Andrzej Pietruszczak · Mateusz Klonowski · Yaroslav Petrukhin, Nicolaus Copernicus University in Toruń · Nicolaus Copernicus University in Toruń · Lomonosov Moscow State University

SIMPLIFIED KRIPKE STYLE SEMANTICS WITHOUT POSSIBLE WORLDS FOR SOME MODAL LOGICS

A history of Kripke style semantics dates back to Kripke's paper [1]. His approach introduced in [1] has some important differences from its later version presented in classical works [2, 3, 4]. First of all, in [1] Kripke dealt with **S5** only. To be more exact, with its first-order extension. Second, he did not use the accessibility relation. Thirdly, Kripke interpreted a set of all possible worlds as a set of all valuations of a formula φ . In fact, he could not postulate possible worlds and just use the notion of valuation. In [2, 3, 4] Kripke extended his approach for other systems of modal logics, using the notion of accessibility relation and another interpretation of possible worlds. The following problems were left open:

(I) Whether its possible to present Kripke style semantics *without the accessibility relation* for modal logics which differ from **S5**?

(II) Whether its possible to present Kripke style semantics such that a set of all possible worlds is a set of all valuations of a formula φ for modal logics which differ from S5?

The positive answer to question (I) was given by Pietruszczak [5]. He introduced the notion of *simplified Kripke style semantics*. The pair $\langle W, A \rangle$ is said to be a *simplified frame* iff "W is a non-empty set of worlds and $A \subseteq W$ (A is a set of common alternatives to all worlds from W)" [5, p. 165-166]. As follows from [5], modal logics **K45**, **KB4**, and **KD45** are determined by some classes of simplified frames.

In this report, we give the positive answer to question (II). We introduce the notions of *valuational semantics* and *valuational model*.

Let \mathfrak{L} be a modal language with an alphabet $\langle \{p, q, r, p_1, \ldots\}, \neg, \supset, \Box, (,) \rangle$ such that p, q, r, p_1, \ldots are atomic (propositional) variables, \neg and \supset are negation and implication, respectively, \Box is a necessity operator. A possibility operator \Diamond is defined as an abbreviation for $\neg \Box \neg$. The set of all \mathfrak{L} 's formulas is denoted by For. At (φ) is a set of all φ 's atomic variables, where $\varphi \in$ For.

Following [2], we define a Kripke model as a quadruple $\langle W, a, R, v \rangle$ such that W is a nonempty set of possible worlds, $a \in W$ is a distinguished possible world, $R = W \times W$ is the accessibility relation on W, and v is a valuation such that $W \times \operatorname{At}(\varphi) \longrightarrow \{0, 1\}$, where $\varphi \in \operatorname{For}$. A valuation v is extended to a valuation $V^{\mathsf{v}} \colon W \times \{\varphi\} \longrightarrow \{1, 0\}$ in a standard way.

Simplified model is a quadruple $\langle W, a, A, v \rangle$ such that $\langle W, a, A \rangle$ is simplified frame and $v \colon W \times \operatorname{At}(\varphi) \longrightarrow \{0, 1\}$, for each $\varphi \in$ For. A valuation v is extended to a valuation $V^{\mathsf{v}} \colon W \times \{\varphi\} \longrightarrow \{1, 0\}$ in the following way: V^{v} preserves all classical conditions for \neg and \supset , moreover, for each $\varphi \in W$ and $w \in W$, $V(\Box \varphi, x) = 1$ iff $\forall_{y \in A} V(\varphi, y) = 1$.

Valuational model received from Kripke model $\mathfrak{M} = \langle W, a, R, \mathsf{v} \rangle$ for $\varphi \in$ For is a triple $\langle W_{\mathfrak{M}}, a_{\mathfrak{M}}, R_{\mathfrak{M}} \rangle$ such that $W_{\mathfrak{M}} = \{\mathsf{v}_x \mid x \in W\}$, where $\mathsf{v}_x(\psi) = \mathsf{v}(x, \psi)$, for each $\psi \in \mathsf{At}(\varphi)$ and $x \in W$; $a_{\mathfrak{M}}(\psi) = \mathsf{v}(a, \psi)$, for each $\psi \in \mathsf{At}(\varphi)$; $R_{\mathfrak{M}} \subseteq W_{\mathfrak{M}} \times W_{\mathfrak{M}}$ is defined as follows, for each $\mathsf{x}, \mathsf{y} \in W_{\mathfrak{M}}$: $\mathsf{x}R_{\mathfrak{M}}\mathsf{y}$ iff $\exists_{x,y \in W}(\mathsf{x} = \mathsf{v}_x \text{ and } \mathsf{y} = \mathsf{v}_y \text{ and } xRy)$.

Note the notion of a received relation $R_{\mathfrak{M}}$ is useful only if we are able to show that the following condition is fulfiled:

$$\forall_{x,y\in W} (\mathsf{v}_x R_{\mathfrak{M}} \mathsf{v}_y \text{ iff } xRy). \tag{1}$$

We show that condition (1) is satisfied in the case of modal logics **S5**, **K45**, **KB4**, and **KD45** only. Moreover, all these logics have simplified semantics, therefore, $R = W \times A$. Thus, we prove that modal logics **K45**, **KB4**, and **KD45** are determined by some classes of valuational

Логико-философские штудии. ISSN 2223-3954

models such that they are special kind of simplified models which have a set of all valuations of a formula φ instead of a set of all possible worlds.

Moreover, we present simplified and valuational semantics for some regular modal logics, including **CB4**, **C45**, and **E5** (in Kripke's sence [3]).

Acknowledgments. The research of Andrzej Pietruszczak was supported by funds of the National Science Centre, Poland, grant No.: 2016/23/B/HS1/00344, while research of Mateusz Klonowski was supported by funds of the National Science Centre, Poland, grant No.: 2015/19/N/HS1/02401.

References

- [1] Kripke S. A Completeness Theorem in Modal Logic. *The Journal of Symbolic Logic* 24(1), 1959, pp. 1–14.
- [2] Kripke S. Semantical analysis of modal logic I. Normal modal logic propositional calculi. *Zeitschr. 1. math. Logik und Otundlagen d. Math.*, 9, 1963, pp. 67–96.
- [3] Kripke S. Semantical analysis of modal logic II. Non-Normal modal propositional calculi. *Symposium on the Theory of Models*, North-Holland Publ. Co., 1965, pp. 206–220.
- [4] Kripke S. Semantical considerations on modal logic. *Acta Philosophica Fennica*, 16, 1963. pp. 83-94.
- [5] Pietruszczak A. Simplified Kripke Style Semantics for modal logics K45, KB4 and KD45. *Bulletin of the Section of Logic* 38(3/4), 2009, pp. 163–171.