Journal of Physics Communications

PAPER • OPEN ACCESS

Lifetime calculations in energy levels of Kr vii

To cite this article: M Raineri et al 2017 J. Phys. Commun. 1 055022

View the article online for updates and enhancements.

Related content

- <u>New levels, calculated lifetimes and</u> <u>transition probabilities in Xe IX</u> M Gallardo, M Raineri, J Reyna Almandos et al.
- <u>REVISED AND EXTENDED ANALYSIS</u> OF FIVE TIMES IONIZED XENON. Xe vi M. Gallardo, M. Raineri, J. Reyna Almandos et al.
- <u>Revised and extended analysis of zinc-like</u> <u>germanium, Ge III</u> A N Ryabtsev, U Litzén and B Isberg

CrossMark

OPEN ACCESS

10 August 2017

31 October 2017

8 November 2017 PUBLISHED

22 December 2017

ACCEPTED FOR PUBLICATION

RECEIVED

REVISED

Journal of Physics Communications

PAPER

Lifetime calculations in energy levels of Kr VII

M Raineri¹ , J Reyna Almandos¹, E Amorim², J O Souza³ and E E Farías⁴

¹ Centro de Investigaciones Opticas, CIOp, CC 3 (1897) Gonnet, La Plata, Argentina

- ² Centro Universitário Estácio da Amazônia, Cep 69313792 Boa Vista, Roraima, Brasil
- ³ Secretaria de Educação e Desportos do Estado de Roraima, Cep 69301-130 Boa Vista, Roraima, Brasil
- Universidade Federal de Roraima (UFRR), Cep 69310-000 Boa Vista, Brasil

E-mail: monicar@ciop.unlp.edu.ar

Keywords: atomic spectroscopy, lifetimes, energy levels

Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Abstract

Calculations of the lifetimes for all experimentally known energy levels of the spectrum of the six times-ionized krypton (Kr VII) are presented. The relativistic Hartree–Fock method including core-polarization effects were used. The energy matrix was calculated using energy parameters adjusted to the experimental energy levels. We also present a calculation based on a relativistic multiconfigura-tional Dirac–Fock approach. For some energy levels, a comparison of these results with the bibliography data was made.

1. Introduction

Six times ionized krypton (Kr VII) belongs to the Zn I isoelectronic sequence. The analysis of the atomic structure of this ion is important in astrophysical plasma research and recently Kr VI and Kr VII lines have been observed in the ultraviolet spectrum of the hot DO-type white dwarf RE 0503-289 [1], in the first detection of krypton in this kind of star. Reliable measurements and calculations of atomic data are a prerequisite for state-of-the-art nonlocal thermodynamic equilibrium stellar-atmosphere modeling (NLTE). Observed Kr V-VII line profiles in the UV spectrum of the white dwarf RE 0503-289 were simultaneously well reproduced with newly calculated oscillator strengths [2]. The energy levels measured by Raineri *et al* [3] were used to fit the parameters of $4s^2$, $4p^2$, 4s4d, 4s5d, 4s6d, 4s5s, 4s6s, 4p4f, 4s4p, 4s5p, 4s6p, 4s4f, 4s5f, 4s6f, 4p5s, and 4p4d configurations in Kr VII. In that work, the spectrum was recorded in the 300–4800 Å wavelength range, resulting in 115 new classified lines and extended the analysis to 38 new energy levels belonging to 4s5s, 4s6s, 4p4f, 4s6d and 4p4d, 4s5p, 4s4f, 4p5s, 4s5f, 4s6p, 4s6f even and odd configurations, respectively. The authors also mentioned several discrepancies between the values on Kr VII published in papers by Churilov [4], Raineri et al [5] and Cavalcanti et al [6]. In order to clarify these disagreements they presented a new revised and extended analysis for the Kr VII. A critical compilation of the energy levels and transitions of the Kr VII ion was reported by Saloman [7]. Liang et al [8] presented calculations of line strengths, oscillator strengths, radiative decay rates and fine structure collision strengths for 90 lines in Kr VII. In their calculations, using the AUTOSTRUCTURE code [9], they included nine configurations, i.e., 4s², 4p², 4s4d, 4s5s, 4s5d, and 4s4p, 4s4f,4p4d, 4s5p for the even and odd parities, respectively.

Lifetimes depend on the allowed and forbidden transition probabilities from the corresponding states. The only experimental results for lifetimes of energy levels for Kr VII was provided by Pinnington *et al* [10, 11], who used the beam-foil method. They describe two techniques in their methods; from multiexponential curve fitting (d and f in in table 1) and from the arbitrarily normalized decay curve (ANDC) (e and g in table 1) where quoted errors are standard deviations. Empirical predictions are reported for the lifetimes of the 4s²–4s4p resonance and intercombination transitions in the Zn isoelectronic sequence [12]. Using configuration interaction wave functions, Hibbert *et al* [13] presented lifetime calculations of the 4s4p ${}^{3}P_{1}^{0}$ energy level in Kr VII. This value is in excellent agreement with the experiment. They also included core polarization (CP) effects in the calculation.

In the present work, we calculated the lifetimes for all experimentally known energy levels of the Kr VII [3, 7]. Four calculation methods were used to obtain the lifetimes of the energy levels. For the first three methods, Cowan's package [14] was used with corrections to the code made by Kramida [15], due to an error in Cowan's atomic structure theory. The calculations were performed for different sets of configurations. We also included CP effects [16]. The fourth method is based on a multiconfigurational relativistic approach for the Dirac equation (MCDF), as described by Grant using the general relativistic atomic structure package (GRASP) [17]. For some levels we compared the lifetime values with experimental results [10, 11].

2. Theory

2.1. The Hartree–Fock (HF) method

In the codes rcn36/rcn2 of the Cowan program [14] the wavefunctions are calculated in a HF approximation with relativistic corrections (HFR). The wavefunctions are used to calculate a multiconfigurational energy matrix with the code rcg11. Both eigenvalues and eigenvectors of the matrix are functions of the Slater parameters, i.e., functions of the average configuration energy E_{av} , electrostatic direct F^k and exchange G^k integrals, effective radial parameter α , configuration interaction integrals R^k , and spin–orbit parameters ζ_{nl} . We had used this method in several previous papers for example [18, 19]. The values of these parameters were changed to fit the experimental values by means of a least-squares calculation. We also made the corrections proposed by Kramida [15] in the rcn2 code, in this way we obtained non-zero values for some configuration-interaction integrals of the Rydberg series, which were zero in the original version of rcn2.

The natural lifetime $\tau(\gamma J)$ is the inverse of transition probability, then:

$$\tau(\gamma J) = \left(\sum A(\gamma J, \gamma' J')\right)^{-1},\tag{1}$$

where $A(\gamma J, \gamma' j')$ is obtained from equations (14.33) and (14.42) of [14].

2.2. HF plus CP

We included the CP effects (see, for example, Curtis [12] and Biémont *et al* [20]) just by replacing the dipole integral

$$\int_{0}^{\infty} P_{nl}(r) r P_{n'l'}(r) dr \to \int_{0}^{\infty} P_{nl} r$$

$$\cdot \left[1 - \frac{\alpha_{\rm d}}{(r^2 + r_{\rm c}^2)^{3/2}} \right] P_{n'l'}(r) dr - \frac{\alpha_{\rm d}}{r_{\rm c}^3} \int_{0}^{r_{\rm c}} P_{nl}(r) P_{n'l'}(r) dr.$$
(2)

Here α_d is the electric dipole polarizability of the core, and r_c is the cut-off radius, which defines the boundaries of the atomic core. This is the same modification used by Quinet *et al* [21] to correct transition matrix elements when including CP effects. In our case, the radial functions were obtained from the single configuration HF method with relativistic corrections, and no modification was done to include CP effects in the Hamiltonian.

2.3. Relativistic Dirac-Fock calculations

The GRASP package solves the Dirac equations within the framework of relativistic quantum theory [17, 22]. This program offers energy levels, wavelength, dipole transition rates and lifetimes from a multiconfigurational relativistic approach. The configuration state functions are a linear combination of Slater determinants constructed from relativistic (Dirac) orbitals equation (4) of [18].

3. Results and discussions

The results of our four different lifetime calculations are presented in table 1. The experimental energy level values were taken from Raineri *et al* [3] and the experimental lifetimes from Pinnington *et al* [10, 11], who used the beam-foil method.

The HFR calculations were performed with different sets of configurations. In the first one (A), the following configurations were included: $4s^2$, $4p^2$, 4s4d, $4d^2$, 4s5s, 4s5d, 4p4f, $4f^2$, 4p5p, 4p5f, 4s6s, 4s6d, $3d^94s^24d$ and 4s4p, 4p4d, 4s5p, 4s4f, 4s5f, 4p5s, 4p5d, 4s6f, 4d4f, $3d^94s^24p$ for even and odd parity respectively, which is the same set used by Raineri *et al* [3]. The values of the adjusted parameters used in the present work are also similar to [3], where the details for the least-squares calculation are explained. The difference is that we considered the corrections made by Kramida [15] where we obtained non-zero values for some configuration-interaction integrals of Rydberg series (see point 2.1). These integrals were $R^0(4s5d,4s6d)$, $R^0(4s5p,4s6p)$ and $R^0(4s5f,4s6f)$ with values in 605, 819, 458 cm⁻¹, respectively. The change in the electrostatic integrals is expected to be equivalent to the inclusion of electronic correlation effects of higher order in the final values of the energy levels.

ω

Designation	$E_{\rm exp}~({\rm cm}^{-1})^{\rm a}$	$E_{\rm cal}({\rm cm}^{-1})^{\rm b}$	Percentage composition ^c	Type of calculation	Lifetime (ns)	Experimental lifetime (ns)
$4s^{2} S_{0}$	0.0	0.0	98	А	∞	
				В	∞	
				С	∞	
				D	∞	
4s4p ³ P ₀	117 389.6	117 399	100	А	∞	
				В	∞	
				С	∞	
				D	∞	
4s4p ³ P ₁	120 094.8	120 083	99	А	38.08	$47 \pm 10^{ m d}$
				В	45.03	
				С	42.04	
				D	65.75	
$4s4p^{3}P_{2}$	126 553.8	126 556	100	А	∞	
				В	∞	
				С	∞	
				D	∞	
4s4p ¹ P ₁	170 835.0	170 835	97	А	0.088	$0.101\pm0.01^{\rm e}$
				В	0.104	
				С	0.100	
				D	0.086	
$4p^{2} {}^{3}P_{0}$	274931.7	274 906	96	А	0.108	$0.158 \pm 0.018^{\rm d}$
				В	0.119	
				С	0.127	
				D	0.107	
$4p^{2} {}^{3}P_{1}$	279 414.5	279 449	100	А	0.102	$0.156 \pm 0.025^{\rm d}$
				В	0.112	
				С	0.121	
				D	0.102	
$4p^{2} {}^{3}P_{2}$	288 190.2	288 172	$67 4p^{2} {}^{3}P + 28 4p^{2} {}^{1}D + 5 4s4d {}^{1}D$	А	0.130	$0.173 \pm 0.015^{\rm d}$
				В	0.144	
				С	0.155	
				D	0.343	
$4p^{2} D_{2}^{1}$	279714.8	279 723	$594p^{2}D + 324p^{2}P + 84s4d^{1}D$	А	0.240	$0.081 \pm 0.020^{\rm d}$
• -			• •	В	0.267	
				С	0.287	

M Raineri et al

Table 1.	(Continue	ed.)
----------	-----------	------

Designation	$E_{\rm exp} ({\rm cm}^{-1})^{\rm a}$	$E_{\rm cal} (\rm cm^{-1})^{\rm b}$	Percentage composition ^c	Type of calculation	Lifetime (ns)	Experimental lifetime (ns)
				D	0.118	
$4p^{2} {}^{1}S_{0}$	321 794.0	321 795	94	А	0.096	
				В	0.104	
				С	0.113	
				D	0.096	
4s4d ³ D ₁	349 973.1	350 067	100	А	0.043	
				В	0.045	
				С	0.049	
				D	0.044	
4s4d ³ D ₂	350 416.8	350 435	100	А	0.045	
				В	0.047	
				С	0.050	
				D	0.045	
4s4d ³ D ₃	351 116.2	351 004	100	А	0.048	
				В	0.049	
				С	0.053	
				D	0.047	
4s4d ¹ D ₂	379 488.3	379 489	$85 4s4d {}^{1}D + 13 4p2 {}^{1}D$	А	0.033	$0.046 \pm 0.008^{ m d}$
				В	0.034	
				С	0.037	
				D	0.033	
4s5s ³ S ₁	438 644	438 636	99	А	0.037	
				В	0.030	
				С	0.033	
				D	0.039	
4s5s ¹ S ₀	447 769	447 777	99	А	0.050	
				В	0.042	
				С	0.047	
				D	0.056	
$4p4d^{3}F_{2}$	475 890	475 922	$884p4d^{3}F + 74p4d^{1}D + 54s4f^{3}F$	А	0.527	
1 -			1 1	В	0.643	
				С	0.644	
				D	0.725	
$4p4d^{3}F_{3}$	479 655	479 663	$924p4d^{3}F + 64s4f^{3}F$	А	0.720	
			. .	В	0.898	
				С	0.902	
				L	0.902	

M Raineri *et al*

Table 1. (Continued.)

J

Designation	$E_{\rm exp}~({\rm cm}^{-1})^{\rm a}$	$E_{\rm cal}({\rm cm}^{-1})^{\rm b}$	Percentage composition ^c	Type of calculation	Lifetime (ns)	Experimental lifetime (ns)
				D	1.005	
4p4d ³ F ₄	484 543	484 542	$924p4d^{3}F + 84s4f^{3}F$	А	1.117	
				В	1.500	
				С	1.522	
				D	1.510	
4p4d ¹ F ₃	505 076	505 016	$364p4d{}^{1}F+344s4f{}^{1}F+294p4d{}^{3}D$	А	0.035	
				В	0.039	
				С	0.039	
				D	0.029	
4p4d ³ D ₁	501 542	501 553	$654p4d^{3}D + 284p4d^{3}P$	А	0.030	
				В	0.036	
				С	0.034	
				D	0.032	
4p4d ³ D ₂	507 934	507 873	$624p4d^{3}D + 364p4d^{3}P$	А	0.030	
-				В	0.034	
				С	0.034	
				D	0.037	
4p4d ³ D ₃	508 473	508 595	$704p4d^{3}D + 164s4f^{1}F + 134p4d^{1}F$	А	0.032	
				В	0.036	
				С	0.036	
				D	0.041	
$4p4d^{1}D_{2}$	487 650	487 605	$874p4d^{1}D + 64p4d^{3}F + 54p4d^{3}P$	А	0.066	
1 -				В	0.076	
				С	0.076	
				D	0.067	
$4p4d^{3}P_{0}$	506 933	506 938	97	А	0.037	
I				В	0.042	
				С	0.042	
				D	0.039	
$4p4d^{3}P_{1}$	507 446	507 448	$664p4d^{3}P + 324p4d^{3}D$	Ā	0.033	
r 1				В	0.037	
				C	0.037	
				D	0.034	
$4p4d^{3}P_{2}$	501 769	501 763	$52.4 \text{ p4d}^{3}\text{P} + 35.4 \text{ p4d}^{3}\text{D} + 7.4 \text{ s5n}^{3}\text{P}$	A	0.035	
IF IG I 2	501707	501705		B	0.039	
				C.	0.039	
				0	0.037	

Designation	$E_{\rm exp} ({\rm cm}^{-1})^{\rm a}$	$E_{\rm cal} ({\rm cm}^{-1})^{\rm b}$	Percentage composition ^c	Type of calculation	Lifetime (ns)	Experimental lifetime (ns)
				D	0.031	
4p4d ¹ P ₁	535 462	535 465	94	А	0.037	
				В	0.043	
				С	0.043	
				D	0.038	
s5p ³ P ₀	492776	492 755	97	Α	0.235	$0.537 \pm 0.040^{ m f}, 0.330 \pm 0.040^{ m g}$
				В	0.224	
				С	0.225	
				D	0.250	
s5p ³ P ₁	493 219	493 242	$864s5p^{3}P + 104s5p^{1}P$	А	0.209	$0.497 \pm 0.040^{\mathrm{f}}, 0.305 \pm 0.040^{\mathrm{g}}$
-				В	0.189	
				С	0.189	
				D	0.218	
$s5p^{3}P_{2}$	495 578.4	495 580	$904s5p^{3}P + 74p4d^{3}P$	Α	0.223	$0.510 \pm 0.030^{\rm f}, 0.30 \pm 0.08^{\rm g}$
-				В	0.217	
				С	0.219	
				D	0.234	
s5p ¹ P ₁	497 395	497 392	$844s5p^{1}P + 94s5p^{3}P$	Α	0.097	$0.289 \pm 0.040^{\rm f}$
			1 1	В	0.078	
				С	0.078	
				D	0.096	
s4f ³ F ₂	530 349	530 285	$944s4f^{3}F + 64p4d^{3}F$	А	0.045	
			-	В	0.047	
				С	0.047	
				D	0.045	
s4f ³ F ₃	530 491	530 504	$934s4f^{3}F + 74p4d^{3}F$	А	0.044	
				В	0.047	
				С	0.047	
				D	0.045	
s4f ³ F₄	530 772	530 822	$924s4f^{3}F + 84p4d^{3}F$	А	0.044	
•			1	В	0.047	
				С	0.047	
				D	0.044	
s4f ¹ F ₃	560 671	560 664	49 4s4f ¹ F+48 4p4d ¹ F	А	0.024	
2			· · · <u>·</u> · ·	В	0.026	
				Ē	0.026	

 $\overline{}$

Designation	$E_{\rm exp}~({\rm cm}^{-1})^{\rm a}$	$E_{\rm cal} (\rm cm^{-1})^{\rm b}$	Percentage composition ^c	Type of calculation	Lifetime (ns)	Experimental lifetime (ns)
				D	0.024	
4s5d ³ D ₁	578 470	578 518	98	А	0.237	$0.426 \pm 0.030^{\rm f}$
				В	0.241	
				С	0.250	
				D	0.253	
4s5d ³ D ₂	578 722	578 728	98	А	0.241	$0.437 \pm 0.030^{ m f}$
				В	0.245	
				С	0.254	
				D	0.255	
4s5d ³ D ₃	579 109	579 056	99	А	0.249	$0.491\pm0.050^{\rm f}$
				В	0.255	
				С	0.262	
				D	0.263	
4s5d ¹ D ₂	581 038	581 038	96	А	0.210	
				В	0.227	
				С	0.236	
				D	0.216	
$4p5s^{3}P_{0}$		585 764	99	А	0.051	
				В	0.049	
				С	0.049	
				D	0.050	
$4p5s^{3}P_{1}$	587 029	587 029	$844p5s^{3}P + 144p5s^{1}P$	А	0.045	
1 1			1 1	В	0.042	
				С	0.043	
				D	0.046	
$4p5s^{3}P_{2}$	594 617	594 617	99	А	0.047	
1 2				В	0.045	
				С	0.045	
				D	0.048	
$405s^{1}P_{1}$	598 281	598 281	$794p5s^{1}P + 154p5s^{3}P$	A	0.029	
1900 11	070 201	0,0201		В	0.027	
				C	0.027	
				D	0.028	
4s6s ³ S ₁	616 314	616 314	99	A	0.055	
1000 01	010 011	010 011	~~	B	0.046	
				C	0.047	
				6	0.01/	

M Raineri et al

Table 1. (Continued.)

8

Designation	$E_{\rm exp}~({\rm cm}^{-1})^{\rm a}$	$E_{\rm cal} ({\rm cm}^{-1})^{\rm b}$	Percentage composition ^c	Type of calculation	Lifetime (ns)	Experimental lifetime (ns)
				D	0.052	
4s6s ¹ S ₀	618 693	618 693	98	А	0.064	
				В	0.056	
				С	0.061	
				D	0.072	
$4s5f^{3}F_{2}$	656 725	656 803	99	А	0.203	
				В	0.212	
				С	0.213	
				D	0.220	
$4s5f^{3}F_{3}$	656 868	656 845	99	Α	0.203	
				В	0.212	
				С	0.213	
				D	0.222	
$4s5f^{3}F_{4}$	656 956	656 901	99	А	0.203	
				В	0.213	
				С	0.214	
				D	0.223	
$4s5f^{1}F_{3}$	659 927	659 919	96	А	0.177	
5				В	0.187	
				С	0.188	
				D	0.170	
$4p4f^{3}G_{3}$	671 908	671 921	$474p4f^{3}G + 314p4f^{1}F + 204p4f^{3}F$	А	0.049	
1 -				В	0.048	
				С	0.054	
				D	0.049	
$4p4f^{3}G_{4}$		673 646	$634p4f^{3}G + 244p4f^{1}G + 94d^{2}G^{1}G$	А	0.070	
-r4				В	0.067	
				С	0.078	
				D	0.057	
4p4f ³ G ₅		671 786	100	A	0.050	
.p.n. 03		0/1/00	100	В	0.047	
				C	0.053	
				D	0.050	
$4p4f^{1}G$	671 378	671 351	$464p4f^{3}F + 304p4f^{1}G + 114d^{2}G$	A	0.094	
1F 11 04	0/1 5/0	071 331		B	0.093	
				C	0.075	
				C	0.100	

Designation	$E_{\rm exp} ({\rm cm}^{-1})^{\rm a}$	$E_{\rm cal}({\rm cm}^{-1})^{\rm b}$	Percentage composition ^c	Type of calculation	Lifetime (ns)	Experimental lifetime (ns)
				D	0.118	
$4p4f^{3}F_{2}$	664 923	665 007	$864p4f^{3}F + 74d^{2}{}^{3}F$	А	0.063	
				В	0.062	
				С	0.071	
				D	0.064	
$4p4f^{3}F_{3}$	664 997	664 897	$494p4f^{3}F + 384p4f^{1}F + 94p4f^{3}D$	А	0.054	
				В	0.053	
				С	0.059	
				D	0.049	
$4p4f^{3}F_{4}$	663 983	664 015	$434p4f^{3}F + 284p4f^{3}G + 214p4f^{1}G$	А	0.078	
				В	0.076	
				С	0.086	
				D	0.091	
$4p4f^{1}F_{3}$		663 879	$534p4f^{3}G + 274p4f^{1}F + 194p4f^{3}F$	А	0.051	
				В	0.049	
				С	0.056	
				D	0.049	
$4p4f^{3}D_{1}$	684 070	684 002	99	А	0.043	
-				В	0.042	
				С	0.047	
				D	0.048	
$4p4f^{3}D_{2}$	681 681	681 336	$654p4f^{3}D + 234p4f^{1}D + 64p4f^{3}F$	А	0.046	
•				В	0.045	
				С	0.050	
				D	0.049	
$4p4f^{3}D_{3}$	680 086	680 361	$894p4f^{3}D + 54p4f^{1}F + 44p4f^{3}F$	А	0.045	
1 -				В	0.043	
				С	0.049	
				D	0.046	
$4p4f^{1}D_{2}$	684 941	685 081	$544p4f^{1}D + 314p4f^{3}D + 134d^{2}D^{1}D$	А	0.046	
1 2			I I I I I I I	В	0.046	
				С	0.050	
				D	0.055	
$4s6p^{3}P_{0}$	640 160	640 334	100	А	0.258	
··r -0				В	0.241	
				C	0.242	
				~	0.212	

Designation	$E_{\rm exp} ({\rm cm}^{-1})^{\rm a}$	$E_{\rm cal} ({\rm cm}^{-1})^{\rm b}$	Percentage composition ^c	Type of calculation	Lifetime (ns)	Experimental lifetime (ns)
				D	0.240	
4s6p ³ P ₁	640 761	640 780	97	А	0.251	
				В	0.231	
				С	0.232	
				D	0.233	
4s6p ³ P ₂	642 010	642 050	100	А	0.248	
				В	0.232	
				С	0.233	
				D	0.238	
4s6p ¹ P ₁	645 430	645 423	94	А	0.140	
				В	0.104	
				С	0.105	
				D	0.130	
4s6d ³ D ₁	694 858	694 857	99	А	0.239	
				В	0.236	
				С	0.251	
				D	0.195	
4s6d ³ D ₂	695 056	694 957	99	А	0.242	
				В	0.240	
				С	0.255	
				D	0.217	
4s6d ³ D ₃	695 015	695 115	99	А	0.248	
				В	0.247	
				С	0.263	
				D	0.299	
4s6d ¹ D ₂	697 330	697 330	94	А	0.205	
-				В	0.192	
				С	0.207	
				D	0.128	
$4s6f^{3}F_{2}$	724 718	724 629	$784s6f^{3}F + 174p5d^{3}F$	А	0.273	
			I I I	В	0.303	
				С	0.305	
				D	0.160	
$4s6f^{3}F_{3}$	724 826	725 127	$694s6f^{3}F + 244p5d^{3}F + 4p5d^{3}D$	A	0.233	
·,		=,	or the second se	В	0.260	
				C C	0.259	
				5	0.237	

11

Designation	$E_{\rm exp} ({\rm cm}^{-1})^{\rm a}$	$E_{\rm cal}({\rm cm}^{-1})^{\rm b}$	Percentage composition ^c	Type of calculation	Lifetime (ns)	Experimental lifetime (ns)
				D	0.432	
$4s6f^{3}F_{4}$	725 989	726 069	$594s6f^{3}F + 404p5d^{3}F$	А	0.189	
				В	0.210	
				С	0.205	
				D	0.454	
$4s6f^{1}F_{3}$	719 130	718 791	$424s6f{}^{1}F + 224p5d{}^{1}F + 154p5d{}^{3}F$	А	0.359	
				В	0.411	
				С	0.306	
				D	0.235	

^a Experimental energy level reported by Raineri [3].

^b Calculated energy level values obtained using the fitted energy parameters [3].

^c Percentages below 4% have been omitted [3].

^{d, e} Experimental lifetimes reported by Pinnington [10].

^{f, g} Experimental lifetimes reported by Pinnington [11].

A: Calculated HFR lifetimes values obtained using the fitted energy parameters obtained in [3].

B: Calculated HFR lifetimes values including core polarization effects (CP).
C: Calculated HFR lifetimes values including core polarization effects (CP) and the 5s² + 5p² + 5s5p configurations.

D: Calculated GRASP lifetimes values considering babuskin gauge and the configuration set used in C.

Configuration	Parameter	HF value	Fitted value	F/HF(a)
4s ²	Eav	0.0	7319 ± 158	
4p ²	E_{av}	281 386	$290\ 937\ \pm\ 90$	1.034
	$F^{2}(4p, 4p)$	71 534	$61\ 457\ \pm\ 474$	0.859
	α	0.0	7(FIX)	
	ζ_{4p}	5484	6021 ± 96	1.098
4s4d	E_{av}	346 026	$356\;442\pm82$	1.030
	ζ_{4d}	403	383 (FIX)	0.950
	$G^{2}(4s, 4d)$	53 495	$47\;443\pm523$	0.886
4s5s	E_{av}	432 198	$442\ 930\ \pm\ 123$	1.025
	$G^{0}(4s, 5s)$	6340	5311 ± 111	0.838
4s5d	E_{av}	571 300	$581\ 207\ \pm\ 80$	1.017
	ζ _{5d}	175	166 (FIX)	0.950
	$G^{2}(4s, 5d)$	11 272	9785 ± 469	0.868
4p4f	E_{av}	665 051	$676~357~\pm~75$	1.017
	ζ_{4p}	5473	6521 ± 139	1.191
	ζ4f	9	9 (FIX)	1.000
	$F^{2}(4p, 4f)$	45 588	$44\ 142\ \pm\ 635$	0.968
	$G^{2}(4p, 4f)$	37 759	$41\ 680\ \pm\ 1006$	1.104
	$G^{4}(4p, 4f)$	25 506	$28\ 968\ \pm\ 918$	1.136
4s6s	E_{av}	607 519	$617\;504\pm125$	1.016
	$G^{0}(4s, 6s)$	2141	1720 ± 113	0.803
4s6d	E_{av}	675 806	$695\ 134\ \pm\ 79$	1.028
	ζ_{6d}	91	87 (FIX)	0.950
	$G^{2}(4s, 6d)$	4632	3865 ± 463	0.834
Configuration int	eraction integrals			
4s4d–4f4p	<i>R</i> ¹ (4s4d, 4f4p)	65 718	49 288 (FIX)	0.750
$5s^2-5p^2$	$R^{1}(5s5s, 5p5p)$	47 319	35 489(FIX)	0.750

Table 2. Energy parameters (cm $^{-1}$) for the studied even parity configurations in the calculation C of Kr VII.

Note. (a) Parameters omitted from this table: direct and exchange integrals, and spinorbit parameters set for configurations that not have known experimental levels, this values were set to 85%, 85%, and 95% of their HFR values respectively; CI omitted integrals were set to 85% of their HFR values. The standard deviation for energy adjustment was 155 cm⁻¹.

The second calculation (B) is the same as the first one, except that in this case we did not consider core excited configuration, but instead, we took into account CP effects. This inclusion required the knowledge of the dipole polarizability of the ionic core, α_d , and of the cutoff radius, r_c . For the first parameter, we used the value computed by Fraga *et al* [23] for the Kr⁸⁺ ion, i.e. $\alpha_d = 0.209 a_0^3$, while the cutoff radius, r_c , was chosen equal to 0.56, which corresponds to the mean HFR $\langle r \rangle$ value of the outermost core orbital 3d¹⁰.

The third calculation (C) is the same as the second one including CP effects except that we considered the valence shell correlation [13] taking into account $5s^2$, $5p^2$ and 5s5p configurations. The least-squares calculation results for the energy parameters are shown in tables 2 and 3 for the even and odd parities, respectively. For the even parity, all parameters (E_{av} , F^2 , G^0 , G^2 , G^4 and spin–orbit) were left free for the known configurations. In order to reduce the standard deviation and to obtain parameter values in accordance with the scaled HF values, all the configuration–interaction integrals were scaled down at 85% of their HF values, except for the corresponding to 4s4d-4f 4p and $5s^2-5p^2$ that were held fixed at 75% of their HF values. For the odd parity, all parameters (E_{av} , F^2 , G^1 , G^3 and spin–orbit) were left free for the known configurations except for the $G^3(4s,6f)$ that was held fixed at 85% of the HF value. The 4s4p-4p 4d interaction integral was held fixed at 75% of their HF values and those corresponding to 4p4d-4s4f were let free to optimize their values and then fixed for the final calculation. The standard deviation for the energy adjustment was 155 cm⁻¹ and 158 cm⁻¹ for the even and odd parities, respectively.

The fourth calculation (D) was the fully relativistic MCDF approach. We used the GRASP [17]. Computations were carried out with the extended average level assuming a uniform charge distribution in the nucleus, with a krypton atomic weight of 83.80. We considered the same numbers and type of configurations as in the C calculation. The values presented in this work for lifetimes are in Babushkin gauge since this one, in the non-relativistic limits (length), has been found to be the most stable value in many situations, in the sense that it

Configuration	Parameter	HF value	Fitted value	F/HF(a)
4s4p	E_{av}	127 325	137 895 + 87	1.083
	ζ_{4p}	5500	6130 ± 144	1.114
	$G^{\hat{1}}(4s, 4p)$	93 862	79316 ± 299	0.845
4p4d	$E_{\mathbf{av}}$	490 335	$502\;378\pm55$	1.024
	ζ_{4p}	5601	6258 ± 120	1.117
	ζ _{4d}	413	392 (FIX)	0.950
	$F^{2}(4p, 4d)$	60 639	$54\ 845\ \pm\ 513$	0.904
	$G^{1}(4p, 4d)$	74 858	65164 ± 273	0.870
	$G^{3}(4p, 4d)$	46 888	$41\ 677\ \pm\ 455$	0.889
4s5p	E_{av}	487 599	$497\;486\pm94$	1.020
	ζ5p	1950	2055 ± 141	1.054
	$G^{1}(4s, 5p)$	9827	7661 ± 389	0.779
4s4f	Eav	518 166	$528\ 984\ \pm\ 108$	1.021
	ζ_{4f}	8	8 (FIX)	1.000
	$G^{3}(4s, 4f)$	26 286	$22\ 919\ \pm\ 1208$	0.872
4s5f	E_{av}	646 259	$658\ 081\ \pm\ 81$	1.018
	ζ _{5f}	5	5 (FIX)	1.000
	$G^{3}(4s,5f)$	10 763	$10~392~\pm~663$	0.965
4p5s	$E_{\mathbf{av}}$	581 531	$592\;396\pm95$	1.019
	ζ_{4p}	5803	5938 ± 149	1.023
	$G^{1}(4p, 5s)$	9110	6550 ± 407	0.719
4s6p	$E_{\mathbf{av}}$	634 019	$641\ 988\ \pm\ 87$	1.012
	ζ6p	946	1137 ± 140	1.202
	$G^{\hat{1}}(4s, 6p)$	3563	3555 ± 322	0.998
4s6f	$E_{\mathbf{av}}$	715 526	$723\ 277\ \pm\ 115$	1.011
	ζ_{6f}	3	3 (FIX)	1.000
	$G^{3}(4s, 6f)$	5365	4560 (FIX)	0.850
Configuration inte	eraction integrals			
4s4p–4p 4d	$R^2(4s4p, 4d4p)$	61 927	46 445 (FIX)	0.750
4p4d–4s4f	$R^{1}(4p4d, 4s4f)$	64 971	54 967 (FIX)	0.846
4p4d–4s4f	$R^{2}(4p4d, 4f4s)$	43 522	36 846 (FIX)	0.847

Table 3. Energy parameters (cm⁻¹) for the studied odd parity configurations in the calculation C of Kr VII.

Note. (a) F/HF means Fitted/Hartree–Fock. Parameters omitted from this table: direct and exchange integrals, and spin–orbit parameters set for configurations that not have known experimental levels, this values were set to 85%, 85%, and 95% of their HFR values respectively; CI omitted integrals were set to 85% of their HFR values. The standard deviation for energy adjustment was 158 cm⁻¹.

converges smoothly as more correlation is included and it is less sensitive to details of the computational method [24]. This method takes into account relativistic effects by means of a more complete approach than Cowan's package, but the HFR method takes into account correlation effects in a more complete way. In the HFR + CP method, not only are correlation effects considered more deeply, but CP effects are taken into account in the lifetime calculations. These concepts are reflected in table 1 where the calculations for lifetimes of Kr VII considering CP effects (B and C) are in general closer to the experimental values [10, 11] than the calculations A and D. In particular, our calculated lifetime values of the energy levels including CP effects, which we compared with the experimental values of [10, 11], are in better agreement with the values shown as (e y g) in table 1 than the other values reported if we consider the maximum error specified in each case. A technique to remove the effect of cascade repopulation from beam-foil lifetimes measurements (ANDC) were used in such papers. It is possible that if the authors had used these corrections for the levels 4s5p $^{1}P_{1}$ 4s5d $^{3}D_{1,2,3}$ our theoretical values would be closer to the experimental values reported by them.

Our HFR + CP calculated value for the lifetime of the 4s4p ${}^{3}P_{1}$ level is in good agreement with the value reported by Hibbert *et al* [13]. In some cases, where the calculated values are not in agreement with the experimental values as it is for the lifetime of the 4p² ${}^{1}D_{2}$ level and this could be due to the mixing of percentage composition of the levels involved in the calculation [3]. It is noteworthy that in all HFR calculations with and without CP, we considered optimized values of the energy parameters using least squares techniques where we adjusted the theoretical values to the experimental ones.

4. Conclusion

Four different calculations of lifetimes in Kr VII were carried out: A, considering the HFR approach [14] with the modifications very recently suggested by Kramida [12]; B and C, including CP effects HFR + CP [16] and D, using the GRASP code [17]. Three sets of configurations were taken into account in the calculation A, B and C. In the calculation D we considered the same set of configurations as in C. For some energy levels, we compared the lifetimes with the experimental values given in the bibliography [10, 11]. In most cases the HFR + CP calculations are in better agreement with the experimental lifetimes, especially if we consider the maximum error in each case taking into account the ANDC technique, reported in the [10, 11]. The values calculated with the GRASP code (D) are in better accordance with those calculated in the case A, where core excited configurations were included.

Acknowledgments

E Grumel and L Cap, who helped us in the Cowan code modification suggested by Kramida [15], are gratefully acknowledged. The Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Argentina, where MR and JRA are researchers, is gratefully acknowledged. The research was also supported by the Universidade Federal de Roraima (UFRR), Boa Vista, Brazil where EEF is researcher.

ORCID iDs

M Raineri [®] https://orcid.org/0000-0001-6080-8691

References

- [1] Werner K, Rauch T, Ringat E and Kruk J W 2012 Astrophys. J. Lett. 753 L7
- [2] Rauch T, Quinet P, Hoyer D, Werner K, Richter P, Kruk J W and Demleitner M 2016 Astron. Astrophys. 590 A128
- [3] Raineri M, Farías E E, Souza J O, Amorim E, Gallardo M and Reyna Almandos J 2014 J. Quant. Spectrosc. Radiat. Transfer 148 90
- [4] Churilov S S 2002 Opt. Spectrosc. 93 826
- [5] Raineri M, Trigueiros A G, Gallardo M and Reyna Almandos J G 2000 Phys. Scr. 62 474
- [6] Cavalcanti G H, Trigueiros A G, Raineri M and Reyna Almandos J 2003 J. Opt. Soc. Am. B 20 1758
- [7] Saloman E B 2007 J. Phys. Chem. Ref. Data 36 215
- [8] Liang L, Wen-jing G and Zhou C 2013 Can. J. Phys. 91 554
- [9] Badnell N R 2011 Comput. Phys. Commun. 182 1528
- [10] Pinnington E H, Ansbacher W and Kemahan J A 1984 J. Opt. Soc. Am. B 1 30
- [11] Pinnington E H, Tauheed A, Ansbacher W and Kemahan J A 1991 J. Opt. Soc. Am. B 8 193
- [12] Curtis L J 1992 J. Opt. Soc. Am. B 9 5
- [13] Hibbert A and Bailie A C 1992 Phys. Scr. 45 565
- [14] Cowan R D 1981 The Theory of Atomic Structure and Spectra (Berkeley, CA: University of California Press)
- [15] Kramida A 2017 Comput. Phys. Commun. 215 47
- [16] Curtis LJ 2003 Atomic Structure and Lifetimes: A Conceptual Approach (Cambridge: Cambridge University Press)
- [17] Dyal K G, Grant I, Johnson C T, Parpia F A and Plummer E P 1989 Comput. Phys. Commun. 55 425
- [18] Raineri M, Gallardo M, Pagan CJB, Trigueiros A G and Reyna A 2012 J. Quant. Spectrosc. Radiat. Transfer 113 1612
- [19] Gallardo M, Raineri M, Reyna Almandos J, Pagan C J B and Abrahão R A 2015 Astrophys. J. Suppl. Ser. 216 11
- [20] Biémont E, Buchard V, Garnir H-P, Lefébvre P-H and Quinet P 2005 Eur. Phys. J. D 33 181
- [21] Quinet P, Palmeri P, Biémont E, Mc Curdy M M, Rieger G, Pinnington E H, Wickliffe M E and Lawler J E 1999 Mon. Not. R. Astron. Soc. 307 934
- [22] Grant IP 2007 Relativistic Quantum Theory of Atoms and Molecules (Berlin: Springer)
- [23] Fraga S, Karwowski J and Saxena K M S 1976 Handbook of Atomic Data (Amsterdam: Elsevier)
- [24] Froese Fischer C and Rubin R H 1998 J. Phys. B: At. Mol. Opt. Phys. 31 1657