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Preface

Scan statistics have a broad area of applications ranging from astrophysics over ge-
netic screening to fluorescence microscopy. Here, we consider a calibrated scan statis-
tic based on local likelihood ratio tests of homogeneity against heterogeneity. The
problem is to find anomalies in a d-dimensional field of independent random variables
{Yi}i∈{1,...,n}d , each distributed according to a one-dimensional natural exponential fam-
ily F = {Fθ}θ∈Θ. Further motivation and details on modelling assumptions are given in
Chapter 1.
Chapter 2 is split into two parts: the setting of an known and unknown underlying base-
line parameter. In a first step, in Section 2.1, given some baseline parameter θ0 ∈ Θ, the
field is scanned using local likelihood ratio tests to detect from a (large) given system
of regions R those regions R ⊂ {1, ..., n}d with θi , θ0 for some i ∈ R. We provide a uni-
fied methodology which controls the overall family wise error rate (FWER) to make a
wrong detection at a given level. Fundamental to our method is a Gaussian approxima-
tion of the asymptotic distribution of the underlying multiscale scanning test statistic
with explicit rate of convergence. From this, we obtain a weak limit theorem which can
be seen as a generalized weak invariance principle to non-identically distributed data
and is of independent interest. Furthermore, we give an asymptotic expansion of the
procedure’s power, which yields minimax optimality in case of Gaussian observations.
In a second step, in Section 2.2, we consider the situation where the baseline parameter
is unknown. This is motivated by the detection of hot spots in STED measurements
with Poisson image data. The baseline parameter will be estimated by the sample mean
and Section 2.2 gives the theoretical results for this setting (following the lines of Sec-
tion 2.1).
The theoretical results are then applied in Chapter 3 in a simulation study and to real
data of STED measurements of crimson beads.

A discussion and an outlook for further research can be found in Chapter 4. Appendix
A gives more insight into the complexity of families of sets, which is an important tool
for our proving techniques. The proofs are outsourced to Appendix B.

Large parts of Chapter 2.1 (and the corresponding proofs) are taken from the preprint
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(König et al., 2018) with little modifications.
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CHAPTER 1

Introduction

Suppose we observe an independent, d-dimensional field Y of random variables

Yi ∼ Fθi , i ∈ Id
n := {1, ..., n}d , (1.1)

where each observation is drawn from the same given one-dimensional natural expo-
nential family model F = {Fθ}θ∈Θ, but with potentially different parameters θi. Our
setting includes the important special cases of Gaussian with varying normal means
µi (Arias-Castro et al., 2005; Sharpnack and Arias-Castro, 2016), Bernoulli (Walther,
2010), and Poisson (Zhang et al., 2016) random fields.

Given some baseline parameter θ0 ∈ Θ (e.g., all µi = 0 for a Gaussian field), we
consider the problem of finding anomalies (hot spots) in the field Y , i.e., we aim to
identify those regions R ⊂ Id

n where θi , θ0 for some i ∈ R. We will discuss both cases
of known and unknown θ0. Here R runs through a given family of candidate regions
R ∈ Rn ⊂ 2Id

n where 2X denotes the power set of some set X. For simplicity, we will
suppress the subindex n whenever it is clear from the context, i.e., writeR = Rn in what
follows. Figure 1.1 shows an example with Poisson observations, where the baseline
intensity is θ0 = 1 and in the squares in the right plot the intensity is given by θi = 4.

Figure 1.1: A simulated Poisson field Yi ∼ Poi(θi), i ∈ {1, . . . , 64}2, baseline intensity
θ0 = 1 and the corresponding anomalies illustrated on the right (θi = 4).

As in the above mentioned references (cf. Section 1.2), the problem of finding hot
spots can be regarded as a multiple testing problem, thereby, many ’local’ tests on
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the regions R are performed simultaneously, while keeping the overall error of wrong
detections controllable.
For a fixed region R ∈ R we consider the testing problem with hypothesis

∀ i ∈ R : θi = θ0 (HR,n)

vs. alternative
∃ i ∈ R s.t. θi , θ0. (KR,n)

In Figure 1.2 the local testing problem is visualized. The Poisson field from Figure 1.1
is shown with a frame around a region R where the local test is applied.

?

Figure 1.2: Poisson field from Figure 1.1 with one fixed region R (white squared box).

The likelihood ratio test (LRT) for this testing problem is a powerful test in general,
and for a known θ0 often known to have certain optimality properties, depending on the
structure of R, see e.g., Lehmann and Romano (2005). Therefore, the LRT will always
be considered throughout this work as the ’local’ test. We stress, however, that our
methodology could also be used for other systems of local tests, provided they admit a
sufficiently well behaved asymptotic expansion. The LRT is based on the test statistic

TR(Y, θ0) :=

√
2 log

(
supθ∈Θ

∏
i∈R fθ(Yi)∏

i∈R fθ0(Yi)

)
, (1.2)

where fθ denotes the density of Fθ and HR,n is rejected when TR(Y, θ0) is too large. For
example this yields for a Poisson random field Y with given baseline intensity λ0 > 0

TR(Y, λ0) :=
√

2|R|
[
YR log(YR/λ0) − (YR − λ0)

]
, (1.3)

where |R| denotes the number of points in R and YR := |R|−1∑
i∈R

Yi. To be well-defined,

set TR(Y, λ0) :=
√

2|R|λ0 if YR = 0. If θ0 is unknown, HR,n is rejected when TR(Y,Y) is
too large with Y denoting the sample mean.
Since it is not known a priori which regions R might contain anomalies, i.e., for which
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R ∈ R the alternative (KR,n) might be true, it is of great importance to control the family
wise error arising from the multiple test decisions of the local tests based on TR (Y, θ0),
R ∈ R. In order to create a powerful test while controlling this error, further restrictions
on the complexity of R are necessary. To this end, we will assume that the regions R
can be represented as a sequence of discretized regions

R = Rn :=
{

R ⊂ Id
n

∣∣ R = Id
n ∩ nR∗ for some R∗ ∈ R∗

}
(1.4)

for some system of subsets of the unit cube R∗ ⊂ 2[0,1]d
(e.g., all hypercubes), to be

specified later. This gives rise to the sequence of multiple testing problems

HR,n vs. KR,n simultaneously over R ∈ Rn. (1.5)

Figure 1.3 illustrates exemplarily this sequence of multiple testing problems.

?
?

?
?

?

?

Figure 1.3: Poisson field from Figure 1.1 with several regions (white squares) over
which the simultaneous test procedure is performed.

We want to provide a methodology to (asymptotically) control the family wise error
rate (FWER) α ∈ (0, 1) when (1.5) is considered as a multiple testing problem, i.e., to
provide a multiple test φ for (1.5) (see e.g., Dickhaus, 2014) such that

sup
R∈Rn

PHR,n

[
“any false rejection by φ”

]
≤ α + o(1) as n→ ∞. (1.6)

This ensures that the probability of making any wrong detection is controlled by a
given error level α, as n→ ∞.

This task has been the focus of several papers during the last decades; for a detailed
discussion see Section 1.2. We contribute to this field by providing a general theory for
a unifying method in the model (1.1), which includes not only Gaussian (Arias-Castro
et al., 2005; Sharpnack and Arias-Castro, 2016; Kou, 2017; Cheng and Schwartzman,
2017), but also Bernoulli (Walther, 2010) or Poissonian observations (Kulldorff et al.,
2005; Rivera and Walther, 2013; Tu, 2013; Zhang et al., 2016). In contrast to (Arias-
Castro et al., 2011), where also observations from exponential families as in (1.1) are
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no

no

no

yes

yes

yes

Figure 1.4: Test results for the setting of Figure 1.3.

discussed, but where the local tests are always as in the Gaussian setting, we emphasize
that our local tests are of type (1.2), hence exploiting the likelihood in the exponential
family, which results in improved power (see Frick et al. (2014) for d = 1).

Multiscale testing for known baseline parameter Our test in Chapter 2.1 will be
of scanning-type, controlling the FWER by taking the maximum over all local LRT
statistics in (1.2), i.e.,

Tn ≡ Tn(Y, θ0,Rn, v) := max
R∈Rn

[
TR(Y, θ0) − penv (|R|)

]
. (1.7)

The values
penv (r) :=

√
2v
(
log
(
nd/r

)
+ 1
)

(1.8)

where log denotes the natural logarithm, act as a scale penalization, which is necessary
to guarantee the optimal detection power on all scales simultaneously, as it prevents
smaller regions from dominating the overall test statistic, as noticed by Dümbgen and
Spokoiny (2001) and others (see e.g., Dümbgen and Walther, 2008; Walther, 2010;
Frick et al., 2014). The constant v in (1.7) can be any upper bound VR∗ of the com-
plexity of R∗, measured in terms of the packing number (see Remark 2.1.2 below). If
R∗ has finite VC-dimension ν (R∗), we may choose VR∗ = ν (R∗). However, the test
will have better detection properties if v is as small as possible with this property (see
Section 2.1.3). Hence, from this point of view it is advantageous to know exactly the
complexity VR∗ of R∗, a topic which has received less attention than computing VC-
dimensions. Therefore, we compute the packing numbers for three important examples
of R∗, namely hyperrectangles, hypercubes, and halfspaces explicitly in Appendix A.

To construct a test which controls the FWER (1.6), we have to find a sequence of
universal global thresholds q1−α,n such that

P0
[
Tn > q1−α,n

]
≤ α + o(1), (1.9)

where P0 := PHId
n
,n corresponds to the case that no anomaly is present. Such a threshold
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suffices, as it can be readily seen that

sup
R∈Rn

PHR,n

[
“any false rejection in R”

]
≤ P0

[
“any false rejection in Id

n ”
]
.

Given q1−α,n, the multiple test then will reject the null hypothesis whenever Tn ≥ q1−α,n,
and each local test rejects if TR (Y, θ0) ≥ q1−α,n + penv (|R|). Due to (1.7) and (1.9), any
of these rejections is correct with probability ≥ 1 − α, asymptotically.

To obtain the thresholds q1−α,n we provide a Gaussian approximation of the scan statis-
tic (1.7) under P0 given by

Mn ≡ Mn (Rn, v) := max
R∈Rn

[
|R|−1/2

∣∣∣∣∣∑
i∈R

Xi

∣∣∣∣∣ − penv (|R|)

]
(1.10)

with i.i.d. standard normal r.v.’s Xi, i ∈ Id
n . We also give a rate of convergence of this

approximation (Thm. 2.1.5), which is determined by the smallest scale in Rn. Based
on this, we obtain the P0-limiting distribution of Tn as that of

M ≡ M (R∗, v) := sup
R∗∈R∗

[
|W(R∗)|
√
|R∗|

− penv

(
nd |R∗|

)]
< ∞ a.s., (1.11)

where W is white noise on [0, 1]d and (with a slight abuse of notation) |R∗| denotes
the Lebesgue measure of R∗ ∈ R∗. This is true as long as R∗ has finite complexity,
R∗ consists of sets with a sufficiently regular boundary (see Assumption 1 below),
and the smallest scales |Rn| of the system Rn are suitably restricted, see (1.23) and the
discussion there.

In the case of R∗ being the subset of all hypercubes, we will also give an asymptotic
expansion of the above test’s power (see Theorem 2.1.9), which allows to determine
the necessary average strength of an anomaly needed to be detected with asymptotic
probability 1 (see Corollary 2.1.11). This is only possible due to the penalization
in (1.7), as otherwise the asymptotic distribution is not a.s. finite. If the anomaly is
sufficiently small, we show that the anomalies which can be detected with asymptotic
power one by the described multiscale testing procedure are the same as those of the
oracle single scale test, which knows the size (scale) of the anomaly in advance. This
generalizes findings of Sharpnack and Arias-Castro (2016) to situations where not only
the mean of the signal is allowed to change, but its whole distribution. Furthermore, if
the observations are Gaussian, our test with properly chosen v achieves the asymptotic
optimal detection boundary, i.e., no test can have larger power asymptotically in a
minimax sense.

Note finally, that weak convergence of Tn to M as in (1.11) can be viewed as a gen-
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eralized weak invariance principle, since the right hand side does not depend on any
unknown quantity, and hence can be, e.g., simulated generically in advance for any
given system R as soon as a bound for the complexity of R∗ can be determined.

Multiscale testing for unknown baseline parameter In Chapter 2.2 we will restrict
ourselves to observations given by an independent d-dimensional field Y of Poisson
random variables

Yi ∼ Poi(λi), i ∈ Id
n := {1, . . . , n}d, (1.12)

for some λi > 0. These appear in many applications ranging from astronomy and bio-
physics to genetics engineering. Specific examples include detection in radiographic
images (Kazantsev et al., 2002), genome screening (Jiang et al., 2016), and object de-
tection in astrophysical image analysis (Friedenberg and Genovese, 2013), just to men-
tion a few. In astrophysics, this is relevant for the detection of galaxies or stars, and
in fluorescence microscopy it can be employed to segment the image into parts which
deserve further investigation and ’inactive’ parts, a topic which will be discussed in
more detail later.

As before, given some baseline parameter λ0 > 0, we consider the problem of finding
hot spots in the field Y , i.e., to detect regions R ⊂ Id

n , where λi , λ0 for some i ∈ R

out of a given family of candidate regions R ⊂ Rn ⊂ 2Id
n . The hypothesis HR,n and

alternative KR,n then become
∀ i ∈ R : λi = λ0 (HR,n)

vs.
∃ i ∈ R s.th. λi , λ0, (KR,n)

Again, we use the LRT as local tests.

However, now, the underlying true baseline parameter λ0 is assumed to be unknown
and will be pre-estimated by the sample mean Y . Due to the pre-estimation step one
has to cut off the largest scales to derive a Gaussian approximation. This leads to a
change of the penalty-term, since the penalty term (1.8) used before would result in a
degenerate limit, see (Schmidt-Hieber et al., 2013).

Otherwise, the setup will be similar to the case of known baseline parameter, since we
will consider a test of scanning-type, based on local LRT statistics (1.2). Therefore we
will combine (1.3) with Y as a plug-in estimator for λ0. More precisely, the local test
for a fixed R ⊂ Id

n in this model is given by

TR(Y) :=
√

2|R|
[
YR log(YR/Y) − (YR − Y)

]
, (1.13)
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where YR = |R|−1∑
i∈R Yi. To be well-defined, we set TR(Y) :=

√
2Y |R| if YR = 0.

No prior information on the location and size of the regions which contain an anomaly
is assumed, and this results in the sequence of multiple testing problems (1.5).

In contrast to (1.7) in this case of an unknown baseline parameter, we will extend the
setting to general scale calibration terms (which fulfil certain assumptions) to allow
the user to choose the penalization of their choice. This means that the considered
multiscale statistic has the following form

Tω
n ≡ Tω

n (Y,Rn) := max
R∈Rn

ω̃(|R|) [TR(Y) − ω(|R|)] , (1.14)

where the scale calibration terms ω̃, ω should be chosen in a way such that domination
of small scales is avoided. The test setup follows the lines of the previous subsection.
Again, the construction of the test is chosen such that the FWER is controlled, i.e.,
P0
[
Tω

n > q1−α,n
]
≤ α + o(1), for a sequence of universal global thresholds q1−α,n. To

obtain these thresholds q1−α,n, we establish a Gaussian approximation Mω
n of the scan

statistic (1.14) under P0, and based on this obtain the P0-limiting distribution Mω of Tω
n .

Naturally, the Gaussian approximation Mω
n and the P0-limit Mω have to be adapted to

the new scale calibration terms, that is,

Mω
n (Rn) := max

R∈Rn
ω̃(|R|)

[
|R|−1/2

∣∣∣∣∣∑
i∈R

Xi

∣∣∣∣∣ − ω(|R|)

]
(1.15)

with i.i.d. standard normal r.v.’s Xi, i ∈ Id
n , and

Mω (R∗) := sup
R∗∈R∗

ω̃(nd|R∗|)
[
|W(R∗)|
√
|R∗|

− ω(nd|R∗|)
]

(1.16)

where W denotes white noise on [0, 1]d.

This is true if certain complexity assumptions onR∗ are satisfied and the range of scales
are suitably restricted, see (1.24) and the discussion there.

1.1 Applications

Finding anomalies in a field Y is a widely occurring problem. Anomalies show up
in numerous areas of application ranging from astronomy and biophysics to genetics
engineering.

In this thesis, we will focus on finding hot spots in microscopic images of fluores-
cence scanning microscopes. The resolution level in microscopy has increased over
the past years, and the resulting images now contain details on different scales and a
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Figure 1.5: Figure of a STED microscope (taken from (Aspelmeier et al., 2015)). The excita-
tion laser beam is superimposed with a STED laser beam. This results in a diffraction-limited
excitation spot overimposed by a doughnut-shaped depletion intensity distribution that triggers
stimulated emission. At the very center of the STED-doughnut, fluorophores are able to fluo-
resce. The signal is then mapped from this area onto a point-like detector. Therefore, it has to
pass through a pinhole that allows only the central signal to pass through (right box) and then a
computer records the photon count. The complete image is then produced by moving the laser
and detection spots jointly pixel by pixel through the specimen.

reconstruction should adapt and preserve these details. Further, we will illustrate why
our theoretical results are useful in the context of the Multiscale Nemirovskij-Dantzig
Estimator (MIND) (Grasmair et al., 2018) and touch on the challenges brought up by
considering higher dimensions.

1.1.1 STED

In fluorescence scanning microscopy, structures of interest (e.g., proteins) in a sample
are labelled by fluorescent markers, which are afterwards visualized by the micro-
scope. To this end, the prepared specimen is scanned spatially along a grid with a
diffraction-limited spot centered at the current grid point. Whenever a marker is hit
by the incoming light it is excited with a certain probability, and if so, afterwards
light (of a different wavelength) is emitted and recorded by detectors (cf. Aspelmeier
et al., 2015, for details). However, this procedure cannot be repeated too often, as
each marker is only able to pass through the cycle of excitation and emission a limited
number of times before the marker bleaches.

Figure 1.5 shows a sketch of a STimulated Emission Depletion (STED) microscope,
which belongs to the fluorescence microscopes and is one of the best known concepts
to surpass Abbe’s diffraction limit (Hell, 2007). STED enhances the resolution by
applying an additional doughnut-shaped depletion beam around the current scanning
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position sending most of the surrounding markers to a dark state in which they cannot
emit light. Then only the markers within a subdiffraction-sized spot remain in a bright
state and will emit light. For further details we refer to (Aspelmeier et al., 2015).
Exposure to light always pre-stresses the marker and further reduces the possible num-
ber of cycles. Note that due to the nature of light, when centered at grid point, also
the markers at neighbouring points are illuminated and hence pre-stressed. Therefore,
by scanning over the whole image, only a very limited number of cycles per grid point
can be performed (typically around 103). As the markers are typically concentrated
in comparably small regions of interest, but are also stressed when scanning mostly
empty regions in the image, this gives rise to a considerable loss of information.
As a remedy, methods have been developed to reduce the number of excitation cy-
cles in mostly empty regions of the image. They are mostly based on real-time spatial
control of the illumination and are collected under the name spatially-controlled illu-
mination microscopy (SCIM), see e.g., the review by Krishnaswami et al. (2016). The
specifically used techniques depend on the underlying fluorescent microscope. Here
we will focus on STED microscopy (Hell, 2007).
In case of STED, the reduction of illumination cycles can be achieved by introducing a
decision number N and a threshold lTh ∈ N. On each grid position, only N laser pulses
are applied, and if less then lTh photons were collected during these cycles, the laser
foci are moved to the next grid position. The underlying idea is that in active regions,
more photons are to be expected than in inactive regions, and hence the aforementioned
method ensures that inactive regions are scanned less intensive. For details we refer
to the original publication (Staudt et al., 2011) where the method was introduced as
REduction of State transition Cycles (RESCue)-STED. Mathematically we model this
as

Yi ∼ Poi(t · λi), i ∈ Id
n , (1.17)

where λi = I(xi) and

xi: sampling grid,

I: energy density, e.g., in microscopy I = h∗ f where h is the effective point spread
function (psf) of the microscope and f is the relative marker density,

t: (pixel) dwell time, limited by bleaching.

Later, in Chapter 3, we will present our idea to achieve similar results as RESCue-
STED ( i.e., saving photons) by identifying those regions where the intensity is differ-
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ent from the baseline intensity by applying our approach on measurements with small
dwell time. This data allows to locate interesting areas and investigate them further.
The full dwell time can then just be used on the interesting spots. We stress that our
method provides uniform statistical guarantees. With a chosen level α, we can state
after performing our hypothesis testing procedure that with α · 100% confidence each
detected region contains an anomaly.

1.1.2 Constrained Multiscale Optimization

The theoretical results in this thesis are also important in the context of image recon-
struction. We will not reconstruct here, but still mention why the theory gives valida-
tion for algorithms based on the following reconstruction methods.
Instead of (1.1) let us consider more general observations (1.18), where u is the image
to be reconstructed and K is a matrix modelling the image acquisition and sampling
(e.g., convolution):

Yi ∼ FKu( i
n ), i ∈ Id

n , (1.18)

i.e., Ku := Ku
(

i
n

)
are now considered as parameters in setting (1.1). Estimation

procedures of the form

min
u

R(u) s.t. Tn(Y,Ku) ≤ q (1.19)

where R is a variational functional (e.g., the TV-norm or the l1−norm), Tn is the multi-
scale constraint from (1.7) adapted to this setting, Y are observations, have been sug-
gested in the literature, see e.g., (Candes et al., 2007), (Grasmair et al., 2018), (Frick
et al., 2012) . The Multiscale Nemirovskij-Dantzig Estimator (MIND) introduced in
(Grasmair et al., 2018) results from the minimization problem (1.19). MIND can be
seen as a generalization of the Dantzig selector, a particular data-fidelity constraint es-
timator (Candes et al., 2007). There, the observations are given by Yi = (Ku)i + σεi,

where K is a linear, bounded operator and εi are i.i.d. standard normally distributed
random variables. The Dantzig estimator is the solution to the l1−regularization prob-
lem

min
u∈Rd
‖u‖l1 subject to ‖K∗(Y − Ku)‖l∞ ≤ q. (1.20)

So the generalization of MIND is in the sense that other reconstructions than the
l1−norm ( namely a general convex functional R) can be used, e.g., the TV−norm
or a Sobolev norm, and it furthermore relaxes the l∞−constraint.
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The numerical benefit of MIND has been studied in (Frick et al., 2012) and (Frick
et al., 2013).

Theoretical benefit of the MIND estimator We show in Chapter 2 that the quantiles
of Tn can be approximated uniformly in our setting by those of a Gaussian version Mn,
which does not depend on any unknown quantity. Generalizing these to non-constant
θ would give the possibility to compute q1−α by simulations as the (1 − α)-quantile of
Mn (see Chapter 4 for an idea) and get as in (1.9)

lim
n→∞
P0
[
Tn ≤ q1−α

]
= 1 − α.

Then the MIND estimator ûn(q) is at least as smooth - measured in R - as the true image
with large probability of (1 − α), i.e.,

lim
n→∞

sup
u
P
[
R (ûn(q1−α) ≤ R(u))

]
≥ 1 − α.

This illustrates why the asymptotic distribution of Tn is of interest in this context. The
determination of q in (1.19) often requires rather complicated distributional theory.
The limit theorems in this thesis provide an important step.

1-dimensional case Frick et al. (2014) investigated the 1-dimensional case in a
change-point regression setting. They assume observations

Yi ∼ Fϑ(i/n), i = 1, . . . , n (1.21)

where Fθ is a one-dimensional exponential family and ϑ : [0, 1) → Θ is a right-
continuous change-point function with an unknown number of change points.
Their method "Simultaneous Multiscale Change-Point Estimator" (SMUCE) for the
estimation of a step function is a hybrid method consisting of likelihood ratio test and
the minimization of a cost functional, i.e., two simultaneously combined steps will be
addressed: model selection (estimation of the number of change-points K)

K̂ := inf
ϑ∈S

#J(ϑ) s.t. Tn(Y, ϑ) ≤ q,

and estimation of the change-point function given K̂, where S denotes the class of
right-continuous change-point functions and J(ϑ) is the ordered vector of change-
points.
One aspect which the authors address is that for Poisson data Yi

i.i.d.
∼ Poi(ui) SMUCE

works better if the LRT’s are adapted to Poisson distribution instead of working with
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a Gaussian approximation (e.g., Anscombe transformation). In our setting with higher
dimensions, we illustrate a behaviour of this type as well trough a simulation (Section
3.2.1).

1.2 Literature review and connections to existing work

Scan statistics and scanning-type procedures based on the maximum over an ensemble
of local tests have received much attention in the literature over the past decades.

To determine the quantile, a common option is to suitably approximate the tails of
the asymptotic distribution, as done e.g., by Siegmund and Venkatraman (1995); Sieg-
mund and Yakir (2000); Naus and Wallenstein (2004); Pozdnyakov et al. (2005); Fang
and Siegmund (2016) for d = 1, by Haiman and Preda (2006) for d = 2, and by Jiang
(2002) in arbitrary dimensions. If the random field is sufficiently smooth (in contrast
to the setting here) the Gaussian kinematic formula can be employed, see e.g., Tay-
lor and Worsley (2007), Adler (2000). We also mention Alm (1998), who considers
the situation of a fixed rectangular scanning set in two and three dimensions. In all
these papers, no penalization has been used, which automatically leads to a preference
for small scales of order log(n) (see e.g., Kabluchko and Munk, 2009) and to an ex-
treme value limit, in contrast to (1.11). Arias-Castro et al. (2017) study the case of an
unknown null distribution and propose a permutation based approximation, which is
shown to perform well in the natural exponential family setting (1.1), however, only for
d = 1. Conceptually most related to our work are weak limit theorems for scale penal-
ized scan statistics, which have e.g., been obtained by Frick et al. (2014) and Sharpnack
and Arias-Castro (2016). However, these results are either limited to specific situations
such as Gaussian observations, or to d = 1. If a limit exists, the quantiles of the fi-
nite sample statistic can be bounded the quantiles by limiting ones as e.g., done by
Dümbgen and Spokoiny (2001); Rivera and Walther (2013).

1.3 Main results

The main technical contribution of this thesis is to prove a weak limit theorem for the
asymptotic distribution of our test statistic for general exponential family models as in
(1.1) and for arbitrary dimensions d. This can be viewed as a "multiscale" weak invari-
ance principle for independent but not necessarily identically distributed r.v.’s. Further,
we provide an asymptotic expansion of the test’s power in the first setting of a known
baseline parameter θ0 which leads to minimax optimal detection of the test in specific
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models, cf. 2.1.3. In total, we acquire a unified theory for (calibrated) scan statistics
in exponential families, a topic in which many special cases have received attention
before (see the literature review before). Furthermore we address the application side
by providing a theory for unknown baseline parameters.
More precisely, our results are twofold as we give a Gaussian approximation of the
scan statistic in (1.7) by (1.10), and that we obtain (1.11) as a weak limit, and corre-
spondingly we give for the scan statistic (1.14) a Gaussian approximation (1.15) and
as a weak limit (1.16).

Weak limit theorems for Tn as in (1.7) or (1.14) are closely connected to those for
partial sum processes. Classical KMT-like approximations (see e.g., Komlós et al.,
1976; Rio, 1993; Massart, 1989) provide, in fact, a strong coupling of the whole pro-
cess (TR (Y, θ0))R∈Rn

to a Gaussian version. Results of this form have been previously
employed for d = 1 in (Schmidt-Hieber et al., 2013; Frick et al., 2014). Proceeding
like this for general d, however, will restrict the system Rn to scales rn s.t. |R| ≥ rn

where

nd−1 log(n) = o (rn) (1.22)

as n→ ∞, which is unfeasibly large for d ≥ 2. Therefore, we use a different approach
and employ a coupling of the maxima in (1.7) and (1.10), which relies on recent results
by Chernozhukov et al. (2014), see also (Proksch et al., 2018). However, in contrast to
the consideration here, these authors do not consider the local LR statistic and require
that the largest scale has to go to zero. This leads to an extreme value type limit in
contrast to (1.11) which incorporates all (larger) scales. To make use of Chernozhukov
et al.’s (2014) coupling results in our general setting, we provide a symmetrization-
like upper bound for the expectation of the maximum of a partial sum process by a
corresponding Gaussian version, cf. Lemma 2.1.14. This way we can approximate the
distribution of Tn in (1.7) by (1.10) if we restrict ourselves to sets R ∈ Rn with |R| ≥ rn

where the smallest scales only need to satisfy

logγ(n) = o (rn) as n→ ∞, (1.23)

for a suitable fixed γ (to be specified later), which compared to (1.22) allows for con-
siderably smaller scales whenever d ≥ 2. Note that the lower scale restriction (1.23)
does not depend on d. However, as we consider sets in Id

n here, the corresponding
lower bound an for sets in R∗ ⊂ 2[0,1]d

is n−d logγ(n) = o (an), which in fact depends on
d as now the volume of the largest possible set has been standardized to one (see (1.4)
and Theorem 2.1.9) and coincides with the sampling rate n−d up to a poly-log-factor.
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In contrast, (1.22) gives n−1 log(n) = o (an), independent of d, which only for d = 1
achieves the sampling rate n−d. Under (1.23) we also obtain OP

((
log12(n)/rn

)1/10
)

as
rate of convergence of this approximation (see (2.6) below).
To use the coupling result for the scan statistic (1.14) we restrict the sets R ∈ Rn

further to allow for the possibility of a multiplicative scale calibration term ω̃. We may
approximate the distribution of Tω

n in (1.14) by (1.15) if we restrict ourselves to scales
R ∈ Rn with upper and lower bounds, namely mn ≥ |R| ≥ rn, where rn fulfils (1.23)
with a γ based on the behaviours of the scale calibration terms to be specified later and

mn = C
nd

log(n)
c3

n, (1.24)

where C denotes a positive constant and cn a sequence tending to zero arbitrary slowly.



CHAPTER 2

Theory

In this chapter we give details on our theoretical findings. Section 2.1.1 contains an
overview, details on our precise setting and the assumptions on the set of candidate
regions R∗. In Section 2.1.2 we provide the validity of the Gaussian approximation in
(1.10) and determine the P0-limiting distribution of Tn. In Section 2.1.3 we derive an
asymptotic expansion of the detection power. Afterwards in Section 2.2, extensions to
unknown baseline parameters and to general scale calibration terms will be considered
in the setting of a Poisson random field. In Section 2.2.1 we state the new setup and
modified assumptions, and in Section 2.2.2 we give the limit theory for this setting.

2.1 Exponential Families

2.1.1 Setting and Assumptions

In the following we assume that F = {Fθ}θ∈Θ in (1.1) is a one-dimensional exponential
family, which is regular and minimal, i.e., that the Lebesgue densities of Fθ are of the
form fθ(x) = h(x) exp (〈θ, x〉 − ψ(θ)), that the natural parameter space

N =

{
θ ∈ Rd :

∫
Rd

exp(θx) dx < ∞
}

is open, and that the cumulant transform ψ is strictly convex on N . Then, the mo-
ment generating function exists and the random variables Yi have sub-exponential
tails, see (Casella and Berger, 2002) and (Brown, 1986) for details. Let φ (x) :=
supθ∈Θ

[
θ · x − ψ (θ)

]
be the Legendre-Fenchel conjugate of ψ and

J (x, θ) := φ (x) −
[
θ · x − ψ (θ)

]
.
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Then the LRT statistic TR(Y, θ0) in (1.2) can be written as

TR(Y, θ0) =

√√√√2

(
sup
θ

∑
i∈R

(θ · Yi − ψ(θ)) −
∑
i∈R

(θ0 · Yi − ψ(θ0))

)

=

√
2 |R| J

(
ȲR, θ0

)
(2.1)

with ȲR = |R|−1∑
i∈R Yi. Note that by definition we have that J

(
ȲR, θ0

)
≥ 0.

Remark 2.1.1. If the observations are not drawn from an exponential family as in

(1.1), or if θ0 ∈ Θ is replaced by a field (θi)i∈Id
n

of known baseline intensities, the

representation of the LRT statistic TR as in (2.1) is not valid anymore. Our proofs rely

on a third-order Taylor expansions of TR and on the sub-exponential tails of the random

variables Yi (see Theorem 2.1.5 below), but not explicitly on the exponential family

structure. Therefore, if in more general models correspondingly modified assumptions

are posed (see also Arias-Castro et al., 2017, Sec. 2.2), our results do extend to this

situation.

To control the supremum in (1.11), we have to restrict the system of regionsR∗ suitably.
To this end, we introduce some notation and definition. For a set R∗ ∈ R∗ and x ∈ [0, 1]d

we define d (x, ∂R∗) := infy∈∂R∗ ‖x − y‖2 where ∂R∗ denotes the topological boundary
of R∗, i.e., ∂R∗ = R∗ \ (R∗)◦. Furthermore we define the ε−annulus R∗(ε) around the
boundary of R∗ for some ε > 0 as

R∗(ε) :=
{

x ∈ [0, 1]d
∣∣ d (x, ∂R∗) < ε

}
.

Further, the VC-Dimension of a family of sets R∗ is defined as the largest integer n

s.t. S R∗(n) = 2n, where S R∗(n) denotes the shatter coefficient, i.e., the maximal number
of different subsets of a set of n points which can be obtained by intersecting it with
elements of R∗. If S R∗(n) = 2n for all n, we say that the VC−Dimension is infinity.

Assumption 1 (Complexity and regularity of R∗).

(a) The VC-Dimension of R∗ is bounded by ν (R∗) < ∞.

(b) There exists some constant C > 0 such that |R∗(ε)| ≤ Cε for all ε > 0 and all

R∗ ∈ R∗ where |·| denotes the Lebesgue measure.

Let us briefly comment on the above assumption.
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Remark 2.1.2.

• Assumption 1(a) is a standard assumption to control the complexity of the set

indexed process, see e.g., (Massart, 1989; van der Vaart and Wellner, 1996;

Dümbgen and Spokoiny, 2001).

• Assumption 1(a) immediately implies an upper bound for the cardinality # (Rn)

of Rn in (1.4), namely, there exist constants c1, c2 > 0 such that

# (Rn) ≤ c1nc2 . (2.2)

This allows us to apply recent results by Chernozhukov et al. (2014) to couple

the process in (1.7) with a Gaussian version as in (1.10).

• In the following, we also assume a bound on the complexity of R∗ in terms of the

packing number. The packing number K(ε, ρ,W) of a subsetW of R∗ w.r.t. a

metric ρ is given by the maximum number m of elements W1, . . . ,Wm ∈ W such

that ρ(Wi,W j) > ε for all i , j, i.e., the largest number of disjoint ε/2-balls w.r.t.

ρ which can be packed inside W, see e.g., (van der Vaart and Wellner, 1996,

Def. 2.2.3). In the following we consider the symmetric difference

R∗1 4 R∗2 :=
(
R∗1 ∪ R∗2

)
\
(
R∗1 ∩ R∗2

)
, R∗1,R

∗
2 ∈ R

∗

and the corresponding metric

ρ∗
(
R∗1,R

∗
2

)
:=
√∣∣R∗1 4 R∗2

∣∣, for R∗1,R
∗
2 ∈ R

∗. (2.3)

Suppose that there exists a positive number VR∗ and constants k1, k2 > 0 such

that

K
(
(δu)1/2, ρ∗, {R ∈ R∗ : |R| ≤ δ}

)
≤ k1u−k2δ−VR∗ (2.4)

for all u, δ ∈ (0, 1]. If Assumption 1(a) is satisfied, then (2.4) holds true with

VR∗ = ν (R∗), which basically follows from the relationship between capacity and

covering numbers and (van der Vaart and Wellner, 1996, Thm. 2.6.4). However,

(2.4) might also be satisfied for considerably smaller numbers VR∗ , as examples

below show.

• We stress that the assumption on the boundary smoothness (b) is satisfied when-

ever R∗ consists of regular Borel sets R∗ only, i.e., R∗ is a Borel set and |∂R∗| = 0
for all R∗ ∈ R∗.
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Example 2.1.3.

a) Consider the set S∗ of all hyperrectangles in [0, 1]d, i.e., each S ∗ ∈ S∗ is of the form

S ∗ = [s, t] :=
{

x ∈ [0, 1]d
∣∣ si ≤ xi ≤ ti for 1 ≤ i ≤ d

}
. According to (van der Vaart

and Wellner, 1996, Ex. 2.6.1) we have ν (S∗) = 2d. More refined computations in

the appendix (cf. Lemma A.1.1) show that VS∗ may be chosen as VS∗ = 2d − 1 + ε

with arbitrary ε > 0. Obviously, the corresponding discretization Sn consists of

hyperrectangles in Id
n , which are determined by their upper left and lower right

corners, i.e., # (Sn) ≤ n2d. As S∗ consists only of regular Borel sets, the assumption

on the boundary smoothness is also satisfied.

b) We may also consider the (smaller) set Q∗ of all hypercubes in [0, 1]d, i.e., each

Q∗ ∈ Q∗ is of the form [t, t + h] with t ∈ [0, 1]d and 0 < h ≤ 1 − max1≤i≤d ti. As

Q∗ ⊂ S∗, Assumption 1 is satisfied. More precisely, according to (Despres, 2014),

ν (Q∗) = b 3d+1
2 c, and refined computations in the appendix (cf. Lemma A.1.2) show

VQ∗ = 1 independent of d (as opposed to the VC-dimension).

c) LetH∗ be the set of all half-spaces in [0, 1]d, that is

H∗ :=
{

Ha,α | α ∈ R, a ∈ Sd−1
}
, Ha,α :=

{
x ∈ [0, 1]d

∣∣ 〈x, a〉 ≥ α} .
The VC-dimension ofH∗ is ≤ d + 1 (see e.g., Devroye and Lugosi, 2001, Cor. 4.2),

which proves that Assumption 1 is satisfied. On the other hand, we prove that we

may take VH∗ = 2 (cf. Lemma A.1.3 the appendix).

2.1.2 Limit Theory

We now show that the quantiles of the multiscale statistic in (1.7) can be approximated
uniformly by those of the Gaussian version in (1.10) and furthermore, that Mn (Rn, v)

in (1.10) converges to a non-degenerate limit for v ≥ VR∗ . For the first fact we require
a lower bound on the smallest scale as given in (1.23). Given a discretized set of
candidate regions Rn ⊂ 2Id

n and c > 0 we introduce

Rn|c :=
{

R ∈ Rn

∣∣ |R| ≥ c
}
.

With this notation we can formulate our main theorem:

Theorem 2.1.4 (Weak P0 limit). Let Yi, i ∈ Id
n be a field of random variables as in

(1.1), R∗ satisfy Assumption 1 and let (rn)n be a sequence such that (1.23) holds with
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γ = 12. Then we have under P0 that

Tn
(
Y, θ0,Rn|rn , v

) D
→ M (R∗, v) as n→ ∞, (2.5)

with M (R∗, v) as in (1.11) for any fixed v ∈ R. If furthermore v ≥ VR∗ in (2.4), then

M(R∗, v) is almost surely finite and non-degenerate.

Note that M does not depend on any unknown quantities and can e.g., be simulated.
However, for practical purposes it is advantageous to use the finite sample Gaussian
approximation in (1.10) to approximate quantiles for Tn as in (1.7) by simulated quan-
tiles of Mn as in (1.10). This is justified by the following theorem:

Theorem 2.1.5 (Gaussian approximation). Let Yi, i ∈ Id
n be a field of random variables

as in (1.1) and let R∗ be a set of candidate regions satisfying Assumption 1(a) and let

(rn)n ⊂ (0,∞) be a sequence such that (1.23) holds with γ = 12. Let v ∈ R be fixed.

(a) Then under P0

Tn
(
Y, θ0,Rn|rn , v

)
− Mn

(
Rn|rn , v

)
= OP

((
log12(n)

rn

)1/10
)
, (2.6)

as n→ ∞, with Mn as in (1.10).

(b) For all q ∈ R we have

lim
n→∞

∣∣P0
[
Tn
(
Y, θ0,Rn|rn , v

)
> q
]
− P

[
Mn
(
Rn|rn , v

)
> q
]∣∣ = 0. (2.7)

Remark 2.1.6. Theorems 2.1.4 and 2.1.5 are compatible in the sense that for any set

of candidate regions satisfying Assumption 1, any v ∈ R, and any sequence rn such that
rn
nd → 0 satisfying (1.23) with γ = 12 we have convergence in distribution

Mn
(
Rn|rn , v

) D
→ M (R∗, v) as n→ ∞, (2.8)

with M (R∗, v) as in (1.11).

Example 2.1.7. Suppose that R∗ is a set of candidate regions satisfying Assumption 1.

Let us discuss three important examples of the model (1.1).

1. Gaussian fields: Let Yi ∼ N
(
θ, σ2

)
where the variance σ2 > 0 is fixed. In this

case, ψ(θ) = 1
2θ

2, and

TR (Y, θ0) =
√
|R|

∣∣YR − θ0

∣∣
σ
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2. Bernoulli fields: Let Yi ∼ Bin (1, p) with p ∈ (0, 1). The cases p = 0 and

p = 1 have to be excluded to obtain a natural exponential family. However,

also in these cases one would screen the field correctly, anyway. The natural

parameter of this exponential family is θ = log (p/(1 − p)), and using ψ (θ) =

log
(
1 + exp (θ)

)
we find

TR (Y, θ0) =

√√√√2|R|

[
YR log

(
YR

exp(θ0)
1+exp(θ0)

)
− (1 − YR) log

(
1 − YR

1
exp(θ0)+1

)]
.

3. Poisson fields: Let Yi ∼ Poi(λ) with λ ∈ R. Again, λ = 0 has to be excluded,

but this case is again trivial. The natural parameter of the exponential family is

θ = log (λ), and using ψ (θ) = exp (θ) we obtain

TR(Y, θ0) =

√
2|R|

[
YR log

(
YR

exp(θ0)

)
− (YR − exp(θ0))

]
.

Example 2.1.8 (Gaussian approximation in the hyperrectangle / hypercube case). Re-

call Example 2.1.3 and let S∗ be the set of all hyperrectangles and Q∗ be the set of all

hypercubes in [0, 1]d. Then for (rn)n as in (1.23) with γ = 12 it holds under P0 that

Tn
(
Y, θ0,Sn|rn , v

)
− Mn

(
Sn|rn , v

)
= OP

((
log12(n)

rn

)1/10
)
,

and

Tn
(
Y, θ0,Qn|rn , v

)
− Mn

(
Qn|rn , v

)
= OP

((
log12(n)

rn

)1/10
)
,

as n → ∞, with Mn as in (1.10). Monte-Carlo simulations (by means of (1.10) with

n = 96 and d = 2) of the densities of Mn with different values of v are shown in Figure

2.1. The smallest possible values of v which we may choose according to Example

2.1.3 are given by the packing number estimate, i.e., v = 3 + ε and v = 1, respectively.

The corresponding results are depicted in the top row of Figure 2.1 with ε = 0 for

simplicity. Alternatively, we may use the VC-dimension v = 4 and v = 3 respectively,

which lead to the simulated distributions shown in the bottom row of Figure 2.1. This

nicely illustrates that using a larger value of v will lead to larger quantiles and hence a

loss of detection power: As the distributions of Mn (Sn, 4) and Mn (Qn, 3) are extremely

close, detecting in the system of squares is not easier than detecting in the system of

rectangles, even though the latter is by far bigger and more complex. The explanation
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for this is the penalization penv (|Q|), which by appropriate choice of the parameter v

can be tailored to the system R∗.
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Figure 2.1: Simulated densities of the Gaussian approximations. The histograms are
obtained from 104 runs of the test statistic (1.10). For the comparison, the correspond-
ing densities have been estimated by a standard kernel estimator (Mn (Sn, v) ( ),
Mn (Qn, v) ( )). Top row: optimal calibration with the covering number, bottom row:
alternative calibration using the VC-dimension.

2.1.3 Asymptotic Power

In this subsection we will analyze the power of our multiscale testing approach in the
hypercube-case. The detection power clearly depends on the size and strength of the
anomaly. To describe the latter, we will frequently employ the functions

m(θ) := ψ′(θ) = E [Y] , v(θ) := ψ′′(θ) = V [Y] (2.9)

for Y ∼ Fθ.

Heuristics The key point for the following power considerations is that the observa-
tions in (1.1) can be approximated as

Yi − m (θ0)
√

v (θ0)
∼

m (θi) − m (θ0)
√

v (θ0)
+

√
v (θi)
√

v (θ0)
Fθi − m (θi)
√

v (θi)
, (2.10)
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i.e., as ’signal’ v (θ0)−1/2 (m (θi) − m (θ0)), which is non zero on the anomaly only, plus a
standardized noise component

(
Fθi − m (θi)

)
/
√

v (θi) which is scaled by a factor vi :=
√

v (θi) /v (θ0). In case of Gaussian observations with variance 1, one has vi ≡ 1 and
recovers the situation considered by Sharpnack and Arias-Castro (2016). Whenever
the ’signal’ part in (2.10) is strong enough, the anomaly should be detected. In the
following, we will make this statement mathematically precise and also compare the
multiscale testing procedure with an oracle procedure.

Considered alternatives Consider a given family
(
Q∗n
)

n∈N of hypercube anomalies
Q∗n ⊂ [0, 1]d with Lebesgue measure

∣∣Q∗n∣∣ = an ∈ (0, 1). The corresponding discretized
anomalies Qn := Id

n ∩ nQ∗n ⊂ Id
n have size |Qn| ∼ ndan. We will consider alternatives

Ki,n in (1.5) where θn ∈ Θnd
s.t.

θn
i = θn

1IQn + θ0IQc
n
. (2.11)

The parameters θn
1 determine the total strength of the anomaly, which is given by

µn (Qn) :=
√
|Qn|

m
(
θn

1

)
− m (θ0)

√
v (θ0)

.

Clearly, any anomaly with fixed size or strength can be detected with asymptotic prob-
ability 1. Therefore, we will consider vanishing anomalies in the sense that

an ↘ 0, µn (Qn)↗ ∞, as n→ ∞. (2.12)

Furthermore, we will restrict ourselves to parameters θn
1 in (2.11) which yield uni-

formly bounded variances and uniform sub-exponential tails, this is

E
[
exp (sY)

]
≤C for all 0 ≤ s ≤ t and θ ∈ {θ0} ∪

⋃
n∈N

{
θn

1

}
, (2.13)

v ≤ vi =

√
v
(
θn

1

)
v (θ0)

≤ v̄ for all i ∈ Id
n , n ∈ N (2.14)

for Y ∼ Fθ with constants t > 0,C > 0 and 0 < v < v̄ < ∞.

In the case of Gaussian observations with variance σ2, (2.13) and (2.14) are obviously
satisfied, for a Poisson field this means that the intensities are bounded away from zero
and infinity.

Oracle and multiscale procedure Recall that Q∗ is the set of all hypercubes in
[0, 1]d (cf. Example 2.1.3) and Qn its discretization (cf. (1.4)).
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If the size an of the anomaly is known, but its position is unknown, one would naturally
restrict the set of candidate regions to R∗O :=

{
Q∗ ∈ Q∗

∣∣ |S ∗| = an
}

and consequently
scan only over (cf. (1.4))

RO
n :=

{
Q ⊂ Id

n

∣∣ Q = Id
n ∩ nQ∗ for some Q∗ ∈ R∗O

}
,

as for the true anomaly Q∗ ∈ R∗O its discretized version Qn also satisfies Qn ∈ R
O
n . This

gives rise to an oracle test, which rejects whenever Tn
(
Y, θ0,R

O
n , v
)
> qO

1−α,n where
qO

1−α,n is the 1 − α quantile of Mn
(
RO

n , v
)

as in (1.10). Similar as in Theorem 2.1.5 one
can show that this quantile sequence ensures the oracle test to have asymptotic level α.
The asymptotic power of this oracle test can be seen as a benchmark for any multiscale
test.

To obtain a competitive multiscale procedure, let us choose a sequence rn satisfying
(1.23) with γ = 12 and let us furthermore assume that rn = o

(
ndan

)
, as otherwise

the multiscale procedure will never be able to detect the true anomaly (since it is not
contained in the set of candidate regions which we scan over). Since now position
and size of the anomaly are unknown, we consider all sets in R∗MS = Q∗ as candidate
regions and consequently scan over

RMS
n|rn

:=
{

Q ⊂ Id
n

∣∣ Q = Id
n ∩ nQ∗ for some Q∗ ∈ Q∗ and |Q| ≥ rn

}
.

Clearly the true anomaly Q∗ satisfies Q∗ ∈ R∗MS and, as rn = o
(
ndan

)
its discretized

version Qn also satisfies Qn ∈ R
MS
n|rn

. This gives rise to a multiscale test which rejects

whenever Tn
(
Y, θ0,R

MS
n|rn
, v
)
> qMS

1−α,n, where qMS
1−α,n := q

Mn

(
RMS

n|rn
,v
)

1−α is the 1− α quantile of
Mn
(
RMS

n|rn
, v
)

as in (1.10). Theorem 2.1.5 ensures that the multiscale test has asymptotic
level α.

Now, due to Theorem 2.1.4 q∗1−α := qM(Q∗,v)
1−α < ∞ whenever v ≥ VQ∗ = 1, and we have

qO
1−α,n ≤ qMS

1−α,n ≤ q∗1−α < ∞

for all n ∈ N and v ≥ 1.

Asymptotic power We now show that the multiscale procedure described above,
which requires no a priori knowledge on the scale of the anomaly, asymptotically de-
tects the same anomalies with power 1 as the oracle benchmark procedure for a known
scale. Hence, the penalty choice to calibrate all scales as in (1.7) (where R∗ = Q∗),
renders the adaptation to all scales for free, at least asymptotically. This can be seen
as a structural generalization of (Sharpnack and Arias-Castro, 2016, Theorems 2 and
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4), as under the alternative the whole distribution in (1.1) and not just its mean might
change. Also the power considerations in (Proksch et al., 2018) restrict to this simpler
case. We show the following theorem.

Theorem 2.1.9. In the setting described above, let an ↘ 0 be a sequence of scales

such that
(
log n

)12
/nd = o (an) as n→ ∞. Denote by

F
(

x, µ, σ2
)

:= Φ
(
−

x + µ

σ

)
+ Φ

(µ − x
σ

)
, x ≥ 0

the survival function of a folded normal distribution with parameters µ ∈ R andσ2 > 0,

where Φ is the cumulative distribution function of N (0, 1). Let furthermore v ≥ VQ∗ =

1. If (2.12) is satisfied, then the following is true:

(a) The single scale procedure has asymptotic power

Pθn

[
Tn
(
Y, θ0,R

O
n , v
)
> qO

1−α,n

]
= α+(1−α)F

(
qO

1−α,n +

√
2v log

(
1
an

)
, nd/2√an

m
(
θn

1

)
− m (θ0)

√
v (θ0)

,
v
(
θn

1

)
v (θ0)

)
+o(1).

(b) If an = o
(
nα−d

)
with α > 0 sufficiently small, then the multiscale procedure has

asymptotic power

Pθn

[
Tn
(
Y, θ0,R

MS
n|rn
, v
)
> qMS

1−α,n

]
≥ α+(1−α)F

(
qMS

1−α,n +

√
2v log

(
1
an

)
, nd/2√an

m
(
θn

1

)
− m (θ0)

√
v (θ0)

,
v
(
θn

1

)
v (θ0)

)
+o(1).

Remark 2.1.10. In (Sharpnack and Arias-Castro, 2016) a similar result in case of

Gaussian observations is shown. We note that the condition that an = o
(
nα−d

)
with

α > 0 sufficiently small is missing there. However, it is necessary for the proof to work.

In (Proksch et al., 2018) it suffices to assume an ↘ 0, as the maximum can be explicitly

controlled due to its Gumbel-limit.

The above Theorem allows us to explicitly describe those anomalies which will be
detected with asymptotic power 1:

Corollary 2.1.11. Under the setting of this section and the Assumptions of Theorem

2.1.9 any such anomaly is detected with asymptotic power 1 either by the single scale
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or the multiscale testing procedure if and only if√
2v log

(
1
an

)
v (θ0) − nd/2√an

∣∣m (θn
1

)
− m (θ0)

∣∣√
v
(
θn

1

) → −∞ (2.15)

as n→ ∞.

Example 2.1.12. 1. In case of Gaussian observations Yi ∼ N
(
∆nIQn , σ

2
)

with

variance σ2, where the baseline mean is 0 and where ∆n is the size of the

anomaly, this yields detection if and only if

|∆n| nd/2√an % σ

√
2v log

(
1
an

)
as n→ ∞.

If we calibrate the statistic with the packing number v = VQ∗ = 1 (cf. Example

2.1.3), then this coincides with the well known asymptotic detection boundary

for hypercubes, see e.g., (Arias-Castro et al., 2005; Frick et al., 2014) for d = 1,

(Butucea and Ingster, 2013) for d = 2, or (Kou, 2017) for general d.

2. For Bernoulli r.v.’s Yi ∼ Ber
(

p0IQc
n
+ pnIQn

)
with p0, pn ∈ (0, 1) s.t. p0 + pn ≤ 1,

condition (2.15) reads as follows:√
2vp0(1 − p0) log

(
1
an

)
− nd/2√an |pn − p0|

√
pn(1 − pn)

→ −∞.

The minimax detection rate is unknown in this case to best of our knowledge.

3. For a Poisson field Yi ∼ Poi
(
λ0IQc

n
+ λnIQn

)
with λ0, λn > 0, Theorem 2.1.9 and

Corollary 2.1.11 can be applied only if λn is a bounded sequence. In this case,

(2.15) reduces to √
2vλ0 log

(
1
an

)
− nd/2√an |λn − λ0|

√
λn

→ −∞.

Again, the minimax detection rate is unknown in this case to best of our knowl-

edge.
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2.1.4 Auxiliary results

Our results rely heavily on a coupling result which allows us to replace the maximum
over partial sums of standardized natural exponential family (NEF) r.v.’s by a maxi-
mum over a corresponding Gaussian version. This can be obtained from recent results
by Chernozhukov et al. (2014) as soon as certain moments can be controlled, which is
the purpose of the following two Lemmata. In the following, the letter C > 0 denotes
some absolute constant, which might change from line to line.

We start with controlling the maximum of powers of uniformly sub-exponential ran-
dom variables, which will be an essential tool in the proof of the Coupling result (The-
orem 2.1.15).

Lemma 2.1.13. Let Wi, i = 1, 2, . . . be independent sub-exponential random variables

s.t. there exist k1 > 1 and k2 > 0 s.t.

P [|Wi| > t] ≤ k1 exp(−k2t) (2.16)

for all i. Then for all m ∈ N there exists a constant C, s.t. for all N ≥ 2

E

[
max
1≤i≤N

|Wi|
m

]
≤ C

(
log N

)m
.

It is well-known that the above bound can be improved for sub-Gaussian random vari-
ables to

E

[
max
1≤i≤N

|Xi|

]
≤ C

√
log N. (2.17)

Next we will show that the maximum over the partial sum process of independent
random variables can be bounded by the maximum over the corresponding Gaussian
version. The latter can be controlled as in (2.17) by exploiting the fact that a max-
imum over dependent Gaussian random variables is always bounded by a maximum
over corresponding independent Gaussian random variables (see e.g., Šidák, 1967) and
hence,

E

[
max

I∈I

|XI |
√
|I|

]
≤ C

√
log (# (I)) (2.18)

with Xi
i.i.d.
∼ N (0, 1) and XI :=

∑
i∈I

Xi. This allows us to prove the following:

Lemma 2.1.14. Let (Zi)i=1,...,N be independent random variables with E [Zi] = 0 and

denote ZI :=
∑
i∈I

Zi. If I is an arbitrary index set of sets {I}I∈I, then there exists a
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constant C > 0 independent of I s.t.

E

[
max

I∈I

|ZI |
√
|I|

]
≤ C

√
log (# (I)) E

[
max
1≤i≤N

|Zi|

]
.

With the help of these two lemmata, the following coupling result can be shown:

Theorem 2.1.15 (Coupling). Let Zi, i ∈ Id
n be independent random variables with

E [Zi] = 0 and V [Zi] = 1, such that (2.16) is satisfied for all i with absolute constants

k1 > 1 and k2 > 0. Suppose further that vi ∈ [v, v], i ∈ Id
n are given with 0 < v ≤ v < ∞

independent of i and n, and that Xi
i.i.d.
∼ N(0, 1), i = 1, . . . , nd, and that Rn is a system

of sets such that inequality (2.2) holds. Then

max
R∈Rn:
|R|≥rn

|R|−1/2
∑
i∈R

viZi −max
R∈Rn:
|R|≥rn

|R|−1/2
∑
i∈R

viXi = OP

((
log10(n)

rn

)1/6
)
.

2.2 The case of unknown baseline parameter for Pois-
son observations

2.2.1 Setting and Assumptions

In this section we restrict the setting to a d-dimensional field of Poisson random vari-
ables as in (1.12). As seen in Example 2.1.7, the theory of the previous section may be
applied to these random variables as well.
The new challenging part of considering the statistic Tω

n as in (1.14) is the change of
scale calibration terms, in particular, as the multiplicative factor ω̃ is concerned. To
control the supremum of (1.16) we have to restrict our system of regions R∗ suitably.

Assumption 2 (Cardinality of Rn). There exists constants c1, c2 > 0 such that

# (Rn) ≤ c1nc2 . (2.19)

where # denotes the number of elements.

This assumption on R∗ is less restrictive than in the previous section due to the smaller
range of scales (recall (2.2)). The scale calibration terms are assumed to be of a certain
decreasing order.
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Assumption 3 (Average Hölder condition). All regions R in the set R∗ satisfy the av-

erage Hölder condition, that is∫
|IR(t − z) − IR(s − z)|2 dz ≤ K‖t − s‖2ζl2 ,

for some ζ ∈ [1/2, 1] and some constant K.

Example 2.2.1. Whenever IR is Hölder continuous, Assumption 3 is fulfilled.

Assumption 4. Suppose ω, ω̃ : [1, nd] → [1,∞) are decreasing functions and that

there exist α, α̃ > 0 and β, β̃ ∈ R s.t.

ω(r) .
(

log
nd

r

)α

, |ω′(r)| .
(

log
nd

r

)β 1
r
,

ω̃(r) .
(

log
nd

r

)α̃

,
∣∣ω̃′(r)

∣∣ . (log
nd

r

)β̃ 1
r
, r ∈ [1, nd].

Remark 2.2.2. 1. For the Gaussian approximation [Theorem 2.2.4] Assumptions

2 and 4 are sufficient.

2. The average Hölder assumption 3 is needed to prove the weak limit theorem.

The proof uses a different method which is applicable if the largest scales are cut

off. For the same reason the VC-dimension Assumption 1(a) can be relaxed to

the condition on the cardinality of Rn in Assumption 2.

Example 2.2.3. 1. Following (Dümbgen and Spokoiny, 2001), consider

ω̃ ≡ 1,

ω(|R|) =
√

2v(log(nd/|R|)) + 1, (2.20)

where v depends on the complexity of the candidate region. These terms fulfil

Assumption 4 with α = 1
2 , β = −1

2 , and α̃ = β̃ = 0.

2. Following (Proksch et al., 2018), consider

ω̃(|R|) :=

√√√√2 log

(
(2π)−

1
2 nd

|R|

)
+ Cd

log

(√
2 log

(
(2π)−

1
2 nd

|R|

))
√

2 log
(

(2π)−
1
2 nd

|R|

) ,

ω(|R|) ≡ ω̃(|R|), (2.21)
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where Cd depends on the dimension, the system of considered scales and the

underlying smoothness of IR. These fulfil Assumption 4 with α = α̃ = 1
2 and

β = β̃ = −1
2 .

2.2.2 Limit Theory

Theorem 2.2.4 (Gaussian approximation). Let Yi, i ∈ Id
n be a field of Poisson random

variables and let R∗ be a set of candidate regions satisfying Assumption 2 and let

(rn)n ⊂ (0,∞) be a sequence such that (1.23) holds with

γ = 12 + 6α̃ + 2 max
(

1
2 + max

(
β̃, 0
)
, α + max

(
β̃, 0
)
, α̃ + max (β, 0)

)
and mn s.t.

(1.24) holds. Assume further that the scale calibrations ω, ω̃ fulfil Assumption 4. Then

under P0

Tω
n (Y,Rn(rn,mn)) − Mω

n (Rn(rn,mn)) = OP

((
logγ(n)

rnλ
3
0

)1/12
)

(2.22)

as n→ ∞ with Mω
n as in (1.15).

Theorem 2.2.5 (Weak P0 limit). Let Yi, i ∈ Id
n be a field of Poisson random variables,

R∗ satisfy Assumption 2, 3 and let (rn)n, (mn)n be sequences such that (1.23) with γ as

in Theorem 2.2.4 and (1.24) hold. Then we have under P0 that

Tω
n (Y,Rn(rn,mn))

D
→ Mω (R∗) as n→ ∞, (2.23)

with Mω as in (1.16).

The penalty term in (2.20), used in Section 2.1, would also result in an almost surely
finite limit statistic, but due to the cut off of the largest scales, it would result in a
degenerate limit, see (Schmidt-Hieber et al., 2013, Lemma C.1).Therefore the scale
calibration as in (2.21) is more appealing, since we can then prove the following The-
orem 2.2.7.
For this, we need the following definition.

Definition 2.2.6. A continuous random variable X follows a Gumbel distribution with

scaling parameter β and location parameter µ, if its cumulative distribution function

is given by

F(x; µ, β) = exp
(
− exp

(
−

x − µ
β

))
.

Theorem 2.2.7. Let R∗ satisfy Assumptions 2 and 3. Let the scale calibration term be

chosen as in (2.21).
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Then the statistic Mω(R∗) is almost surely finite. In particular, there exist D and D such

that two Gumbel distributions with scaling parameter β = 1 and location parameter

µ = log(D) and µ = log(D), respectively, bound the distribution from below and above,

i.e.,

e−De−t
≤ lim

n→∞
P [Mω(R∗) ≤ t] ≤ e−De−t

∀t ∈ R.



CHAPTER 3

Simulation study and real data example

This chapter contains a simulation study as well as a real data example with STED
measurements (provided by René Siegmund from the Laser-Laboratorium Göttingen
e.V.). Therefore, the focus is on Poisson random fields.

3.1 Implementation of our multiscale procedure

The implementation is based on a code used in (Proksch et al., 2018), which was kindly
provided to me. In their notation we use Φi = IBi with boxes Bi. For a run-time anal-
ysis see (Proksch et al., 2018). Using this code to calculate YR, we implemented our
hypothesis testing procedure.
To construct the test the dimension d, the size of the image, and the candidate regions,
i.e., the scales we consider, need to be specified. We consider images in d = 2 di-
mensions of size 512 × 512. For the test n = 96 is the largest feasible, if all scales are
included, but since we are just interested in a smaller range of scales, n = 512 is man-
ageable. We consider as candidate regions all boxes of size 4× 4, 4× 5, . . . , 4× 10, 5×
4, . . . , 10 × 10 pixels (49 different scales). The implementation is then done using the
Fast Fourier Transform (FFT). At first, out of the fixed test setup ( d, n and candidate
regions), Gaussian approximations were simulated. Performing the multiscale test on
a data set now requires computing the quantiles of these Gaussian approximations and
computing the statistic TR and check for regions, where the statistic exceeds the thresh-
old.

3.2 Simulation study

We simulated a Poisson random field with a = 20 anomalies.
First, we randomly selected the underlying signal (the so-called groundtruth) by choos-
ing randomly 20 coordinate points in a 512×512 pixel image. Around these 20 points,
we randomly chose marker positions with number of markers uniformly chosen in the
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interval [1, 8]. This results in a field with value ≥ 1 at a marker position and zero else-
where. An example is shown in Figure 3.1. Notice that, due to the randomness, there
can be more than one marker on the same coordinate point.

Figure 3.1: Example of simulated marker locations where each cross represents a
marker.

Based on the marker locations (groundtruth) the signal λ in (1.12) is chosen as
λ = t ·

(
intensity + l · ones(512, 512)

)
with observations

Y = Poi
(
t ·
(
intensity + l · ones(512, 512)

))
,

where t denotes the dwell time, l stands for the baseline intensity and intensity stands
for the groundtruth convoluted with a Gaussian kernel. This is in good accordance with
STED data since the point spread function of the microscope is often approximated by
a Gaussian density for simplicity, see e.g., (Bertero et al., 2009). These parameters
were chosen such that the resulting field visually coincides with the measurements
(e.g., in Figure 3.2: l = 0.015 and t = 5, 15, 50).

3.2.1 Comparison to Gaussian Test
(with pre-transformation of the Poisson data)

In this subsection we will illustrate the superior performance of our test tailored to the
Poisson setting (from now on called Poisson test) in contrast to the test for Gaussian
observations which uses as input the data pre-processed by Anscombe’s transformation
(from now on called Anscombe-based test).
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Figure 3.2: Simulated data Y . Top: with l = 0.015 and t = 5. Middle: with l = 0.015
and t = 15. Bottom: with l = 0.015 and t = 50.

Anscombe proposed x 7→ 2 ·
√

x + 3
8 in (Anscombe, 1948) as variance stabilizing

transformation for Poisson data, and by Lemma 1 of (Brown et al., 2010) for Y ∼

Poi(λ), 2 ·
√

Y + 3
8 − 2 ·

√
λ − 1

8
√
λ

is approximately ∼ N(0, 1), since then the mean is
zero and variance one.

Figure 3.3 illustrates the performance of both tests in the before-mentioned settings
(from Figure 3.2). For small dwell time t = 5, the Anscombe-based test finds less
anomalies compared to the Poisson test. For t = 15, both tests find the same amount
of anomalies, but the Anscombe-based test finds them on larger scales. This means
that the Poisson test localizes much better. This "localization"-property will be also
illustrated in the STED-data-example, see Figure 3.9. For t = 50 both test work well.
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Notice that the Poisson test also detects the anomaly, which just has one marker, see
bottom right corner.

Poisson Anscombe-based

Not significant

80

40

26.67

20

16

Figure 3.3: Test results. Top: l = 0.015, t = 5, middle: l = 0.015, t = 15, bottom:
l = 0.015, t = 50.

3.2.2 Error analysis

This subsection contains the results of a simulation study to derive the type I error as
well as the ratio of missed markers to all markers.

In hypothesis testing a type I error means the incorrect rejection of a true null hypoth-
esis. In our setting this means that we put a box indicating an anomaly although there
is no marker at that location. Keep in mind that due to the theory, the type I error is
controlled, since the method controls the FWER asymptotically, see (1.6).
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Type I error The worst case for the type I error is the constant field with no anomaly.
Therefore, we simulated a Poisson field with no anomalies (just baseline intensity) and
counted how many wrongly detected anomalies appeared. The type I error is depicted
in Figure 3.4 for t = 1, different values of l and α = 0.1 (horizontal line) coming
from 1000 trials. It turns out, that for small values of l, the empirical level exceeds
the nominal level, which might be due to a too small n to be in the asymptotic regime
in this case. However, already for moderate values of l, the test keeps its level quite
stable.

100 101 102
0

0.05

0.1

0.15

0.2

l

Ty
pe

Ie
rr

or

Poisson
Anscombe-based

Figure 3.4: Type I error. Dashed line illustrates the nominal level.

Missed markers For the number of missed markers out of all markers we fixed a
groundtruth and a baseline intensity (here: groundtruth from Figure 3.1 containing 86
markers and l = 0.015 as in Figure 3.2) and evaluated the ratio of missed markers and
the total number of markers by running 10000 trials and dwell times t ranging from 1
to 10. In Figure 3.5 you see the superior performance of the Poisson test in terms of
detection power. For both tests the error gets smaller with larger t, i.e., the larger the
dwell time, the more anomalies are detected.

3.3 STED data example

The data in this section comes from a STED microscope and shows measurements of
sparsely distributed 40nm large fluorescent crimson beads. Therefore, the hot spots
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Figure 3.5: Ratio of the number of missed markers to the total amount of markers for
different dwell times t.

will be around 120 nanometers. This results in a Poisson field with intensity propor-
tional to the exposure time, recall Section 1.1.1 and equation (1.17).

There, we already sketched the idea of applying the hypothesis testing procedure to
segment the image into regions which should be further investigated and those which
are "uninteresting". Underlying this approach is that high energy of STED light could
cause sample damage. RESCue-STED (Staudt et al., 2011) avoids unnecessary ex-
citation and de-excitation cycles and thus reduces photobleaching of any fluorescent
marker. In particular, RESCue-STED has two workings: shut-off the excitation and
STED laser where there was no signal for the first, e.g., α percentage of the pixel dwell
time and additionally where there has already been a sufficiently strong signal. We will
tackle with our hypothesis testing procedure the first action. Applying the approach on
an image with short dwell time t0 ≤ t, we will identify the interesting regions. After
building segments around the detected regions, just these can be measured with the full
dwell time.

The first data-set is measured with exposure time t0 = 5µs, i.e., resulting in Poi(t0 · λi),
the so-called limited data. Another data-set is derived by using an exposure time of
t = 100µs, the so-called full data. The full data can be used for validating our results.
Following Section 2.2 we will pre-estimate the baseline parameter λ0 by the sample
mean (total average). The candidate regions will be the same as in the simulation
section 3.2, i.e., boxes of size 4× 4, 4× 5, . . . , 4× 10, 5× 4, . . . , 10× 10 pixels (1 pixel
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= 20 × 20 nm ).
Performing the hypothesis testing procedure (Poisson test) using the limited data, we
derive a spatial visualization of the rejected regions, i.e., by one-to-one correspondence
of testing and confidence statements, regions which contain with 90% confidence an
anomaly.

Figure 3.6 shows the experimental data. The top row displays the limited data as well
as an enlargement of a specific region. The middle row depicts the test results, again
with the same area enlarged. As a kind of justification, the last row shows the full data.
The test results are in good correspondence with the full data, especially when one
looks at the enlarged area. The left bottom corner of the limited data is not very in-
formative, but despite this, the multiscale procedure indicates an anomaly, which also
appears in the full data.

Figure 3.7 you see in the first row the test results for all regions, large and small, and
in the second row the test results of the smallest significant regions, i.e., all large boxes
are removed if they contained a smaller one. This nicely illustrates that our test locates
the anomalies very accurately.

Figure 3.8 shows the Anscombe-based test for the STED-data as well as the test results
where just the smallest significant regions are depicted. In contrast to Figure 3.7 the
reduction does not yield a more accurate localization.

This benefit of the Poisson test is also illustrated in Figure 3.9. It nicely illustrates
the additional information our test yields when compared to the Gaussian one. The
Poisson test localizes much better which can be already seen from looking at the color
code of both test results.
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Figure 3.6: Top row: Limited Data (t = 5) and zoomed in region (102 × 132 pixels).
Middle row: Spacial visualization of the rejected test (with 90% confidence each col-
ored region contains an anomaly) and corresponding zoomed region. Bottom row: Full
data (t = 100) and zoomed in region. The FWER control ensures that with asymptotic
probability at least 90 percent among the selected boxes there is no wrong detection.
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Figure 3.7: 90% significance maps for the data of Figure 3.6. In the first row the test
results with all detected hot spots are depicted, below the test results after reduction
of the boxes, i.e., where the regions are just the smallest ones which are significant.
Reduced boxes: 3086 boxes left. Before there were 214420 boxes.
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Figure 3.8: 90% significance maps for the data of Figure 3.6. In the first row you can
see the test results coming from the Anscombe-based test with all detected hot spots.
Below you can see the test, where the regions are just the smallest ones which are
significant. Before 106693 significant boxes and afterwards 3333.
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Figure 3.9: 90% significance maps for the data of Figure 3.6. In the top row: On the left
you can see the results of the Poisson test and on the right the ones from the Gaussian
test. Below you can see the corresponding results with reduced boxes. Compared to
the Ancombe-based test, the Poisson test localizes much better.
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CHAPTER 4

Discussion and Outlook

This thesis considered multiscale scanning in higher dimension in the setting of NEF.
The first part was about finding anomalies in a d-dimensional field of independent ran-
dom variables {Yi}i∈{1,...,n}d , each distributed according to a one-dimensional natural ex-
ponential family F = {Fθ}θ∈Θ, where the underlying baseline parameter is known. We
provide a unified methodology which controls the FWER. A Gaussian approximation
(Theorem 2.1.5) as well as a weak limit theorem (Theorem 2.1.4) was derived. Further,
we analyzed the power of our multiscale testing approach in the hypercube-case. As a
result we showed that this procedure detects asymptotically the same anomalies with
power 1 as the oracle benchmark procedure for a known scale. Theorem 2.1.9 can be
seen as a generalization of Theorems 2 and 4 of (Sharpnack and Arias-Castro, 2016).
Motivated by STED microscopy, we looked in a second step at a Poisson field with
unknown baseline parameters. A challenging aspect was the consideration of arbitrary
(up to some conditions) scale calibration terms ω, ω̃. As before, we derived a Gaussian
approximation (Theorem 2.2.4) and a weak limit theorem (Theorem 2.2.5).

In the following we discuss further areas which could be investigated.

Beyond constant intensities Considering more general function classes for the in-
tensity is one interesting extension. Generalizing the limit law and the Gaussian ap-
proximation to a non-constant intensity field λi = λ(i) would give the possibility to
use these results in the context of image reconstruction, recall MIND in Section 1.1.2.
First, the results were shown for a known, constant baseline parameter θ0, second, the
theory was extended to an unknown intensity λ0, which was pre-estimated by the sam-
ple mean. Finally one would want to consider inhomogeneous λ0. To this end, one
can compare λ0 on every box with λ = 1

|box|

∫
box λ0 dx, using the triangle inequality

- similar as the comparison of Y and λ0 in Proposition B.4.1. Thereby all estimates
depend on the error between λ and λ0, which scales with ‖λ′0‖∞,box × |box|, using the
mean value theorem. Therefore, this error can be controlled if the boxes are going to
zero sufficiently fast.
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Unknown parameter in the setting of NEF As in the Section 2.2, where an un-
known intensity for a Poisson field was assumed, one could extend this to NEF in a
straightforward way. The arguments in the proofs of Section 2.2 do not rely on the
Poisson setting, but on the coupling result which has already been shown for general
NEF (Theorem 2.1.15).

Sample mean replaced by median Another interesting aspect is the question if one
can replace in the pre-estimation step the sample mean by the median for the unknown
baseline parameter. This would require new techniques to prove a result equivalent to
Proposition B.4.1.



APPENDIX A

Complexity of sets: VC-dimensions and related quantities

As explained in Remark 2.1.2 a finite VC-dimension is a standard way to control
the complexity of a set-indexed process. Furthermore, the penalty-term (1.8) needs
a bound on the complexity measured in terms of the packing number, namely the con-
stant v. In the following the relationship between these quantities will be stated and
covering numbers will be computed.

A.1 Calculation of packing numbers

Recall that the packing number K (ε, ρ,W) was defined in Remark 2.1.2. In this ap-
pendix we estimate the packing numbers given in Example 2.1.3, which will be done
by determining the covering number. The covering number N (ε, ρ,W) of a subset
W ⊂ R∗ w.r.t. a metric ρ is given by the minimal number of balls of radius ε > 0
needed to coverW (cf. van der Vaart and Wellner, 1996, Def. 2.2.3). It is immediately
clear that

N (ε, ρ,W) ≤ K (ε, ρ,W) ≤ N
( ε

2
, ρ,W

)
,

and hence it suffices to computeN
(
(δu)1/2 , ρ∗,

{
R ∈ R∗

∣∣ |R| ≤ δ}) with ρ∗ as in (2.3)
to show (2.4). By Theorem 2.6.7 of (van der Vaart and Wellner, 1996) one can bound
the covering number ofW using the VC-dimension ofW, that is

N

( ε
2
, ρ,W

)
≤ Cε−ν(W),

where ν (W) is the VC-dimension of W. But as pointed out in Remark 2.1.2 and
Example 2.1.3, this bound can be improved, which will be illustrated now. In the
following, we will use the notation used in Example 2.1.3.

In the case of hyperrectangles we have

Lemma A.1.1. For any ε > 0 there exists a constant C depending only on the dimen-
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sion d and on ε such that for all u, δ ∈ (0, 1] we have

K
(
(δu)1/2, ρ∗, {S ∈ S∗ : |S | ≤ δ}

)
≤ Cu−(2d+ε)δ−(2d−1+ε),

i.e., (2.4) is true with k1 = C, k2 = 2d + ε and VS∗ = 2d − 1 + ε.

Proof. We approximate the hyper-rectangles in W = {S ∈ S∗ : |S | ≤ δ} by hyper-
rectangles with vertices in the lattice Lm :=

{
i
m

∣∣ i = 0, . . . ,m
}d where m will be spec-

ified later. The set of all hyper-rectangles with vertices in Lm and size ≤ δ will be
denoted byW′

m. For S ∈ W denote the edge lengths by k1, . . . , kd. Then
∏d

j=1 k j ≤ δ

and ki ≤ 1. It is immediately clear that there exists an approximating hyper-rectangle
S ′ ∈ W′

m such that

(
ρ∗
(
S , S ′

))2
= |S 4 S ′|

≤ 2 (k2 · ... · kd + k1 · k3 · ... · kd + . . . + k1 · . . . · kd−1) ·
1

2m

≤
d
m
. (A.1)

Hence, we obtain ρ∗ (S , S ′) ≤ (δu)1/2 if we choose m := d
δu . We now compute the

cardinality of W′
d/(δu). First note that the number of possible left bottom vertices is

bounded from above by md = #Lm. If we denote the edge lengths of S ′ ∈ W′
m by

l1, . . . , ld, we can find integers i1, ..., id such that l j =
i j

m and
∏d

j=1 i j ≤ δmd =: N.
Therefore, we obtain

N
(
(δu)1/2, ρ∗, {S ∈ S∗ : |S | ≤ δ}

)
≤ #W′

m ≤ md · #PN (A.2)

with PN :=
{

(i1, . . . , id) ∈ Nd
∣∣ ∏d

j=1 i j ≤ N
}

.
To compute #PN , we employ Minkowski’s theorem (cf. Cassels, 1997, Sec. III.2.2),
which ensures that the Lebesgue volume ∆d(N) of{

(x1, . . . , xd) ∈ [1,N]d
∣∣ x1 · . . . · xd ≤ N

}
is comparable with #PN up to a factor of 2d.

Claim:

We show by induction that

∆d(N) =
1

(d − 1)!
N
(
log N

)d−1
. (A.3)

Proof. d = 1: ∆1 = N X

d 7→ d + 1 : x1 ∗ . . . ∗ xd+1 ≤ N ⇔ x1 ∗ . . . ∗ xd ≤
N

xd+1
, where xd+1 ∈ [1,N].⇒

∆d+1(N) =

∫ N

1
∆d

(
N

xd+1

)
dxd+1



A.1. Calculation of packing numbers 47

=
1

(d − 1)!

∫ N

1

N
xd+1

(
log
(

N
xd+1

))d−1

dxd+1, y =
N

xd+1

=
N

(d − 1)!

(
−

∫ 1

N
y(log y)d−1 1

y2 dy
)

=
N

(d − 1)!

∫ N

1

(
log y

)d−1 1
y

dy

=
N

(d − 1)!

[
(log y)d

d

]N

1

=
1
d!

N(log N)d.

�

Inserting (A.3) into (A.2), we obtain up to constants depending on d only

N
(
(δu)1/2, ρ∗, {S ∈ S∗ : |S | ≤ δ}

)
≤md ∗ #PN

≤2dmd∆d
(
δmd
)

.δm2d log
(
δmd
)d−1

=δ−(2d−1)u−2d
[
log
(
ddδ−(d−1)u−d

)]d−1

.δ−(2d−1)
(
log(1/δ)

)d−1
u−2d

(
log(1/u)

)d−1

where we used (x + y)d−1 ≤ cxd−1yd−1 for x, y ≥ 1. This proves the claim. �

In the case of hypercubes we have a stronger result.

Lemma A.1.2. There exists a constant C depending only on the dimension d such that

for all u, δ ∈ (0, 1] we have

K
(
(δu)1/2, ρ∗, {Q ∈ Q∗ : |Q| ≤ δ}

)
≤ Cδ−1u−(d+1),

i.e., (2.4) is true with k1 = C, k2 = d + 1 and VQ∗ = 1.

Proof. We proceed as in the Proof of Lemma A.1.1. In contrast to hyper-rectangles,
we obtain here instead of (A.1) the better estimate

(
ρ∗
(
Q,Q′

))2
= |Q 4 Q′| ≤

dδ
d−1

d

m
.

Since all edges have the same length, and we can choose m := d
δ1/du . Furthermore, the

cardinality ofW′
m is bounded by the number of lower left vertices times the number
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of possibilities for an adjacent vertex, which gives

#W′
m ≤ md ·

(
δ1/dm

)
= md+1δ1/d.

Therefore we finally obtain

N
(
(δu)1/2, ρ∗, {S ∈ S∗ : |S | ≤ δ}

)
≤ #W′

d/(δ1/du)

≤

(
d

δ1/du

)d+1

δ1/d = dd+1u−(d+1)δ−1,

which proves the claim. �

In the case of half-spaces, we show

Lemma A.1.3. There exists a constant C depending only on the dimension d such that

for all u, δ ∈ (0, 1] it holds

K
(
(δu)1/2, ρ∗, {H ∈ H∗ : |H| ≤ δ}

)
≤ Cδ−2u−2,

i.e., (2.4) holds with k1 = C, k2 = 2 and VH∗ = 2.

Proof. Let WN,m =
{

Hai,α j

∣∣ i = 1, ...,N, j = 1, ...,m
}

with numbers a1, ..., aN ∈ S
d−1

and α1, ..., αm ∈

[
0,
√

d
]

and Hai,α j defined as in Example 2.1.3 c). Note that Ha,α = ∅

for α >
√

d by definition and Pythagoras’ theorem. It is convenient to choose α1, ..., αm

as equidistant, e.g.,

αi :=
i − 1

2

m

√
dn, i = 1, . . . ,m.

Furthermore, let a1, ..., aN be a maximal system of points in Sd−1 such that ^(a j, ak) ≥(
1
m

) 1
d−1 for all j , k. This implies that

Sd−1 ⊂

N⋃
j=1

S a j

((
1
m

) 1
d−1
)

where S a (θ0) denotes the spherical cap S a (θ0) =
{

e ∈ Sd−1
∣∣ ^(a, e) ≤ θ0

}
. Note that

|S a (θ0)| ∼

θ0∫
0

(sin t)d−2 dt

π∫
0

(sin t)d−2 dt
∼ θd−1

0

for small values of θ0, up to constants depending on d only. Now, for any given a ∈ Sd−1
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and α ∈
[
0,
√

d
]
, there are 1 ≤ i ≤ N and 1 ≤ j ≤ m such that

^(a, ai) ≤
(

1
m

) 1
d−1

,
∣∣α − α j

∣∣ ≤ √d
m
.

Now we split

(
ρ∗
(
Ha,α,Hai,α j

))2
≤
∣∣Ha,α 4 Hai,α

∣∣ +
∣∣Hai,α 4 Hai,α j

∣∣ ,
and since Hai,α 4 Hai,α j is a d-dimensional stripe of width ≤

√
d

m and Ha,α 4 Hai,α is a

union of hyperpyramids with opening angle ≤
(

1
m

) 1
d−1 , we obtain

(
ρ∗
(
Ha,α,Hai,α j

))2
≤

C
m
,

where C is some generic constant depending only on d. Hence if we choose m =

C−1δ−1u−1, then for each H ∈ {H ∈ H∗ : |H| ≤ δ} there exists H′ ∈ WN,m such that
ρ∗ (S , S ′) ≤ (δu)1/2. We now estimate N. By elementary geometry it follows that

N⋃
j=1

S a j

(
1
2

(
1
m

) 1
d−1
)
⊂ Sd−1 ⊂

N⋃
j=1

S a j

((
1
m

) 1
d−1
)
,

and furthermore up to boundary points, the sets on the left-hand side are disjoint.
Therefore we obtain for the volumes that

N

∣∣∣∣∣S a j

(
1
2

(
1
m

) 1
d−1
)∣∣∣∣∣ ≤ ∣∣Sd−1

∣∣ ≤ N

∣∣∣∣∣S a j

((
1
m

) 1
d−1
)∣∣∣∣∣

which implies N ∼ m. Consequently, #WN,m ∼ m2 which proves the claim.
�
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APPENDIX B

Proofs

In this section we will give the proofs of our results. In the following we denote by pn

the cardinality of Rn, i.e., pn := #(Rn), which by (2.2) satisfies log(pn) ∼ log n. Again,
C will be a generic constant which might differ from line to line.

B.1 Proof of the auxiliary results

We start proving the auxiliary statements from section 2.1.4.

Proof of Lemma 2.1.13. Let h(t) := k1 exp(−k2t). We may assume h ≤ 1. Then

P

[
max
1≤i≤N

|Wi| > t
]

= 1 − P
[

max
1≤i≤N

|Wi| ≤ t
]
≤ 1 − (1 − h(t))N

≤ Nh(t).

Let t̄ = h−1(1/N) ∼ C log(N), then

E

[
max
1≤i≤N

|Wi|
m

]
= m

∫ ∞
0

tm−1P

[
max
1≤i≤N

|Wi| > t
]

dt

≤ m
∫ t̄

0
tm−1 dt + m

∫ ∞
t̄

tm−1Nh(t) dt

≤
(
C log(N)

)m
+ k1mN

∫ ∞
t̄

tm−1 exp(−k2t) dt

≤ C
(
log N

)m
,

where the last inequality follows from repeated integration by parts, reducing m − 1 to
zero.

�

Proof of Lemma 2.1.14. Let Xi
i.i.d.
∼ N (0, 1) and ri be i.i.d. Rademacher random vari-

ables, which take the values ±1 with probability 1/2.
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Step (i): Since the variables Xi are symmetric,

E

[
max

I

1
√
|I|

∣∣∣∣∣∑
i∈I

Xi

∣∣∣∣∣
]

= Er

[
E

[
max

I

1
√
|I|

∣∣∣∣∣∑
i∈I

riXi

∣∣∣∣∣
]]

. (B.1)

We use Lemma 4.5 of (Ledoux and Talagrand, 1991) and choose there F(t) = t, ηi = Xi

and xi :=
(
ci,I
)

I , where ci,I := 1√
|I| I{i∈I} is a scaled indicator function and as norm the

maximum-norm. Then we obtain

Er

[
max

I

1
√
|I|

∣∣∣∣∣∑
i∈I

ri

∣∣∣∣∣
]
≤

√
π

2
E

[
max

I

1
√
|I|

∣∣∣∣∣∑
i∈I

Xi

∣∣∣∣∣
]
. (B.2)

Step (ii): Let (Z′i )1≤i≤N be a sequence of independent copies of (Zi)1≤i≤N and define the
symmetrized version of Zi by Z̃i := Zi − Z′i and equally the symmetrized version of ZI

by Z̃I :=
∑

i∈I(Zi − Z′i ). By using the same argument as in (B.1) and Fubini’s theorem,
we derive

E

[
max

I

1
√
|I|
|ZI |

]
≤ 2E

[
max

I

1
√
|I|

∣∣∣Z̃I

∣∣∣]
= 2Er

[
E

[
max

I

1
√
|I|

∣∣∣∣∣∑
i∈I

Z̃iri

∣∣∣∣∣
]]

= 2E

[
Er

[
max

I

1
√
|I|

∣∣∣∣∣∑
i∈I

Z̃iri

∣∣∣∣∣
]]

= 2E

[
Er

[
max

I

1
√
|I|

∣∣∣∣∣∑
i∈I

∣∣∣Z̃i

∣∣∣ ri

∣∣∣∣∣
]]

,

where the last equality holds in view of the symmetry of ri. Now we will use the
contraction principle, i.e., Theorem 4.4 of (Ledoux and Talagrand, 1991) with F(t) = t

conditionally on αi := |Z̃i(ω)|
max

j
|Z̃ j(ω)|

, which is independent of (ri). We get after multiplying

both sides with max
j
|Z̃ j(ω)|

Er

[
max

I

1
√
|I|

∣∣∣∣∣∑
i∈I

∣∣∣Z̃i(ω)
∣∣∣ ri

∣∣∣∣∣
]
≤ E

[
max
1≤i≤N

∣∣∣Z̃i(ω)
∣∣∣]Er

[
max

I

1
√

I

∣∣∣∣∣∑
i∈I

ri

∣∣∣∣∣
]
.

Therefore

E

[
max

I

1
√
|I|
|ZI |

]
≤ 2E

[
max
1≤i≤N

∣∣∣Z̃i(ω)
∣∣∣]Er

[
max

I

1
√
|I|

∣∣∣∣∣∑
i∈I

ri

∣∣∣∣∣
]
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≤ 4E
[

max
1≤i≤N

|Zi|

] √
π

2
E

[
max

I

1
√
|I|

∣∣∣∣∣∑
i∈I

Xi

∣∣∣∣∣
]

=
√

8πE
[

max
1≤i≤N

|Zi|

]
E

[
max

I

|XI |
√
|I|

]
,

where we used (B.2) in the second inequality. Now the statement follows from (2.18).
�

Proof of Theorem 2.1.15. Enumerate the regions R in Rn by j, 1 ≤ j ≤ pn and define

Xi j :=
vi√
|R j|

ZiI{i∈R j}I{|R j |≥rn},

Xi :=
(
Xi j
)

j=1,...,pn
, i = 1, . . . ,N = nd,

(B.3)

for some sequence rn. Then Z := max
1≤ j≤pn

∑N
i=1 Xi j satisfies

Z D
= max

R∈Rn:
|R|≥rn

1
√
|R|

∑
i∈R

viZi.

Recall that log(pn) ∼ log(n). According to (Chernozhukov et al., 2014, Cor. 4.1) for
every δ > 0 there exists a Gaussian version Z̃ := max

1≤ j≤pn

∑N
i=1 viNi j with independent

random vectors N1, . . . ,Nn in Rpn , Ni ∼ N(0,E
[
XiXt

i

]
), 1 ≤ i ≤ N, such that

P
[∣∣Z − Z̃

∣∣ > 16δ
]
. δ−2

{
B1 + δ−1(B2 + B4) log(n)

}
log(n) +

log(n)
nd

where

B1 := E

[
max

1≤ j,k≤pn

∣∣∣∣∣
N∑

i=1

(
Xi jXik − E

[
Xi jXik

])∣∣∣∣∣
]

B2 := E

[
max

1≤ j≤pn

N∑
i=1

∣∣Xi j

∣∣3]

B4 :=
N∑

i=1

E

[
max

1≤ j≤pn

∣∣Xi j

∣∣3 I{ max
1≤ j≤pn
|Xi j|>δ/ log(pn∨n)}

]
.

We now give estimates for B1, B2 and B4.

B1 can be controlled as follows. With Xi j as above ( see (B.3)) we find

B1 = E

 max
1≤ j,k≤pn:
|R j |,|Rk |≥rn

∣∣∣∣∣∣
∑

i∈R j∩Rk

v2
i (Z2

i − 1)√
|R j||Rk|

∣∣∣∣∣∣

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= E

 max
1≤ j,k≤pn:
|R j |,|Rk |≥rn

√
|R j ∩ Rk|√
|R j||Rk|

∣∣∣∣∣∣ 1√
|R j ∩ Rk|

∑
i∈R j∩Rk

v2
i (Z2

i − 1)

∣∣∣∣∣∣
 .

Using the restriction on the size of the rectangles we find:√
|R j ∩ Rk|

|R j||Rk|
≤

√
|min{|R j|, |Rk|}|

|R j||Rk|
≤

1
√

rn
.

Denote Vi := v2
i (Z2

i − 1), I := R j ∩ Rk ∈ I ⊂ Id
n and S I :=

∑
i∈I Vi. Then

B1 ≤
1
√

rn
E

[
max

I∈I

|S I |
√
|I|

]
.

Using Lemma 2.1.14 we obtain

B1 ≤
C
√

rn

√
log (#(I))︸            ︷︷            ︸
∼
√

log(n)

E

[
max
1≤i≤N

|v2
i (Z2

i − 1)|
]

It remains to estimate

E

[
max
1≤i≤N

|v2
i (Z2

i − 1)|
]

= E

[
max
1≤i≤N

v2
i |Z

2
i − 1|

]
≤ E

[
max
1≤i≤N

v2|Z2
i − 1|

]
≤ v2E

[
max
1≤i≤N

|Zi|
2
]

+ v2.

Hence using Lemma 2.1.13 we get

B1 .

√
log(n)
√

rn

(
v2C log(N)2 + v2

)
.

(
log5(n)

rn

)1/2

.

To estimate B2, we compute

B2 ≤
1

(rn)1/2E

[
max
1≤i≤N

|viZi|
3
]

≤
v3

(rn)1/2E

[
max
1≤i≤N

|Zi|
3
]
.

(
log6(n)

rn

)1/2

,
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where we again used Lemma 2.1.13. Now let δ > 0 be fixed. Then

B4 ≤

N∑
i=1

E

 max
1≤ j≤pn:
|R j |≥rn

|viZi|
3

|R j|
3/2 I{max

j

|viZi |
|R j |1/2

> δ
(log pn) }


≤

N
r3/2

n
max
1≤i≤N

E

[
|viZi|

3I
{|Zi |>

δr1/2
n

|vi | log pn
}

]

By the assumption on rn, we have that rn >
( 2d|vi |

δ

)2
(log n)2+2γ for some γ > 1 and

n ≥ no(δ, d). Hence

B4 ≤
N

r3/2
n

max
1≤i≤N

E
[
|vi|

3|Zi|
3I{|Zi |>(log n)γ}

]
≤

Nv3

r3/2
n

3 max
1≤i≤N

∫ ∞
(log n)γ

t2P [|Zi| > t] dt

≤ 3k1
Nv3

r3/2
n

∫ ∞
(log n)γ

t2 exp(−k2t) dt

= 3k1
Nv3

r3/2
n

1
k3

2

∫ ∞
k2(log n)γ

u2 exp(−u) du.

For u ≥ 10 we have u2 ≤ exp(u/2). Choose n1(δ, d, γ) such that for all n ≥ n1(δ, d, γ)
we have k2

(
log n

)γ
> 10 and k2

2

(
log n

)γ
≥ d log(n). Then

B4 ≤
3k1v3

k3
2

N
r3/2

n

∫ ∞
k2(log n)γ

exp
(
−

u
2

)
du =

3k1v3

k3
2

N
r3/2

n
exp

(
−

k2

2
(
log n

)γ)
≤

3k1v3

k3
2

nd

(rn)3/2 n−d =
3k1v3

k3
2

1
(rn)3/2 .

The estimates for B1, B2 and B4 imply

P
[
|Z − Z̃| > 16δ

]
. δ−2

(
log7(n)

rn

)1/2

+ δ−3
(

log10(n)
rn

)1/2

+ δ−3
(

log4(n)
r3

n

)1/2

+
log(n)

nd

. δ−3
(

log10(n)
rn

)1/2

.

which yields the claim. �
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B.2 Proofs of Section 2.1.2

Let us now prove the results from Section 2.1.2, in particular, Theorems 2.1.4 and
2.1.5. We start with a Taylor expansion of Tn, which will allows us to apply Theorem
2.1.15. Therefore recall the definition of the functions m(θ) and v(θ) from (2.9) as the
mean and variance of Y ∼ Fθ.

Lemma B.2.1. Let Rn be a collection of sets s.t. (2.2) holds, ε > 0 and (rn)n ⊂ (0,∞)
be a sequence, s.t. (log n)3+ε/rn → 0. Suppose Yi ∼ Fθ0 ∈ F , i ∈ Id

n , are i.i.d. random

variables, and recall that for R ∈ Rn we denote YR := |R|−1∑
i∈R Yi. Then it holds

max
R∈Rn:
|R|≥rn

∣∣∣∣TR(Y, θ0) − |R|
1
2
|YR − m(θ0)|
√

v(θ0)

∣∣∣∣ = OP

((
log3(n)

rn

)1/4
)

as n→ ∞.

Proof. For independent Gaussian random variables Xi ∼ N (0, 1) it follows from (2.18)
and (2.2) that

E

[∣∣∣∣∣max
R∈Rn
|R|−1/2

∑
i∈R

Xi

∣∣∣∣∣
]
≤ C

√
log n,

hence
1

√
log(n)

max
R∈Rn:
|R|≥rn

|R|−1/2
∑
i∈R

Xi = oP(1).

Combining this result with Theorem 2.1.15 (with Zi = Yi−m(θ0)
√

v(θ0) , vi = 1 for all i) we
obtain

1
√

log n
max
R∈Rn:
|R|≥rn

1
√
|R|

∣∣∣∣∣∑
i∈R

Yi − m(θ0)
√

v(θ0)

∣∣∣∣∣ = oP(1). (B.4)

Together with (2.2) it follows

max
R∈Rn:
|R|≥rn

∣∣YR − m(θ0)
∣∣ ≤ C

(
log(n)v(θ0)

rn

) 1
2

(1 + oP(1))→ 0, n→ ∞.

Therefore, YR > m(θ0)/
√

2 in probability if n is large enough uniformly over those R

with |R| ≥ rn. Now we are in position to analyze J(YR, θ0) = φ
(
YR
)
−
[
θ0YR − ψ (θ0)

]
in the definition of TR, see (2.1). As the supremum sup

θ∈Θ

∏
i∈R

pθ(Yi) is attained at the θ for

which ψ′(θ) = YR holds, we find

φ(YR) = 〈m−1(YR),YR〉 − ψ
(
m−1(YR)

)
,
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and therefore

J(YR, θ0) = 〈m−1(YR),YR〉 − ψ
(
m−1(YR)

)
−
(
〈θ0,YR〉 − ψ(θ0)

)
= 〈m−1(YR) − θ0,YR〉 −

(
ψ
(
m−1(YR)

)
− ψ(θ0)

)
.

Note that ȲR is in the domain of m−1, i.e., ȲR ∈ D(m−1) for large enough n, as the latter
is an open set. A Taylor expansion of ψ at θ0 and one of second order of m−1 at m(θ0)
yields

TR(Y, θ0) =

(
|R|
(

YR − m(θ0)
√

v(θ0)

)2

+ |R|sn

(
YR − m(θ0)
√

v(θ0)

))1/2

, (B.5)

where sn satisfies |sn (x)| ≤ cx3 (1 + oP(1)) for some c > 0. Consequently

max
R∈Rn:
|R|≥rn

∣∣∣∣T 2
R(Y, θ0) − |R|

(YR − m(θ0))2

v(θ0)

∣∣∣∣
.max

R∈Rn:
|R|≥rn

|R|
|YR − m(θ0)|3

v(θ0)3/2
(1 + oP(1))

= max
R∈Rn:
|R|≥rn

|R|−
1
2

∣∣∣∣∑i∈R(Yi − m(θ0))
√
|R|
√

v(θ0)

∣∣∣∣3 (1 + oP(1))

≤(log3(n)r−1
n )1/2 (1 + oP(1)) ,

where we again used (B.4). Now |a − b| ≤ |a2 − b2|
1
2 yields the claim. �

We now prove Theorem 2.1.5. So far we have shown that the maximum over the local
likelihood ratio statistics can be approximated by Gaussian versions, but we did not
include the scale penalization terms penv (|R|) in (1.8). To include this in the approxi-
mation result, we will decompose the system of sets R into scales of sets, for which the
penalty-term is almost constant. Then we bound the maximum over all scales by the
sum of the maximum over theses families, at the expense of an additional log(n) factor
on the smallest scale.

Proof of Theorem 2.1.5. (a) It follows from the triangle inequality

|‖x‖∞ − ‖y‖∞| ≤ ‖x − y‖∞,
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Lemma B.2.1 and (1.23) with γ = 12 that∣∣∣∣∣∣max
R∈Rn:
|R|≥rn

(
TR(Y, θ0) − penv (|R|)

)
−

max
R∈Rn:
|R|≥rn

(
|R|1/2

∣∣∣∣YR − m(θ0)
√

v(θ0)

∣∣∣∣ − penv (|R|)
)∣∣∣∣∣∣ = OP

((
log3(n)

rn

)1/4
)
.

Define

YR := |R|−1/2
∑
i∈R

(
Yi − m(θ0)
√

v(θ0)

)
XR := |R|−1/2

∑
i∈R

Xi, Xi
i.i.d.
∼ N(0, 1).

Using this notation and a symmetry argument, we get from the proof of Theorem 2.1.15
with vi ≡ 1 that

P

∣∣∣∣∣∣max
R∈Rn:
|R|≥rn

∣∣YR
∣∣ −max

R∈Rn:
|R|≥rn

∣∣XR
∣∣∣∣∣∣∣∣ > δ

 . δ−3
(

log10(n)
rn

)1/2

. (B.6)

Let δn := ((log12(n)/rn)1/10 ↘ 0 and define ε j := jδn, j ∈ N as well as

Rn, j :=
{

R ∈ Rn | exp(ε j) < |R| < exp(ε j+1)
}
.

Then the set of candidate regions Rn|rn can be written as

Rn|rn =
⊔
j∈J

Rn, j, J :=
{

1
δn

log
(
log12(n)

)
, . . . ,

1
δn

log(nd)
}

with |J| ≤ log(nd)
δn

. If we abbreviate

pen j := penv

(
exp

(
ε j
))

=

√
2v
(

log
(

nd

exp(ε j)

)
+ 1
)
,

then the above decomposition implies

pen j+1 ≤ penv (|R|) ≤ pen j, for all R ∈ Rn, j.
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Using
√

a −
√

b = (a − b)/
(√

a +
√

b
)

, we get

0 ≤ pen j − pen j+1

=
2v(ε j+1 − ε j)√

2v
[
log(nd) + 1 − ε j

]
+

√
2v
[
log(nd) + 1 − ε j+1

] .
The largest index in J is 1

δn
log(nd) and therefore the maximal value of εi is given by

ε̄ = log(nd) and log(nd) + 1 − ε̄ = 1. Therefore,

0 ≤ pen j − pen j+1 ≤
2v(ε j+1 − ε j)

2
√

2v
= δn

√
v
2
.

Hence for n → ∞ the penalty terms penv (|R|) can be considered as constant on Rn, j.
Now straightforward computations show that∣∣∣∣∣∣max

R∈Rn:
|R|≥rn

(∣∣YR
∣∣ − penv (|R|)

)
−max

R∈Rn:
|R|≥rn

(∣∣XR
∣∣ − penv (|R|)

)∣∣∣∣∣∣
≤ max

j∈J

∣∣∣∣max
R∈Rn, j

∣∣YR
∣∣ − max

R∈Rn, j

∣∣XR
∣∣∣∣∣∣ + δn

√
v
2
.

Now the claim in (a) of Theorem 2.1.5 follows from (B.6) and |J| ≤ log(nd)
δn

.

(b) This is a direct consequence of (a). �

We now prove Theorem 2.1.4. Taking into account Theorem 2.1.5, we only have to
prove Remark 2.1.6, which will be done in the following.

Lemma B.2.2. Let R∗ satisfy Assumption 1 and be equipped with the canonical metric

ρ∗ as in (2.3) and define Rn as in (1.4). Furthermore let W denote white noise on

[0, 1]d. For Xi
i.i.d.
∼ N(0, 1), i ∈ Id

n define

Zn(R∗) := n−d/2
∑

i/n∈R∗
Xi
D
= n−d/2

∑
i∈{1,...,n}d

|nR∗ ∩ Ai| Xi, R∗ ∈ R∗

where Ai = (i1 − 1, i1] × . . . × (id − 1, id] is the unit cube with upper corner i. Then we

have

Zn
D
→ W, n→ ∞.

Proof. Note that R∗ is totally bounded w.r.t. ρ∗.
We verify the assumptions of (Kosorok, 2008, Thm. 2.1):
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1. Tightness: The white noise W is tight.

2. Totally boundedness: By Markov’s inequality and standard bounds on the mod-
ulus of continuity, we obtain using Assumption 1(a) that

P∗

 sup
R∗1,R

∗
2∈R

∗

ρ(R∗1,R
∗
2)≤δ

|Zn(R∗1) − Zn(R∗2)| > ε


≤

1
ε
E

 sup
R∗1,R

∗
2∈R

∗

ρ(R∗1,R
∗
2)≤δ

∣∣Zn(R∗1) − Zn(R∗2)
∣∣


.

∫ δ

0

√
2ν (R∗) log

(
C
u

)
du

which tends to 0 as δ↘ 0.

3. Finite dimensional convergence: The convergence of the finite-dimensional laws
is an application of the central limit theorem for random fields (Dedecker, 1998,
Thm 2.2) and (Dedecker, 2001, Lemma 2), which implies that∣∣nR∗ ∩ Zd

∣∣
nd → |R∗|

for regular Borel sets R∗ ⊂ [0, 1]d with |R∗|) > 0. Consequently, the central limit
theorem yields for any fixed R∗ ∈ R∗ that

Zn(R∗)
D
→ N (0, |R∗|) as n→ ∞

A similar computation shows that

Cov
(
Zn(R∗1),Zn(R∗2)

)
→
∣∣R∗1 ∩ R∗2

∣∣
for all R∗1,R

∗
2 ∈ R. This proves finite dimensional convergence.

The claim now follows by the Theorem 2.1 of (Kosorok, 2008) since the above state-
ments 1.-3. are equivalent to Zn

D
→ W. �

Now we want to apply the generalized version of the continuous mapping theorem (see
e.g., Billingsley, 2013, Thm. 5.5). For c ≥ 0 and x ∈ C(B([0, 1]d),R), where B([0, 1]d)
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denote the Borel sets in [0, 1]d, define

hc(x) := sup
R∗∈R∗:
|R∗ |>cd

(
|x(R∗)|
√
|R∗|
− penv

(
nd |R∗|

))

hc
n(x) := max

R∈Rn:
|R|>(cn)d

(
|x(R/n)|
√
|R|/nd

− penv (|R|)
)
.

The necessary conditions to apply the continuous mapping theorem are shown in the
following Lemma:

Lemma B.2.3. Consider hc, hc
n as functions

(
C(B([0, 1]d),R), ‖ · ‖∞

)
→ R.

i) hc is uniformly continuous and
(
hc

n

)
n∈N is a sequence of equi-continuous func-

tions, (uniformly in n).

ii) For (xn)n ∈ C(B([0, 1]d),R), s.t. xn → x we have

hc
n(xn)→ hc(x), n→ ∞.

Proof. i) Let ε > 0 and choose δ = εcd/2. Consider two functions
x, y ∈ C(B([0, 1]d),R) s.t. d(x, y) = sup

R∗⊂[0,1]d
||x(R∗)| − |y(R∗)|| < δ.

Using |max ai −max bi| ≤ max |ai − bi|, we find

|hc
n(x) − hc

n(y)| ≤ max
R∈Rn
|R|>(cn)d

∣∣∣∣ |x(R/n)| − |y(R/n)|
√
|R|/nd

∣∣∣∣ ≤ δ

cd/2 = ε.

Similar arguments yield the uniform continuity of hc.

ii) Let (xn)n, x ∈ C(B([0, 1]d),R), s.t. xn → x. Since the functions (hc
m)m∈N are

equi-continuous, for any ε > 0 we can find an N1 ∈ N s.t. ∀n > N1 ∀m :

|hc
m(xn) − hc

m(x)| <
ε

2
.

Given ε and N1 and n > N1 with |hc
m(xn) − hc

m(x)| < ε
2 , choose m = n. Then

|hc
n(xn) − hc

n(x)| < ε/2. (B.7)

Now let us define

A :=
{

R∗ ∈ R∗ : |R∗| ≥ cd
}
, Bn :=

{
R/n ∈ R∗ : R ∈ Rn, |R| ≥ (cn)d

}
.
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The set A is a compact set with respect to the metric ρ∗ defined in (2.3), with
respect to which R∗ is totally bounded. Furthermore Bn is a finite subset of A.
If we fix x ∈ B([0, 1]d) and introduce g : A → R by

g(R∗) :=
(
|x(R∗)|
√
|R∗|
− penv (|R∗|)

)
, R∗ ∈ R∗,

then

hc(x) = sup
R∗∈A

g(R∗) ≥ hc
n(x) = max

R∗∈Bn
g(R∗). (B.8)

since Bn is a subset of A. Straightforward computations show that g is contin-
uous with respect to ρ∗, which implies by compactness of A that there exists
an R̃ ∈ A such that hc(x) = g(R̃). Now let Rn ∈ Bn be a sequence such that
Rn → R̃, n→ ∞ with respect to ρ. Then g(Rn)→ g(R̃) as n→ ∞ and hence

hc(x)
(B.8)
≥ hc

n(x) ≥ g(Rn)→ g(R̃) = hc(x).

Consequently there exists a N2 ∈ N such that for all n > N2 we have

|hc(x) − hc
n(x)| < ε/2,

which together with (B.7) implies

|hc
n(xn) − hc(x)| ≤ ε for all n > max{N1,N2}.

�

We are now able to prove Remark 2.1.6:

Proof of Remark 2.1.6. By Lemma B.2.2, Lemma B.2.3 and the generalized version
of the continuous mapping theorem (see e.g., Billingsley, 2013, Thm. 5.5) we get

hc
n(Zn)

D
→ hc(W), n→ ∞.

The functions hc
n and hc have been defined such that

hc
n(Zn) = Mn

(
Rn|(cn)d , v

)
, and hc(W) = M

(
R∗|cd , v

)
.

Therefore for all c > 0 we have convergence in distribution

Mn
(
Rn| (cn)d , v

) D
→ M

(
R∗
| cd , v

)
as n→ ∞.
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Since M
(
R∗
| cd , v

)
D
→ M (R∗, v) , c→ 0, we get

lim
c→0

lim
n→∞

Mn
(
Rn| (cn)d , v

)
= M (R∗, v) .

It can also readily be seen from the definition that

lim inf
n→∞

P
[
Mn
(
Rn| rn , v

)
≤ t
]
≥ P [M (R∗, v) ≤ t] .

Now fix c > 0 and assume that rn < (cn)d for all n ∈ N. Then we find that

P [M (R∗, v) ≤ t] ≤ lim inf
n→∞

P
[
Mn
(
Rn| rn , v

)
≤ t
]

≤ lim sup
n→∞

P
[
Mn
(
Rn| (cn)d , v

)
≤ t
]

→ P [M (R∗, v) ≤ t] as c↘ 0,

which proves the claim. �

Proof of Theorem 2.1.4. The main statement follows from Theorem 2.1.5 together with
Remark 2.1.6. It remains to show the a.s. boundedness and non-degenerateness of
M (R∗, v). We apply (Dümbgen and Spokoiny, 2001, Thm. 6.1) with ρ∗ as in (2.3) and

σ2(R∗) := |R∗| , X(R∗) := W(R∗).

Let us check the three conditions from their theorem:
i) σ2(R∗1) ≤ σ2(R∗2)+ρ∗(R∗1,R

∗
2)2 for all R∗1,R

∗
2 ∈ R

∗ is obviously fulfilled since R∗1∩R∗2 ⊂

R∗2 and R∗1 \ R∗2 ⊂ R∗1 4 R∗2. Since V [W(R∗)] = |R∗|,

P
[
X(R∗) > σ(R∗)η

]
= P

[
W(R∗) > η (|R∗|)1/2

]
≤

1
2

exp
(
−
η2

2

)
. (B.9)

ii) For

P
[
|X(R∗1) − X(R∗2)| > ρ(R∗1,R

∗
2)η
]

= P
[∣∣W(R∗1) −W(R∗2)

∣∣ > ∣∣R∗1 4 R∗2
∣∣)1/2η

]
we compute and use that

W(R∗1) −W(R∗2) ∼ N(0, σ2
R∗1,R

∗
2
),

σ2
R∗1,R

∗
2

=
∣∣R∗1∣∣ +

∣∣R∗2∣∣ − 2 Cov(W(R∗1),W(R∗2)),∣∣R∗1 4 R∗2
∣∣ =
∣∣R∗1∣∣ +

∣∣R∗2∣∣ − 2
∣∣R∗1 ∩ R∗2

∣∣ .
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Since Cov(W(R∗1),W(R∗2)) =
∣∣R∗1 ∩ R∗2

∣∣, we consequently find

P
[
|X(R∗1) − X(R∗2)| > ρ(R∗1,R

∗
2)η
]
≤ exp

(
−
η2

2

∣∣R∗1 4 R∗2
∣∣

σ2
R∗1,R

∗
2

)
= exp

(
−
η2

2

)
.

iii) This is fulfilled by Assumption 1(a) (cf. Remark 2.1.2).

(B.9) holds with −W(R∗) as well, hence we get that the statistic M (R∗, v) is finite
a.s. Non-degenerateness is obvious, as M is always larger than the value of the local
statistic on one fixed scale, which is non-degenerate. �

B.3 Proofs of Section 2.1.3

Let us now prove the results in Section 2.1.3, namely Theorem 2.1.9 and Corollary
2.1.11. First we introduce some abbreviations to simplify the notation. Let

q∗ := qO
1−α,n, q := qMS

1−α,n,

and denote the total signal on Q ∈ Qn by

µn (Q) := |Q|−1/2
∑
i∈Q

m(θn
i ) − m(θ0)
√

v(θ0)
=
|Q ∩ Qn|
√
|Q|

m
(
θn

1

)
− m (θ0)

√
v (θ0)

, (B.10)

since the signal m(θn
i )−m(θ0)
√

v(θ0) is non zero on the anomalies only.
For brevity introduce the Gaussian process

γ (Q) :=

∣∣∣∣∣µn (Q) + |Q|−
1
2

∑
i∈Q

viXi

∣∣∣∣∣ − penv (|Q|) , Q ∈ Qn

with Xi
i.i.d.
∼ N (0, 1) and vi =

√
v (θi) /v (θ0).

Let us now analyse the oracle procedure. In a first step, we leave out a suitable subset
of hypercubes close to the true anomaly Qn. More precisely, choose a sequence εn

such that εn ↘ 0 but εnµ
n (Qn) → ∞ and denote the set of all hypercubes which are

εn−close to the anomaly by

Un :=
{

Q ∈ Qn (an)
∣∣ µn (Q) ≥ µn (Qn) (1 − εn)

}
.

Furthermore let us introduce an extended neighborhoodU of the anomaly by

U :=
{

Q ∈ Qn (an)
∣∣ Q ∩ Q′ , ∅ for some Q′ ∈ Un

}
,
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and its complement by T := Qn (an) \ U. By definition, {γ (Q)}Q∈T and {γ (Q)}Q∈Un

are independent, which allows us to compute the asymptotic power of the single-scale
procedure. For a sketch ofUn andU see Figure B.1.

Figure B.1: Exemplary elements of the sets Un,U and T in dimension d = 2: The
anomaly is shown in red, the hatched cubes belong to Un, the dotted cubes to U, and
all black cubes belong to T . By definition, for all Q ∈ Un and Q′ ∈ T we have
Q ∩ Q′ = ∅, which implies independence of {γ (Q)}Q∈T and {γ (Q)}Q∈Un

.

We start by bounding the covering number N(U, ρ, ε) with respect to the canonical
metric ρ (Q,Q′)2 = 2 − 2 |Q ∩ Q′| /

√
|Q| |Q′|.

Lemma B.3.1. For any ε > 0 we have

N(U, ρ, ε) ≤ C
(

6d
ε

)d

.

Proof.

Let Q(3) denote the the cube of side length 3 times the side length of Qn centered
at the midpoint of Qn. Let 0 < δ ≤ ε

2d ,
1
δ
∈ N. Choose equidistant points in Q(3)

of distance δ|Qn|
1/n in each coordinate, which requires

(
3
δ

)d points. As a covering
M for U, consider the cubes of side length |Qn|

1/n which have vertices in the net of
equidistant points. To approximate Q ∈ U with Q ∩ Q′ , ∅, where Q′ ∈ Un, i.e.,
|Qn ∩ Q′| ≥

(
1 − δ

2

)
|Qn|, by elements of this net, note that Q is essentially contained

in Q(3) -up to distance δ
2 - and therefore there is a cube Q̃ ∈ M in the covering such

that the volume (or number of points) in Q4 Q̃ is bounded by ≤ d
(
δ|Qn|

1/d
)
|Qn|

(d−1)/d,

since the complements Q\Q̃ and Q̃\Q in each fixed dimension have at most width
≤ δ|Qn|

1/d and extension |Qn|
1/d in the remaining (n − 1) dimensions. It is bounded

by dδ|Qn|,
∣∣∣Q 4 Q̃

∣∣∣ ≥ (1 − dδ) |Qn| ≥
(
1 − ε

2

)
|Qn|. Therefore N(U, ρ, ε) ≤

(
3
δ

)d
≤

C
(

6d
ε

)d
. �

Lemma B.3.2. Consider the setup of Section 2.1.3 and recall that q∗ is the (1 −
α)−quantile of Mn (Qn (an)) as in (1.10). Then
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(a) max
Q∈U
|Q|−

1
2
∣∣∑

i∈Q viXi

∣∣ = OP (1) as n→ ∞

(b) lim
n→∞
P

[
max
Q∈T

γ (Q) ≤ q∗
]

= 1 − α

Proof. (a) It follows from Dudley’s entropy integral (see e.g., Marcus and Rosen, 2006,
Thm. 6.1.2) with any fixed Q′ ∈ U that

E

[
max
Q∈U
|Q|−1/2

∣∣∣∣∣∑
i∈Q

viXi

∣∣∣∣∣
]

≤E

[
|Q′|−1/2

∣∣∣∣∣∑
i∈Q′

viXi

∣∣∣∣∣
]

+ E

[
max

Q,Q′∈U

∣∣∣∣∣|Q|−1/2

∣∣∣∣∣∑
i∈Q

viXi

∣∣∣∣∣ − |Q′|−1/2

∣∣∣∣∣∑
i∈Q′

viXi

∣∣∣∣∣
∣∣∣∣∣
]

≤

√
2v2

π
+ C

∫ 2

0

√
logN(U, ρ, ε) dε ≤

√
2v2

π
+ C

∫ 2

0

√
d

√
log
(

6d
ε

)
dε < ∞

which by Markov’s inequality proves the claim.

(b) A direct consequence of (a) is that

max
Q∈U

[
|Q|−

1
2

∣∣∣∣∣∑
i∈Q

viXi

∣∣∣∣∣ − penv (|Q|)

]
= oP(1).

Furthermore note that µn(Q) = 0 and vi ≡ 1, i ∈ Q for Q ∈ T . Consequently

P

[
max
Q∈T

γ (Q) ≤ q∗
]

=P

[
max
Q∈T

[
|Q|−

1
2

∣∣∣∣∣∑
i∈Q

Xi

∣∣∣∣∣ − penv (|Q|)

]
≤ q∗

]

=P

[
max

Q∈Qn(an)

[
|Q|−

1
2

∣∣∣∣∣∑
i∈Q

Xi

∣∣∣∣∣ − penv (|Q|)

]
≤ q∗

]
+ o(1)

=P
[
Mn(Qn(an)) ≤ q∗

]
+ o(1)

which yields the claim. �

With this Lemma at hand, we are now in position to find the asymptotic power of the
oracle procedure:

Proof of Theorem 2.1.9(a). To analyze Pθn

[
Tn(Y, θ0,Q

n(an)) > q∗
]
, we start by show-

ing the lower estimate ≥ in the statement of Theorem 2.1.9(a). By Lemma B.2.1 and
the triangle inequality we can replace Tn(Y, θ0,Q

n(an)) by

max
Q∈Qn(an)

[
|Q|−

1
2

∣∣∣∣∣∑
i∈Q

Yi − m(θ0)
√

v(θ0)

∣∣∣∣∣ − penv (|Q|)

]



B.3. Proofs of Section 2.1.3 67

up to oP(1). Moreover (2.10) and Theorem 2.1.15 allow us to approximate the latter
sum by a Gaussian version, i.e.,

Pθn

[
Tn(Y, θ0,Q

n(an)) > q∗
]

= P

[
max

Q∈Qn(an)
γ (Q) > q∗

]
+ o(1).

Now we estimate

P

[
max

Q∈Qn(an)
γ (Q) > q∗

]
=P

[{
max

Q∈Qn(an)
γ (Q) > q∗

}
∩

{
max
Q∈T

γ (Q) ≤ q∗
}]

+ P

[{
max

Q∈Qn(an)
γ (Q) > q∗

}
∩

{
max
Q∈T

γ (Q) > q∗
}]

=P

[{
max
Q∈T

γ (Q) ≤ q∗
}
∩

{
max
Q∈U

γ (Q) > q∗
}]

+ P

[
max
Q∈T

γ (Q) > q∗
]

≥P

[{
max
Q∈T

γ (Q) ≤ q∗
}
∩ {γ (Qn) > q∗}

]
+ P

[
max
Q∈T

γ (Q) > q∗
]

=P

[
max
Q∈T

γ (Q) ≤ q∗
]
P
[
γ (Qn) > q∗

]
+ P

[
max
Q∈T

γ (Q) > q∗
]

where we exploited Qn ∈ U and the independence of {γ (Q)}Q∈T and γ (Qn). Lemma
B.3.2(b) states that P

[
maxQ∈T γ (Q) ≤ q∗

]
= 1 − α + o(1) and hence

Pθn

[
Tn(Y, θ0,Q

n(an)) > q∗
]
≥ α + (1 − α)P

[
γ (Qn) > q∗

]
+ o(1).

Furthermore note that γ (Qn) + penv (|Qn|) follows a folded normal distribution with
parameters µ = µn (Qn) and σ2 = |Qn|

−1∑
i∈Qn

v2
i , i.e.,

γ (Qn) ∼
∣∣N (µ, σ2

)∣∣ − penv (|Qn|) .

We calculate

µn (Qn) =
√

ndan
5
2

C
m
(
θn

1

)
− m (θ0)

√
v (θ0)

(1 + o (1)) , (B.11)

|Qn|
−1
∑
i∈Qn

v2
i =

v
(
θn

1

)
v (θ0)

, (B.12)

penv (|Q|) =

√
2v log

(
a−1

n

)
+ o(1) for all Q ∈ Qn (an) , (B.13)

which yields the claimed lower bound by using the continuity of F and the fact that
Qn ∈ Q

n (an) satisfies the proposed lower bound. For the upper bound ≤ in the state-
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ment of Theorem 2.1.9(a) we proceed as before and obtain

Pθn

[
Tn(Y, θ0,Q

n(an)) > q∗
]

=α + P

[{
max
Q∈T

γ (Q) ≤ q∗
}
∩

{
max
Q∈U

γ (Q) > q∗
}]

+ o(1)

=α + P

[{
max
Q∈T

γ (Q) ≤ q∗
}
∩

{
max
Q∈U

γ (Q) > q∗
}
∩

{
max
Q∈Un

γ (Q) > q∗
}]

+ P

[{
max
Q∈T

γ (Q) ≤ q∗
}
∩

{
max
Q∈U

γ (Q) > q∗
}
∩

{
max
Q∈Un

γ (Q) ≤ q∗
}]

+ o(1)

≤α + P

[{
max
Q∈T

γ (Q) ≤ q∗
}
∩

{
max
Q∈Un

γ (Q) > q∗
}]

+ P

[
max

Q∈U\Un
γ (Q) > q∗

]
+ o(1)

=α + (1 − α)P
[

max
Q∈Un

γ (Q) > q∗
]

+ P

[
max

Q∈U\Un
γ (Q) > q∗

]
+ o(1)

where we used the independence of {γ (Q)}Q∈T and {γ (Q)}Q∈Un
. Lemma B.3.2(a) yields

max
Q∈U\Un

∣∣∣∣∣|Q|− 1
2

∑
i∈Q

viXi

∣∣∣∣∣ ≤ max
Q∈U

∣∣∣∣∣|Q|− 1
2

∑
i∈Q

viXi

∣∣∣∣∣ = OP (1) .

Further we have by definition ofUn that µn (Q) ≤ (1 − εn) µn (Qn) for all Q ∈ U \ Un.
Exploiting (B.13) this implies

P

[
max

Q∈U\Un
γ (Q) > q∗

]
≤P

[
(1 − εn) µn (Qn) + OP(1) −

√
2 log

(
a−1

n

)
> q∗

]
=P

[
µn (Qn) −

√
2 log

(
a−1

n

)
− εnµ

n (Qn) + OP(1) > q∗
]

= o(1)

if µn (Qn) −
√

2 log
(
a−1

n

)
→ C ∈ [−∞,∞) since εnµ

n (Qn) → ∞ by construction. If

µn (Qn) −
√

2 log
(
a−1

n

)
→ ∞, then nothing has to be shown. Altogether this gives

Pθn

[
Tn(Y, θ0,Q

n(an)) > q∗
]
≤ α + (1 − α)P

[
max
Q∈Un

γ (Q) > q∗
]

+ o(1).

Using similar arguments as in Lemma B.3.2 we obtain from εn ↘ 0 that

P

[
max
Q∈Un

γ (Q) > q∗
]

= P
[
γ (Qn) + oP(1) > q∗

]
and hence the theorem is proven. �
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Now we turn to the multiscale procedure. Since different scales are considered there,
the setU is not large enough any more. In particular, we cannot construct a subsetV
such that {γ (Q)}Vc and γ (Qn) are independent and that maxQ∈V γ (Q) is still negligible.
Due to this problem, the corresponding proof in (Sharpnack and Arias-Castro, 2016)
is incomplete. To overcome this difficulty, we employ the idea to distinguish the two
cases that the anomaly Qn has asymptotically an effect on γ (Q) or not. Whenever Q is
sufficiently large compared to Qn, the impact will be asymptotically negligible.

For some sequence εn ↘ 0 we introduce

δn := εn

(
max

{
µn (Qn) , log(n)

√
|Qn|

rn

})−1

, (B.14)

V :=
{

Q ∈ QMS
n|rn

∣∣ µn (Q) ≥ δnµ
n (Qn)

}
and its complement T ′ := QMS

n|rn
\ V. For a sketch see Figure B.2.

Figure B.2: Exemplary elements of the sets V and T ′ in d = 2: The anomaly is
shown in red, the hatched cubes belong toV and the dotted cubes to T ′. However, the
intersections marked in black are small enough such that they have asymptotically no
influence on γ (Q).

Contrary to the oracle procedure, we do not have independence of {γ (Q)}Q∈T ′ and
γ (Qn). However, asymptotically a similar property is true as shown in the following
Lemma B.3.4.
Let us again start with bounding the covering number N(V, ρ, ε) w.r.t. the canonical
metric ρ (Q,Q′)2 = 2 − 2 |Q ∩ Q′| /

√
|Q| |Q′|.

Lemma B.3.3. There exists a constant C such that for any ε > 0 we have

N(V, ρ, ε) ≤ C
(

6d
ε

)d
|Qn|

d+1

δ2(d+1)
n

.
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Proof. For all Q ∈ V defined in (B.14) it holds µn (Q) ≥ δnµ
n (Qn), which implies

δn

√
|Qn| ≤

|Q ∩ Qn|
√
|Q|

≤
|Qn|
√
|Q|

.

Consequently,V contains only cubes Q with rn ≤ |Q| ≤ δ−2
n |Qn|. For a fixed scale k,V

contains at most (C |Qn|) Q’s with |Q| = k, and for the set of such Q’s an
√
ε-covering

can be constructed as in the proof of Lemma B.3.1 with at most C
(

6d
ε

k
)d elements,

which gives

N(V, ρ, ε) ≤ C
bδ−2

n |Qn |c∑
k=rn

(
6d
ε

k
)d

≤ C
(

6d
ε

)d
|Qn|

d+1

δ2(d+1)
n

.

�

Lemma B.3.4. Consider the setting from Section 2.1.3 and recall that q is the (1 −
α)−quantile of Mn

(
QMS

n|rn

)
as in (1.10). Furthermore, assume that |Qn| = o (nα) , for α

sufficiently small. Then the following statements are true as n→ ∞:

(a) max
Q∈V

∣∣∣|Q|− 1
2
∑

i∈Q viXi

∣∣∣
= OP

(√
ln
(
|Qn |

δ2
n

))
= OP

(√
ln (|Qn|) +

√
ln
(∣∣m (θn

1

)
− m (θ0)

∣∣))

(b) max
Q∈T ′

∣∣∣∣|Q|− 1
2
∑

i∈Q∩Qn

viXi

∣∣∣∣ = oP(1)

(c) P
[

max
Q∈T ′

γ (Q) ≤ q
]

= 1 − α + o(1)

Proof. (a) Again with the help of Dudley’s entropy integral we find

E

[
max
Q∈V
|Q|−1/2

∣∣∣∣∣∑
i∈Q

viXi

∣∣∣∣∣
]

≤

√
2v2

π
+ C1

∫ 2

0

√
logN(V, ρ, ε) dε

≤C2

(√
ln
(
|Qn|

δ2
n

))

≤C3

(√
ln (|Qn|) +

√
ln
(∣∣m (θn

1

)
− m (θ0)

∣∣)) .
Now Markov’s inequality yields the claim.

(b) For Q ∈ T ′ we have µn (Q) < δnµ
n (Qn) and hence |Q ∩ Qn| ≤ δn

√
|Q| |Qn|. Conse-
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quently

E

[
max
Q∈T ′
|Q|−1/2

∣∣∣∣∣ ∑
i∈Q∩Qn

viXi

∣∣∣∣∣
]

≤
√
δn

(
|Qn|

rn

) 1
4

E

[
max

Q∈Qn |rn

|Q ∩ Qn|
−1/2

∣∣∣∣∣ ∑
i∈Q∩Qn

viXi

∣∣∣∣∣
]

≤Cv̄
√
δn

(
|Qn|

rn

) 1
4 √

log(n)

where we used (2.18). As the right-hand side converges to 0 by (B.14), this proves the
claim.

(c) We show that (c) can be deduced from (a) and (b) as follows. For all Q ∈ T ′ we
have µn (Q) ≤ δnµ

n (Qn) and hence

max
Q∈T ′

γ (Q) −max
Q∈T ′

[∣∣∣∣∣|Q|− 1
2

∑
i∈Q\Qn

viXi

∣∣∣∣∣ − penv (|Q|)

]

≤max
Q∈T ′

[
µn (Q) +

∣∣∣∣∣|Q|− 1
2

∑
i∈Q∩Qn

viXi

∣∣∣∣∣
]

≤δnµ
n (Qn) + max

Q∈T ′

∣∣∣∣∣|Q|− 1
2

∑
i∈Q∩Qn

viXi

∣∣∣∣∣ (b)
= oP(1) (B.15)

where the last estimate follows from δnµ
n (Qn) ↘ 0. Furthermore, asV contains only

scales of order ≤ δ−2
n |Qn| we obtain that

max
Q∈V

[∣∣∣∣∣|Q|− 1
2

∑
i∈Q

viXi

∣∣∣∣∣ − penv (|Q|)

]

≤max
Q∈V

[∣∣∣∣∣|Q|− 1
2

∑
i∈Q

viXi

∣∣∣∣∣ − penv

(
δ−2

n |Qn|
)]

(a)
=OP

(√
ln
(
|Qn|

δ2
n

))
− penv

(
δ−2

n |Qn|
)

=OP

(√
ln
(
|Qn|

δ2
n

)
−

√
2v
(

log
(

nd

|Qn|

)
δ2

n + 1
))

=oP(1), (B.16)

if |Qn| ≤ nd 2v
2v+1 δ2

n. Since δ2
n is up to log−terms and constants of order ε2

n
|Qn |
, thus is
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satisfied if |Qn| . nd v
2v+1 εn up to log−terms and constants, i.e., if |Qn| = o (nα) for

sufficiently small α > 0, i.e., α < d v
2v+1 . Consequently

P

[
max
Q∈T ′

γ (Q) ≤ q
]

(B.15)
= P

[
max
Q∈T ′

[∣∣∣∣∣|Q|− 1
2

∑
i∈Q\Qn

viXi

∣∣∣∣∣ − penv (|Q|)

]
≤ q

]
+ o(1)

(b)
= P

[
max
Q∈T ′

[∣∣∣∣∣|Q|− 1
2

∑
i∈Q

viXi

∣∣∣∣∣ − penv (|Q|)

]
≤ q

]
+ o(1)

(B.16)
= P

[
max

Q∈QMS
n|rn

[∣∣∣∣∣|Q|− 1
2

∑
i∈Q

viXi

∣∣∣∣∣ − penv (|Q|)

]
≤ q

]
+ o(1)

= P
[
Mn
(
QMS

n|rn

)
≤ q
]

+ o(1)

which proves (c). �

Proof of Theorem 2.1.9(b). For the multiscale procedure we have to prove a lower
bound for Pθn

[
Tn(Y, θ0,Q

MS
n|rn

) > q
]
. Similar as in the proof of Theorem 2.1.9(a) we

obtain

Pθn

[
Tn(Y, θ0,Q

MS
n|rn

) > q
]

≥P

[{
max
Q∈T ′

γ (Q) ≤ q
}
∩ {γ (Qn) > q}

]
+ P

[
max
Q∈T ′

γ (Q) > q
]

+ o(1).

Lemma B.3.4(b) implies

P

[
max
Q∈T ′

γ (Q) ≤ q
]

=P

[
max
Q∈T ′

[∣∣∣∣∣µn (Q) +
1
√
|Q|

∑
i∈Q

viXi

∣∣∣∣∣ − penv (|Q|)

]
≤ q

]

=P

[
max
Q∈T ′

[∣∣∣∣∣µn (Q) +
1
√
|Q|

∑
i∈Q\Qn

viXi

∣∣∣∣∣ − penv (|Q|)

]
≤ q

]
+ o(1).

Therefore independence yields

P

[{
max
Q∈T ′

γ (Q) ≤ q
}
∩ {γ (Qn) > q}

]
=P

[
max
Q∈T ′

γ (Q) ≤ q
]
P
[
γ (Qn) > q

]
+ o(1).

Now the proof can be completed as the one of Theorem 2.1.9(a). �
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Proof of Corollary 2.1.11. The procedures have asymptotic power 1 if and only if

F

(
q̄ +

√
−2v log (an), nd/2√an

m
(
θn

1

)
− m (θ0)

√
v (θ0)

,
v
(
θn

1

)
v (θ0)

)
→ 1

as n → ∞, with q̄ ∈ {q∗, q} respectively, see Theorem 2.1.9. The straightforward
estimate

F
(

x, µ, σ2
)
≥ max

{
Φ
(
−x − µ
σ

)
,Φ
(µ − x

σ

)}
shows that this is the case if and only if

x + µ

σ
→ −∞ or

x − µ
σ
→ −∞.

Inserting the values for x, µ and σ and noting that q∗, q are uniformly bounded by the
(1 − α)−quantile of M (Q∗, v) gives the claim. �

B.4 Proofs of Section 2.2.2

In this section the notation is the one of Section 2.2, i.e., TR(Y) is now the local Poisson-
LRT from (1.13). To prove the Gaussian approximation result, we first use a Taylor
approximation and the coupling result (Theorem 2.1.15) to show that the local likeli-
hood ratio statistic TR can be approximated by a sum of Gaussian ones. The statement
of the following Theorem is similar to the one of Theorem 2.1.5. But we stress that
the difference of including the sample mean instead of the true parameter into the lo-
cal statistic TR requires an additional assumption on the range of scales. We not only
assume a lower bound on the size of regions but also an upper one.

Proposition B.4.1. Let ε > 0 and (rn)n ⊂ (0,∞) be a sequence, s.t. (log n)3+ε/rn → 0.

Furthermore let mn be a sequence s.t. (1.24) holds. For i ∈ Nd and i.i.d. r.v.’s Yi ∼

Pois(λ0), where λ0 > 0 is estimated by the sample mean Y, there exists an array of

i.i.d. r.v.’s Xi ∼ N(0, 1), s.t.

max
R∈Rn(rn,mn)

∣∣∣∣TR(Y) − |R|1/2
|YR − λ0|
√
λ0

∣∣∣∣ = OP

((
log3(n)

rnλ0

)1/4
)
.

Proof of Proposition B.4.1. By the triangle inequality

max
R∈Rn(rn,mn)

∣∣∣∣∣T 2
R(Y) − |R|

(
YR − λ0

)2

λ0

∣∣∣∣∣
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≤ max
R∈Rn(rn,mn)

∣∣∣∣∣T 2
R(Y, λ0) − |R|

(
YR − λ0

)2

λ0

∣∣∣∣∣ + max
R∈Rn(rn,mn)

∣∣T 2
R(Y) − T 2

R(Y, λ0)
∣∣

with TR(Y, λ0) as in (1.3). The first part can be estimated from above as in Lemma
B.2.1 by log(n)3/(rnλ0)→ 0, n→ ∞, which tends to zero for n→ ∞.

Introducing the function f by f (y) := YR
(
log YR − log y

)
− (YR − y), y > 0, we write

max
R∈Rn(rn,mn)

∣∣T 2
R(Y) − T 2

R(Y, λ0)
∣∣ = max

R∈Rn(rn,mn)
2|R|

∣∣ f (λ0) − f
(
Y
)∣∣ .

A Taylor expansion of f at λ0 yields

f
(
Y
)

= f (λ0) +
(
Y − λ0

)(
1 −

YR

ζ

)
,

with ζ > 0 between λ0 and Y . This implies, in particular,

|λ0 − ζ | ≤ |λ0 − Y | (B.17)

and therefore ∣∣ f (Y) − f (λ0)
∣∣ ≤ |Y − λ0|

1
|ζ |
|ζ − YR|

≤
1
|ζ |
|Y − λ0|

(
|YR − λ0| + |λ0 − ζ |

)
≤

1
|ζ |
|Y − λ0||YR − λ0| +

1
|ζ |
|Y − λ|2

(B.18)

By the C.L.T. we have

nd/2
(
Y − λ0

) D
→ N(0, λ0).

Let cn ↘ 0, which may decay arbitrarily slowly. Then

cnnd/2
(
Y − λ0

)
= oP(1).

Therefore

∣∣Y − λ0

∣∣ ≤ 1
cnnd/2 ↘ 0.
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Hence we conclude

|ζ | ≥ λ0 − |ζ − λ0|
(B.17)
≥ λ0 − |λ0 − Y | ≥

λ0

2
+ oP(1).

With (B.18) we get

max
R∈Rn(rn,mn)

2|R|
∣∣ f (Y) − f (λ0)

∣∣
≤

(
4
λ0
|Y − λ0| max

R∈Rn(rn,mn)
|R|
∣∣YR − λ0

∣∣ +
4
λ0

max
R∈Rn(rn,mn)

|R|
∣∣Y − λ0

∣∣2) (1 + oP(1))

≤
4
√
λ0

√
mn

cnnd/2 max
R∈Rn(rn,mn)

1
√
|R|

∣∣∣∣∣∑
i∈R

Yi − λ0
√
λ0

∣∣∣∣∣ (1 + oP(1)) +
4
λ0

mn
1

(cnnd/2)2 (1 + oP(1))

≤ c
( √

mn
√

log(n)
cnnd/2 +

mn

c2
nnd

)
(1 + oP(1))

since max
R∈Rn(rn,mn)

1√
|R|

∣∣∣∑i∈R
Yi−λ0√
λ0

∣∣∣ can be estimated by max
R∈Rn(rn,mn)

1√
|R|

∣∣∣∣∑
i∈R

Xi

∣∣∣∣ using Theo-

rem 2.1.15. By our choice of mn this expression tends to zero. Using |a−b| ≤ |a2−b2|1/2,

Proposition B.4.1 follows. �

We are now ready to prove the Gaussian approximation result Theorem 2.2.4. To
show a corresponding approximation result which includes the new penalty term we
will use the decomposition technique. The ideas is to consider the scales, where the
penalty-term is almost constant as one "set" or "family of sets" and decompose all
scales into these families. We then bound the maximum over all scales by the sum
of the maximum over theses families. These maxima then can be treated similarly
as before by cancelling the (almost constant) penalty term and use Corollary 4.1 of
(Chernozhukov et al., 2014).

Proof of Theorem 2.2.4 . Define

YR := |R|−1/2
∑
i∈R

(
Yi − λ0
√
λ0

)
,

GR := |R|−1/2
∑
i∈R

Xi, Xi
i.i.d.
∼ N(0, 1).

It follows from Proposition B.4.1, |‖x‖∞ − ‖y‖∞| ≤ ‖x − y‖∞ and Assumption 4 that∣∣∣∣ max
R∈Rn(rn,mn)

ω̃(|R|) (TR(Y) − ω(|R|)) −

max
R∈Rn(rn,mn)

ω̃(|R|)
(
|YR| − ω(|R|)

)∣∣∣∣ = OP

( log3+4α̃(n)
rnλ0

)1/4
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A slight refinement of the proof of Theorem 2.1.15 and a symmetrization argument
yields that

P

[∣∣∣∣ max
R∈Rn(rn,mn)

|YR| − max
R∈Rn(rn,mn)

|GR|

∣∣∣∣ > δ] . δ−3
(

log10 n
rnλ

3
0

)1/2

. (B.19)

Choose δn :=
(

logγ n
rnλ

3
0

)1/6
and define for j ∈ N

ε j := j
δn(

log(nd)
)η ,

Rn, j :=
{

R ∈ Rn | exp(ε j) < |R| ≤ exp(ε j+1)
}

where η = max
(

1
2 + max(β̃, 0), α + max(β̃, 0), α̃ + max(β, 0)

)
. Let θn :=

(
logγ n
rnλ

3
0

)1/12
.

We then decompose

Rn(rn,mn) =
⋃
j∈J

Rn, j,

J :=

{(
log nd

)η log(logγ(n))
δn

, . . . ,

(
log nd

)η
δn

log

(
nd(

log nd
))} ,

|J| ≤

(
log nd

)η+1

δn
.

We introduce the approximating scale calibration terms by

ω̃ j := ω̃
(
exp(ε j)

)
and ω j := ω

(
exp(ε j)

)
.

Then ω j+1 ≤ ω(|R|) ≤ ω j and ω̃ j+1 ≤ ω̃(|R|) ≤ ω̃ j for R ∈ Rn, j. First of all,

max
R∈Rn, j

ω̃(|R|)
(
|YR| − ω(|R|)

)
− max

R∈Rn, j
ω̃(|R|)

(
|GR| − ω(|R|)

)
≤

(
ω̃ j max

R∈Rn, j
|YR| − ω̃ j+1 max

R∈Rn, j
|GR|
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(
ω̃ jω j − ω̃ j+1ω j+1

)
= ω̃ j

(
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|YR| − max
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)
+
(
ω̃ j − ω̃ j+1

)
max
R∈Rn, j

|GR| +
(
ω̃ jω j − ω̃ j+1ω j+1

)
,

and similarly if GR and YR are interchanged. We estimate these terms by

ω̃ j = ω̃
(
exp(ε j)

)
.

(
log
(

nd

exp(ε j)

))α̃

≤
(
log(nd)

)α̃
ω̃ j − ω̃ j+1 = ω̃

(
exp(ε j+1)

)
− ω̃

(
exp(ε j)

)
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=
(
exp(ε j+1) − exp(ε j)

)
ω̃′
(
exp(ζ j)

)
, ζ j ∈ (ε j, ε j+1)

.
(
exp(ε j+1) − exp(ε j)

)(
log
(

nd

exp(ζ j)

))β̃ 1
exp(ζ j)

≤
(
log(nd)

)max(β̃,0) exp(ε j+1) − exp(ε j)
exp(ζ j)

≤
(
log(nd)

)max(β̃,0) exp(ε j+1) − exp(ε j)
exp(ε j)
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log(nd)
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exp(ε j+1 − ε j) − 1

)
≤
(
log(nd)
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(
exp

(
δn(

log(nd)
)η
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− 1

)
.

For small x we have exp(x) − 1 . 2x and therefore

ω̃ j − ω̃ j+1 . 2
δn(

log(nd)
)η (log(nd)

)max(β̃,0)
≤

2δn√
log(nd)

.

Similar statements hold for ω j and ω j − ω j+1. Using those, we also find

∣∣ω̃ jω j − ω̃ j+1ω j+1

∣∣
=
∣∣ω̃ j(ω j − ω j+1) − ω j+1

(
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log(nd)
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(
log(nd)
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)

≤ 2δn,

by the choice of η.

We therefore find∣∣∣∣max
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Hence for any 0 < δ < 1
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+ P

[
2δn√
log(nd)

(
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)
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]
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Markov
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(B.19)
≤ |J|
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=
2
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�

Proof of Theorem 2.2.5. By applying Lemma 6 of (Proksch et al., 2018) with indicator
functions over our set R out of the large sets Rn(rn,mn) as test functions, we derive

max
1≤i≤pn

{
|Ri|
−1/2

∑
j∈Ri

X j −
1
|R∗i |1/2

W(R∗i )

}
= oP

(
1

√
log(n)

)
,

where pn = card(Rn(rn,mn)) and ·∗ denotes the embedded version into [0, 1]d. Thereby
we exploited the structure of our considered regions as a wavelet structure. ( This result
can be seen as a multivariate version of the Donsker argument ).
Then it follows by the triangle-inequality for the supremum-norm and Assumption 4
that ∣∣∣∣ max

R∈Rn(rn,mn)
ω̃(|R|) (TR(Y) − ω(|R|))−

sup
R∗∈R∗(rn/nd ,mn/nd)

ω̃(nd|R∗|)
(

W(R∗)
√
|R∗|
− ω(nd|R∗|)

)∣∣∣∣∣ P→ 0, n→ ∞.

�

Proof of Theorem 2.2.7. By an application of Theorem 5 of (Proksch et al., 2018),
we will prove a lower and an upper bound for our statistic by Gumbel-distributions.
Apply their Theorem 5 with indicator functions of our set R for the large sets Rn as
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test functions, i.e., Ξ
(

ti−x j

hi

)
= IR̃i

(x j), 1 ≤ i ≤ pn. Since the correlation function of
Zt :=

∫
IRt(z)dWz is the convolution of IRt with itself, we get the following expression

for the correlation function by using E
[
|Zt − Zs|

2
]

= 2 − 2rΞ(s − t):

rΞ(s − t) = 1 −
1
2
λd (Rs 4 Rt) .

It can be shown that

rΞ(0) = 1 −
d∑

i=1

|ti| + o

(
d∑

i=1

|ti|

)
, ‖t‖ → 0.

Therefore our scale calibrations are the result and we get that there exists a constant D

such that

exp
(
−D exp(−t)

)
≤ lim

n→∞
P [Mω ≤ t] for any fixed t ∈ R.

Furthermore there exists a function F ( independent of n) with lim
t→∞

F(t) = 0 such that

P [Mω > t] ≤ F(t).

This means that our statistic M(R∗) is almost surely bounded.
The upper bound by another Gumbel distribution follows in a similar manner. There
exists a constant D such that

exp
(
−D exp(−t)

)
≥ lim

n→∞
P [Mω ≤ t] for any fixed t ∈ R.

�
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