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ABSTRACT

We describe a new algorithm for protein classi� cation and the detection of remote ho-
mologs. The rationale is to exploit both vertical and horizontal information of a multiple
alignment in a well-balanced manner. This is in contrast to established methods such as pro-
� les and pro� le hidden Markov models which focus on vertical information as they model
the columns of the alignment independently and to family pairwise search which focuses
on horizontal information as it treats given sequences separately. In our setting, we want
to select from a given database of “candidate sequences” those proteins that belong to a
given superfamily. In order to do so, each candidate sequence is separately tested against a
multiple alignment of the known members of the superfamily by means of a new jumping
alignment algorithm. This algorithm is an extension of the Smith-Waterman algorithm and
computes a local alignment of a single sequence and a multiple alignment. In contrast to
traditional methods, however, this alignment is not based on a summary of the individual
columns of the multiple alignment. Rather, the candidate sequence is at each position aligned
to one sequence of the multiple alignment, called the “reference sequence.” In addition, the
reference sequence may change within the alignment, while each such jump is penalized. To
evaluate the discriminative quality of the jumping alignment algorithm, we compare it to
pro� les, pro� le hidden Markov models, and family pairwise search on a subset of the SCOP
database of protein domains. The discriminative quality is assessed by median false positive
counts (med-FP-counts). For moderate med-FP-counts, the number of successful searches
with our method is considerably higher than with the competing methods.
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1. INTRODUCTION

Classi� cation of proteins on the basis of common conservation patterns is a standard approach in
computational biology. One collects sequences of a family of proteins with known function and then,

given an uncharacterized candidate sequence from a sequence database, decides whether this sequence � ts
into the query family. In this setting, several methods have been developed, including templates (Taylor,
1986), pro� les (Gribskov et al., 1987; Luthy et al., 1994), pro� le hidden Markov models (HMMs) (Krogh
et al., 1994; Baldi et al., 1994; Eddy et al., 1995), Bayesian models calculating posterior distributions on
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possible motifs in a family (Liu et al., 1995), discriminative approaches such as the combination of support
vector machines and the Fisher kernel method (Jaakkola et al., 2000), and family pairwise search (FPS)
(Grundy, 1998). Templates, pro� les, HMMs, and Bayesian models extract the information common to all
sequences of a family and test an unknown sequence for existence of these family-speci� c features. This
requires a summary of the protein family which can be derived from a multiple alignment. FPS uses the
given sequence data without further processing. Discriminative approaches focus on differences between
family members and nonmembers.

Figure 1 exempli� es a typical problem of the summary approach. The left part shows some columns
of a multiple alignment whose seven sequences subdivide into three subfamilies which is indicated by the
shaded bars to the left. A � rst approach for summarizing the information in the alignment is to proceed
column by column: In the � rst column, we observe either an “I,” an “S,” or an “A,” in the second column
it is “H,” “G,” or “A,” etc. If one wants to decide whether a candidate sequence � ts into this family, one
can align it to the family and then look site by site whether the residue of the candidate sequence is
identical or similar to one of the residues in the family alignment at this position. This vertical view on a
multiple alignment is the basis of pro� le-based classi� cation methods. Pro� les consist of column-speci� c
scores representing the residue distributions in these columns. Essentially the same is true for the emission
distributions of pro� le HMMs and the product multinomial distributions of block motifs in the Bayesian
alignment approach.

However, there is more information contained in the alignment of Fig. 1: In column four, we can
frequently observe a C, but if there is a C at this position, it is part of the conserved pattern CLTK. This
information is obscured in a column-based summary of the alignment. A horizontal view on the alignment
reveals this. The importance of this information becomes obvious in the right part of the � gure. The
alignments on both sides are the same. In addition, we have aligned a candidate sequence shown below the
dashed line. Taking the vertical point of view, one would clearly say that the candidate sequence � ts very
well into the family since for almost all residues of the candidate sequence the same residue can be found
several times among the family sequences at the same site. However, none of the individual sequences in
the family is very similar to the candidate sequence, which speaks against a membership in the family.
The vertical view indicates a good � t of the candidate sequence to the family; however, this indication is
based on a “wild hopping” through the alignment, as is shown by the highlighted residues. This problem
is aggravated if we consider an alignment consisting of a large number of sequences from a divergent
family. In such a case, one has many alternative residues for most sites and hence one has a very high
probability of chance hits, due to the “hopping” phenomenon. Both pro� les and pro� le HMMs are based
on scoring a query sequence versus the columns of an alignment. Since these approaches model columns
independently from each other, they do not keep track of which sequences in the alignment contributed
to a high score for a certain residue in a certain column. Consequently, both approaches are subject to
hopping, and hopping causes noise in sequence classi� cation.

Although we are talking about correlations between alignment positions, our approach is not to model
these correlations statistically, but to reduce the negative effect of hopping by means of a new algorithm.

FIG. 1. Left: Part of an (arti� cial) multiple alignment of a family consisting of seven sequences which subdivides
into three subfamilies. The bars on the left indicate the subfamilies; the dotted boxes highlight conservation patterns.
Right: The same alignment and a candidate sequence aligned to it (below the dashed line). Residues that are identical
in the family alignment and the candidate sequence are highlighted.
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We describe a dynamic programming algorithm that locally aligns the candidate sequence to one reference
sequence in the multiple alignment and in addition allows that the reference sequence may change within
the alignment. This enables us to make use of the many alternative residues for a certain column in the
alignment. But in order to avoid wild hopping, we penalize each jump. In this way, we reduce the total
number of jumps and hence reduce noise.

In spirit, the jumping alignment method is similar to fragment-based alignment methods such as
DIALIGN (Morgenstern et al., 1998) where longer alignments are “chained” together from several strong
local similarities (fragments). We are not aware, though, that fragment-based alignment methods have been
applied in a database search context. Also, most fragment-based methods implement a heuristical two-step
procedure, while jumping alignments are based on the rigorous optimization of the jumping alignment
score using dynamic programming. Our method is also algorithmically related to a method used to detect
chimeric sequences (Komatsoulis and Waterman, 1997) and to another method used to � nd alternative
splicings (Gelfand et al., 1996).

A preliminary version of this paper has been presented at the Eighth International Conference on
Intelligent Systems for Molecular Biology (Spang et al., 2000).

2. THE JUMPING ALIGNMENT ALGORITHM

The algorithm presented in this paper is based on the dynamic programming paradigm. In fact, it can be
viewed as an extension of the Smith–Waterman algorithm (Smith and Waterman, 1981) to the case where
one wants to add a single new sequence to a set of already-aligned sequences. This is in spirit similar to
pro� le alignments, but rather than condensing the alignment to a position-speci�c scoring matrix, we keep
it in its original form.

The scenario is the following. We are given a multiple alignment, called the query alignment, consisting
of sequences that represent a protein family, and a database of other sequences. The question is, which
of the database sequences, called candidate sequences, � t into this family. Our method to test the � t of
a candidate sequence to the query alignment is to compute their optimal local jumping alignment score,
where, in addition to the standard local alignment score, hopping from one sequence to another sequence
in the alignment is penalized.

The jumping alignment problem is formally described as follows. Let S D s1; : : : ; sn denote the candidate
sequence, and let A be the query alignment with K rows and m columns, A D .ak;j /1·k·K;1·j·m. A
jumping alignment of S and A is a local alignment of S and the columns of A with an additional annotation
that tells for each column of the jumping alignment which of the rows of the query alignment the candidate
sequence is aligned to. The jumping alignment score of such an alignment is the standard alignment score
of the candidate sequence and the selected query alignment sequence minus a penalty jumpcost for each
jump, i.e., for each position where the annotation changes its value. Sequence similarity is measured
by means of a score matrix w that provides a score for every pair of amino acids. In general, similar
or identical amino acids are assigned positive scores, whereas dissimilar amino acids obtain negative
scores. The expectation value of the score must be negative in order to ensure that the alignments are
local. In addition, we need to score gap positions. In order to simplify the exposition, we describe the
algorithm stepwise, starting with linear gap costs. Later we extend it to a more general scoring scheme
for gaps.

In the linear case, the scoring scheme consists of the score matrix (w), the penalty for a gap position
(gapcost), and the penalty for jumping from one reference sequence to another (jumpcost). The problem
we want to solve is to � nd among all jumping alignments of S and A an alignment that maximizes the
jumping alignment score.

2.1. Basic algorithm

We solve the optimization problem by an extension of the Smith–Waterman algorithm. We use K edit
matrices D1; : : : ; DK , one for each sequence in the query alignment. For 1 · k · K , Dk.i; j/ holds
the maximal score of all jumping alignments that end at positions i in s and .k; j/ in A. For calculating
Dk.i; j /, one needs to know the values of 3K predecessor cells: three predecessor cells in Dk as in the
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FIG. 2. The edit matrices used to compute the best jumping alignment.

case of pairwise alignment, and three predecessor cells in each of the K ¡1 other edit matrices Dk0 , k0 6D k

(see Fig. 2):

Dk.i; j/ D max

8
>>>>>>>><

>>>>>>>>:

0
Dk.i ¡ 1; j ¡ 1/ C w.si ; ak;j /

Dk.i ¡ 1; j/ ¡ gapcost
Dk.i; j ¡ 1/ ¡ Gk.j/

Dk0.i ¡ 1; j ¡ 1/ C w.si ; ak;j / ¡ jumpcost for all k0 6D k

Dk0.i ¡ 1; j / ¡ gapcost ¡ jumpcost for all k0 6D k

Dk0.i; j ¡ 1/ ¡ Gk.j/ ¡ jumpcost for all k0 6D k

where

Gk.j / D
»

0 if ak;j D gapchar
gapcost otherwise:

The reason for the special scoring of gaps that are introduced in the sequence s is that we do not want
to penalize gaps that are running parallel to already existing gaps in the query alignment A. The function
Gk.j/ distinguishes between the case where si is aligned with an already existing gap in A (gapchar),
which is not penalized, and the case where si is aligned with an amino acid in A, and hence the penalty
gapcost is imposed.

The maximal entry in the set of all edit matrices gives the optimal jumping alignment score for the
candidate sequence and the query alignment. This algorithm runs in O.nmK2/ time and uses O.nmK/

space.

2.2. Speedup of the basic algorithm

The time complexity of the algorithm can be improved. Since a jump from one sequence to another
sequence has the same cost for all alignment sequences, we do not have to compute the best jump individ-
ually for each alignment sequence. Instead, we precompute the optimal values for the three predecessor
cells diagonal (d), vertical (v), and horizontal (h) over all alignment sequences, which can be done in
O.K/ time. More precisely, in the calculation of cells Dk.i; j / for all values of k, let kd , kv , kh be the
sequences with the best scores in the 3K predecessor cells of Dk.i; j /:

kd D argmax
k02f1;:::;K g

Dk0.i ¡ 1; j ¡ 1/;

kv D argmax
k02f1;:::;K g

Dk0.i ¡ 1; j /;

kh D argmax
k02f1;:::;K g

Dk0.i; j ¡ 1/:
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Then, when computing Dk.i; j /, we need not maximize over all other sequences, but only consider se-
quences k, kd , kv, and kh:

Dk.i; j/ D max

8
>>>>>>>><

>>>>>>>>:

0
Dk.i ¡ 1; j ¡ 1/ C w.si ; ak;j /

Dk.i ¡ 1; j / ¡ gapcost
Dk.i; j ¡ 1/ ¡ Gk.j/

Dkd
.i ¡ 1; j ¡ 1/ C w.si ; ak;j / ¡ jumpcost

Dkv
.i ¡ 1; j / ¡ gapcost ¡ jumpcost

Dkh
.i; j ¡ 1/ ¡ Gk.j / ¡ jumpcost

This reduces the time complexity to O.nmK/.

2.3. Af� ne gap costs

It is generally accepted that a good compromise between computation time and biologically appropriate
gap penalties is provided by af� ne gap costs where a gap of length ` is penalized by an af� ne function
gapcost.`/ D gapinit C .` ¡ 1/gapext for nonnegative constants gapinit and gapext. In this section, we
show how the jumping alignment algorithm can be extended to handle af� ne gap costs with essentially
no overhead in computational complexity. As a guideline, we use the algorithm described by Huang et al.
(1990).

The complicating factor is that one has to be careful how exactly to score af� ne gaps in the setting of
jumping alignments. For linear gap costs, we distinguished the two possibilities that a gap newly introduced
into S either is aligned with an amino acid or with an already existing gap in A. These two cases could
easily be tracked by the function Gk . With af� ne gap costs, though, many more cases are possible where
a newly introduced gap in S starts or ends before, with, or after an already existing gap in A. Fig. 3 lists
all 15 such possibilities.

As for linear gap costs, we apply the rule that newly introduced gaps in S that run parallel to already
existing gaps in A are not penalized. As above, this is taken care of by special functions that distinguish
between the two cases. While in the linear case one function Gk.j/ suf� ces, here we need two such
functions, denoted Ginit

k .j/ for gap initiations and Gext
k .j / for gap extensions:

Ginit
k .j / D

»
0 if ak;j D gapchar
gapinit otherwise

Gext
k .j / D

»
0 if ak;j D gapchar
gapext otherwise.

Using Ginit
k and Gext

k instead of gapinit and gapext takes care of all alignment columns in Fig. 3 that have
a dot in the top row aligned with a dash in the bottom row, so that cases .2/, .3/, and .4/ reduce to case
.1/; cases .6/, .8/, and .10/ reduce to case .11/; and cases .7/ and .9/ dissolve into two separate gaps,
one of type .1/ and one of type .11/. Case .5/ is also considered; the penalty is 0.

FIG. 3. The 15 different cases for combinations of already existing and newly introduced gaps when aligning a
sequence (bottom row) and a multiple alignment (top row; only one sequence of the alignment is shown). Asterisks
denote amino acids, dots denote already existing gaps in the alignment, dashes denote gaps that are introduced by the
jumping alignment algorithm.
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Next, we make a design decision that regards cases .11/, .13/, .14/, and .15/ of Fig. 3, where amino
acids from the candidate sequence S are aligned with already existing gaps in the query alignment A.
In our algorithm, such an alignment is penalized only by the gap extension cost. This accounts for the
fact that there are other sequences in the alignment that do contain characters in this region, and hence
this region of the alignment might be of dubious value anyway. Algorithmically, we can treat the existing
gap character in A as an additional character of the alphabet and generalize the score matrix w such that
w.a; gapchar/ D gapext for every amino acid a. By this, cases .13/, .14/, and .15/ reduce to case .12/,
and case .11/ is no longer treated as an explicit gap. Hence, what remains are the two simple cases .1/

and .12/, where the full af� ne gap penalty is applied.
As in the nonaf� ne case, jumps are penalized independently of gaps. For example, if a gap is opened in

one alignment sequence and after a jump it is continued in another alignment sequence (see Fig. 4), then
this is treated like a single gap, and consequently the gap initiation penalty is imposed only once.

In order to compute af� ne gap costs ef� ciently, similar to Gotoh (1982) and later Huang et al. (1990),
we use auxiliary matrices V and H that hold the score of the best alignments ending with a gap in
either sequence: Vk.i; j/ contains the maximal score when si is aligned with a gap, and Hk.i; j/ contains
the maximal score when ak;j is aligned with a gap. Similarly as with kd , kv, and kh above, for ef� ciency
reasons, we precompute the two sequences with the best vertical and horizontal predecessor in the matrices
V and H , respectively:

kV D argmax
k02f1;:::;K g

Vk0.i ¡ 1; j /;

kH D argmax
k02f1;:::;K g

Hk0.i; j ¡ 1/:

Then the following recurrences compute the optimal local jumping alignment cost with af� ne gap penalties
as de� ned above:

Vk.i; j/ D max

8
>><

>>:

Dk.i ¡ 1; j / ¡ gapinit
Vk.i ¡ 1; j/ ¡ gapext
Dkv

.i ¡ 1; j / ¡ gapinit ¡ jumpcost
VkV

.i ¡ 1; j / ¡ gapext ¡ jumpcost

Hk.i; j/ D max

8
>><

>>:

Dk.i; j ¡ 1/ ¡ Ginit
k .j /

Hk.i; j ¡ 1/ ¡ Gext
k .j/

Dkh
.i; j ¡ 1/ ¡ Ginit

k .j / ¡ jumpcost
HkH

.i; j ¡ 1/ ¡ Gext
k .j/ ¡ jumpcost

Dk.i; j/ D max

8
>>>><

>>>>:

0
Dk.i ¡ 1; j ¡ 1/ C w.si ; ak;j /

Dkd
.i ¡ 1; j ¡ 1/ C w.si ; ak;j / ¡ jumpcost

Vk.i; j/

Hk.i; j/

Finally, it is possible to apply the space-saving technique of Huang et al. (1990) to our jumping alignment
algorithm. This would reduce the space complexity to O..nC m/K/. The time complexity is not increased
by the introduction of af� ne gap costs, nor would it be increased by the reduction of the space complexity,
and thus remains O.nmK/.

FIG. 4. A jump inside a gap. Asterisks denote amino acids, dots denote existing gaps in the alignment, and dashes
denote gaps that are introduced by the jumping alignment procedure.
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We have implemented the above algorithm including af� ne gap costs in a program called JALI (short
for Jumping ALIgnments). Given an alignment and a candidate sequence, the program provides the optimal
jumping alignment score as well as one alignment of this score. A second program called JSEARCH is
available for using the jumping alignment algorithm in a database search context. The programs are written
in standard C and have been compiled on several UNIX platforms. The programs and further information
can be obtained from bibiserv.techfak.uni-bielefeld.de/jali.

3. RESULTS

The jumping alignment method is designed for the purpose of searching sequence databases for remote
homologs of a given protein superfamily. Superfamilies are maximal sets of homologous sequences. In
general, protein superfamilies subdivide into families which are less divergent than the entire superfamily.
The challenge is to detect new families of a given superfamily.

3.1. Choice of evaluation data

For evaluation purposes, we need a data set consisting of superfamilies with annotated family structure.
However, there is a dependence of annotation and search methods which creates a “chicken and egg”
problem (Brenner et al., 1998): Assume, we used a test set where superfamily membership was assessed
on the basis of sequence similarity that was reported as being signi� cant by some search method. Any
evaluation procedure based on this data would test for the capability of our method to reproduce the method
that was used for annotation. The only way to circumvent this problem is to use a database of known
homologies that is not based on sequence comparison only.

The SCOP database (Murzin et al., 1995; Lo Conte et al., 2000) is such a database. It has been used
several times for the comparison of database search methods (Brenner et al., 1998; Park et al., 1997;
Jaakkola et al., 2000). The SCOP database classi� es protein domains according to the categories class,
fold, superfamily, and family. Members of a family have close evolutionary relationships. A superfamily
comprises sequences that might have low sequence similarity, but whose structure and function suggest a
common evolutionary origin. Folds and classes are more abstract and contain sequences that have structural
similarities, but are not related. Note that the SCOP classi� cation into superfamily and family categories
includes structural and functional knowledge. This is an important feature to circumvent the chicken and
egg problem mentioned above.

From the SCOP release 53, we used the nonredundant subset pdb90d which comprises sequences that
do not share more than 90% sequence similarity and which contains 4,861 sequences. We split this set
into two halves, one consisting of every second superfamily starting with the � rst one (the odd set), the
other consisting of the rest (the even set). The whole evaluation, including construction of test and training
data, execution of methods, performance assessment, and � gure and table construction, was accomplished
with the Phase4 evaluation system (Rehmsmeier, 2002).

3.2. Construction of calibration and evaluation data

For the evaluation of our method, we selected from the odd set all superfamilies that comprised at
least two families. From these superfamilies, families were chosen to be test families if both the family
itself and the remainder of the superfamily contained at least � ve sequences each. The remainder of the
superfamily (the training set) was further restricted to have not more than 50 sequences for reasons of
ef� ciency. The procedure resulted in a calibration set of 42 test families with associated training sets. The
construction was repeated on the even set, resulting in an evaluation set of 56 test families with associated
training sets. The selection of test and training sequences is the same as in Rehmsmeier and Vingron
(2001), though there release 37 of the SCOP database was used and no split was done. It matches the
problem of discovering new families of an already known superfamily.

For each test family, the remaining sequences of the surrounding superfamily were multiply aligned with
CLUSTAL W (version 1.74) (Thompson et al., 1994). From the alignments, domain HMMs were built with
hmmbuild from the HMMER package (version 2.1.1) (www.hmmer.wustl.edu/) and pro� les with pfmake

http://www.hmmer.wustl.edu/
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from the ISREC generalized pro� le package (version 2.1) (Bucher et al., 1996) using the BLOSUM62
score matrix with a gap initiation cost of 9 and a gap extension cost of 2.

3.3. Calibration of the jump cost

To determine the optimal jump cost for JSEARCH, we used the 42 alignments from the calibration data
set as queries against the odd set of the pdb90d database, using the BLOSUM62 score matrix with a gap
initiation cost of 9 and a gap extension cost of 2. For the jump cost parameter, several values were tested,
ranging from 0 to 50. For each jump cost, ROC50 measures were calculated and averaged over all test
cases. ROC50 is the sum of all true positive counts up to TPC50, with TPCn being the number of positives
that score equally well or better than the � rst n negatives (cf. Gribskov and Robinson, 1996). The results
are shown in Fig. 5.

The curve has a distinct convex shape with its maximum performance at a jump cost of 18. The two
extremes, zero jump costs (purely vertical point of view; data not shown) and in� nite jump costs (purely
horizontal point of view, data not shown but identical to jump costs of 50) perform worse than intermediate
jump costs. This indicates that neither the vertical nor the horizontal point of view is optimal, but a well-
balanced combination of both is best.

3.4. Performance on evaluation data

We used the evaluation data for comparing JSEARCH to several other methods. Finding an excluded
family with the rest of the surrounding superfamily as in our evaluation setting is a relatively hard problem
of homology detection. A large number of false positives is a common observation. Hence we need a
sensible measure to evaluate the performance of the search method. False positive counts (FP-counts) are
well suited for this purpose. The FP-count for a test sequence is the number of equally well or higher
scoring unrelated (nonsuperfamily) sequences. We used the median of FP-counts for all test sequences
(med-FP-count). From the med-FP-counts, we constructed performance � gures (Jaakkola et al., 2000)
which for cut-offs of med-FP-counts on the x-axis show the percentage of test sets with an equally well
or better med-FP-count on the y-axis.

We compared JSEARCH to the family pairwise search (FPS) method, both in its original form of using
BLAST (Altschul et al., 1990) and in a variant that performs full Smith–Waterman searches, to pro� les
as implemented in the ISREC generalized pro� le package, and to pro� le hidden Markov models (HMMs)
as implemented in the HMMER package. Using the Smith–Waterman variant of FPS makes FPS more
comparable to JSEARCH.

FIG. 5. Average ROC50 for various choices of jump costs.
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In FPS, pairwise alignment scores are calculated for each sequence of the query against a database
sequence (candidate sequence). The maximum of these scores is taken as the score of the candidate. Thus,
FPS exclusively uses horizontal information. Pro� les and pro� le HMMs, on the other hand, exclusively
use vertical information in that they condense each (conserved) column of a multiple alignment to a score
distribution.

Figure 6 shows performance � gures of JSEARCH and the four other methods tested. Solid lines represent
the performance of JSEARCH and dashed and dotted lines represent the other methods. In the top left,
we compare JSEARCH with jumps to JSEARCH with in� nite jump costs. One can observe how the
vertical information improves the average performance over the 56 test sets. In the top right, we show
the performance of the FPS approach in the Smith–Waterman variant (dashed line) and in the BLAST
variant (dotted line). The two plots demonstrate that the gap information contributes to the performance of
JSEARCH. In the bottom left, we compare JSEARCH to pfsearch and in the bottom right to hmmsearch.

Our results indicate that both hidden Markov models and pro� les perform on average worse on our
evaluation data than JSEARCH and FPS. The poor performance comes a little bit as a surprise since both
are very popular methods for homology detection. However, other evaluation studies (Grundy, 1998) came
to similar conclusions. These results need to be interpreted with care. It is important to note that Fig. 6
shows only the average performance of the methods. Table 1 shows the 56 test sets from the evaluation data
set with their superfamily and excluded test family names. One observes several cases where the hidden
Markov models give better results than the jumping alignments and others where the opposite holds.

FIG. 6. Comparison of the overall performance of the jumping alignment algorithm and four other methods. The
cut-off c is plotted versus the percentage of test sets with a median FP-count smaller or equal to c. The solid line in
all plots shows the performance of JSEARCH with optimized jump costs. The dashed line represents JSEARCH with
in� nite jump costs (top left), family pairwise search using the Smith-Waterman algorithm (top right), PFSEARCH
(bottom left), and HMMSEARCH (bottom right). The dotted line in the top right � gure shows the performance of
family pairwise search using BLAST.
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Table 1. The 56 Test Sets from our Evaluation Data and the Respective Med-FP-Counts for FPS in
the Smith-Waterman Variant (a), FPS in the BLAST Variant (b), pfsearch (c), hmmserach (d), JSEARCH

(e), and JSEARCH with In� nite Jump Cost (f)a

Size A B C D E F

PH domain-like

1 Phosphotyrosine-bindingdomain (PTB) 5 0 1561 970 993 1495 1395
2 Pleckstrin-homology domain (PH domain) 8 83 87 1227 834 14 8

gamma-Crystallin-like

3 Crystallins/Ca-binding development proteins 11 190 131 1767 131 45 43

alpha/beta-Hydrolases

4 Serine carboxypeptidase 5 10 2 168 63 25 60
5 Pancreatic lipase, N-terminal domain 6 13 214 348 318 70 4
6 Fungal lipases 8 0 0 292 19 16 3

Scorpion toxin-like

7 Plant defensins 5 39 57 176 14 0 0
8 Long-chain scorpion toxins 10 0 0 3 0 0 0
9 Short-chain scorpion toxins 23 0 0 706 13 28 40

Ribonuclease H-like

10 DnaQ-like 3’-5’ exonuclease 5 67 1522 227 343 139 68

Actin-like ATPase domain

11 Hexokinase 7 147 592 707 499 694 514
12 Succinyl-CoA synthetase domains 11 50 301 659 395 850 766

FAD/NAD(P)-binding domain

13 FAD-linked reductases, N-terminal domain 9 0 19 173 3 25 33
14 FAD/NAD-linked reductases, N-terminal and central domains 26 15 82 916 860 105 32
15 Succinate dehydrogenase/fumarate reductase N-terminal domain 5 1 0 103 3 0 0

Concanavalin A-like lectins/glucanases

16 Xylanase/endoglucanase 12 8 155 57 703 166 251 399
17 Legume lectins 22 479 1172 583 476 221 349
18 Galectin (animal S-lectin) 8 2039 2065 1226 1154 1135 1378

Cytochrome c

19 monodomain cytochrome c 32 26 10 1305 340 7 9

2Fe-2S ferredoxin-like

20 2Fe-2S ferredoxin-related 14 0 0 1528 2 0 0
21 2Fe-2S ferredoxin domains from multidomain proteins 7 0 807 735 15 0 0

Glutathione synthetase ATP-binding domain-like

22 Biotin carboxylase/Carbamoyl phosphate synthetase 5 0 0 539 260 2 23

Multiheme cytochromes

23 Di-heme elbow motif 6 3 2 407 1 0 0
24 Cytochrome c3-like 8 0 1 1324 1180 0 0

Cyclin-like

25 Cyclin 6 855 636 1160 77 205 187

Cystine-knot cytokines

26 Neurotrophin 5 152 91 1145 271 161 133
27 Transforming growth factor (TGF)-beta 6 1165 671 1603 1354 108 93
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Table 1. (Continued)

Size A B C D E F

DNA/RNA polymerases

28 Reverse transcriptase 5 613 1484 123 117 508 842
29 DNA polymerase I 7 289 696 106 116 208 209

(Trans)glycosidases

30 Alanine racemase-like, N-terminal domain 7 382 300 184 22 21 218
31 alpha-Amylases, N-terminal domain 21 43 16 165 184 28 60
32 beta-glycanases 18 235 226 229 179 80 124

Ribulose-phoshate binding barrel

33 Tryptophan biosynthesis enzymes 5 33 90 495 306 52 52

Porins

34 Porin 5 117 25 215 195 14 64

4Fe-4S ferredoxins

35 Short-chain ferredoxins 5 0 0 1447 2 0 0

Glyceraldehyde-3-phosphate dehydrogenase-like, C-terminal domain

36 GAPDH-like 11 1281 278 940 715 623 931

Histone-fold

37 Nucleosome core histones 7 0 0 4 0 0 0

4-helical cytokines

38 Short-chain cytokines 8 792 956 1097 550 315 344
39 Interferons/interleukin-10 (IL-10) 9 108 96 548 177 460 516
40 Long-chain cytokines 10 793 839 425 109 480 714

Viral coat and capsid proteins

41 Animal virus proteins 52 98 88 475 289 63 143

Glucocorticoid receptor-like (DNA-binding domain)

42 LIM domain 11 0 0 2614 1919 0 0
43 Nuclear receptor 9 50 435 996 103 293 611

lambda repressor-like DNA-binding domains

44 Phage repressors 6 980 0 575 92 49 46

Trypsin-like serine proteases

45 Eukaryotic proteases 61 0 0 129 0 0 0

Thioredoxin-like

46 Thioltransferase 11 0 0 1741 139 0 0
47 Glutathione S-transferases, N-terminal domain 22 1877 1862 2164 2142 1589 1744
48 Glutathione peroxidase-like 5 1469 2202 526 375 81 155

Metalloproteases (“zincins”), catalytic domain

49 Matrix metalloproteases, catalytic domain 10 0 0 879 703 0 0

EF-hand

50 S100 proteins 6 0 0 1482 303 0 0
51 EF-hand modules in multidomain proteins 5 167 688 930 6 410 271
52 Parvalbumin 8 0 0 1138 19 0 0
53 Calmodulin-like 26 1 3 646 0 0 0

PLP-dependent transferases

54 AAT-like 9 159 205 86 39 0 4
55 Cystathionine synthase-like 6 403 793 93 10 6 63
56 omega-Amino acid:pyruvate aminotransferase-like 12 450 677 77 8 1 13

aAbove a block of test families, the name of the corresponding superfamily is given.
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There are also test sets where FPS methods seem to be the optimal method. In the overall evaluation of
all 56 test sets, Figure 6 shows that jumping alignments compare favorably to hidden Markov models.

4. DISCUSSION

We have developed a new dynamic programming algorithm for detecting remote families of a given
protein superfamily. The general idea is to exploit both horizontal and vertical information of a multiple
alignment in a well-balanced manner. We call this algorithm the jumping alignment algorithm. Our per-
formance evaluation shows that it can compete with such established methods as pro� les, pro� le hidden
Markov models, and family pairwise search.

The idea of jumping alignments might suggest that remote homologues frequently are chimera of the
other members of a protein family. Only a few of the data that we have examined, however, seem to support
this conjecture. Therefore, we would like to stress that this view is not our main emphasis. Our arguments
are more methodical. They are based on the hopping effect and how it causes noise in database searches.

In our setting of searching protein databases for remote homologs of a given protein superfamily, we
use the jumping alignment score as a measure of � t. We could also trace back the jumping alignment path,
and our program actually allows one to do so. That would provide us with a new multiple alignment with
the candidate sequence as an additional sequence aligned to the query alignment. However, this is only of
interest if the candidate sequence belongs to the query superfamily. Our intention, in contrast, is to decide
whether it belongs to the query.

Jumping alignments balance the horizontal and the vertical information of a multiple sequence alignment.
However, this is done locally. When enlarging the alignment, the jumping alignment algorithm takes both
a horizontal look at the next residues in the reference sequence as well as a vertical look at alternative
residues in the current position in other sequences. The method cannot cope with long range correlations
of residues that are in spatial vicinity in the folded protein.

It is instructive to look at the two extreme cases where one chooses either zero or in� nite jump costs.
Zero jump costs refer to a purely vertical point of view as implemented in pro� le search methods, and
in� nite jump costs refer to a purely horizontal point of view like in family pairwise searches. A combination
is only given for intermediate jump costs. In our evaluations, zero jump costs performed signi� cantly badly
(data not shown). There are two explanations for the failure of the algorithm for this choice of parameters.
First, the method is a very crude version of a pro� le search. The established pro� le search methods are
much more elaborate using sequence weighting and Bayesian estimators for the amino acid distribution
at each position. Furthermore, the pro� le approach is restricted to conserved blocks of a protein family.
In contrast to zero jump costs, in� nite jump costs perform comparatively well. In this case, the jumping
alignment algorithm still exploits information on expected gap positions, while vertical information is
completely ignored.

The jumping alignment score is a local alignment score. As in the case of pairwise local alignments, we
face the problem that when searching a database, long database entries have a higher chance of obtaining
a high score than do short ones, even if they are not related at all; see, for example, Karlin and Altschul
(1990), Waterman and Vingron (1994), or Spang and Vingron (1998). In addition, we expect that phase
transition laws exist for the jump costs as well as for the gap costs; compare Arratia and Waterman (1994).
However, the setting seems to be much more complicated than in the case of pairwise sequence alignments.
Simulations for every individual query alignment should be appropriate to derive the parameters for length
correction, the distribution of scores, and the phase transition lines. In addition to the length normalization,
this kind of statistical analysis would yield practical p-values that indicate the statistical signi� cance of a
jumping alignment score. However, this work remains to be done.
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