; Zi is the 

level of the AM found in manure at the end of a storage duration, compared to the concentration of 

this AM in freshly produced manure, estimated using equation 5.  

Since, as previously described, different fractions of the manure in an average pit can be stored for 

different durations (e.g. between two to four months), in such a case the range of values of the amount 

of an AM present in manure stored for this duration (kg) (Di,Δt) can be estimated as: 

Di,Δt = Vi * W * X * Zi,Δt, Eq. (8) 

where Zi,Δt corresponds to the range of values of the level of this AM present in manure stored for the 

same duration, compared to the concentration of this AM in freshly produced manure. A Uniform 

distribution can be employed to estimate this variable more representatively: 

Zi,Δt    R̴iskUniform(min, max), Eq. (9) 

with min= Zi(fin) and max= Zi(beg), estimated using equation 5 and considering the end and the beginning 

of this certain duration period, respectively. 

To avoid an overestimation of Zi,Δt  in the case of antimicrobials which are fast degraded in manure (i.e. 

DT90 <30 days), a Pert distribution can be employed instead: 

Zi,Δt    R̴iskPert(min, most likely, max), Eq. (10) 
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with most likely= min = Zi(fin) estimated using equation 5 and considering the end and the beginning of 

this certain duration period, respectively. 

The total amount of an AM present in manure after storage in an average ready-to-be-emptied pit (DT), 

given the previously described considerations, is estimated as: 

DT =  = D1 + D2 +D3, Eq.(11) 

where D1, D2 and D3 are the amounts of an AM that can be present in manure for each of the three 

storage time periods Ti considered (kg), estimated using equation 8 (Table 1).  

Consequently, the level of an AM found in manure after storage and thus readily available to be applied 

onto soil, compared to the concentration of this AM initially administered orally to pigs producing the 

manure (E) is calculated as: 

E = DT / W, Eq. (12) 

where W is the amount of the AM administered orally to the pigs producing this manure (kg).  

3.3.2.3. Estimation at country level  

Assuming that all pig manure in Belgium is treated in a similar way as described in previous sections 

per pit (e.g. storage in pits, for up to six months, anaerobic conditions), it is then possible to estimate 

the total amount of each AM administered orally to pigs that is present in manure at the end of storage 

at country level (DT’), based on equation 11 and by estimating first Di,Δt (equation 8) at country level 

as: 

 = Vi * W’ * X * Zi,Δt , Eq. (13) 

where W’ is the total amount of the AM administered orally to the pigs in the country (kg) and the rest 

variables are the same as for the estimation per pit (equation 8). 

Finally, the level of an AM found in manure after storage, compared to the total amount of this AM 

administered orally to pigs at country level (E’), according to equation 11, can be: 
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E’ = DT’/ W’, Eq. (14) 

3.3.3. Fraction of antimicrobials present in manure readily available to be applied onto soil 

(module 3, “applied manure level”) 

Different fractions of the total, including pig, manure produced in a country, are either directly applied 

on soil after storage, or directly exported, or processed (treated) after storage and afterwards applied 

on soil or exported (VLM, 2017). Depending on the country, different methods of manure processing 

can be employed, including a biological treatment which follows denitrification (anaerobic) and 

nitrification (aerobic) processes (Smet et al., 2003), biothermal drying (also called composting) (Massé 

et al., 2014; Youngquist et al., 2016) or anaerobic digestation (Weiland, 2010; Widyasari-Mehta et al., 

2016).  

Therefore, the level of an AM in the total pig manure after storage in average pits, that is applied on 

soil without prior processing (ET) is estimated as: 

ET = a * E’, Eq. (15), 

where a is the percentage of the total pig manure produced that is applied on soil without processing 

after storage.  

The level of an AM in processed pig manure (EP) is estimated as: 

EP= b*c*d*E’, Eq. (16), 

where b is the percentage of the total pig manure produced that is processed before being applied on 

soil, c is the percentage of pig manure which is processed using a specific method, d is the level of the 

AM present in manure after processing depending on the method used, and E’ is the fraction of an AM 

found in manure after storage, compared to the amount of this AM administered orally to pigs 

(equation 14).  
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Finally, the level of AM residues in manure applied on soil (ES), compared to the amount of this AM 

administered orally to pigs, can be estimated as: 

ES = ET + EP, Eq. (17). 

Focusing on Belgium and assuming that available data from Flanders apply in the whole country, a 

percentage a of total pig manure produced in this country is put on soil without prior processing, a 

percentage b of it is processed, while the rest is exported as raw pig manure (VLM, 2017). The manure 

that is to be processed is first separated with centrifugation in a solid and a liquid fraction (Van den 

Meersche et al., 2017). The solid fraction is mainly processed by biothermal drying and is following 

exported (VCM, 2016), while the liquid fraction is mainly processed in biological nitrification-

denitrification plants (Smet et al., 2003; VLM, 2017). This latter biological treatment is the most 

common processing technique for pig manure in Flanders and Belgium (VCM, 2016). The result of this 

treatment, the effluent, is then stored in big open air lagoons and can be used on agricultural fields 

(Smet et al., 2003). Since the processing of liquid pig manure corresponds to a percentage c of the total 

processed pig manure (VCM, 2016), it was assumed that an equal percentage of  liquid pig manure (c) 

is processed with  biological treatment. 

4. Results 

4.1. Literature review  

From the literature review, published information on the bioavailability (F) and metabolization (Y) 

inside the pig was retrieved for all selected, orally distributed antimicrobials (Table 1). For amoxicillin 

(experiments in fasted pigs), sulfadiazine (SDZ) and trimethoprim (TRIM) (experiments in fasted and 

non-fasted pigs), more than one F value (max 15% difference between them) was found and therefore 

their average was used in the model. For lincomycin, two distant F values were found (40% in non-

fasted, 70% in fasted pigs), of which the F value estimated in non-fasted pigs was used, assuming to be 

more representative of the average situation at a farm. For the other AM, only one F value was found 

and used. 
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Information on persistence (DT50) in pig manure under anaerobic conditions was found for five out of 

these twelve AM (Table 2), namely oxytetracycline, doxycycline, lincomycin, tylosin and tiamulin. Two 

DT50 values were found for oxytetracycline and doxycycline and therefore their average was used for 

the model estimations. The DT50 value for lincomycin was calculated based on equation (3), as 

information on the reduction of AM concentration in stored manure was available (Kuchta and Cessna, 

2009). The DT50 values for amoxicillin, spectinomycin, flumequine were not available in literature and 

therefore available DT50 values estimated for the group they belong to (i.e. DT50 for penicillins, 

aminoglycosides, fluoroquinolones, respectively) were used for the model. For tilmicosine, no 

significant degradation is observed over 73 days under anaerobic conditions (SPC, 2010), so this period 

was used as a reasonable estimation of its non-specified DT50 in manure. The DT50 value for 

sulfadiazine, although estimated in bovine manure, was considered relevant based on further 

information on persistence of this AM in pig manure (Heuer et al., 2008; Massé et al., 2014). No 

information regarding persistence in pig manure was available for trimethoprim and colistin.  

Information regarding the percentages of the total pig manure produced in Belgium that is put on soil 

without prior processing (a), the percentage of it that is processed (b) (VLM, 2017) and the percentage 

of pig liquid manure which is processed with  biological treatment (c) (VCM, 2016) was available (Table 

1). Data regarding the level of residues in manure after processing with biological treatment (d) were 

only available by Van den Meersche et al. (2017). By testing samples taken at different stages of 

manure treatment in two farms where pigs were administered doxycycline (DOX), sulfadiazine (SDZ), 

trimethoprim (TPM) and tylosin (TYL), they observed no residues of TMP or TYL in the liquid fraction 

of manure or in the storage lagoon, while they also observed a 56.7% (dSDZ=0.43) and 91.4% (dDOX=0.08) 

reduction of SDZ and DOX, respectively, during this treatment of liquid manure. Results were 

expressed on the matrix itself, being solid material or liquid lagoon. Recalculation to dry matter of the 

different matrices could place the results in another perspective (e.g. it could be in some cases that no 

reduction of certain antimicrobials has taken place). 
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4.2. Model results 

4.2.1. Module 1 (“animal level”) 

For each of the twelve selected AM, the total amount of each AM administered orally to the pigs in 

Belgium (kg) (W’) and the estimations of the model which are respective to module 1 (“animal level”) 

are summarized in Table 2. The total amount of the initially administered dose (X=1) of doxycycline 

and colistin was estimated to be found in freshly produced manure. High levels of spectinomycin 

(X=0.99), oxytetracycline (X=0.98), tilmicosin (X=0.97) and amoxicillin (X=0.93) were also estimated. 

The lowest levels of AM ending up in fresh manure were predicted for flumequine (X=0.05) and 

tiamulin (X=0.10). Generally, low bioavailability (F) and/or low metabolization (Y) of an AM result in a 

high level of residues of this AM being excreted in freshly produced manure (X), and vice versa.  

Given their low bioavailability and low metabolization, resulting in a high level of residues in freshly 

produced manure (X), combined with their high use in pigs in Belgium (W’), the highest amount of 

residues ending up in freshly produced pig manure was estimated for amoxicillin (B=46,273 kg) and 

doxycycline (B=26,868 kg). High levels of residues in fresh manure were also estimated for the very 

commonly used sulfadiazine (B=23,360 kg), an AM predicted to be excreted in manure in lower levels 

than the aforementioned AM. These results show that both pharmacokinetics (X) and usage amounts 

(W’) affect the total amount residues in freshly produced manure (B). 
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Table 2. Module 1 (“animal level”): summary for each of the twelve selected antimicrobials (AM), of the pig production stage it is mostly administered to, of 
the information retrieved from the literature review (i.e. F, Y),  of the total amount of each AM administered orally to the pigs in Belgium (kg) (W’) and of the 
estimations of the model (i.e. X, B) 

 
AM class AM compound 

administered to 
pigs orally 

Bioavailability 
of AM 

(F) 

Level of 
metabolisa-

tion of AM (Y) 

Level of AM in 
fresh manure 

(X) 

Amount of 
AM used 

orally in pigs 
(BE) (kg) (W’)e 

Amount of 
AM 

excreted in 
fresh 

manure (kg) 

(B) 

All references per AM 

Tetracyclines Oxytetracycline 0.05 0.50 0.98 5 224.52 5 120.03 Nielsen and Gyrd-Hansen (1996), Riviere 

and Papich (2009) 

Tetracyclines Doxycyline 0.21 0 1 26 867.82 26 867.82 Riond and Riviere (1990), Riviere and 

Papich (2009) 

Penicillins Amoxicillin 0.25 a 0.30 0.93 49 755.55 46 272.66 Agersø et al. (1998), Reyns et al. (2007), 

Ramos et al. (2012)  

Sulfonamides Sulfadiazine 0.85 a 0.56 0.52 44 922.17 23 359.53  Lamshoft et al. (2007), Riviere and Papich 

(2009) 

 Trimethoprim 0.92 a 0.50 0.54 9 194.47 4 965.01 Mengelers et al. (2001), Riviere and 

Papich (2009) 

Lincosamides Lincomycin 0.40 b  0.78 0.69 2 991.28 2 063.98 Hornish et al. (1987), Nielsen and Gyrd-

Hansen (1998), Rostel et al. (2000) 

Macrolides Tylosin  0.225c  0.60 0.87 2 293.98 1 995.76 Lewicki et al. (1991), JEFCA (2009) 

Macrolides Tilmicosin 0.20 0.15 0.97 1 523.06 1 477.37 MacNeil (1995), SPC (2010) 

Polymyxins Colistin 0 NAd 1 2 738.59 2 738.59 Riviere and Papich (2009), EMA (2009) 

Aminocyclitols Spectinomycin 0.10 0.10 0.99 3 988.38 3 948.50 Bhavsar and Thacker (2012)  

Fluoroquinolo-
nes 

Flumequine 1 0.95 0.05 194.79 9.74 Mevius et al. (1990) 

Pleuromutilins Tiamulin 0.90 1 0.10 594.33 59.43 Almeida et al. (2014), SPC (2011) 

Total of these compounds    150 288.94 118 741.34  

 
Notes: a Average of close available F values (max 15% difference between them); b F  value estimated in non-fasted pigs; c for tylosin A; d NA=not applicable 
(since oral bioavailability is 0); e based on 2016 Belgian data from BelVet-SAC.
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4.2.2. Module 2 (“stored manure level”) 

Table 3 presents the results of the literature review (i.e. DT50 values, estimations of DT90 and k) and the 

first part of the model estimations which correspond to module 2 “stored manure level”, while Table 

4 summarizes the second part of module 2 estimations. The separation in first and second parts is only 

due to presentation purposes. Comparing the ten AM for which information was available 

(corresponding to 57% of total amount of AM used in pigs), tiamulin, flumequine, lincomycin and 

doxycycline were found to be the most persistent in pig manure after common storage durations [i.e. 

higher levels of these AM present in stored manure (Zi, Zi,Δt) estimated], as the highest DT90  values 

were estimated for them. The opposite was estimated for tylosin, amoxicillin and sulfadiazine (Table 

3). 

Comparing again the AM for which information was available, the highest levels of an AM found in 

manure after storage, compared to the amount of this AM administered orally to pigs (%) (E’) were 

estimated for doxycycline (E’=55%), followed by tilmicosine, lincomycin and oxytetracycline, while the 

lowest E’ were estimated for flumequine (E’=2.93%), followed by tylosin, tiamulin and amoxicillin 

(Table 4). These are combined results of the estimated level of each AM being excreted in fresh manure 

(X) and the level of each AM being present in manure after storage (Zi,Δt). For instance, doxycycline and 

oxytetracycline are AM with estimated high excretion level in fresh manure and high persistence in 

stored manure. On the contrary, tylosin and amoxicillin, although highly excreted in fresh manure, they 

are fast degraded in this matrix, while flumequine and tiamulin, although highly persistent in stored 

manure, they are limitedly excreted in fresh manure. The model estimated that a mean value of 

E’=18.42% of the total amount of the ten AM initially administered, for which information was 

available, is present unmetabolised in manure after storage. 

Focusing on Belgium and taking also into account the total amounts of each AM used (W’), it is 

estimated that in this country the highest total amount of residues in stored manure (D’T) are residues 

of doxycycline, followed by considerably lower amounts of amoxicillin and sulfadiazine. The lowest D’T 
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were estimated for flumequine, tiamulin and tylosin. The model estimated that a mean value of D’T = 

25,493 kg of residues of these ten AM are still present in manure after storage in average ready-to-be-

emptied pits in Belgium. 
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Table 3. Summary of the results of the literature review (i.e. DT50 values, estimations of DT90 and k) and of the first part of the model estimations which 

correspond to module 2 (“stored manure”) (i.e. Ci, Zi, Zi,Δt, D’i,Δt) 

AM class AM 
compound 

D
T5

0
 (

d
) 

(m
in

 -
 m

a
x)

 

D
T9

0
 (

d
) 

(m
in

 -
 m

a
x)

 

k Level of reduction in AM 
concentration during a 

storage duration  (%) (Ci) 

Level of an AM found in 
manure at the end of a 

storage duration, 
compared to the 

concentration of this AM in 
fresh manure (%) (Zi)  

Mean value of the level of 
an AM present in manure 

stored for a certain 
duration, compared to the 
concentration of this AM in 

fresh manure (%) (Zi,Δt) 

Mean amount of an AM 
present in manure stored for a 
certain duration in an average 

pit in Belgium (kg) (D’i,Δt) 
 

All references per 
AM 

After 1 
month 

(m) 

After  
4 m 

After  
6 m 

After  
1 m 

After  
4 m 

After  
6 m 

T1≤1m 1m< T2 
≤4m 

4m< T3 

≤6m 
V1 

h= 
16,67% 

V2= 
50,00% 

V3= 
33,33% 

Tetracyclines Oxytetracycl
ine 

12- 
79 a 

40-
262 

0.0152 37 84 94 63 16 6 81.5 39.5 11 695.47 1011.21 187.73 Massé et al. (2014), Wohde 

et al. (2016), Blackwell et al. 

(2015) 

Tetracyclines Doxycyline 53-
120 a 

176-
399 

0.008 21 62 76 79 38 24 89.5 58.5 31 4 007.78 7858.84 2776.34 Massé et al. (2014), Wohde 

et al. (2016), Widyasari-

Mehta et al. (2016) 

Penicillins Amoxicillin 5 b 17 0.1386 98 100 100 2 0 0 51 1 0 1 388.18 231.36 0 Massé et al. (2014) 

Sulfonamides Sulfadiazine 17 c 56 0.0408 71 99 100 29 1 0 64.5 15 0.5 2 511.15 1751.96 38.93 Kreuzig and Höltge (2005), 

Lamshoft et al. (2007) 

 
Trimetho-
prim NF d,e NF NF 

NEi NE NE NE NE NE NE NE NE NE NE NE NF 

Lincosamides Lincomycin 91 302 0.0075 20 59 74 80 41 26 90 60.5 33.5 309.60 624.35 230.48 Kuchta and Cessna (2009) 

Macrolides Tylosin  <2 f <7 0.3466 100 100 100 0 0 0 50 0 0 55.45 0 0 Massé et al. (2014), Wohde 

et al. (2016), Loke et al. 

(2000), Kolz et al. (2005) 

Macrolides Tilmicosin 73 243 0.0095 25 68 82 75 32 18 87.5 53.5 25 195.46 358.53 111.69 SPC (2010) 

Polymyxins Colistin NF NF NF NE NE NE NE NE NE NE NE NE NE NE NE NF 

Aminocycli-
tols 

Spectinomy-
cin 

30 b 100 0.0231 50 94 98 50 6 2 75 28 4 493.56 552.79 52.65 Massé et al. (2014), Kuchta 

and Cessna (2009) 

Fluoroquinolon
es 

Flumequine 100 b 332 0.0069 19 56 71 81 44 29 90.5 62.5 36.5 1.47 3.04 1.19 Massé et al. (2014) 

Pleuromutilin Tiamulin >200 g >664 0.0035 10 34 47 90 66 53 95 78 59.5 9.41 23.18 11.79 Schlüsener et al. (2006) 
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Notes: a The average of these DT50 values was used for the estimation of k; b these values correspond to group level estimations (Massé et al., 2014); c reasonable 

estimation, based on experimental data from bovine manure; d NF=quantitative estimate not found;  e a likely short degradation period is expected (Haller et 

al., 2002); f for tylosin A; g the model estimations for this AM present minimum values; h the fractions of manure stored for different durations are denoted as 

V; i NE= not estimated.
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Table 4. Summary of the second part of model estimations respective to module 2 (“stored manure”) 

(i.e. mean values of D’T, E’) and of estimations respective to module 3 (“applied manure”) (i.e. mean 

value of ET)  

 
AM class  AM compound Total amount of an 

AM present in 
manure after storage 
in average ready-to-
be-emptied pits, at 
country (Belgian) 

level (kg) (D’T) (mean 
value) 

Level of an AM 
found in manure 

after storage, 
compared to the 

amount of this AM 
administered orally 

to pigs (%) (E’) 
(mean)d 

Fraction of the 
amount of an AM 

initially 
administered orally 
that is present in pig 

manure which is 
applied onto Belgian 

soil without prior 
processing (%) (ET) 

(mean)e 

Tetracyclines Oxytetracycline 1 894.41 36 19 

Tetracyclines Doxycycline 14 642.96 55 29 

Penicillins Amoxicillin 1 619.54 3 2 

Sulfonamides Sulfadiazine 4 302.05 10 5 

 Trimethoprim NEb NE NE 

Lincosamides Lincomycin 1 164.43 39 20.44 

Macrolides Tylosin  55.45 2 1.27 

Macrolides Tilmicosin 665.68 44 23 

Polymyxins Colistin NE NE NE 

Aminocyclitols Spectinomycin 1 099.00 28 14 

Fluoroquinolones Flumequine 5.70 2.93 1.54 

Pleuromutilin Tiamulin 44.37c 7 3.92 

Total of these compoundsa 25 493.59 18.42 9.67 

 
Notes: a  total from AM compounds for which quantitative info was available; bNE= not estimated; c to 

be considered as minimum estimation; d E’ is estimated for each AM and thus is applicable both at pit 

and country level; e for Belgium, ET=0.525*E’. 

4.2.3. Module 3 (“applied manure level”) 

In a country where 52.5% of the total produced pig manure is applied on soil unprocessed, like in 

Belgium (VLM, 2017), the level of each AM initially administered orally to pigs that is present in this 

stored but unprocessed manure applied on soil (ET) is assumed to correspond respectively to the 52.5% 

of the level of each AM present in manure at the end of storage (E’) (Table 4). Therefore, it is estimated 

that in Belgium, ET=9.67% of the total amount of the ten AM is present unmetabolised in unprocessed 

manure at the moment of deposition on the soil. 
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In the same country, 40% of the total produced pig manure is processed with biological treatment, in 

which processed manure certain AM residues can also be present. Given the availability of data 

regarding the level of residues in manure after processing (d) with biological treatment for doxycycline 

(DOX) and sulfadiazine (SDZ), it was possible to estimate for these AM, their levels in the total 

processed pig manure, compared to their level in fresh manure (EP(DOX)= 2%; EP(SDZ)= 1%) and their total 

level in manure applied on soil, compared to the total initial amount of these AM administered to pigs 

(ES(DOX)= 30%; ES(SDZ)= 6%). The rest of manure (estimated 7.5%) is eventually exported and, therefore, 

not applied on Belgian soil. 

5. Discussion 

This model estimated that at least 18% of the total amount of antimicrobials (AM) administered to pigs 

orally are still present in manure readily applied onto soil (E’), in a country where the ten studied AM 

are used (Table 4). In Belgium, this percentage corresponds to over 25,000 kg of AM residues present 

in manure at the end of storage due to oral group treatments of pigs (D’T). If manure processing and 

export are taken into account, the level of AM residues that can be transferred to soil via manure 

application is reduced to at least ET=9.67% for this country. From the selected AM, the use of 

doxycycline (E’=55%), a tetracycline, is estimated to cause the highest level of residues that can end 

up in soil via this pathway. This is a combining result of its low bioavailability (Table 2) and high stability 

in manure (Table 3). In Belgium, where doxycycline is also highly used for pigs orally (p.o.) (Table 2), 

the highest total amount of residues present in manure after common storage durations and 

conditions (D’T) concerns this AM. However, amoxicillin, despite being the AM mostly used in pigs p.o. 

in Belgium, is predicted to be found in comparatively small amounts in stored manure. In conclusion, 

besides usage amounts, the pharmacokinetic behavior of different AM is a decisive factor in the 

occurrence of AM ending up in the environment. 

Along with doxycycline and oxytetracycline, the model estimated that high levels of residues of 

tiamulin, flumequine, lincomycin and tilmicosin, compared to their initial concentration in fresh 
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manure, can still be found after six months of manure storage in pits (Zi), while a lower level is also 

estimated for spectinomycin. On the contrary, residues of amoxicillin, as a β-lactam model compound 

(Berendsen et al., 2015), and tylosin (AM with high levels in fresh manure, but not very stable in it), 

are not estimated to be found in manure stored for six  months (Zi). As for sulfadiazine, it has been 

observed that metabolites of the AM have been reversibly converted to sulfadiazine in manure during 

storage (Lamshöft et al., 2010), and therefore more residues of this AM than the estimated level would 

be expected to be present at the end of common manure storage durations.  

The results of the literature search and this model regarding the AM that can be found in manure after 

common storage durations are in accordance with the manure test results from the Belgian 

experiment (Rasschaert et al., 2018; manuscript in preparation), with two exceptions: spectinomycin, 

which was not detected in the tested samples, although it was predicted to be according to this study; 

and tilmicosine, which was rarely found in the tested samples, in contrast to the estimations of this 

model. For spectinomycin, this might be due to the fact that our model estimations were based on one 

available reference presenting the results of a simulation experiment (Kuchta and Cessna, 2009), so 

the different conditions could have had a different effect on residues. Another possible explanation is 

that the limit of detection (LOD) of the method used for sample testing was rather high. When a more 

sensitive method is validated, samples could be re-analysed to check if residues of spectinomycin can 

be detected. For tilmicosince, this difference could be attributed to the fact that a reasonable 

estimation of DT50 was used in the model, as described in the Methods. Trimethoprim, for which no 

information on persistence was found in literature, was also rarely found in tested samples in the 

experiment and in low concentrations. In two studies performed in Spain (Carballo et al., 2016) and 

the Netherlands (Zuidema et al., 2014), doxycycline and oxytetracycline were the AM residues mostly 

found in samples of stored pig manure. According to this model, residues of oxytetracycline are 

predicted to be found less commonly, possibly because this AM is used less commonly in Belgium 

and/or because the average of two distant DT90 values available was used. The maximum DT90 value 

found for oxytetracycline is quite high (DT90(max)=262 days), compared to the minimum one (DT90(min)=40 
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days) (Wohde et al., 2016), pointing out a potential underestimation of the stability of this AM in stored 

manure. 

To our knowledge, this is the first attempt to model together the mechanisms of metabolisation inside 

the animal body and of degradability in unprocessed and processed manure of AM commonly used 

orally in pigs and to provide estimates of the level of the administered AM that end up in manure 

readily applied onto soil (E’ and ES). These estimates can be further used in combined models assessing 

the fate of these AM in other environmental compartments, such as soil and water. Besides, the AM 

we focused on for the purposes of this manuscript are commonly used in many countries (EMA, 2017) 

and the results of the review and the model are relevant to them. Another strength of this model is 

that, although it followed a deterministic approach in a large part (equations 1-8), it can easily be 

transformed into a merely probabilistic one, upon availability of more data on bioavailability (F), 

metabolisation (Y), DT50 and degradability due to processing (d) depending on the method used. 

This model assumed first-order kinetics for the selected AM inside the pig and in manure. In absence 

of published quantitative data regarding the time until total degradation of each AM (parent drug) in 

manure, this assumption allowed us to perform our calculations by estimating first the DT90 (time until 

degradation of 90% of AM in this matrix) values per AM, based on DT50 values retrieved. That is because 

the DT90 values, which are the closest estimates to the time until total AM degradation, are rarely 

specified in publications. Therefore, the exact estimations of this model need to be perceived as 

indicative. Moreover, although the application of manure to agricultural fields also likely introduces 

breakdown products (metabolites) into the environment along with the parent compound (Wohde et 

al., 2016), persistence data for degradation products were not found in the reviewed literature. It was 

therefore assumed that these products are inactive and were not included in the estimations of this 

study.  

The amounts of AM residues present in manure after passive storage due to oral pig treatments in 

Belgium (D’T) which are estimated according to this model, represent a proportion of the total amount 
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of AM residues that can end up in soil from veterinary use (e.g. other AM used in pigs, residues from 

consumption of cross-contaminated feed, other routes of administration, use in other species are not 

considered). To reduce the amounts of AM residues in manure, processing of animal waste with 

different methods prior to soil disposal is suggested as an effective approach (e.g. Varel et al., 2012; 

Chai et al., 2016; Youngquist et al., 2016) and should therefore be performed as much as possible. As 

shown in this study, biological treatment, which is the main method used for processing of pig manure 

in Belgium, reduced the amount of residues of doxycycline and sulfadiazine in this matrix. This method 

may as well be a tool to considerably reduce residues from other AM, antibiotic resistance genes and 

zoonotic pathogens present in the manure (Van den Meersche et al., 2017). To control the release of 

AM residues from manure to soil, the implementation of regulations dealing with fertilization of soil 

with manure at EU (EC, 1991) and country level and the specification of safety limits for 

pharmaceuticals in manure (currently unavailable) to regulate its applicability as fertilizer are also very 

crucial. Moreover, it would be interesting to investigate the effect of U.V. light on the degradation of 

antimicrobials in manure. For example, the results of Gómez-Pacheco et al. (2012) showed that 

medium-pressure mercury lamp radiation is effective for the photooxidation of tetracyclines in 

aqueous phase, mainly when these are at low concentrations. On the other hand, tetracycline-HCl in 

dry state is stable when stored at room temperature, regardless of exposure to light (Wu et al. 2005). 

The results of this study highlight the importance of using veterinary antimicrobials rationally as their 

residues may spread in the environment and play a role in the selection, development and spread of 

antimicrobial resistance in different environmental compartments, for instance through the 

introduction of antimicrobial residues and resistance genes (e.g. sul2, a sulfadiazine-resistance gene) 

(Heuer et al., 2008), first, in soil. This research also highlights the class-specific behavior of different 

AMs in the majority of cases, which can be further used to advise on use of the different classes on a 

(supra)national level. As revealed from this study, the physical-chemical properties of tetracyclines 

(especially doxycycline) place them to a position of interest in this respect, as they can persist in high 

levels in manure stored for common storage durations, while on top of this, they are known to strongly 



179 
 

sorb (Kemper, 2008) and are therefore expected to remain in the soil or to be transported into surface 

waters via particles. Additionally, it is clear that more research is required to understand kinetics of 

biodegradation and potencies of degraded products of various antimicrobials in different 

environments (manure, soil, waste water). 
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1. Residues of antimicrobials in non-target pig feed: how big is the problem in relation to 

antimicrobial resistance? 

The production and use of antimicrobial medicated feed results in cross-contamination of non-target 

feed with residues of antimicrobials. Since this cross-contamination can occur through different 

pathways, at different levels (i.e. feed mill, transport truck, farm) (Figure 1) and depends on various 

factors (e.g. properties of the compound, fast production lines, age of transport trucks), it is generally 

considered unavoidable to a certain extent. On the other hand, keeping the level of antimicrobial carry-

over to the proposed maximum limit of 1% (EC, 2014) is very demanding from an operational point of 

view (e.g. requires thorough sampling and control of flushing batches) and probably too expensive to 

keep it profitable. This is the reason why the Association of Dutch Feed Produces (NEVEDI) voluntarily 

decided to cease the production of medicated feed in feed mills in 2011. In Belgium, to reduce the risk 

of cross-contamination during the production of medicated feed at the feed-mill, the antimicrobial 

premix can only be mixed in the feed at a dedicated end-of-line mixer, since 2013 (BFA, 2013). 

The biggest consumer of antimicrobial medicated feed is the pig population (e.g. 99.3%, in Belgium 

(BelVet-SAC, 2017)). To assess the level of exposure of the pig population to feed accidentally cross-

contaminated with antimicrobial residues and the consequent potential for resistance selection, two 

models were developed (Chapters 4, 5). Even though the estimations of the models are largely based 

on Belgian data, important conclusions can be drawn to a wider scale.  

First, this cross-contamination can occur at one or more of the following levels: the feed mill, the 

transport truck as well as the farm. This means that the risk needs to be controlled at three different 

levels, largely independent from each other, and therefore it is very hard to be fully removed. This was 

confirmed when two what-if scenarios were tested (Chapter 4), which concerned the use of an end-

of-line mixer at the feed-mill (scenario 1) and the use of a fine-dosing system truck (scenario 2). Both 

of these scenarios exclude the cross-contamination at the feed-mill, where the highest level of carry-

over has been observed (>3%) (Stolker et al., 2013). The second model also excludes the cross-

contamination in the bin of the transport truck (1% carry-over possible in the truck bin during feed 

transport) (Putier, 2010). Even though a significant reduction of the risk was observed in these 

scenarios (30% for scenario 1; 54% for scenario 2), carry-over could still occur albeit at a lower level 

(1% carry-over possible during feed unloading (Putier, 2010); predicted 1% carry-over at the farm). 

Further research currently executed at the faculty of Veterinary Medicine of Ghent University aims to 

estimate the level of antimicrobial carry-over at the farm level. 

Secondly, the production at the feed-mill and the use of antimicrobial medicated feed results in the 

cross-contamination of batches of non-target feed which can generally reach any pig, often 
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irrespectively of whether medicated feed is used at a farm. For instance, in Belgium, flushing batches 

of feed are fed to piglets, sows and fattening pigs <80kg. Likewise, a batch of non-target feed can get 

cross-contaminated in the truck, if transported directly after a medicated feed batch, and then be fed 

to animals of the farm it is delivered to. According to the second model developed (Chapter 5), the risk 

of exposure to feed cross-contaminated with antimicrobial residues is higher for piglets and sows, and 

lower for fattening pigs, in absolute and in relative values. The most important reason for the higher 

exposure of sows is the fact that, since sows are not expected to be slaughtered soon, the risk of 

residues in their meat due to cross-contaminated feed is low and, therefore, the production of sow 

feed is preferred after the production of a batch of medicated feed. Another reason for the higher 

exposure of sows in relative values [e.g. 7.7% and 22.4% of sows in Belgium exposed to feed with 1% 

carry-over of doxycycline (DOX) and sulfadiazine (SDZ), respectively], is the fact that different feed is 

given to sows depending on their stage (i.e. lactation, gestation), which is often transported or stored 

at different times, representing more opportunities for cross-contamination. Other reasons include 

the smaller population and longer duration of this production stage compared to the other two stages. 

In terms of exposure to these residues, the piglets follow after sows (e.g. 4.2% and 12% of piglets in 

Belgium exposed to feed with 1% carry-over of DOX and SDZ, respectively) and precede the fattening 

pigs in relative values. As for the sows, feed for piglets is also produced after medicated feed, since 

piglets are further away from the time of slaughter than fattening pigs and the risk for residues in meat 

is low. The level of exposure of piglets is higher compared to fattening pigs also due to the distribution 

of pig production (e.g. number of production rounds per year is higher for piglets). In response to in-

feed antimicrobials, including residues in cross-contaminated feed, younger pigs appear to exhibit 

more changes in their gut microbiota compared to older swine (Holman and Chénier, 2015). As a 

consequence, feeding potentially cross-contaminated feed to young piglets is likely more detrimental.   

Thirdly, the exposure of pigs to residual concentrations of different antimicrobials depends on the 

pharmacokinetic properties of each compound and the level of use of each compound for the 

production of medicated feed. Given the important role of pharmacokinetics, the general proposed 

limit of 1% carry-over can result in completely different intestinal concentrations for different 

antimicrobial compounds. For instance, Peeters et al. (2016) found a correlation between the oral 

bioavailability and the intestinal residual concentrations of doxycycline (DOX), chlortetracycline (CTC) 

and sulphadizine-trimethoprim (SDZ-TRIM): the transfer of the antimicrobial from feed to gut was high 

to very high in the case of tetracyclines, which have generally low oral bioavailability in pigs (DOX 21-

50%, CTC 6-18%). On the other hand, SDZ and TRIM, compounds with high oral bioavailability (SDZ 

85%, TRIM 92%), showed a low transfer from feed to gut. This correlation of intestinal concentrations 

should be interpreted carefully, as other (unknown) pharmacokinetic properties might also influence 
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these concentrations. For example, tetracyclines, undrego enterohepatic circulation (del Castillo et al., 

2013). Moreover, these results should not be extrapolated to other antimicrobials as each one has its 

specific properties. At country level, the level of use of different antimicrobials also affects the 

exposure of pigs to different residues. For instance, in Belgium, SDZ is the antimicrobial used the most 

as premix (always in combination with TRIM), and therefore residues from exposure to feed cross-

contaminated with SDZ are estimated to be found in many pigs (Chapter 5), although at a lower 

concentration in the gut than antimicrobials with lower bioavailability.   

Fourthly, cross-contamination of feed with antimicrobials, including doxycycline (DOX), likely 

promotes the spread of antimicrobial resistance. A study by Peeters et al. (2018) showed that residual 

concentrations of DOX as low as 1 and 4 mg/L likely to be found in the porcine caecum and colon of 

pigs, due to cross-contaminated feed with 1% and 3% carry-over level respectively, have the potential 

to enrich tetracycline resistant commensal E. coli in vitro. Using also an ex vivo model simulating the 

porcine caecum, Peeters et al. (2017) observed that residual intestinal DOX concentrations, 

corresponding to a carry-over level equal and higher than 1%, have the potential to select for DOX 

resistant E. coli and to promote conjugation. Therefore, the presence of residual DOX concentrations 

in the porcine microbiota also forms a threat to the health of other species, including humans, in 

particular because of co-transfer of important resistance genes together with the DOX resistance 

genes. Yet, the type of antimicrobial and the associated resistance mechanisms may strongly influence 

the extent to which selection of resistant bacteria occurs. Consequently, no conclusions can be drawn 

on the selective pressure of residual concentrations of other antimicrobials in absence of experimental 

data available in literature.  

At this stage, it is rather challenging to specify the contribution of (pig) feed cross-contamination with 

antimicrobial residues to the problem of antimicrobial resistance in animals. A rough estimation would 

suggest that it is likely small, for instance compared to the intended use of antimicrobials to animals 

(pigs). However, given the four aforementioned points (occurrence at different levels, wide exposure 

of pigs, role of pharmacokinetics, role of residues in selection pressure), this issue should be controlled. 

Recommendations to control this issue are described in the respective sections (7.3.1, 7.3.2). 
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Figure 1. Five processes related to medicated feed use: production at the feed-mill, transport and unloading from 

truck, storage and distribution at the farm. 

 

2. Residues of in-feed and in-water antimicrobials in pig manure: how big is the problem in relation 

to antimicrobial resistance? 

Residues of antimicrobials administered to pigs in feed or water end up in manure which, processed 

or unprocessed, is applied on soil as fertilizer and soil amendment. Safety limits for antimicrobials in 

manure to regulate its applicability as fertilizer are currently unavailable. The release of antimicrobial 

residues from manure to soil is unintendedly controlled to a certain (unknown) extent by the 

implementation of regulations dealing with fertilization of soil with manure at the European Union 

(EU) (EC, 1991). These regulations mainly focus on controlling and limiting the release of nitrogen and 

phosphorus in soil. 

In the EU, oral treatments represent the most common route of antimicrobial administration for 

livestock species (>90%) (EMA, 2017). In Belgium, oral is also the most common route of administration 

of antimicrobials to (groups of) pigs, which are the highest consumers of antimicrobials in the country 

in absolute terms, compared to other important agricultural sectors (Chapter 2). To estimate the level 

of antimicrobials administered to pigs via feed and water that end up in soil via manure application, a 

model was developed in Chapter 6. Although the estimations of the model are based on Belgian data 
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in terms of amounts (i.e. estimated kg of residues in manure), important conclusions can be drawn to 

a bigger scale. 

Firstly, residues of many antimicrobials are still present (as parent compound) in pig manure after 

storage of even 6 months, which is a common maximum storage duration. This is predicted to be the 

case for 8 out of 10 antimicrobials commonly used in pigs, namely: doxycycline, oxytetracycline, 

sulfadiazine, tilmicosin, lincomycin, spectinomycin, flumequine and tiamulin (Chapter 7). This is a 

combining result of the pharmacokinetics and the stability in pig manure of each compound. Regarding 

pharmacokinetics, a general observation was that low (oral) bioavailability and/or low metabolisation 

of an antimicrobial result in a high level of residues of this antimicrobial being excreted as parent 

compound in freshly produced manure, and vice versa. Based on the model, the highest level of 

residues in stored manure concerns two tetracyclines (doxycycline and oxytetracycline), the macrolide 

tilmicosin and the lincosamide lincomycin, from the ten antimicrobials here studied. In particular, the 

highest level of residues is estimated for doxycycline (DOX) (i.e. 55% of DOX in manure after storage 

for six months, compared to amount of DOX initially administered to pigs orally), which is one of the 

most commonly used oral (p.o.) antimicrobials (BelVet-SAC, 2017; EMA, 2017). On the contrary, 

amoxicillin, despite being the antimicrobial mostly used in pigs p.o. in Belgium, is predicted to be found 

in comparatively small amounts in stored manure, as it is not stable in this matrix. As for sulfadiazine, 

which is also highly used in pigs p.o., it has been observed that metabolites of the antimicrobial have 

been reversibly converted to sulfadiazine in manure during storage (Lamshöft et al., 2010), and 

therefore more residues of it than the estimated (low) level would be expected to be present at the 

end of manure storage. Persistence data for antimicrobial metabolites were not available and 

therefore not included in the estimations of the model.  

Secondly, land application of manure containing active antimicrobial residues enables the spread of 

antimicrobial resistance. Antimicrobial residues in manure may select for resistance in pathogens and 

commensal bacteria, that may be introduced to soil after fertilization (Du and Liu, 2012; Rasschaert et 

al., 2017). Manure may also serve as a reservoir for antimicrobial resistance genes and mobile genetic 

elements (Binh et al., 2008; Whitehead and Cotta, 2013; Wang et al., 2018). Residual antimicrobials in 

the soil may possibly assist in developing antibiotic resistant microbial populations (Morris and 

Masterton, 2002), microbial activity (Jjemba, 2002), and alter soil microbial constitution and functions. 

The occurrence of antimicrobial resistance genes in various soil bacteria has been detected (Heuer et 

al., 2008, 2011) and their abundance in soils has increased significantly in time (Knapp et al. 2010). 

Furthermore, it has been suggested that the concentrations of antimicrobial residues found in 

agricultural soils (i.e. even 100 times lower than the minimum inhibitory concentrations (MIC) values) 

could be high enough to enrich these environments with resistant bacteria (Liu et al., 2011; Sandegren, 
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2014; Carballo et al., 2016). Moreover, antimicrobial residues could be absorbed by and accumulated 

in edible parts of vegetables, such as lettuce (Cui et al., 2008), potato (Dolliver et al., 2007), and leek 

(Wang and Han, 2008). The uptake of antimicrobials by vegetables differs between antimicrobials and 

vegetable species (Boxall et al., 2006). The consumption of (raw) vegetables poses a threat to human 

and animal health in terms of transmission of antimicrobial resistance via the food-borne route. 

Leaching of antibiotics into deeper soil or into groundwater is also possible (Joy et al., 2013). Yet, the 

sparsely available existing information needs to be expanded in order to fully appreciate the 

relationship between the presence of residual concentrations of antibiotics in manure and soil and the 

development and spread of antimicrobial resistance in the environment. 

Thirdly, the treatment (processing) of pig manure before application reduces the amount of 

antimicrobial residues introduced in soil via manure application. The level of reduction is different 

depending on the method used. Generally, there are three methods to treat manure: biological 

treatment which follows denitrification (anaerobic) and nitrification (aerobic) processes (Smet et al., 

2003), biothermal drying (also called composting) (Massé et al., 2014; Youngquist et al., 2016) or 

anaerobic digestation (Weiland P., 2010; Widyasari-Mehta et al., 2016). In Belgium, the liquid fraction 

of pig manure is mainly processed with biological treatment, while the solid fraction is mainly 

processed by biothermal drying (composting) and is, after drying, exported (VCM, 2016). So far, there 

is no published information on the effectiveness of the biological manure treatment regarding the level 

of reduction of antimicrobial residues. However, preliminary results from a Belgian project examining 

this (Van den Meersche et al., 2017) showed that biological manure treatment in one farm 

substantially reduced the amount of residues of doxycycline (estimated 92% reduction) and 

sulfadiazine (estimated 57% reduction) in pig manure. In a follow-up study on another farm, this 

reduction was not observed, so more results are needed to conclude if and at what extent biological 

manure treatment can cause reduction in residues. Composting is also considered as an effective 

method to remove antimicrobial residues. For instance, doxycycline was removed up to 70% as parent 

compound after composting of pig feces for 112 days under laboratory conditions (Szatmári et al., 

2011). Indicatively, oxytetracycline was reduced by 85-99% after composting of calf manure (Arikan et 

al., 2007), likely due to additional aerobic bioactivity (Massé et al., 2014). Anaerobic digestion can also 

degrade antimicrobials to various extents depending on certain factors (e.g. class of antimicrobial, 

bioreactor operating conditions) (Varel et al., 2012). Despite the documented effectiveness of these 

methods in reducing the level of antimicrobial residues in manure, manure is very often applied on soil 

without prior processing. In Belgium, 52.5% of the total produced pig manure is estimated to be 

applied on soil unprocessed (VLM, 2017). Even if the reduction of residues is not full during treatment 

and the results seem to vary between different compounds and methods, manure treatment is an 
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effective approach to reduce the amount of antimicrobial residues spread to soil. However, no 

conclusions can be drawn yet regarding the effectiveness of these methods in completely removing 

antimicrobial resistance genes and bacteria from different factions of manure (e.g. effluent, sludge) or 

other manure products (i.e. compost, digestates). Research currently executed at the Flanders 

research institute for agriculture, fisheries and food (ILVO) aims to fill this latter knowledge gap. 

It is very challenging to specify the level of contribution of oral pig antimicrobial treatments to the 

development and spread of antimicrobial resistance in soil (and the environment). The main reasons 

for this are the limited information available regarding the behavior of many antimicrobials in manure 

of pigs (even more limited for other species, e.g. cattle), and the limited information regarding the role 

of different antimicrobials in the development and spread of resistance in manure and soil. However, 

if we focus on the contribution of oral pig antimicrobial treatments to the amount of residues ending 

up in soil due to agricultural practices, the contribution could be assumed to be quite high. This can be 

assumed as: first, pigs are among the highest livestock consumers of antimicrobials and specifically in 

Belgium, are estimated to be the highest, compared to other important sectors such as poultry 

(Persoons et al., 2010), veal calves (Pardon et al., 2012) (Chapter 2) and cattle (Stevens et al., 2016). 

Second, the oral administration of antimicrobials is generally assumed to result in the excretion of 

more residues in fresh pig manure, compared to the parenteral, due to incomplete absorption of 

antimicrobials. Third, the exposure of pigs to cross-contaminated feed (Chapter 5) and water also adds 

up to the amount of residues in manure from oral use of antimicrobials. Consequently, controlling the 

issue of antimicrobial residues in manure and especially those resulting from oral treatments in pigs, 

is a necessity. Recommendations to control this issue are described in the respective section (7.3). 

 

3. Antimicrobial treatment in pigs through feed and water: The way forward? 

In this section, recommendations regarding the oral use of antimicrobials to pigs are provided. With a 

focus on the subjects of this thesis (Figure 2), these recommendations cover four general axes: 

practices, evidence, awareness and policy. These are also the broader focus areas of the FAO Action 

Plan on antimicrobial resistance (Figure 3) (FAO, 2016). 

3.1. Reduce oral antimicrobial treatments of pigs 

Reducing the amount and frequency of oral antimicrobial treatments of pigs is a logic and 

straightforward way to achieve a reduction in the total use of antimicrobials in pigs (and livestock). 

This is important regarding antimicrobial resistance, since it has been shown that antimicrobials use is 
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the strongest driver for antimicrobial resistance (e.g. Chantziaras et al., 2014). A reduction of 

antimicrobial treatments can be achieved by the following ways: 

- Increased focus on disease prevention through improvement of herd management, vaccination 

schemes, biosecurity, water and feed quality. Postma et al. (2015) showed that improved herd 

management and biosecurity resulted in a reduction of antimicrobial use of 52% in finisher pigs 

(from birth to slaughter) and 32% in breeding animals. They also observed improved production 

results (e.g in daily weight gain, number of piglets/sow/year)  and thereby an economic profit 

(Collineau et al., 2017). Alternatives to antimicrobial use also include the use of probiotics, 

prebiotics and competitive exclusion products (Chantziaras et al., 2017), while the shift from 

conventional to organic farming is generally linked to less antimicrobial use and resistance 

(Österberg et al., 2016). 

- Prohibition of prophylactic antimicrobial treatments. This includes a reduction in the production 

of medicated feed, as this type of administration is very often prophylactic. A strong reduction of 

the total antimicrobial use and of medicated feed is already observed in Belgium during the past 

years (e.g. 31% decrease in use of medicated feed between 2014-2016) (BelVet-SAC, 2017). 

Therefore, the results presented in Chapter 3 are believed to have been also reduced in absolute 

values. The prohibition of prophylactic antimicrobial treatments would also result in a reduction 

of the administration of in-water medication, which should only be used for metaphylactic or 

therapeutic purposes when necessary. Moreover, from a global perspective, the use of growth 

promoters (use of lower than therapeutic doses of antimicrobials) should also be prohibited 

(outside the EU and the USA). 

- Only treat the animals which should be treated, e.g. via parenteral injection. In this respect, it is 

also important to keep the number of animals that need to be treated limited, through early 

detection of infectious diseases (e.g. using biomarkers), separation of the early detected infected 

animals and individual treatment of them. This in accordance with the most recent WHO guidelines 

on the use of important antimicrobials in food-producing animals, urging to stop using 

antimicrobials in healthy animals (WHO, 2017a). 

- Choice of antimicrobial, based on correct laboratory identification of the bacterium and an 

accurate assessment of its in vitro antimicrobial susceptibility. In practice, this laboratory testing 

is rather expensive and time demanding and, therefore, the choice of antimicrobial is based on the 

clinical diagnosis and experience the veterinarian. Still, regular susceptibility testing should be 

promoted, even with late reception of results, to increase the veterinarian’s experience and to 

keep him/her better informed of the next disease outbreak in the same epidemiological unit.   
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- Based on the results of this thesis, it is recommended to use doxycycline (DOX) only after 

laboratory testing, due to the pharmacokinetic properties (low absorption), high excretion in 

manure and association with resistance selection in the pig gut. Moreover, DOX is stable in manure 

and soil, posing also an environmental risk. Besides, it is a highly important antimicrobial for human 

health, according to WHO (2017b). Targeting specific compounds should always be approached 

very cautiously, as the decrease in use of one antimicrobial (or a class) can potentially result in the 

increase of another antimicrobial (or class). For instance, this was recently observed in Denmark, 

where the reduction of the use of tetracyclines, within the framework of the so-called Yellow Card 

Initiative, resulted in a considerable increase of the use of macrolides (Okholm Nielsen et al., 2018). 

The role of this change with regard to antimicrobial resistance is currently unknown. 

3.2. Reduce cross-contamination of feed and water 

Reducing antimicrobial cross-contamination following oral treatments, albeit challenging, is crucial to 

reduce the potential for resistance selection in the gastro-intestinal tract and to reduce the level of 

antimicrobial residues in manure. Besides the reduction of oral antimicrobial treatments in pigs, 

including reduction of the production of medicated feed, a number of other measures can be taken to 

reduce carry-over in non-target feed and water.  

Reduce carry-over in feed 

- At the feed-mill. The risk of carry-over can be avoided considerably if the premix is added in the 

feed through a dedicated end-of-line mixer, instead of the main mixing line. This is the case for 

Belgium, since 2013. If the same mixing line is used for the production of medicated and non-

medicated feed, then it is crucial to target practices (production of flushing feed), the process 

(reduction of process length) and the feed (choice of less and non-powder products) that reduce 

the risk of cross-contamination. Cross-contamination at the feed-mill is also avoided when a fine 

dosing system is used. This is a recent practice which involves the mixing of the antimicrobial with 

feed at the time of delivery at the farm. Even though this is a more efficient method in terms of 

reducing the risk of carry-over, it is (still) expensive and therefore the use of these trucks is limited. 

- During transport and unloading of feed. Cross-contamination during transport (and also at the 

feed-mill) is minimized when a fine dosing system is used. When normal trucks are used to 

transport medicated feed, carry-over can be reduced by the use of new trucks (in years of use) and 

the use of the back bins to reduce the length of the circuit. The purging of trucks after each delivery 

is a responsibility of the drivers and, therefore, raising their awareness is of big importance. A 

professional cleaning of the trucks in regular intervals by dedicated companies would also be 
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beneficial to avoid persisting points of residue retainment, but this should act in a complementary 

way to the purging by the drivers. 

- At the farm. Carry-over at the farm depends on the practices of the farmer. Cleaning and 

disinfection of the silo, the pipelines for feed and the feeding troughs is rarely performed (Chapter 

3). Therefore, raising the awareness of farmers and the personnel on the importance of regular 

and thorough purging is essential. To avoid cross-contamination during storage, the use of a 

separate silo for medicated feed would be optimal. The use of top dressing as an alternative 

method for antimicrobial administration (often used in sows), although less risky in terms of carry-

over, it is not recommended due to possible inhomogeneity of the feed and consequent improper 

dosage. 

Reduce carry-over in water 

Besides medicated feed, antimicrobials are often administered orally via water. Based on the field-

study (Chapter 3), in-water medication was the most common method of oral administration of 

antimicrobials to piglets and fattening pigs. Compared to medicated feed, it is assumed that in-water 

medication is a less risky practice in terms of carry-over, since it can occur only at one level, the farm. 

This means that to control this issue, it is important to focus on the farmer and the personnel and raise 

their awareness on the importance of: 

- Cleaning and disinfection. Cleaning and disinfection of waterlines, which improves water quality, 

removes the biofilm (group of microorganisms in which cells stick to each other and often also to 

a surface) and prevents carry-over, is practiced in the majority of the farms visited in Belgium 

(62%), but an increase of this practice should be stressed, especially after the administration of in-

water antimicrobials. Cleaning of the tools used for the preparation of the medication is also a 

good practice. The use of a separate pipeline for the administration of water medication (e.g. in 

only 8% of visited farms in Belgium) would also reduce considerably the risk of carry-over, while 

the type of pipelines and of water tank and the use of pipelines of good quality is also important. 

- Use of good quality water. Insufficient water quality, among other things (e.g. homogeneity and 

stability problems), likely worsens the condition of the pipelines, where points of residue 

retainment are created. Additionally, the hardness and pH of the water can affect the solubility of 

different antimicrobials. For example, low pH is needed to dissolve tetracyclines, otherwise the 

drug sinks to the bottom and can cause the presence of residues. A sample to determine the 

drinking water quality should be taken regularly, which is not the case at the moment (Filippitzi et 

al., 2017). 
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Furthermore, appropriate pharmaceutical formulations for use in water should be developed and 

used, especially for use with dosing pumps. 

3.3. Policy measures 

Establishing new policy and regulations is a key step in the efforts towards the reduction of 

antimicrobial use and the battle against antimicrobial resistance. From a worldwide perspective, a ban 

of the use of subtherapeutic antimicrobials as growth promoters should be extended outside Europe 

and the USA. Fortunately, an important (46%) decrease in the percentage of countries authorising use 

of antimicrobials as growth promoters has been observed in the past few years (between 2012-2015), 

according to the most recent OIE report on antimicrobial use in animals (OIE, 2016). Another important 

measure would be the prohibition of prophylactic treatments. Antimicrobial stewardship (a systematic 

approach to optimising use of antimicrobials, to reduce inappropriate use, and reduce adverse 

consequences of antimicrobials, including antimicrobial resistance) has been touted as one of the key 

strategies required in tackling worldwide escalation of antibiotic resistance (Tiong et al., 2016). 

However, due to economic (and political) interests (e.g. rising economies in Asia or Latin America 

shifting to large-scale intensive farming), it would be challenging, yet not impossible, that these 

measures could be implemented at a full global scale. From a European Union (EU) perspective, it is 

necessary to establish a uniform policy to control the issues of concern of this thesis: the carry-over of 

antimicrobials residues in feed and the transfer of antimicrobials residues to soil via manure. 

Recommendations at policy level regarding these issues could be: 

Control of carry-over in feed 

Establishing legal limits for carry-over of antimicrobials should have a positive effect in preventing 

antimicrobial resistance selection and reducing the amount of residues in the environment. According 

to the last proposal for a regulation adopted by the European Commission (EC, 2014), it is proposed to 

introduce a general limit for carry-over of antimicrobials of 1% of the active substance of the last 

produced batch of medicated feed at the feed-mill. However, achieving the 1% limit at the feed-mill is 

rather challenging from a practical and economical point of view (e.g. regular and thorough testing and 

sampling of often inhomogeneous flushing batches, or purchase of additional mixers). This is the 

reason why this proposal has caused the reaction of several agencies (e.g. Committee on Agriculture 

and Rural Development (AGRI), European Feed Manufacturers’ Federation (FEFAC)), who claimed that 

the proposed 1% limit is not feasible in practice (EC, 2016).  

However, besides the practical concerns that arise regarding the 1% limit, the concerns regarding the 

potential for antimicrobial resistance development remain. It has been recently shown by Peeters et 

al. (2017, 2018) that doxycycline concentrations corresponding to 1% carry-over, select for resistance 
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to E. coli. They also observed that a 1% carry-over level of doxycycline possibly does not reduce the 

risk on resistance selection substantially compared to a 3% carry-over level. This 3% carry-over is the 

current limit used for feed additives other than antimicrobials, and is suggested by AGRI to be applied 

also on antimicrobials. Moreover, further studies point out that substantially lower antimicrobial 

concentrations (e.g. 100-fold lower) can still select for resistance bacteria (Gullberg et al., 2011). The 

selective pressure, presumably, depends on the type of antimicrobial and the bacteria they are 

exposed to. Therefore, establishing general carry-over limits might not be as relevant as focusing on 

specific antimicrobials (or classes). However, more research is still needed to identify these 

antimicrobials and their minimum concentrations in feed that can select for resistance.  

At this stage, it would be acceptable to stick to the maximum 1% for antimicrobials with a possibility 

of refinement (reduction) of this 1% maximum level in light of new research on specific antimicrobials. 

Reducing the use of antimicrobials in medicated feed substantially would be a more straightforward 

first approach to tackle (also) the cross-contamination issue. Besides, a number of countries (e.g. the 

Netherlands, Denmark) have shown that the use of antimicrobial premixes in feed is not needed, as 

they have banned this practice without additional difficulties (e.g. production loss). 

Control of antimicrobial residues in manure 

Establishing safety limits for antimicrobials in manure to regulate its applicability as fertilizer would be 

beneficial in reducing the amount of residues in the environment and preventing the development and 

spread of antimicrobial resistance in the environment. As described for the limits for in-feed 

antimicrobials, the limits for antimicrobials in manure should also likely be compound or class specific, 

if we consider the variation in the behavior of different antimicrobials in different matrices.  More 

research is needed to identify these antimicrobials and their minimum concentrations in manure that 

can select for resistance in manure and/or soil. Alternatively, focusing on increasing the levels of 

manure processing, which is suggested as an effective approach to reduce antimicrobial residues in 

manure, could also be an approach. In fact, this falls within the scope of the European, including 

Belgian (Flemish) agenda, on top of which stands the evolution towards a circular economy. This 

evolution also influences the manure processing sector, where nutrient recuperation and production 

of other products from manure grow in importance (VCM, 2018). Finally, setting national level 

surveillance programs to measure antimicrobial residues in manure are equally important to other 

surveillance programs currently in place (e.g. for antibiotic-resistant bacteria in animals, food, and 

humans (EFSA, 2018)), especially because land application of manure represents a major avenue of 

antimicrobial introduction to environmental systems and water supplies. 
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Figure 2. Four focus areas of the FAO Action Plan on antimicrobial resistance. The recommendations 

provided for the subjects of this thesis (see figure 3) cover these four areas with a focus on these 

subjects. Governance stands for political commitment, appropriate policy and a relevant regulatory or 

legislative framework (FAO, 2016). 
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Figure 3. Schematic overview of the subjects of interest in this doctoral thesis. * Image of manure 

treated with biological treatment.  
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4. Future research 

This thesis provides a detailed insight into the administration of antimicrobials to pigs via the oral 

route, as well as the risks and consequences stemming from this use, with a focus on antimicrobial 

resistance. However, many questions remain and new questions have emerged during this study. 

Future research on these subjects could help increase our knowledge regarding the impact of mass 

antimicrobial treatments of pigs on antimicrobial resistance selection. 

- There is a need for more data on intestinal antimicrobial concentrations after oral administration 

of residues due to different carry-over levels, including the 1% level. Additionally, more data is 

needed on the association between these intestinal antimicrobial concentrations and the potential 

for resistance selection to bacteria. The focus should first be on antimicrobials typically used in 

feed (and water) medication (e.g. amoxicillin, sulphonamides).  

- More information is needed with respect to the use of water medication, as an alternative to 

medicated feed. With respect to carry-over, there is a lack of data on the extent of cross-

contamination of feed and water occurring at the (pig) farm after administration of antimicrobials. 

Moreover, an informed comparison of the two methods is needed focusing on other critical factors 

that affect drug delivery in pigs (e.g. homogeneity and stability of antimicrobials in feed and water). 

- There is a lack of data on the amount of antimicrobial residues in manure and on the efficiency of 

different manure treatments in reducing these residues, inactivating resistant bacteria and 

destroying resistance genes in manure. The identification of degradation products (biologically 

active metabolites) in agricultural waste management is another primary research gap. Moreover, 

there is lack of compound-specific data on stability of most antimicrobials in manure. The focus 

should again be on commonly used antimicrobials which are also known or predicted to be rather 

stable in the manure matrix (e.g. tetracyclines, macrolides, sulfadiazine).  

- Another important remark is to start adding in environmental risk assessments of antimicrobials 

in the environment (which mainly focus on toxicity (EMA 2000, 2016)), elements related to 

antimicrobial resistance, even if the body of knowledge is still limited.  These elements might 

represent the increase in the abundance of antimicrobial-resistant bacteria and resistance genes, 

which can be caused by the application of resistant bacteria to the environment (e.g. via manure), 

the acquisition of resistance by environmental bacteria (e.g. by horizontal gene transfer), and the 

proliferation of indigenous resistant bacteria. For instance, an integration of a genomics-based 

approach (e.g. whole genome sequencing) into microbial quantitative risk assessment could 

improve the understanding of how livestock production (e.g. oral pig treatments) contributes to 

the development of antimicrobial resistance of human health concern, and explore strategies for 

reducing antimicrobial resistance in food production systems.  
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  LABORATORIUM FARMACOLOGIE EN TOXICOLOGIE 
 

 

QUESTIONNAIRE SUR L'EAU POTABLE ET LES ALIMENTS POUR LES FERMES MODERNES 

Renseignements Généraux   

1. nombre de truies présentes     ...............................……………………………………… 

2. nombre de porcelets sevrés présents    ...............................……………………………………… 

3. nombre de porcs d'abattage (cochons) présents ..............................……………………………………… 

Question L’eau potable L’alimentation 

Construction d'eau potable/système 

d'alimentation 

  

4. quel type d'eau et d'aliments utilisez-

vous pour vos truies? (plusieurs réponses 

sont possibles) 

 

□ eau du robinet/eau de distribution/eau 

courante (leidingwater) 

□ eau de source de puits d’eau 

(waterput)/source de profondeur/le puits 

profonde/le puits de forage 

quelle est la profondeur du 

puits…………………………………………………………….. 

□ eau de drainage 

□ eau de surface 

□ eau de pluie 

□ Meel 

□ Korrels/pellets 

□ Wet/dry voeder (varkens mengen zelf 

water in hun droogvoeder) 

□ Brijvoeder (nat voeder)  

□ Andere, nl. 

………………………………………………………………

……………………………………………………………… 
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Question L’eau potable L’alimentation 

5. Quel type d'eau et d'aliments utilisez-

vous pour vos 

porcelets/cochonnets/gporets/conchons 

de lait? (plusieurs réponses sont 

possibles) 

 

 

□ eau du robinet/eau de distribution/eau 

courante (leidingwater) 

□ eau de source de puits d’eau 

(waterput)/source de profondeur/le puits 

profonde/le puits de forage 

quelle est la profondeur du 

puits…………………………………………………………….. 

□ eau de drainage 

□ eau de surface 

□ eau de pluie 

□ Meel 

□ Korrels/pellets 

□ Wet/dry voeder (varkens mengen zelf 

water in hun droogvoeder) 

□ Brijvoeder (nat voeder)  

□ Andere, nl. 

………………………………………………………………

……………………………………………………………… 

6. quel type d'eau et d'aliments utilisez-

vous pour vos cochons? (plusieurs 

réponses sont possibles) 

 

 

□ eau du robinet/eau de distribution/eau 

courante (leidingwater) 

□ eau de source de puits d’eau 

(waterput)/source de profondeur/le puits 

profonde/le puits de forage 

quelle est la profondeur du 

puits…………………………………………………………….. 

□ eau de drainage 

□ eau de surface 

□ Meel 

□ Korrels/pellets 

□ Wet/dry voeder (varkens mengen zelf 

water in hun droogvoeder) 

Brijvoeder (nat voeder)  

□ Andere, nl. 

………………………………………………………………

……………………………………………………………… 
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eau de pluie 

 

Question L’eau potable L’alimentation 

7. Quel âge a la partie la plus ancienne de 

l'installation eau / alimentation? 

 

…………………………………………………………………………………... 

 

…………………………………………………………………………… 

8. … et la partie la plus jeune?  

………………………………………………………………………………….. 

 

…………………………………………………………………………… 

9. Avez-vous un compteur d’eau?  □ Oui 

□ Non 

/ 

10. Les lignes principales/ les tuyaux 

principaux (du circuit de l’eau / 

alimentation) sont faites de quels 

matériaux? 

□ Fer  

□ Fer galvanisée 

□ PVC (plastique) 

□ acier inoxydable 

□ acier avec revêtement par courriel 

□ autres: …………………………………………… 

 

□ Fer  

□ Fer galvanisée 

□ PVC (plastique) 

□ acier inoxydable 

□ acier avec revêtement par courriel 

□ autres: …………………………………………… 

□  

11. Les lignes/ les tuyaux des truies (du 

circuit de l’eau / alimentation) sont 

faites de quels matériaux? 

 

□ Fer  

□ Fer galvanisée 

□ PVC (plastique) 

□ acier inoxydable 

□ acier avec revêtement par courriel 

□ autres: …………………………………………… 

□ Fer  

□ Fer galvanisée 

□ PVC (plastique) 

□ acier inoxydable 

□ acier avec revêtement par courriel 

□ autres: …………………………………………… 
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Question L’eau potable L’alimentation 

12. Les lignes/ les tuyaux des porcelets (du 

circuit de l’eau / alimentation) sont 

faites de quels matériaux? 

 

□ Fer  

□ Fer galvanisée 

□ PVC (plastique) 

□ acier inoxydable 

□ acier avec revêtement par courriel 

□ autres: …………………………………………… 

□ Fer  

□ Fer galvanisée 

□ PVC (plastique) 

□ acier inoxydable 

□ acier avec revêtement par courriel 

□ autres: …………………………………………… 

13. Les lignes/ les tuyaux des cochons (du 

circuit de l’eau / alimentation) sont 

faites de quels matériaux? 

 

□ Fer  

□ Fer galvanisée 

□ PVC (plastique) 

□ acier inoxydable 

□ acier avec revêtement par courriel 

autres: …………………………………………… 

□ Fer  

□ Fer galvanisée 

□ PVC (plastique) 

□ acier inoxydable 

□ acier avec revêtement par courriel 

□ autres: …………………………………………… 

Purification de l'eau, qualité de l'eau et 

acidification 

  

14. Si vous purifiez ou traitez l'eau potable, 

comment faites-vous cela? 

……………………………………………………….…………………………

………………………………………….………………………………………

……………………………………………………………………………………

…………………………………………………………………………………… 

/ 
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15. Prenez-vous des échantillons d'eau pour 

vérifier la qualité de l'eau? 

□ Jamais 

□ Oui  à quelle fréquence faites-vous cela? 

……………………………………………………….……………… 

/ 

Question L’eau potable L’alimentation 

16. Si vous prenez des échantillons, où 

prenez-vous votre échantillons (plusieurs 

responses possibles)? 

□ à la source (où l'eau entre dans la ferme) 

□ au réservoir d'eau (watertank) 

□ Aux bassins / tétines 

/ 

17. Ajoutez-vous de l'acide à l'eau des truies? 

Quels produits utilisez-vous? 

………….…………………………………………….…………………………

……………………………...…………………………………….……………

………………………………………………………….………………………

…………………….………………………………………………………...… 

/ 

18. Ajoutez-vous de l'acide à l'eau des 

porcelets? Quels produits utilisez-vous? 

………….…………………………………………….…………………………

……………………………...…………………………………….……………

………………………………………………………….………………………

…………………….………………………………………………………...… 

/ 

19. Ajoutez-vous de l'acide à l'eau des 

cochons? Quels produits utilisez-vous? 

………….…………………………………………….…………………………

……………………………...…………………………………….……………

………………………………………………………….………………………

…………………….………………………………………………………...… 

/ 
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Question L’eau potable L’alimentation 

Nettoyage et désinfection   

20. À quelle fréquence (combien de fois) 

nettoyez ou désinfectez-vous les parts 

suivants?  

□ Des conduites d'eau 

………………………………………………………………………. 

□ Réservoir de l’eau 

………………………………………………………………………. 

□ Aux bassins / tétines 

………………………………………………………………………. 

□ silo 

………………………………………………………………. 

□ Réservoir d’alimentation (si il y en a un) 

………………………………………………………………. 

□ Boîte d’alimentation 

………………………………………………………………. 

21. Avec quels produits sont ces parts 

nettoyés et désinfectés? (Plusieurs 

réponses sont possibles) 

□ peroxyde d'hydrogène 

□ Mélange d'acides organiques 

□ dioxyde de chlore 

□ autres: …………………………………………………………. 

□ peroxyde d'hydrogène 

□ Mélange d'acides organiques 

□ dioxyde de chlore 

□ autres: …………………………………………………. 

Traitement de groupe par l’ alimentation et par 

l’ eau 

  

22. Quels compartiments peuvent recevoir 

des medicaments par l’eau potable ou 

par l’ alimentation?  

 

 

□ Truies  

□ Porcelets  

□ cochons 

□ Je n'utilise jamais de médicaments pour 

mélanger dans l'eau 

□ Truies  

□ Porcelets  

□ cochons 

□ Je n'utilise jamais de médicaments pour 

mélanger dans l’alimentation 
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Question L’eau potable L’alimentation 

23. Utilisez-vous parfois des combinaisons de 

médicaments à l'eau potable / à 

l'aliment? 

□ Oui, ils sont: 

………………………………………………………………………

………………………………………………………………………

………………………………………………………………………

………………………………………………………………………. 

□ Non, jamais 

□ Oui, ils sont: 

………………………………………………………………

………………………………………………………………

………………………………………………………………

………………………………………………………………

………………………………. 

□ Non, jamais 

24. Quels groupes de truies peuvent recevoir 

séparément (individuellement) de l'eau 

/ alimentation médicamentée? 

□ Par cabine (per hok) 

□ Par compartiment 

□ Par stable 

□ Par cabine 

□ Par compartiment 

□ Par stable 

25. Quels groupes de porcelets peuvent 

recevoir séparément de l'eau / 

alimentation médicamentée? 

□ Par cabine (per hok) 

□ Par compartiment 

□ Par stable 

□ Per hok 

□ Per compartiment 

□ Per stal 

26. Quels groupes de nourrins peuvent 

recevoir séparément de l'eau / 

alimentation médicamentée?? 

□ Par cabine (per hok) 

□ Par compartiment 

□ Par stable 

□ Par cabine (per hok) 

□ Par compartiment 

□ Par stable 

27. Existe-t-il une conduite d'eau / 

d'alimentation séparée pour l'eau et les 

aliments médicamenteux et pour l'eau / 

les aliments auxquels aucun médicament 

n'a été ajouté? 

□ Oui 

□ Non 

□ Oui 

□ Non 
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Question L’eau potable L’alimentation 

Préparer d’ eau/alimentation médicamentée   

28. Sont les tuyaux nettoyés avant d’ajouter 

des médecines à l'eau potable ou à 

l'alimentation? 

□ toujours 

□ parfois 

□ jamais 

□ toujours 

□ parfois 

□ jamais 

29. Sont les tuyaux nettoyés avant après la 

therapie avec l’eau ou l’alimentation 

médicamentées?  

□ toujours 

□ parfois 

□ jamais 

□ toujours 

□ parfois 

□ jamais 

30. utilisez-vous une pompe doseuse ou un 

réservoir d'eau potable pour ajouter des 

medicines dans l’eau? 

Comment ajoutez-vous le médicament à 

l'alimentation? 

 

Avec une pompe doseuse 

□ electrique (Digi Doser, Aquados, 

MSeasydoser,…) 

□ mechanique (Dosatron, Dosmatic,…) 

par le réservoir d’eau potable 

□ Le réservoir d'eau potable est à la 

source 

□ Le réservoir d'eau potable est dans le 

département 

□ J'achète un aliment médicamenté du 

fabricant de nourriture pour animaux 

□ Topdressing (Couche de finition) (poudre 

sur le dessus du chargeur) 

□ par un doseur de ligne d'alimentation 

(par exemple KMD-4L de Raijmakers 

Agro) (« un moulin ») 
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Question L’eau potable L’alimentation 

31. Comment mélangez-vous le médicament 

avec l'eau ou la nourriture? (Par 

exemple, je mélange d'abord la poudre 

dans un seau d'eau puis ajoute l'eau du 

seau au réservoir d'eau, j'ajoute la 

poudre directement au réservoir d'eau, 

etc.) 

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

…….……………………………………………………………………………

………………………………………………………………………………….. 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

…………………………………………………………………………… 

32. Si vous utilisez le médicament, ajoutez-

vous quelque chose (par exemple de 

l'acide ou du bicarbonate de sodium) 

pour rendre le médicament plus soluble? 

Si oui, alors? 

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………… 

/ 

33. Lorsque vous préparez de l'eau potable / 

des médicaments pour aliments: remuez 

ou mélangez-vous dans la pré-solution? 

□ Oui, tant que c'est dans le dépliant 

□ Parfois 

□ Jamais 

□ Oui, tant que c'est dans le dépliant 

□ Parfois 

□ Jamais 

34. Comment prenez- vous la quantité de 

médicaments dont vous avez besoin? 

□ Avec une tasse à mesurer 

□ Dans un seau 

□ Dans un plat doseur avec répartition de 

l'échelle 

□ Avec une échelle 

□ J'évalue combien j'ai besoin 

□ Avec une tasse à mesurer 

□ Dans un seau 

□ Dans un plat doseur avec répartition de 

l'échelle 

□ Avec une échelle 

□ J'évalue combien j'ai besoin 
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Question L’eau potable L’alimentation 

35. À quelle fréquence (combien de fois) 

produisez-vous des aliments/ de l’eau 

médicamenteux? (par exemple une fois  

par jour) 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

…………………………………………………………………………… 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

…………………………………………………………………………… 

36. Donnez-vous de l'eau / de la nourriture 

médicamentée toute la journée ou 

quelques heures par jour? (par exemple: 

eau médicamentée continue pendant 5 

jours) 

□ Toute la journée 

□ Quesques heures par jour  

□ Toute la journée 

□ Quesques heures par jour 

37. Si vous avez une pompe doseuse ou un 

doseur sur la ligne d’alimentation,  

quand a été la dernière fois qu'un 

entretien / étalonnage a été effectué? 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

…………………………………………………………………………… 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

…………………………………………………………………………… 

38. Portez-vous des gants quand vous prenez 

de l'eau ou des médicaments? 

□ Toujours 

□ Parfois  

□ Jamais 

□ Toujours 

□ Parfois  

□ Jamais 

39. Portez-vous un masque quand vous 

prenez des médicaments? 

□ Toujours 

□ Parfois  

□ Jamais 

□ Toujours 

□ Parfois  

□ Jamais 
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Question L’eau potable L’alimentation 

Nettoyer et desinfecter après la therapie    

40. Nettoyez-vous les outils utilisés (par 

exemple le seau) après avoir pris des 

médicaments? 

□ Toujours 

□ Parfois  

□ Jamais  

□ Toujours 

□ Parfois  

□ Jamais  

41. Arrêtez-vous la désinfection de l'eau si 

vous ajoutez des médicaments à l'eau 

potable? 

□ Oui 

□ Non 

□ Je n'utilise jamais de médicaments dans l’eau 

/ 

Expérience personnelle avec de l'eau potable / 
des médicaments 

  

42. Avez-vous parfois des problèmes avec la 

facilité d'utilisation des aliments pour 

animaux / des médicaments pour l'eau 

potable? (Par exemple, la quantité de 

travail est-elle trop grande?) 

(gebruiksgemak) 

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………… 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

…………………………………………………………………………… 

43. Avez-vous parfois des problèmes 

pratiques dans l'exécution de la 

thérapie? (Par exemple colmatage, 

précipitation, ne se dissolvent pas bien, 

pas savoureux, tourné les mauvaises 

grues, ...) 

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………… 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

…………………………………………………………………………… 
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Question L’eau potable L’alimentation 

44. Quelle est l'efficacité de votre thérapie? 

(Par exemple, sont les porcs toujours 

mieux après la thérapie?) 

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………… 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

…………………………………………………………………………… 

45. Préférez-vous un type particulier d'eau 

potable / de médicaments et pourquoi? 

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………… 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

…………………………………………………………………………… 

 

Merci beaucoup pour votre temps! Puis-je vous contacter plus tard pour prendre des échantillons d'aliments et / ou d'eau? 

□ Oui 

□ Non 
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ENQUETE OMTRENT DRINKWATER- EN VOEDERSYSTEMEN IN DE VARKENSHOUDERIJ  

Kruis aan wat past. Als het in de enquête gaat over zeugen, worden de zeugen in groepshuisvesting bedoeld. 

Algemene bedrijfsinformatie 

46. Aantal zeugen nu aanwezig   ...............................……………………………………… 

47. Aantal gespeende biggen nu aanwezig  ...............................……………………………………… 

48. Aantal vleesvarkens nu aanwezig  ...............................……………………………………… 

Vraag Drinkwater Voeder 

Opbouw drinkwater-/voedersysteem   

49. Wat voor water/voeder gebruikt u voor 

uw zeugen? (Meerdere antwoorden zijn 

mogelijk) 

 

□ Leidingwater/stadswater 

□ Bronwater uit 

waterput/dieptebron/boorput/pulsput 

Wat is de diepte van de put? 

……………………………………………………………………… 

□ Drainagewater 

□ Oppervlaktewater 

□ Regenwater (hemelwater) 

□ Meel 

□ Korrels/pellets 

□ Wet/dry voeder (varkens mengen zelf 

water in hun droogvoeder) 

□ Brijvoeder (nat voeder)  

□ Andere, nl. 

………………………………………………………………

……………………………………………………………… 
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Vraag Drinkwater Voeder 

50. Wat voor water/voeder gebruikt u voor 

uw biggen? (Meerdere antwoorden zijn 

mogelijk) 

 

□ Leidingwater/stadswater 

□ Bronwater uit 

waterput/dieptebron/boorput/pulsput 

Wat is de diepte van de put? 

……………………………………………………………………… 

□ Drainagewater 

□ Oppervlaktewater 

□ Regenwater (hemelwater) 

□ Meel 

□ Korrels/pellets 

□ Wet/dry voeder (varkens mengen zelf 

water in hun droogvoeder) 

□ Brijvoeder (nat voeder)  

□ Andere, nl. 

………………………………………………………………

……………………………………………………………… 

51. Wat voor water/voeder gebruikt u voor 

uw vleesvarkens? (Meerdere 

antwoorden zijn mogelijk) 

 

□ Leidingwater/stadswater 

□ Bronwater uit 

waterput/dieptebron/boorput/pulsput 

Wat is de diepte van de put? 

……………………………………………………………………… 

□ Drainagewater 

□ Oppervlaktewater 

Regenwater (hemelwater) 

□ Meel 

□ Korrels/pellets 

□ Wet/dry voeder (varkens mengen zelf 

water in hun droogvoeder) 

Brijvoeder (nat voeder)  

□ Andere, nl. 

………………………………………………………………

……………………………………………………………… 

52. Hoe oud is het oudste deel van de water-

/voedervoorziening ongeveer? 

 

…………………………………………………………………………………... 

 

…………………………………………………………………………… 

53. Hoe oud is het nieuwste deel van de 

water-/voedervoorziening ongeveer? 

 

………………………………………………………………………………….. 

 

…………………………………………………………………………… 
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Vraag Drinkwater Voeder 

54. Hebt u een watermeter?  □ Ja 

□ Neen 

 

55. Uit welk materiaal zijn de hoofdleidingen 

gemaakt (meerdere antwoorden zijn 

mogelijk) 

□ Ijzer 

□ Gegalvaniseerd ijzer 

□ PVC 

□ RVS (roestvrij staal) 

□ Andere, namelijk …………………………………………… 

 

□ Ijzer 

□ Gegalvaniseerd ijzer 

□ PVC 

□ RVS (roestvrij staal) 

□ Staal met coating van email 

□ Andere, namelijk …………………………………… 

56. Uit welk materiaal zijn de leidingen in het 

zeugencompartiment gemaakt? 

 

□ Ijzer 

□ Gegalvaniseerd ijzer 

□ PVC 

□ RVS (roestvrij staal) 

□ Andere, namelijk …………………………………………… 

□ Ijzer 

□ Gegalvaniseerd ijzer 

□ PVC 

□ RVS (roestvrij staal) 

□ Staal met coating van email 

□ Andere, namelijk …………………………………… 

57. Uit welk materiaal zijn de leidingen in het 

biggencompartiment gemaakt? 

 

□ Ijzer 

□ Gegalvaniseerd ijzer 

□ PVC 

□ RVS (roestvrij staal) 

□ Andere, namelijk …………………………………………… 

□ Ijzer 

□ Gegalvaniseerd ijzer 

□ PVC 

□ RVS (roestvrij staal) 

□ Staal met coating van email 

□ Andere, namelijk ………………………………….. 
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Vraag Drinkwater Voeder 

58. Uit welk materiaal zijn de leidingen in het 

vleesvarkencompartiment gemaakt? 

 

□ Ijzer 

□ Gegalvaniseerd ijzer 

□ PVC 

□ RVS (roestvrij staal) 

□ Andere, namelijk …………………………………………… 

 

□ Ijzer 

□ Gegalvaniseerd ijzer 

□ PVC 

□ RVS (roestvrij staal) 

□ Staal met coating van email 

□ Andere, namelijk …………………………………… 

Waterzuivering, waterkwaliteit en aanzuren   

59. Indien u het drinkwater zuivert, hoe doet 

u dit? 

 

……………………………………………………….…………………………

………………………………………….………………………………………

……………………………………………………………………………………

…………………………………………………………………………………… 

/ 

60. Laat u een waterstaal onderzoeken? □ Nooit 

□ Ja  hoe vaak doet u dit? 

………………………………………………………………………

………………………………………………………………………

………………………………………………………………………. 

/ 
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Vraag Drinkwater Voeder 

61. Indien u een waterstaal laat 

onderzoeken, waar neemt u dan de 

stalen (meerdere antwoorden mogelijk)? 

□ Aan de bron (het water dat het bedrijf 

binnenkomt) 

□ Aan de watertank 

□ Aan de drinkbakken/drinknippels 

/ 

62. Zuurt u het water van de zeugen aan? 

Welke producten gebruikt u? 

………….…………………………………………….…………………………

……………………………...…………………………………….……………

………………………………………………………….………………………

…………………….………………………………………………………...… 

/ 

63. Zuurt u het water van de biggen aan? 

Welke producten gebruikt u? 

………….…………………………………………….…………………………

……………………………...…………………………………….……………

………………………………………………………….………………………

…………………….………………………………………………………...… 

/ 

64. Zuurt u het water van de vleesvarkens 

aan? Welke producten gebruikt u? 

………….…………………………………………….…………………………

……………………………...…………………………………….……………

………………………………………………………….………………………

…………………….………………………………………………………...… 

/ 
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Vraag Drinkwater Voeder 

Reiniging en ontsmetting   

65. Hoe vaak wordt het volgende gereinigd 

en/of ontsmet? (Bijvoorbeeld: 1 keer per 

week worden de leidingen gereinigd) 

 

□ Waterleidingen 

………………………………………………………………………. 

□ Watertank 

………………………………………………………………………. 

□ Drinkbakken/nippels 

………………………………………………………………………. 

□ Silo 

………………………………………………………………. 

□ Voedermengtank (indien aanwezig) 

………………………………………………………………. 

□ Voederbakken 

………………………………………………………………. 

66. Met welke producten wordt de 

bovenstaande onderdelen gereinigd en 

ontsmet? (Meerdere antwoorden zijn 

mogelijk) 

□ Waterstofperoxide 

□ Mengsel van organische zuren 

□ Chloordioxide 

□ Andere, namelijk 

………………………………………………………………………. 

□ Waterstofperoxide 

□ Mengsel van organische zuren 

□ Chloordioxide 

□ Andere, namelijk 

……………………………………………………………. 

Groepsbehandeling via voeder en water   

67. Welke compartimenten kunnen 

medicatie via het drinkwater of het 

voeder krijgen?  

 

□ Zeugen 

□ Biggen 

□ Vleesvarkens 

□ Ik gebruik nooit drinkwatermedicatie 

□ Zeugen 

□ Biggen 

□ Vleesvarkens 

□ Ik gebruik nooit voedermedicatie 
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Vraag Drinkwater Voeder 

68. Worden er soms combinaties van 

geneesmiddelen aan het 

drinkwater/voeder toegevoegd?  

□ Ja, nl. 

………………………………………………………………………

………………………………………………………………………

………………………………………………………………………

………………………………………………………………………. 

□ Neen, nooit 

□ Ja, nl. 

………………………………………………………………

………………………………………………………………

………………………………………………………………

……………………………………………………………… 

□ Neen, nooit 

69. Welke groepen zeugen kunnen apart 

(onafhankelijk van elkaar) drinkwater-

/voedermedicatie krijgen? 

□ Per hok 

□ Per compartiment 

□ Per stal 

□ Per hok 

□ Per compartiment 

□ Per stal 

70. Welke groepen biggen kunnen apart 

(onafhankelijk van elkaar) drinkwater-

/voedermedicatie krijgen? 

□ Per hok 

□ Per compartiment 

□ Per stal 

□ Per hok 

□ Per compartiment 

□ Per stal 

71. Welke groepen vleesvarkens kunnen 

apart (onafhankelijk van elkaar) 

drinkwater-/voedermedicatie krijgen? 

□ Per hok 

□ Per compartiment 

□ Per stal 

□ Per hok 

□ Per compartiment 

□ Per stal 

72. Is er een aparte water-/voederleiding 

voor gemedicineerd water/voeder en 

voor water/voeder waaraan geen 

medicatie werd toegevoegd? 

□ Ja 

□ Neen 

□ Ja 

□ Neen 
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Vraag Drinkwater Voeder 

Bereiding van voeder- en watermedicatie   

73. Worden de leidingen gereinigd vooraleer 

de drinkwater/-voederbehandeling te 

starten? 

□ Altijd 

□ Soms 

□ Nooit 

□ Altijd 

□ Soms 

□ Nooit 

74. Worden de leidingen gereinigd na het 

toevoegen van drinkwater-

/voedermedicatie? 

□ Altijd 

□ Soms  

□ Nooit 

□ Altijd 

□ Soms  

□ Nooit 

75. Via welke weg mengt u medicatie in?  

 

□ Via een doseerpomp 

□ Elektrische doseerder (Digi Doser, 

Aquados, MSeasydoser,…) 

□ Mechanische doseerder (Dosatron, 

Dosmatic,…) 

□ Via de drinkwatertank 

□ Deze staat aan de bron 

□ Deze staat aan de afdeling 

□ Ik koop gemedicineerd voeder aan bij de 

mengvoederfabrikant 

□ Topdressing (poeder bovenop het 

voeder) 

□ Via een doseerder op voederlijn 

(bijvoorbeeld KMD-4L van Raijmakers 

Agro) 
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Vraag Drinkwater Voeder 

76. Hoe doet u het inmengen zelf? 

(Bijvoorbeeld: ik meng het poeder eerst 

in een emmer water en dan voeg ik het 

water van de emmer toe aan de 

watertank, ik voeg het poeder 

rechtstreeks toe aan de watertank, enz.) 

 

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

…….……………………………………………………………………………

………………………………………………………………………………….. 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

…………………………………………………………………………… 

77. Als u medicatie toevoegt aan drinkwater, 

voegt u dan iets toe (bijvoorbeeld zuur of 

natriumbicarbonaat) om het 

geneesmiddel beter oplosbaar te 

maken? Zo ja, wat dan?  

 

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………… 

/ 

78. Bij het maken van drinkwater-

/voedermedicatie: roert of mixt u in de 

vooroplossing? 

□ Ja, zolang als in de bijsluiter staat 

□ Soms 

□ Nooit 

□ Ja, zolang als in de bijsluiter staat 

□ Soms 

□ Nooit 

79. Hoe neemt u de hoeveelheid medicatie 

die u nodig heeft? 

 

□ Met een maatbeker 

□ In een emmer 

□ In een doseervat met schaalverdeling 

□ Met een weegschaal  

□ Ik schat op het zicht hoeveel ik nodig heb 

□ Met een maatbeker 

□ In een emmer 

□ In een doseervat met schaalverdeling 

□ Met een weegschaal 

□ Ik schat op het zicht hoeveel ik nodig heb 
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Vraag Drinkwater Voeder 

80. Hoe frequent maakt u meestal 

gemedicineerd voeder/water aan? 

(bijvoorbeeld 1x per dag) 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

…………………………………………………………………………… 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

…………………………………………………………………………… 

81. Geeft u het gemedicineerd water/voeder 

de hele dag door, of een paar uur per 

dag? (bijvoorbeeld: continu 

gemedicineerd water gedurende 5 

dagen) 

□ De hele dag door 

□ Enkele uren per dag  

□ De hele dag door 

□ Enkele uren per dag 

82. Als u een doseerpomp/doseerder op de 

waterlijn/voederlijn heeft: wanneer was 

de laatste keer dat hier een 

onderhoud/kalibratie op werd 

uitgevoerd?  

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

…………………………………………………………………………… 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

…………………………………………………………………………… 

83. Gebruikt u handschoenen bij het nemen 

van water-/voedermedicatie? 

□ Altijd 

□ Soms 

□ Nooit 

□ Altijd 

□ Soms 

□ Nooit 

84. Gebruikt u een masker bij het nemen van 

water-/voedermedicatie 

□ Altijd 

□ Soms 

□ Nooit 

□ Altijd 

□ Soms 

□ Nooit 
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Vraag Drinkwater Voeder 

Reinigen en ontsmetten na medicatie   

85. Reinigt u het gebruikte gereedschap 

(bijvoorbeeld de emmer) nadat u 

medicatie genomen heeft? 

□ Altijd 

□ Soms 

□ Nooit 

□ Altijd 

□ Soms 

□ Nooit 

86. Wordt de drinkwaterontsmetting gestopt 

als u medicatie in het drinkwater doet?  

□ Ja 

□ Neen 

□ Ik gebruik geen drinkwaterontsmetting 

/ 

Eigen ervaring met drinkwater-
/voedermedicatie 

  

87. Ondervindt u soms problemen met het 

gebruiksgemak van voeder-

/drinkwatermedicatie? (Bijvoorbeeld 

problemen met de werkdruk) 

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………… 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

…………………………………………………………………………… 

88. Ondervindt u soms problemen met het 

uitvoeren van de therapie? (Bijvoorbeeld 

verstoppen, neerslag, niet goed oplossen, 

niet smakelijk, verkeerde kranen 

opengedraaid, …) 

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………… 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

…………………………………………………………………………… 
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Vraag Drinkwater Voeder 

89. Hoe effectief vindt u de behandeling? 

(Bijvoorbeeld zijn de varkens na de 

behandeling altijd beter?) 

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………… 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

…………………………………………………………………………… 

90. Hebt u een voorkeur voor een bepaalde 

soort drinkwater-/voedermedicatie en 

waarom?  

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………… 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

…………………………………………………………………………… 

 

Tot slot 

Heel erg bedankt voor uw tijd! Mogen we later nog contact met u opnemen om voeder- en/of waterstalen te nemen? 

□ Ja 

□ Neen 
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Antimicrobial treatment administered to pigs through feed and water group medication can lead to 

the presence of antimicrobial residues in the gastro-intestinal tract and manure of pigs. Antimicrobial 

residues in these matrices (gastro-intestinal tract of pigs and pig manure), may cause a potential for 

selection and dissemination of antimicrobial resistance. The aim of this doctoral thesis (Chapter 2) was 

to fill a number of research gaps, regarding different aspects related to oral group antimicrobial 

medication of pigs, in a quantitative manner. 

First, in order to estimate the amount of antimicrobials used in Belgium per species (i.e. pigs, poultry 

and veal calves), an extrapolation of farm-level data to national-level data was performed according 

to the European Surveillance of Veterinary Antimicrobial Consumption (ESVAC) methodology (Chapter 

3). According to this extrapolation attempt, pigs are estimated to consume most antimicrobials in 

absolute values at the national level in Belgium, i.e. 159.40 tons annually (52.4% of total use), followed 

by broilers (26.53 tons; 8.7%) and white veal calves (25.18 tons; 8.3%). According to the gathered data 

and estimations, the use of antimicrobials in pigs, broilers and veal calves corresponds to 69.4% of the 

total use in Belgium. Based on the data used for this extrapolation, oral treatments were more 

common than injectable ones for fattening pigs and weaned piglets (TIUDDA, oral =176.5, while TIUDDA, 

injectable =24.2). Taking into account that the antimicrobial use in sows could not be quantitatively 

estimated at this stage and were therefore not taken into account in these estimations, this 

extrapolation places the pig population on the top of high consumers of antimicrobials in Belgium, in 

absolute values and possibly also in terms of TI, especially for piglets.  

Since oral group medication through feed and water is the most common way of antimicrobial 

administration to the majority of the Belgian pigs (especially fattening pigs and piglets), a field study 

was performed in 52 pig farms in Belgium, to examine the level of use of these two methods (feed and 

water medication), and the conditions of preparation and administration of antimicrobials via the feed 

and water (Chapter 4). In the farms visited, it was observed that water medication was used more 

(n=47 farms) than in-feed medication (n=36). Per production stage, water medication was used more 

in piglets (87.5%) and fattening pigs (91%), while top dressing was mainly used in sows (55%). The 

farmers generally reported a good experience in terms of ease of use and effectiveness for both 

methods. A number of farmers suggested that the preparation of water medication requires more 

labor and some issues are met when used (e.g. precipitation). However, more research is needed to 

address other important issues, such as homogeneity and stability of antimicrobials in feed and water, 

in order to be able to fully compare the two methods of oral group medication. 

Focusing specifically on oral antimicrobial group medication of pigs via feed, these treatments can 

further lead to cross-contamination of non-medicated feed with residues of antimicrobials. These 
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residues also end up in the gastro-intentional tract of pigs and in pig manure, adding up to the amount 

of residues from intended antimicrobial administration. The model developed and presented in 

Chapter 5, estimated that, when antimicrobial medicated feed represents a hypothetical xi=2% of the 

total feed produced in a country per year (as it is the case for Belgium), then around 5.5% (95%CI 3.4% 

; 11.4%) of the total feed produced in a year could be cross-contaminated with different levels of 

antimicrobials due to practices related to the production, transport and storage of medicated feed. In 

detail, 1.80% (95%CI 0.2% ; 7.7%) of the total feed produced in such a country would be cross-

contaminated due to antimicrobial carry-over occurring at the feed mill level, 1.83% (95%CI 1.3%; 

2.0%) at the transport truck level and 1.84% (95%CI 1.2% ; 2.0%) at the farm level. The model also 

demonstrated that, even in cases where antimicrobial medicated feed would be produced in end-of-

line mixers or fine dosing system on trucks, the risk of cross-contamination would not be negligible; 

the percentage of cross-contaminated feed produced in a country (where xi=2%) per year would be 

3.7% (95%CI 2.9% ; 4.0%) and 2.4% (95%CI 1.6% ; 2.7%), respectively. 

In Chapter 6, a probabilistic model is presented which shows the potential extent of the effect of cross-

contaminated pig feed on resistance selection. The results of the model include estimations of the 

proportion of pigs per production stage (i.e. piglets, sows, fattening pigs) with residues of doxycycline, 

chlortetracycline, sulfadiazine and trimethoprim in their intestinal contents from caecum and colon, 

as a result of exposure to cross-contaminated feed with different carry-over levels (i.e. 1% and 3%), in 

Belgium. By using a semi-quantitative approach, these estimations were combined with experimental 

data on antimicrobial concentrations associated with potential for resistance selection pressure. Based 

on this model, it is estimated that 7.7% (95%CI 1.6% ; 36.9%) of sows, 4.2% (95%CI 1.0% ; 18.7%) of 

piglets and 2.8% (95%Cl 0.5% ; 14.9%) of fatteners in Belgium have residues of doxycycline in their 

intestinal tract due to consumption of feed with at least 1% carry-over. These values were estimated 

to be almost triple for sulfadiazine, but substantially lower for chlortetracycline and trimethoprim. 

Doxycycline concentrations as low as 1 mg/L (corresponding to consumed feed with at least 1% carry-

over) can select for resistant porcine commensal E. coli in vitro and in vivo. Research is needed to 

specify the minimum residual concentrations of more antimicrobials associated with resistance 

development, to be able to draw conclusions on this risk for the other antimicrobials. However, since 

the possibility of resistance mechanisms (e.g. co-selection) occurring cannot be excluded, the results 

of this model highlight that the use of antimicrobial medicated feed should be minimized where 

possible. 

Chapter 7 presents a model estimating the level of antimicrobials commonly administered to pigs 

orally, that is present in manure at the end of common storage durations in pits and, thus, readily 

applied onto soil. The data used in this model are based on a literature review which focused on the 
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bioavailability and extent of in vivo biotransformation of twelve antimicrobials, and on the level of 

their persistence in manure. The model estimated that at least 18.4% of the total amount of these 

orally administered antimicrobials is present in manure which is readily applied onto soil. Based on 

sales of antimicrobials, it was estimated that this percentage corresponds to over 25,000 kg of 

antimicrobial residues in pig manure in Belgium. If export and processing are considered, the 

aforementioned percentage is reduced to at least 9.7%. From the studied antimicrobials, the highest 

level of residues in stored manure was estimated for doxycycline, as a combining result of its high use 

in pigs, low bioavailability and high stability in manure. However, even for antimicrobials not expected 

to be found in manure at the end of maximum storage, certain levels of these can be present in 

fractions of manure stored for shorter duration. Other antimicrobials are readily degraded and 

therefore pose less threat.  

The results of this thesis highlight the importance of reducing the amount and frequency of 

antimicrobial treatments of pigs. The prohibition of prophylactic antimicrobial treatments, which are 

mainly administered orally, as a first step, would be expected to have a considerable effect towards 

this direction. 
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Behandeling van varkens met antimicrobiële middelen door massa medicatie via voeder en water kan 

leiden tot de aanwezigheid van antimicrobiële residuen in het gastro-intestinaal stelsel en in de mest 

van varkens. Antimicrobiële residuen in deze matrices (gastro-intestinaal stelsel en mest), kan 

potentieel zorgen voor selectie en verspreiding van antimicrobiële resistentie. Het doel van deze 

doctoraatsthesis (Hoofdstuk 2) was om een aantal onderzoeksvragen, met betrekking tot aspecten die 

gerelateerd zijn aan orale massa medicatie van antimicrobiële middelen bij varkens, op te vullen op 

een kwantitatieve manier. 

Om de hoeveelheid antimicrobiële middelen gebruikt in België per species (nl. varkens, pluimvee en 

vleeskalveren) in te schatten, werden data op bedrijfsniveau naar nationaal niveau geëxtrapoleerd 

volgens de methodologie van de European Surveillance of Veterinary Antimicrobial Consumption 

(ESVAC) (Hoofdstuk 3). Volgens deze poging tot extrapolatie wordt geschat dat varkens de meeste 

antimicrobiële middelen in absolute waarden consumeren op nationaal niveau in België, nl. 159.40 ton 

jaarlijks (52.4% van het totale gebruik), gevolgd door braadkippen (26.53 ton; 8.7%) en witvlees 

kalveren (25.18 ton; 8.3%). Volgens de verzamelde data en veronderstellingen, komt het gebruik van 

antimicrobiële middelen bij varkens, braadkippen en vleeskalveren overeen met 69.4% van het totale 

gebruik in België.  Gebaseerd op de data die gebruikt werden voor deze extrapolatie, kwamen orale 

behandelingen meer voor dan parenterale behandelingen voor vleesvarkens en voor gespeende 

biggen (TIUDDA, oraal =176.5, terwijl TIUDDA, parenteraal =24.2). Als er rekening wordt gehouden met het 

feit dat het gebruik van antimicrobiële middelen bij zeugen niet kwantitatief kon geschat worden in dit 

stadium, en daarom dus ook niet in rekening gebracht werd in deze inschattingen, zorgt deze 

extrapolatie ervoor dat de varkenspopulatie bovenaan staat bij de grootverbruikers van antimicrobiële 

middelen in België, en dit zowel in absolute waarden als waarschijnlijk ook in termen van TI, vooral 

voor biggen. 

Vermits orale massa medicatie via voeder en water de meest gebruikte manieren zijn om 

antimicrobiële middelen toe te dienen bij de meerderheid van de Belgische varkens (in het bijzonder 

vleesvarkens en biggen), werd een veldstudie uitgevoerd op 52 varkensbedrijven in België om het 

gebruik van deze twee methoden (medicatie via voeder en water), de voorbereidingsomstandigheden 

en de toediening van antimicrobiële middelen via het voer en water te onderzoeken (Hoofdstuk 4). 

Op de bezochte bedrijven werd vastgesteld dat medicatie via het water meer werd gebruikt (n=47 

bedrijven) dan medicatie via het voeder (n=36). Wanneer er gekeken werd per productiefase, werd 

medicatie via water meer gebruikt bij biggen (87.5%) en vleesvarkens (91%) terwijl topdressing 

voornamelijk gebruikt wordt bij zeugen (55%). Over het algemeen meldden de boeren een goede 

ervaring op vlak van gebruiksgemak en effectiviteit over beide manieren. Een aantal boeren stelden 



246 
 

dat de voorbereiding van gemedicineerd water meer werk vereist en dat er enkele problemen 

optreden bij het gebruik (bv. neerslag). Er is echter nood aan meer onderzoek om andere belangrijke 

problemen te bestuderen, zoals homogeniciteit en stabiliteit van antimicrobiële middelen in het 

voeder en water, om beide methoden van orale massa medicatie volledig te kunnen vergelijken. 

Wanneer specifiek wordt gefocust op het toedienen van orale antimicrobiële massa medicatie via 

varkensvoer, kunnen deze behandelingen leiden tot kruiscontaminatie van niet gemedicineerd voeder 

met residuen van antimicrobiële middelen. Deze residuen eindigen in het gastro-intestinaal stelsel van 

de varkens en de varkensmest, dit komt bovenop de residuhoeveelheid van de bedoelde 

antimicrobiële toediening. Het ontwikkelde model, voorgesteld in Hoofdstuk 5, schat in dat, wanneer 

antimicrobieel gemedicineerd voeder een hypothetische xi=2% van de totale voederproductie 

vertegenwoordigt (zoals in België), het mogelijk is dat ongeveer 5.5% (95%CI 3.4% ; 11.4%) van de 

totale voederproductie in een jaar kruis gecontamineerd zou kunnen zijn, met verschillende 

hoeveelheden van antimicrobiële middelen, omwille van processen gerelateerd aan de productie, 

transport en opslag van het voeder. In detail, 1.80% (95%CI 0.2%; 7.7%) van het voeder geproduceerd 

in een gelijkaardig land zou kruis gecontamineerd zijn door antimicrobiële overdracht op niveau van 

de voederfirma, 1.83% (95%CI 1.3%; 2.0%) op niveau van transport en 1.84% (95%CI 1.2% ; 2.0%) op 

niveau van het bedrijf. Het model toont ook aan dat, zelfs in gevallen waar antimicrobieel 

gemedicineerd voeder zou worden geproduceerd met mixers op het einde van de lijn of met 

fijndoseersysteem op vrachtwagens, het risico op kruiscontaminatie niet te verwaarlozen is; het 

percentage van kruis gecontamineerd voeder in een land (waar xi=2%) zou per jaar 3.7% (95%CI 2.9%; 

4.0%) en 2.4% (95%CI 1.6% ; 2.7%) zijn, respectievelijk.  

In hoofdstuk 6 is een waarschijnlijkheidsmodel voorgesteld dat de mogelijke omvang weergeeft van 

het effect van kruis gecontamineerd varkensvoeder op selectie van resistentie. De resultaten van het 

model omvatten inschattingen van het aantal varkens per productiefase (nl. biggen, zeugen, 

vleesvarkens) met residuen van doxycycline, chloortetracycline, sulfadiazine en trimethoprim in hun 

darminhoud (blinde darm en dikke darm), als gevolg van blootstelling aan kruis gecontamineerd 

voeder met verschillende gradaties van versleping (nl. 1% en 3%), in België. Door een semi-

kwantitatieve aanpak te gebruiken, werden deze inschattingen gecombineerd met experimentele data 

over antimicrobiële concentraties geassocieerd met het potentieel voor selectiedruk op resistentie. 

Gebaseerd op dit model wordt geschat dat 7.7% (95%CI 1.6% ; 36.9%) van de zeugen, 4.2% (95%CI 

1.0% ; 18.7%) van de biggen en 2.8% (95%CI 0.5% ; 14.9%) van de vleesvarkens in België residuen van 

doxycycline in hun gastro-intestinaal stelsel hebben door consumptie van voeder met minstens 1% 

versleping. Deze waarden zijn voor sulfadiazine vermoedelijk 3 keer hoger, maar wezenlijk lager voor 
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chloortetracycline en trimethoprim. Doxycycline concentraties van 1 mg/L (overeenkomstig met 

geconsumeerd voeder met minstens 1% versleping) kunnen reeds selecteren voor resistente porciene 

commensale E. coli in vitro en in vivo. Onderzoek is noodzakelijk om de minimum concentraties aan 

residuen van meer antimicrobiële middelen, geassocieerd met ontwikkeling van resistentie, te 

specifiëren. Aangezien het voorkomen van resistentiemechanismen (bv. co-selectie) niet uitgesloten 

kan worden, benadrukken de resultaten van dit model dat het gebruik van gemedicineerd diervoeder 

moet geminimaliseerd worden waar nodig. 

Hoofdstuk 7 stelt een model voor waarbij een inschatting wordt gemaakt van de hoeveelheid frequent 

oraal toegediende antimicrobiële middelen, aanwezig in mest op het einde van de gebruikelijke 

bewaartermijn in putten, en dus in deze hoedanigheid op de bodem gebracht worden. De data die in 

dit model gebruikt worden zijn gebaseerd op een literatuuroverzicht dat zich focust op de biologische 

beschikbaarheid en de omvang van in vivo biotransformatie van 12 antimicrobiële middelen, alsook 

op hun niveau van persistentie in mest. Het model schatte dat minstens 18.4% van de totale 

hoeveelheid oraal toegediende antimicrobiële middelen aanwezig zijn in mest die in die hoedanigheid 

op de bodem aangebracht worden. Gebaseerd op de verkoop van antimicrobiële middelen, werd 

geschat dat dit percentage overeenkomt met meer dan 25,000 kg antimicrobiële residuen in 

varkensmest in België. Als export en verwerking in acht genomen worden, wordt het bovenstaande 

percentage gereduceerd naar minstens 9.7%. Van de bestudeerde antimicrobiële middelen wordt voor 

doxycycline de hoogste concentratie aan residuen in opgeslagen mest geschat, door een combinatie 

van het hoge verbruik bij varkens, de lage biologische beschikbaarheid en hoge stabiliteit in mest. Ook 

voor antimicrobiële middelen die niet verwacht worden in mest op het einde van de bewaartermijn, 

kunnen bepaalde niveaus aan residuen van deze antimicrobiële middelen gevonden worden in fracties 

van mest die voor kortere duur zijn opgeslagen. Andere antimicrobiële middelen worden 

gemakkelijker afgebroken en vormen daardoor minder bedreiging. 

De resultaten in deze thesis benadrukken het belang van de reductie van de hoeveelheid en de 

frequentie van behandelingen met antimicrobiële middelen bij varkens. Het verbod op profylactische 

behandelingen met antimicrobiële middelen, die voornamelijk oraal worden toegediend, als een 

eerste stap, zou waarschijnlijk een aanzienlijk effect in deze richting hebben. 

 

 

 



248 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



249 
 

CURRICULUM VITAE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



250 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



251 
 

Marilena Filippitzi was born on January 22 1988 in Volos, Greece. She received her veterinary degree 

from the Aristotle University of Thessaloniki in 2011, where she particularly collaborated with the 

Laboratory of Microbiology, Immunology and Infectious Diseases of the faculty. She holds an MSc 

degree in Control of Infectious Diseases in animals, from the Royal Veterinary College (RVC), London. 

During her Masters studies, she collaborated with the Centre for Epidemiology and Risk Analysis of the 

UK Animal and Plant Health Agency. After that, she completed an in-service traineeship at the 

European Food Safety Authority in Parma, placed at the Scientific Committee and Emerging Risks Unit. 

Since 2014, Marilena was based at the Veterinary Epidemiology Unit of Ghent University, as a resident 

in specialization training (under the supervision of Prof Dr Jeroen Dewulf and Prof Dr Dominiek Maes) 

and a PhD student (under the supervision of Prof Dr Jeroen Dewulf and Prof Dr Mathias Devreese). In 

2017, she obtained the title of Diplomate of the European College of Veterinary Public Health (ECVPH) 

in Population Medicine. During these years, she worked on various research projects and completed 

scientific externships at the French Agency for Development in Paris, and the veterinary public health 

consultancy firm Epi-Interactive® in Wellington, New Zealand. As a postgraduate student, she acted as 

representative of the ECVPH Residents and of the Masters students at the RVC. 

Since April 2018, Marilena is working as veterinary epidemiologist at the Belgian Federal Institute 

Sciensano in Brussels. She represents Belgium in the Management Committee of the EU COST Action 

Network for Evaluation of One Health (NEOH) and she further represents NEOH in the EU COST 

Network of Science Communicators. She is also external collaborator with the National School of Public 

Health in Athens. She is author and co-author of several publications, with active participation in 

national and international conferences and organization of workshops.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



252 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



253 
 

BIBLIOGRAPHY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



254 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



255 
 

Publications in international journals 

 

- Filippitzi M.E., Chantziaras I., Devreese M., Dewulf J. Probabilistic risk model to assess the potential 

for resistance selection following the use of antimicrobial medicated feed in pigs. Food Additives 

and Contaminants, Part A. [Epub ahead of print]. 

- Filippitzi M. E., Brinch Kruse A., Postma M., Sarrazin S., Maes D., Alban L., Nielsen L.R., Dewulf J. 

2017. Review of transmission routes of 24 infectious diseases preventable by biosecurity measures 

and comparison of the implementation of these measures in pig herds in six European countries. 

Transboundary and Emerging Diseases. 65(2):381-398. 

- Falzon L.C., Lechner I., Chantziaras I., Collineau L., Courcoul A., Filippitzi M.E., Laukkanen-Ninios R., 

Peroz C., Pinto Ferreira J., Postma M., Prestmo P.G., Phythian C., Sarno E., Vanantwerpen G., 

Vergne T., Grindlay D., Brennan M. The quantitative outcomes of a “One Health” approach to study 

global health issues: a systematic review. Ecohealth. doi: 10.1007/s10393-017-1310-5. [Epub 

ahead of print]. 

- Ruegg S., McMahon B., Häsler B., Esposito R., Rosenbaum Nielsen L., Speranza C., Ehlinger T., Peyre 

M., Aragrande M., Zinsstag, Davies P., Mihalca A., Buttigieg S., Rushton J., Carmo L., De Meneghi 

D., Canali M., Filippitzi M.E., Goutard F., Ilieski V., Milievi D., O’Shea H., Radeski M., Kock R., Staines 

A., Lindberg A., 2017. A blueprint to evaluate One Health. Frontiers in Public Health. 5:20. 

- Filippitzi M. E., Goumperis T., Robinson T., Saegerman C., 2016. Microbiological zoonotic emerging 

risks, transmitted between livestock animals and humans (2007-2015). Transboundary and 

Emerging Diseases. 64(4):1059-1070. 

- Filippitzi M. E., Sarrazin S., Imberechts H., Smet A., Dewulf J., 2016. The risk of cross-contamination 

due to the use of antimicrobial medicated feed throughout the trail of feed from the feed mill to 

the farm. Food Additives and Contaminants, Part A. 33(4):644-55. 

- Filippitzi M. E., Callens B., Pardon B., Persoons D., Dewulf J., 2014. Antimicrobial use in pigs, broilers 

and veal calves in Belgium. Vlaams Diergeneeskundig Tijdschrift. 83(5). p.215-224. 

- Filippitzi M.E., Devreese M., Broekaert K., Rasschaert G., Daeseleire E., Meirlaen J., Dewulf J. 

Quantitative risk model to estimate the level of antimicrobial residues that can be transferred to 

soil via manure, due to oral treatments of pigs. Submitted manuscript. 

- Chantziaras I., Smet A., Filippitzi M. E., Haesebrouck F., Boyen F., Dewulf J. Use of a seeder-sentinel 

in vivo animal model to evaluate the effect of a commercial competitive exclusion product on the 

selection and spread of enrofloxacin resistance in commensal E. coli in broilers. Avian Pathology. 

[Epub ahead of print]. 

- Vandael F., Filippitzi M.E., Dewulf J., Devreese M., Croubels S. Patterns of antimicrobial use in pigs 

via feed and water: A field-study in pig farms in Belgium. In preparation. 



256 
 

- Filippitzi M.E., Chantziaras I., Saegerman C. A quantitative release assessment of the risks 

associated with the mechanical transport of Rift Valley Fever virus-carrying mosquitoes into 

previously unaffected areas. In preparation. 

 

Book chapters 

 

- Dewulf J., Postma M., Vanbeselaere B., Maes D., Filippitzi M.E., 2018. Transmission of pig diseases 

and biosecurity in pig production. Chapter 12. In: Biosecurity in animal production and veterinary 

medicine. Acco. 

- Filippitzi M.E. A One Health Evaluation Framework: Impact evaluation. Chapter 3. In: A handbook 

for evaluation of One Health. Wageningen Academic Publishers. 

 

Oral presentations 

 

- Two probabilistic risk models to assess the potential for resistance selection and residues 

transferred to soil due to oral antimicrobial treatment of pigs. 8th International Symposium on 

hormone and veterinary drug residue alaysis (VDRA), Ghent, Belgium. 05.2018. 

- Probabilistic risk modelling. VEE Workshop, Belgium. 05.2018. 

- Quantitative risk modelling. The example of a quantitative exposure model of pigs to cross-

contimanted feed with residues of antimirobials. ECVPH Workshop, Liège, Belgium. 09.2017. 

- The risk of introducing Rift Valley fever virus into the UK : A quantitative risk analysis. ECVPH 

Workshop, Liège, Belgium. 09.2017.              

- One Health : Metrics and Methods. National School of Public Health (NSPH), Athens. 01.2017. 

- The risk of cross-contamination due to the use of antimicrobial medicated feed: A quantitative 

exposure model from the feed mill to the farm. 25 years AESA International Congress, Liège, 

Belgium. 09.2016. 

- Biocheck.ugent®: A risk based biosecurity scoring system. Science Week of Australian and New 

Zealand College of Veterinary Scientists. Epidemiology Chapter, Gold Coast, Australia. 07.2016. 

- The risk model for the cross-contamination due to the use of antimicrobial medicated feed. Science 

Week of Australian and New Zealand College of Veterinary Scientists. Epidemiology Chapter, Gold 

Coast, Australia. 07.2016. 

- Network for Evaluation of One Health (NEOH): Developing a standardized methodology to evaluate 

One Health activities. Science Week of Australian and New Zealand College of Veterinary Scientists. 

Epidemiology Chapter, Gold Coast, Australia. 07.2016. 



257 
 

- Risk communication in Food Safety. National School of Public Health (NSPH), Athens. 03.2016. 

- Risk communication for Public Health harards. National School of Public Health (NSPH), Athens. 

04.2015. 

- Emerging Public Health risks. National School of Public Health (NSPH), Athens. 04.2015. 

- Biosecurity and antimicrobial usage. ECVPH Workshop, Bakum, Germany. 02.2014. 

- A Quantitative Release and Spatial Exposure Assessment of the Risks associated with Rift Valley 

Fever-Infected Mosquitoes arriving into Great Britain aboard Commercial Aircraft. AESA 

Symposium, Liège, Belgium. 10.2013. 

Poster prizes       

- Filippitzi M. E., Sarrazin S., Dewulf J. The risk of cross-contamination due to the use of antimicrobial 

medicated feed. VEE Annual Conference, Belgium. 10.2015.  1st Poster prize.          

- Filippitzi M. E., Carmo L. P., De Meneghi D., Rosenbaum Nielsen L., Häsler B. Transdisciplinary 

collaboration across Europe to promote Global Health: Network for Evaluation of One Health 

(NEOH). ECVPH Annual General  Meeting and Conference, Belgrade, Serbia. 10.2015. 1st Poster 

prize. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 



258 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



259 
 

ACKNOWLEGDEMENTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



260 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



261 
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