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Abstract1 In this paper we describe an efficient but detailed 
new approach to analyze complex dynamic scenes directly 
in 3D. The arising information is important for mobile 
robots to solve tasks in the area of household robotics. In 
our work a mobile robot builds an articulated scene model 
by observing the environment in the visual field or rather in 
the so-called vista space. The articulated scene model 
consists of essential knowledge about the static background, 
about autonomously moving entities like humans or robots 
and finally, in contrast to existing approaches, information 
about articulated parts. These parts describe movable 
objects like chairs, doors or other tangible entities, which 
could be moved by an agent. The combination of the static 
scene, the self-moving entities and the movable objects in 
one articulated scene model enhances the calculation of 
each single part. The reconstruction process for parts of the 
static scene benefits from removal of the dynamic parts and 
in turn, the moving parts can be extracted more easily 
through the knowledge about the background. In our 
experiments we show, that the system delivers 
simultaneously an accurate static background model, 
moving persons and movable objects. This information of 
the articulated scene model enables a mobile robot to detect 
and keep track of interaction partners, to navigate safely 
through the environment and finally, to strengthen the 
interaction with the user through the knowledge about the 
3D articulated objects and 3D scene analysis. 
 
Keywords Vista space, Articulated scene model, Mobile 
robot, Person tracking, 3D background modeling 
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Embodied agents, both humans and mobile robots, have to 
perceive, to analyze and to segment observed scenery into 
meaningful parts to deal with and communicate about the 
unknown and dynamic environment. In this paper we 
present a 3D scene analysis approach, which enables 
mobile robots to solve such problems by gathering broad 
knowledge about their environment only by observation of 
the scenery. Because of the broad area of requirements the 
robot needs information about different parts of the world. 
First, the robot has to detect and track humans as possible 
interaction partners or moving obstacles to avoid possible 
collisions. Second, the static scene parts like walls, 
cupboards or tables have to be segmented to give a broad 
knowledge about the room structure for e. g. navigation 
purposes45 or room classification41. In contrast to other 
typical background modeling approaches36,19,26, our 
suggestion is to distinguish as well between static objects 
and objects like chairs, teddy bears or other smaller objects 
that can be moved by an agent42. Instead of building a 
complex ontology of human environments to describe 
which parts may be moving or could belong to the static 
background and equipping the robot with strong detectors 
for each possibility, we propose to learn an articulated 
scene model on the basis of scene observation. This 
bottom-up learning of spatial awareness enables a mobile 
robot to extract essential knowledge about the environment, 
which is achieved only by observation. The articulated 
scene model is composed of the following three scene 
parts. 
 
Definition 1. (Articulated scene model): 

• Static scene (Never changing parts)  
• Moving entities (e. g. humans or robots)  
• Movable objects (e. g. chairs, doors)  

This model is updated in one single and simultaneous 
computation. Fig. 1 is meant to give an example. On the 
left the accordant frame of the scene is presented and on 
the right an example of a 3D articulated scene model is 
shown. Colored in black is the static background, in orange 
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and brown are two articulated objects and in green the 
actual tracked human is displayed. 

Usually, the observation of an environment refers to the 
large-scale-space22,27, where a main property is the 
necessity of locomotion to perceive the space, which could 
be, e.g., a complete flat or apartment. In the proposed 
system we apply the observation on the so-called vista 
space, which describes the visual field only by slightly 
moving the gaze. 

 

 
(a) 2D amplitude image                        (b) 3D point cloud 

Fig. 1 In the left image the frame of an example sequence is shown. In (b) 
two detected articulated scene parts are shown (cupboard door, water can) 
in red and orange, which emerge after a few seconds of observation, if an 
agent moves the specific object. The gray 3D points belong to the 
background and the green points to the current tracked person. 

 
Definition 2. (Vista space): 
The vista space is a part of the world, which can be viewed 
at the same moment, only be slightly moving the gaze.  

This means that the system relies on the perception of a 
single room or parts of a room and that the short 
observation time limits the number of available frames. By 
the use of the vista space we can derive the assumption that 
the farthest measurement in the scene describes the 
background. If an object appears in front of previously seen 
static parts, we can assume a moved object, while 
upcoming observations of more distant points indicate a 
removed object.  

 
Assumption 1. (Vista space assumption): 
The farthest measurement in the scene describes the 
background. 

As vista space models deliver complementary 
information to large-scale space models the combination of 
both model types into a common representation, e.g., using 
the Hybrid Spatial Semantic Hierarchy (HSSH) of Beeson 
et. al1 will form the foundation for modeling spatial 
knowledge of the entire environment an agent interacts 
with. However, in this paper we focus on the analysis of 
the vista space as we are going to integrate the system in 
the home-tour scenario7, in which a user guides the robot 
around in his flat and particular vista space situations arise. 

The robot needs a meaningful sensory input to perceive 
the environment, which in our case is achieved by using a 
time-of-flight 3D camera. The 3D data is extended with 
additional 3D velocities using optical flow. The use of a 3D 
sensor translates the problem to an inherent 3D 
interpretation task. 

Our proposed system builds the articulated scene model 
only by observing the 3D scenery for a few seconds, 
thereby segmenting the environment into different parts 
and incorporating the already learned knowledge. The 
humans in the observed scene are detected by consideration 
of velocity information and a weak object model suitable 

for many different kinds of objects. The human is tracked 
by a hybrid particle filter with mean shift, which enables 
the robot to keep track of the movements of the human. 
The calculated trajectories supply a broad knowledge about 
the typical movement areas in the scene and additionally, 
the robot gets the required positions of possible interaction 
partners.  

In contrast to other background modeling strategies, the 
articulated parts of the scene are separated from the static 
scene, which are normally incorporated again into the 
background model after the objects become static again. 
Usually, even with a strong detector the articulated objects 
are hard to detect as they could have any shape or size. 
Here, the articulated parts are detected through the vista 
space assumption. 

The static scene is composed of the remaining parts after 
excluding the persons and the movable objects. Through 
the exclusion of dynamic parts the static scene is very 
reliable for navigation or scene classification, as many 
potentially changing parts have been already removed. 

However, the main advantages of the proposed system 
are based on the parallelism and the generality of the 
detection of the different parts of the articulated scene 
model. Through the detection and exclusion of moving 
persons and movable objects the building of the static 
scene is much more robust. On the other hand the 
knowledge about the static scene enhances the detection of 
humans as the static background could be subtracted and 
the detection can be limited to dynamic parts of the current 
observation. The static scene again is used in the 
assumption of the vista space to detect the articulated scene 
parts. Different to existing approaches, movable objects 
can be detected without the explicit detection of a 
movement of the particular object, but through the 
knowledge about the static scene and the information from 
observation. 

The contribution of the proposed model is a solid 
basement of information, which could be used by many 
other applications as input. In the following, we want to 
present some ideas or possible applications for the 
articulated scene model. The possibilities are 
comprehensive as the model is a good starting point for 
several learning or interaction scenarios. As mentioned 
before, the tracked persons or moving objects could be 
directly associated as interaction partners. On the other 
hand, the information about their movements can be used 
as data for typical movement areas or pathways, which 
could be used for navigation purposes of the robot. The 
articulated parts apparently enable the robot to recognize 
objects, which are handled by the human or more simply, 
which objects are movable. This knowledge could be 
utilized in a tabletop-learning scenario, where each object 
put onto the table could be easily recognized as a new 
object independent from its topology or appearance. Again, 
using the whole information about the recognized objects 
and the appearance and disappearance areas we get an idea 
about the action spaces of these objects. In the case of a 
door, we could see the articulation or the opening range of 
the door as an action area. Several other scenarios are 
supposable, but as the main contribution of this paper is a 
solid basement of knowledge for a mobile robot we skip 
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further suggestions how to use the articulated scene model 
in a specific application. 

The paper is structured as follows. First, related work is 
presented in section 2 to give an overview of other work 
done in the different fields covered by this paper. The 
proposed system in general is described in the subsequent 
section 3. The preprocessing of the sensor data is explained 
in section 4 and the computation of the extended optical 
flow in the subsequent section 5. The detection and 
tracking of moving entities is described in section 6, 
followed by the description how to build the static parts 
and how to detect the movable parts of the articulated scene 
model in section 7. In the end, we explain our experiments 
and we show the results of our algorithm on several self-
created data sets in section 8. 
 
 
2. Related Work 
 
Research on dealing with dynamic scenes has become more 
and more important since the manual analysis of the huge 
amount of video data provided by video surveillance is not 
suitable any more. Diverse methods have been developed 
to model the background that can be subtracted from the 
current image to extract the moving foreground. The 
approaches range from classical Gaussian Mixture Models 
(GMMs)36 to the use of codebooks19 modeling the pixels 
either separately from each other or incorporating nearby 
pixels using subspaces26. For a lot of approaches a static 
background is mandatory however Sheikh and Shah 
introduced an approach that is able to cope with uniformly 
moving background like a river35. The work from Brostow 
and Essa4 describes the other way around. They propose to 
observe the foreground and to analyze the motion of 
dynamic objects to decompose a scene from a single view 
as multiple layers. By extending the single view to multiple 
views Guan et al. 12 recover static 3D shapes of static 
occlusions by observing the human motion shapes. 
Multiple views including depth-sensors are able to 
reconstruct reliable 3D scenes, if the camera setup is well 
calibrated13. The problem of a moving camera has to be 
considered, if we transfer approaches for detecting moving 
regions developed in a static surveillance scenario to a 
robotic scenario. This can be done directly by an ego-
motion compensation34, by visual navigation10 or by 
detecting moving objects through inconsistencies in a scene 
motion field arising from a optical flow computation20. 
Another problem in robotics scenarios is the short 
observation time and the unknown environment so that a 
previous training of the background is not possible. 
Therefore, Hayman and Eklundh14 developed a Bayesian 
model for incorporating the possibility that the background 
has not yet been uncovered. 

Besides from moving persons also movable objects are 
interesting for a robot. Movable objects are characterized 
by occasional relocation and longer static periods. In 
classical background subtraction approaches such objects 
will be integrated into the background model after 
relocation thus cannot be detected anymore29. Sanders et al. 
31 try to solve this problem by integrating pixel information 
over time. The pixel history is clustered to temporal 
coherent clusters, the so-called temporal signatures, which 

allow detecting quasi-static objects under the condition of 
these objects having arrived and departed from the scene. 
As movable objects belonging to the class of scene 
structuring elements like a chair are of special interest for a 
robot some approaches try to find such scene elements 
through analyzing the human activity instead of detecting 
them directly. For example, trajectories can be segmented 
to actions using Hidden Markov Models (HMMs)29 
concluding that the location of an action points to an object 
associated with an action like, e. g., “sitting down” is 
coupled with a chair. Alternatively, clustering of motion 
histograms computed per scene cell allows an image 
segmentation providing interesting indoor scene regions 
like a sofa9. The analysis of trajectories of moving objects 
can reveal – besides image regions that correspond to scene 
elements – general semantic regions like junctions or paths 
that do not match a specific movable object. Analyzing 
person trajectories in indoor rooms could reveal semantic 
regions like a grouping of table and chairs21. Analyzing 
person activities and car trajectories in outdoor 
environments could provide models of roads and paths45, 
“walkable” ground surfaces3, or routes, paths, and 
junctions24. A detailed review of further methods for 
understanding scene activity is given in6.  

In the case of detecting movable objects, e. g. , a door, 
which motion is caused by a human manipulation31 
trajectories of such objects reveal their possible 
articulation. Inspired by articulated body models, Sturm 
and colleagues38 developed techniques for learning 
kinematic models of scene elements like table or drawer. 
As tracking of such objects is a challenging problem they 
bypass it in their paper through attaching markers to test 
objects. In their last paper37 they have presented an 
automatic tracking of a planar surface from a cupboard 
door or a drawer front for observation situations restricted 
to a close-up view of the surface. 

Our articulated scene model aims to combine 
background modeling with detection of semantic scene 
elements. As we focus on the modeling of dynamic 3D 
scenes the assumption that static measurements which are 
furthest away determine the scene background allows an 
elegant way to model the background especially in robotic 
scenarios where observation times are short. Subtracting 
the background in 3D reveals directly quasi-
static/articulated objects without special requirements like 
an object has to arrive and depart31 and independent from 
their shape or size or the human activity connected to them. 
Detecting arbitrary articulated scene elements using human 
activity requires recognition abilities of a lot of different 
daily-life activities, which means that a huge database of all 
possible actions is needed for training. Our approach 
provides for 3D data a bypass to this exhaustive learning 
problem. 
 
 
3. System Overview 

 
The robot’s purpose is to interact with the human and to 
work with him in the same environment, but the 
environment is naturally not static and the human moving 
in front of the robot is inhibiting the background modeling 
process. Therefore, the robot should acquire knowledge 
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about its surrounding by detecting and tracking moving 
objects, modeling the static background without these 
persons and perceiving scene changes in the vista space. In 
the process the robot observes its environment passively, 
which means the robot camera stays static for a few 
seconds to gather information before the robot changes its 
view and observes the next vista space. 

The algorithm is designed to calculate an articulated  
scene model M for each of the vista spaces (see fig. 2). The 
 model consists of the dynamic parts D, the static 
background S and the observed articulated scene parts O. 
The model for one vista space is updated as long as the 
robot does not change its view. The model 1−tM  is updated 
by propagating it to the next frame at time t. In each frame 
the following processes are accomplished to update the 
model: 

1. Model propagation: The model 1−tM  from the 
previous frame is propagated to the current frame  

2. Perception & Preprocessing: The actual sensor input is 
preprocessed and annotated with velocities  

3. Entity Tracking: Moving objects are detected and 
tracked to exclude them from the static scene  

4. Scene Modeling: The background and the movable 
objects are adapted  

The preprocessing cares for the 3D data smoothing and 
velocity computation tV  based on optical flow resulting in 
6D data as sensor input for frame t. The next step is to 
detect and track the moving parts, named as Entity 
Tracking. Thereby, the detection and tracking of moving 
persons is supported by the knowledge of the actual static 
scene 1−tS  generated out of all previous frames and vice 
versa. 

 

 
Fig. 2: The articulated scene model is calculated for each vista space. The model is updated from frame to frame by observing the scenery. Utilizing the 
model from the previous frame and the sensor data from the current frame the updated model can be calculated by two steps. First, the entity tracking 
detects and tracks moving objects by shifting a cylindrical model through the potential dynamic points pot

tD . The potential points are all points, which are 
not conform to the known static background. Second, the static scene and the articulated objects are adapted. Therefore, all found moving objects are 
subtracted and the produced potential static points pot

tS  are analyzed with the vista space assumption to separate movable objects from the updated static 
scene. 

 
In a first step, the known static scene points n from the 

previous frame  
{ } ni

i
tt sS K

r
11 =− =                                                       (1) 

are subtracted from the current scene  
{ } ni

i
tt fF K1==                                                               (2) 

The remaining potential dynamic points  

1−−= tt
pot

t SFD                                                           (3) 
are annotated with the velocity data tV . Based on the 

potential dynamic points pot
tD  new objects are detected. 
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Using a clustering algorithm and a simple cylindrical object 
model, the moving objects are found and subsequently 
tracked with a hybrid particle filter with mean shift. The 
potential points  

pot
tt D⊂ε                                                      (4) 

which belong to a dynamic object are passed to the current 
articulated scene model  tM . 

In the scene-modeling step these points tε   are 
subtracted from the actual frame tF  to identify the potential 
static points  

tt
pot

t FS ε−=                                                      (5) 
in the current frame. By applying the vista space 
assumption and utilizing the knowledge 1−tS  from the last 
frame the movable objects tO  that form the articulated 
scene parts can be detected and the static background tS  
can be updated, simultaneously. Both are passed to the 
current articulated scene model tM , which is propagated 
again to the next frame.  

The updating of the vista space ends if the robot changes 
its view and during the motion of the camera from one vista 
space to another the model computation is stopped. At this 
moment the outcome from the articulated scene parts tO  
are all the areas where a movable object is newly detected 
by the vista space assumption. From the moment the robot 
observes a new vista space the building of the next 
articulated scene model begins. By incorporating the motion 
of the robot the vista spaces can be merged to build a global 
knowledge base. Here, we utilize the motion information 
from a laser-based SLAM approach45. The typical 
observation time for one vista space is about 15 to 20 
seconds. 
 
 
4 Preprocessing 
 
Our system uses the Swissranger SR3000 provided by 
Swiss Center for Electronics and Microtechnology (CSEM) 

45 delivering a matrix of distance measurements 
independent from texture and lighting conditions. It consists 
of 176×144 CMOS pixel sensors, which are able to 
determine actively the distance between the optical center 
of the camera and the real 3D world point via measuring the 
time-of-flight of a near-infrared signal. Besides the distance 
value matrix (Fig. 3(b)), the camera provides per frame a 
matrix containing amplitude values (Fig. 3(a)). The 
amplitude value indicates the amplitude of the reflected 
near-infrared signal received by the sensor and implies 
therefore the amount of light reflected by a world point. A 
small amplitude corresponds to a small amount of light 
reflected and therefore indicates a weak signal. 

Several researchers have already developed 
preprocessing and calibration techniques dealing with noise 
arising from the different reflectance properties and 
characteristics of the ToF cameras, like additional infra-red 
light in the scene, and measurement errors at edges (so-
called “flying pixels”). Schiller32 proposed an automatic 
calibration of the entire 3D ToF signals using a bunch of 
different cameras. Color information is also used by 

Huhle18 for outlier detection and smoothing using Non-local 
Means filter5. Smoothing techniques relying only on the 
ToF data are amplitude thresholding with a fix value25, 
removing of “flying pixels” at edges via detecting 
iteratively geometric outliers taking into account the 2D 
neighborhood17, and correcting the amplitude values using 
distance values and vice versa28. In this paper we applied 
preprocessing techniques proposed in 40.  

The distance image is smoothed with a distance-adaptive 
median filter, which uses for each pixel a different mask 
size (e.g. 3×3, 5×5, or 7×7) depending on the distance value 
of the pixel. Generally, pixels with larger distance value are 
filtered with smaller filter masks, and vice versa, so that 
significant structures at large distances are not blurred, and 
at the same time, noisy surfaces at small distances can be 
smoothed. As the amplitude value refers to the quality of 
the distance measurement, points with a small amplitude 
value are removed from the final 3D point cloud. The 
threshold needed adapts automatically to different 
reflectance properties in different scenes, as it is a fraction 
of the mean amplitude value per frame. Further, edge points 
(so-called “flying pixels”) arising in the case where light 
from the fore- and the background hits the same pixel 
simultaneously are rejected if the amount of near neighbors 
in the 2D neighborhood is insufficient. Last, 3D coordinates 
are generated out of the distances with regard to a 3D 
camera coordinate system. 

 

  
(a)                                                        (b) 

  
(c)                                                      (d) 

Fig. 3 Raw data acquired from the Time-of-Flight sensor: (a) amplitude 
image, (b) distance image, (c) unpreprocessed 3D point cloud, and (d) 
preprocessed 3D point cloud.  
 
With the assumption of ideal perspective projection, the 

known position of the principal point, pixel sizes, and focal 
length, the 3D coordinates can be computed from the 
distances via ray proportions in triangles. As a result the 
computed 3D points are organized regularly in a 2D matrix. 
Fig. 3(a) to 3(c) show a frame of the 3D ToF camera 
consisting of an amplitude image, a distance image, and the 
raw 3D point cloud. Fig. 3(d) presents the resulting 3D 
point cloud after applying the described preprocessing 
techniques. 

In order to distinguish between static parts of the scene 
and moving persons or objects the motion in the 3D point 
cloud has to be determined. In the following an image-
based method for motion computation is presented which 
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can be applied here easily by treating the point cloud as 
planar depth maps or images39.  

 
 

5. Motion Computing using Optical Flow 
 
A widely used technique is to compute the dense Optical 
Flow using each 2D image pixel. The optical flow is the 
distribution of apparent velocity of moving brightness 
patterns in an image and arises both from the relative 
objects’ and the viewer’s motion [11]. The flow of a 
constant brightness profile  

),,(),,( dttdyydxxItyxI +++=  
            ),,( dttdtvydtvxI yx +⋅+⋅+=  

= ),,( dttdtvydtvxI yx +⋅+⋅+                          (6)  

　  
t
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x
I

yx ∂
∂

−=⋅
∂
∂

+⋅
∂
∂                              (7) 

is described by the constant velocity vector T
yxD vvv ),(2 =

r
 . 

Usually, the estimation of optical flow is founded on 
differential methods. They can be classified into global 
strategies, which attempt to minimize a global energy 
functional15 and local methods that optimize some local 
energy-like expression. A prominent algorithm developed 
by Lucas and Kanade23 uses the spatial intensity gradient of 
the images to find a good match using a type of Newton-
Raphson iteration. They assume the optical flow to be 
constant within a certain neighborhood N which allows 
solving the Optical Flow Constraint Eq. 7 via least square 
minimization. Here, we have used a hierarchical 
implementation of Lucas’s and Kanade’s algorithm written 
by Sohaib Khan (http://www.cs.ucf.edu/~khan/, 
http://server.cs.ucf.edu/~vision/source.html). 

As the Swissranger camera provides normal 2D intensity 
images based on the amplitude values it is possible to 
reduce the 3D correspondence problem to a 2D 
correspondence problem and to compute the optical flow 
for each frame   of a sequence of ToF images ,...),( 21 FF   
based on data of two consecutive frames ),( 1−ii FF  . Each 
pixel of frame iF  is annotated with a 2D velocity vector  

T
yxD vvv ),(2 =

r
 as shown in Fig. 4(a), which results into 

pixel correspondences between frame iF  and frame 1−iF . 
As 3D information is available for each pixel these pixel 
correspondences can be directly transformed into 3D point 
correspondences ( )1, −i

l
i
k pp
rr

 , which can be used to compute 

3D velocities ( ) 1
3 ,, −−== i

l
i
k

T
zyxD ppvvvv

rr
 . Fig. 4(b) 

presents a 3D point cloud of one frame of a test sequence 
annotated with 3D velocity vectors. The processing from 
2D optical flow on 2D images to real 3D velocities is 
supported by the used hardware. As the Swissranger camera 
provides good distance measurements velocities with 
reliable values especially in the z component can be 
determined. This is usually not suitable for many other 
camera setups like stereo rigs or multi-camera systems. The 
velocity annotated 3D point cloud results in 6D data. 

Due to the low resolution of the camera and inaccuracies 
of the optical flow erroneous velocity vectors at changing 

depth steps are computed. To get rid of those outliers a 5 5 　
median filter is applied separately to the three components 

xv , yv , zv  of the flow vector Dv3
r

. In Fig. 4(c) the 
smoothed result of the 3D velocity field of Fig. 4(b) can be 
seen. 
 

   
(a)                                    (b)                                   (c) 

Fig. 4 Velocity processing with the optical flow method: (a) 2D velocity 
vectors (b) 3D velocity vectors from combining 2D velocities and point 
correspondences in consecutive images, (c) the latter smoothed 
component wise by a median filter. Each 3rd velocity vector is displayed 
and color coded with respect to its length: red denoting a big motion 
vector and blue a small one. 
 
 
6. Detection and Tracking of Dynamic Objects 
 

            
(a) Clustering of pot

tD                   (b) Probability distribution 

            
(c) Found object                                 (d) Trajectory 

Fig. 5 The images explain the tracking algorithm. The blue points belong 
to the static scene 1−tS . The dynamic pixels tP  are plotted in orange. (a) 
At a first stage the dynamic points are clustered, generating small motion 
attributed regions. (b) The objects are detected and tracked using the 
observation function (see Eq. Error! Reference source not found.). The 
probability of the particle distribution is plotted in green. (c) The 
maximum of the observation function denotes the found object (shown as 
green box). (d) The resulting object trajectory is plotted in cyan. The blue 
circle contains the object at the actual position. 
 
The dynamic scene analysis involves the detection and 
tracking of moving objects, which on the one hand 
enhances the segmentation of the different scene parts and 
which is on the other hand useful for the understanding of 
the scene as the trajectories of the objects give a broad 
picture of the movements in the actual vista space. 

Using the 3D point cloud and the annotated 3D velocities, 
we can simplify the scene by applying a 6D hierarchical 
clustering technique. The segmentation is enhanced through 
the incorporation of the velocity information in the early 
clustering stage, because it enables the segmentation of 
neighboring objects, like a person walking in front of a wall. 
The first step is to span small contiguous regions in the 
cloud of the 6D points, based on features for spatial 
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proximity and homogeneity of the velocities. We apply a 
hierarchical clustering using the complete linkage 
algorithm2, which, choosing a small branching factor in the 
hierarchical tree, deliberately over-segments the scene, 
generating many small motion-attributed clusters33 (see Fig. 
5(a)). Each calculated cluster is annotated with the 2D 
position of its centroid projected on the ground plane, a 
weight factor accordant to the number of included points 
and the mean velocity of all these points. 
From here on, persons and objects are represented by an 
upright cylinder of variable radius, which is a suitable 
model for the moving entities in our scenarios (here, 
humans). The object hypothesis h(a) is characterized by a 
five dimensional parameter vector 

],,,,[ rvvryxa θ=                                                (8) 
where x and y are the centroid on the ground plane, r the 
radius and θv  the direction and rv  the magnitude of the 
velocity of the cylinder.  

The next step is the detection of the moving objects. Here, 
the cylindrical model is advantageous for the detection as 
the velocity computation is noisy and many points between 
the found clusters have different velocities. This means, that 
the hypothesis covers mostly the full moving object even if 
the velocity data is noisy. Thereby, the cylinder does not 
need to touch the ground or to satisfy any specific height, 
because all clusters are projected on the ground plane. This 
is especially useful if the moving object is only partially 
seen. The detection only needs a few clusters denoting a 
moving object and afterwards, using the cylindrical model, 
all clusters that are lying in the cylinder are added to the 
moving object.  

To generate a hypothesis, the cylinder is shifted through 
the small clusters searching for meaningful collections of 
clusters with similar velocities. Grouping close clusters 
together, a hypothesis is found if the weight of all clusters 
together is higher than a certain threshold. Here, 20 close 
points moving in a similar direction are sufficient. Thereby, 
the cylinder has the expansion from the lowest to the 
highest detected moving cluster. The radius is weighted 
using a Gaussian with the mean at typical person dimension. 
Afterwards, each cluster integrated into a hypothesis is 
marked as an already found object to ensure each cluster is 
used only for one hypothesis. 

All found hypothesis are additionally annotated with an 
id to identify them over the observation time. The detection 
by moving needs the object to move at least one time and 
afterwards, it is capable to track the object even if it is not 
moving anymore. 

If a potentially moving object has never been seen 
moving so far, a stronger detection algorithm is needed. As 
we have different moving objects like persons, robots, 
cleaning machines or other self-moving objects we would 
need several detectors and classifiers for each group. Here, 
we only utilize a human classifier, because most of the 
attending moving objects in the Home-Tour-Scenario are 
humans and the other objects are mostly detected with the 
previously mentioned clustering algorithm. As a human 
classifier we utilize the Histograms of Oriented Gradients 
detector8, which uses the gradient features of local bins 
consolidated in one histogram. A trained support vector 
machine differentiates between humans and non-humans, 

delivering rectangular regions including persons. In the 
calculated 2D area we cluster the included points with a k-
means clustering with k=2 to separate fore- and background. 
The cylinder is fitted into the 3D foreground and the 
hypothesis is added to initial detection set. 

All extracted hypotheses from the current frame are 
merged with the ones tracked from the previous frame 
resulting in one hypotheses matrix for each frame. 

The tracking of the hypotheses is calculated like follows. 
The K hypotheses in the current frame t are tracked based 
on the position, velocity and size of each hypothesis in the 
previous frame )(1 aht

k
− , utilized in a hybrid kernel particle 

filter with mean shift33. The particle filter creates a set of 
new hypotheses )(hst

k  for each tracked object, called 
particles, and distributes them with a first order motion 
model mixed with a random Gaussian noise (see Fig. 6(a)).  

This distribution of particles covers the potential 
movement of most moving objects as it follows linear and 
random movement. 

 

      
(a) Particle distribution                           (b) Mean shift 

Fig. 6 (a) The particle distribution follows a motion model and a random 
distribution to cover all possible motions of a human. The figure shows 
the distribution of the particles in the XY plane. The movement of the 
object is in positive X direction. The particles are distributed in the 
accordant direction and for random movements as well. (b) The 
distributed particles are weighted and then shifted with mean shift to 
recover the best possible object position. (Here, shown for a random 
distribution) 

 
In order to identify the new position of each hypothesis 

the particles are rated with an underlying observation. The 
observation is based on the relative position, relative 
velocity and weight of all clusters within the cylinder of 
each hypothesis weighted with Gaussian kernels. 
( ) ( ) ( ) ( )∑=

∈ ksl
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With )( kr sK  keeping the radius in a realistic range, 
),( kd slK  reducing the importance of clusters further away 

from the cylinder center, and ( )kv sIK ,  masking out clusters 

having differing velocities. The functions r(⋅), d(⋅), and v(⋅) 
extract the radius, the 2D position on the ground plane and 
the velocity of a cluster l or a hypothesis sk. The kernel 
widths H are determined empirically. Eq. Error! Reference 
source not found. is also called the observation function 
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)( ksρ  of the particle filter. The outcome is a density 
approximation based on the object hypothesis and the 
attributes of the appending clusters, with the maxima 
corresponding to the actual objects (Fig. 5(b)).  

Several mean shift iterations refine the particles to 
concentrate at the local maxima of the distribution, which 
decreases the needed amount of particles (see Fig. 6(b)). 
The combination of mean shift and particle filter is ideal to 
add the strengths of both parts in one algorithm. Mean shift 
sometimes sticks in local minima, which could be resolved 
due to the sampling of the particles. The particle filter needs 
many particles to estimate the underlying density function, 
which can be avoided through the combination with mean 
shift. Individual particles selected from these best modes of 
the distribution represent the objects found in the current 
frame (Fig. 5(c)). For each tracked object hypothesis, all 3D  
points associated with this object are back projected in the 
2D amplitude image and used for computing a 2D convex  
hull of the tracked object. All points within this 2D polygon 
are marked as non-static points and are finally excluded 
from the reconstruction step. 
 
 
7. Adaptive Background Modeling 
 

 
Fig. 7 Algorithm per time step t for background adaptation and movable 
object detection. 
 
So far we proposed methods to distinguish between static 
and moving parts in a scene. In the following, the calculated 
moving objects are extracted and the static parts of the 
observation are analyzed. By applying the vista space 
assumption and utilizing the knowledge from the last frame 
the movable objects that form the articulated scene parts 
can be detected and the static background can be updated, 
simultaneously. The basis of the vista space assumption that 
the most distant measurement in the current view describes 
the background has to be expanded due to noise of the 3D 
sensor. Therefore, we introduce a threshold dθ  above that a 
change in the distance is significant and do not arise from 
noise (here, cmd 10=θ  given by the noise level of the 
camera).  

The algorithm presented in Fig. 7 is applied to each time 
step of the observation to calculate the updated static scene 

{ }itt sS
r

=  and the movable objects tO . Therefore, the 

algorithm uses as input the current frame { }itt fF
r

=  and the 

last known static scene { }i
tt sS 11 −− =
r

 and the dynamic 
clusters tε  from the previous frame. The dynamic clusters 
contain the 3D points from the moving objects of the 
tracking module. These points are removed, before the 
update process takes place. 

The static scene is updated in line 11, if the difference of 
a known static point i

ts 1−
r

 to the actual frame point i
tf
r

 is 
below the sensor noise level dθ . Then, the static point and 

the current point are accumulated to a new static point i
ts
r

 
with improved reliability. Otherwise, it has to be determined 
if a new static scene point is detected in line 16 or the point 
belongs to a movable object in line 19. The vista space 
assumption is used to identify the matching case. All points 
belonging to movable objects are saved in a separate list, 
where the time of detection and the number of times the 
points has been seen are considered. Clustering these points 
in space and time the different objects can be separated. 
Consequently, objects can only be separated if they appear 
at a different point in time or at least at different places. 
 
 
8. Results 
 
The evaluation of an articulated scene model does not 
follow typical standard reports, as it is not feasible to build 
a complete ground truth model. Hence, we split up the 
different parts of the model and we compared the static 
scene to a ground truth model and to some simple 
background modeling techniques to give quantitative results. 
In the following, the proposed system ADAPTM  is evaluated 
by comparing the results to the naive approach of only 
summing up the images and building the mean for each 
pixel ( )MEANM . It is also compared to the neglecting of 
moving pixels MPIXM  and last, to TRACKM 39 where only 
dynamic objects are determined through tracking without 
background model feedback and no distinction is made 
between static background and static movable objects.  
All methods are checked against a ground truth static scene 
model GTM , which has been taken without any movable or 
moving object for each sequence. The articulated parts and 
the trajectories of the moving objects are presented 
qualitatively in illustrations. 

The underlying data sets S are self-created and they show 
different challenging dynamic scenes. The human shows 
different moving behaviors or stops moving, which makes it 
difficult to detect him as not static. Furthermore, the human 
interacts with the environment as he cleans up 3SS , moves 
chairs, searches a teddy bear 2sS , opens and closes doors 

4SS  and rearranges teddy bears 1SS , water cans 5SS  and 
plants 6SS . Each run i of a sequence belonging to one 
scenario j is labeled with risjS , . 
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 1,1 rsS  2,1 rsS  3,1 rsS  4,1 rsS  5,1 rsS  6,1 rsS  

MEANM  103±177 106±204 124±222 157±284 142±278 147±262 
MPIXM  64±121 74±184 79±185 111±216 99±230 95±193 
TRACKM  71±166 108±209 75±189 97±212 79±308 98±219 
ADAPTM  18±59 19±47 21±61 24±78 24±68 21±55 

 

 1,2 rsS  2,2 rsS  1,3 rsS  2,3 rsS  1,4 rsS  2,4 rsS  

MEANM  95±187 108±147 89±105 85±183 219±403 321±639 
MPIXM  71±155 80±118 63±145 61±125 163±328 299±635 

TRACKM  84±182 85±140 71±141 134±712 51±165 74±218 

ADAPTM  20±96 16±37 20±58 22±52 14±26 75±319 
 

 1,2 rsS  2,2 rsS  1,3 rsS  2,3 rsS  1,4 rsS  2,4 rsS  

MEANM  95±187 108±147 89±105 85±183 219±403 321±639 
MPIXM  71±155 80±118 63±145 61±125 163±328 299±635 

TRACKM  84±182 85±140 71±141 134±712 51±165 74±218 

ADAPTM  20±96 16±37 20±58 22±52 14±26 75±319 
Table 1 Evaluation of four reconstruction methods on 17 sequences (mean error ± mean variance). The error shown in the table is computed as mean 
Euclidean distance over all model points to the corresponding ground truth points. The mean error is given in mm as well as the mean variance. The high 
error in 2,5 rsS  results from a wide range view, where the sensor produced a high amount of noise. 
 

         
(a) GTM            (b) MEANM          (c) MPIXM  

       
(d) TRACKM               (e) ADAPTM  

Fig. 8 Results of scene 1,2 rsS  for the evaluated algorithms. In the front the 

reconstructed 3D static scenes and in the back the accordant 2D images 
can be seen. (a) Shows the ground truth. In (b) the reconstruction by 
simple averaging, in (c) the reconstruction by excluding moving pixels, 
and in (d) the reconstruction by tracking objects is shown. In the 2D 
image the wrong reconstruction can be seen as a ghost of the person 
moving in the scene. (e) Shows the result using the proposed method. The 
colors encode the error of the model if compared to the ground truth – 
blue means small and red means big error. 

 
In Fig. 8 the resulting static scenes for one example vista 

space are presented. The figure shows the resulting 3D 
static scene from the different background modeling 
techniques and the 2D image created from this model. The 
colors encode the error of the models compared to the 
ground truth, where blue denotes a small error and red a big 
error. The naive background modeling strategies failed in 
removing the person correctly in all frames, which results in 
a big error at those positions of the 3D point cloud, where 
the person is still visible. This gets apparent as a ghost 
appears at the same positions in the 2D image. The 
approach presented in this paper reliably removes the 

person, which provides a sound background model. Table 1 
shows an analysis of the arising errors from the background 
modeling strategies. 

 

 

 

 

 
Fig. 9 The images show diverse objects detected by our method. All 
presented objects have been moved around by the human in the scene. 
Different colors encode different objects. The pictures show nicely the 
huge variability in detecting movable objects due to our model 
independent approach. 

 
The first value is the mean Euclidean distance in mm over 
all pixels compared to the ground truth and the second 
value denotes the corresponding standard deviation. The 
presented errors affirm the viewable impression from Fig. 8 
as ADAPTM   results in the lowest error rates. The rates are 
promising with an error mostly at 2cm and never above 
10cm. Even in scene 4,4 rsS , where sparse static points in 
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the door can be detected, the result of the proposed method 
is much more robust than the naive approaches, where the 
mean error is always above 20cm. A mostly low standard 
deviation stands for good results in each point as well. 
 

     
 

     
Fig. 10 Two examples showing the segmented movable objects in a 2D 
image. The first and the third image are the original images and the 
second and fourth show the marked object. The colored areas belong to 
different recognized objects, which have been moved at least one time. 
 
Higher error rates ( 2,5 rsS ) could occur due to noise arising 
from the 3D sensor, if the observed scene has some 
disadvantageous characteristics. The sensor has increasing 
noise per distance and it is sensitive to reflecting and black 
surface. You can see this in the mentioned figure in the 
open door in frame 1 and 26. 
 

 
         (a) Combined vista spaces           (b) Tracks from human movements 
Fig. 11 (a) Subsequent vista spaces can be combined by a transformation 
of the particular spaces in one world coordinate system. The 
transformation is extracted out of the motion of the robot. (b) All tracks of 
a human walking behind a table (in cyan). The human walked three times 
back and forth.  
 
Fig. 9 gives some examples of the detected articulated 

scene parts. The found objects are color-coded in the image 
and they are separated from the background to show the 
variability in detecting diverse objects due to our model 
independent approach. 
The objects can be marked directly in the 2D image (see 

Fig. 10), which could be used by further processes to 
calculate more precise information like the shape or texture 
of the objects. 

Fig. 11 presents an example of a combination of two 
subsequent vista spaces. Here, we transform the vista spaces 
into the same world coordinate system by incorporating the 
movement of the robot. The two images in the back belong 

to the different vista spaces. The reliability is dependent on 
the amount of the movement of the camera. For small 
movements the error averages at 29 - 86 millimeter40.  
 

  
(a) Trajectory                              (b) Trajectory 

Fig. 12 In (a)-(b) tracking results of the proposed system are shown (in 
cyan). In both views the red pixel denote the dynamic and the blue ones 
the static parts of the scene. The right scene is taken from 1,2 rsS  (see Fig. 

13 (g)) 
 
In general using an ICP algorithm with additional loop-
closing results in better reconstructions30,16. In the second 
image of Fig. 11 all trajectories from one observation of a 
vista space are plotted. One human walked three times back 
and forth. His movements are consistently tracked. Two 
other example vista spaces and their resulting trajectories 
are shown in Fig. 12(a)- 12(b) using two different views. 
The tracking works reliably in most cases. In the remaining 
cases the inaccuracy can be traced back to the single use of 
3D information. The errors result from rapid changes in the 
movement or specific actions in the scenery. These actions 
are e. g. found in scene s2, where the person walks to a 
closet and opens the door. The opening shows a similar 
point cloud and movement like the person, which stops 
moving at the same moment. Hence, the hypothesis of the 
closet is more similar to the person as the person itself and 
the tracking fails during the opening and closing of the 
closet. 
 

     
(a) 1,1 rsS           (b) 2,1 rsS            (c) 3,1 rsS           (d) 4,1 rsS  

    
(e) 5,1 rsS           (f) 6,1 rsS           (g) 1,2 rsS           (h) 2,2 rsS  

Fig. 13 (a)-(h): For all recorded sequences the learnt background model 
(blue points) and the detected movable objects (orange points) are shown. 
In the bottom left three selected images of the sequence characterize the 
tide of events from bottom to top finishing with the last frame in the 
background. 
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(a) 1,3 rsS           (b) 2,3 rsS           (c) 1,4 rsS           (d) 2,4 rsS  

   
(e) 3,4 rsS           (f) 4,4 rsS           (g) 1,5 rsS            (h) 2,5 rsS  

Fig. 14 (a)-(h): For all recorded sequences the learnt background model 
(blue points) and the detected movable objects (orange points) are shown. 
In the bottom left three selected images of the sequence characterize the 
tide of events from bottom to top finishing with the last frame in the 
background. 

                
(a) 1,6 rsS                                       (b) 1,7 rsS  

Fig. 15 (a)-(b): For all recorded sequences the learnt background model 
(blue points) and the detected movable objects (orange points) are shown. 
In the bottom left three selected images of the sequence characterize the 
tide of events from bottom to top finishing with the last frame in the 
background. 
 

Finally, the articulated scene model for each of the 
sequences is plotted in Fig. 13-15. In the bottom left a 
filmstrip gives an idea of the presented sequence, starting at 
the bottom and ending with the big picture in the 
background.  The corresponding frame numbers are shown 
in the bottom right in each image. The static background 
model relates to the blue 3D points and the found 
articulated parts correspond to the colored areas, whereas 
different colors encode different objects. 
 
 
9. Conclusions 
 
We presented in this paper an efficient approach to analyze 
dynamic scenes directly in 3D. The vista space assumption 
enables a mobile robot to segment knowledge about the 
static background, the moving entities and which objects 
are movable combined in one articulated scene model out of 
its observations. The gathered knowledge builds a good 
basement for many following research areas like object 
learning, navigation or just as an attention on human action 
spaces. We are going to integrate the static 3D background 
model in our SLAM approach to realize a better and safer 
navigation. We are also planning to investigate more work 
in the detection of the articulations of several objects, like 
the opening range of a door or the typical movement areas 
of humans to develop an understanding of safe movement 

areas or where to pay attention. An example video showing 
the articulated scene model can be found on the web. 
(http://www.techfak.unibielefeld.de/ nbeuter/ArticulatedSc　
eneModel.html ) 
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