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\bstract

The electiome and stiuctmal properties of Mgh CaS. S18 and Ba$ iocksalt stuctre aie studied with the fivst pumcple tull pote

tmenized Augmented Plane Wave (FP-LAPW) method The exchange correlation potential was calculated within the Generalized Gradient
\pproximation (GGA) using Perdew-Burke-Einzerhol (PBE-GGA) schome The scalar relativistic approach was adopted for the valence states,
whereas the core states arc treated fully iclativistically Encrgy band structures  density of states and stiuctuial parameters of both compounds aie
pesented and discussed i context with (he available theorenical and expenimental studies Qur results are good and show 1easonable agreement with
praious 1esults even though safficient expenimental values are not avarlable for more 1eahsiic compaiison
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I Introduction

The monosulphide of Mg, Ca, St and Ba crystalhze in the rocksalt
\CT(B1) stiucture and are very exciting materials due to thewr
ueat technological importance which range fiom catalysis to
mictoelectronies  They have been proposed as good candidates
the areas of multicolor thin-film electroluminscent and magneto
opical devices [1]. However, monosulphides are used m X-ray,
wthode and photoluminophors, with a bright glow, a great
wpacity and a bright IR radiation [1-3] In addition, these
monosulphides are widely utilized 1n optics, optoelectronics,
llevision engineering, etc Therefore due to the vast
lechnological relevance of these monosulphides, they are widely
vestigated both theoretically and experimentally [4-12] Despite
the works previously done in this area, 1t has not been possible
Wiully explain the physical properties of these monosulphides
Without proper understanding of their electronic structure

In order to understand the behaviour of these
monosulphides, the electronic band structure of CaS, SrS and
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Full-Potential Tmeanzed Augmented Plane Wave (FP-LAPW) Density Functional Theory (DFT). Local Density Approximation

Ba$ was calculated by Linear Augmented Plane Waves (ILAPW)
[7] The Tight-Binding Lineat Mutfin-Tin Orbital (TB-LMTO)
method was utilized 1n description of the electronic band structure
of Mg$ and MgSe and the density of state of the sulphides [ 13

Later, the electionic structure of the oxides and sulphides of
Mg, Ca, Sr was computed with the use of self-consistent Hartree-
Fock method including correlation [14]  Also the self-consistent
Orthogonalised Linear Combination of Atomic Oibitals
(OLL.CAO) method in the local density approximation (LDA) was
used in the calculation of the band structure of alkali earth metals
of sulphides [15] Few years ago, schematic band structure
models were used for MgS, CaS and MnS [16] Recently, the
Full-Potential Linear Muffin-Tin Orbitals (FP-LMTO) method
augmented by a Plane Wave (PLW) basis, was utilized in the
study of structural and electronic properties of Mg$ and MgSe
[17] Drief and coworkers [18], carried out tirst principle
calculation of structural, electronic, elastic and optical properties
of MgS, MgSe and MgTe in the framewor k ot density functional
theory within the local density approximation using the Full
Potential Linearized Augmented Plane Wave (FP-LAPW)
method  Also, projected density of states in the conduction
band of CaS and MgS was used in the electronic structure
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calculation [8). Even though many workers had in the past used
Density Functional Theory (DFT) in the calculation of the
electronic structure of these monosulphides, 1t 1s still necessary
to employ a first principle approach n order to display some
teatures of the electronic and structural properties of these
materials

Therefore, the present study will adopt the tirst principle
Full Potenuial Lineanzed Augmented Plane Wave (FP-LAPW)
method [ 19] using the Density Functional Theory (DFT) in its
Laocal Density Approximation (LDA) In this approach, the
exchange and correlation potential 15 incorporated n the
Generalized Gradient Approximation (GGA) using the scheme
of Perdew-Burke-Ernzerhof (PBE-GGA) |20]
artanged as follows: Section 2

This paper 1s
will brietly describe the
computational technique adopted in the calculation of the
electronic properties of MgS, CaS. SrS and BaS In Section 3,
the results obtained will be used to compare with the previous
theoretical and experimental studies  The conclusion ot this
work will be drawn 1n Section 4

2. Method of calculation

In this section, we present the computational technique in the
study of the electronic properties of monosulphides MgS, CaS,
SrS and BaS which crystallize in the rocksalt structure Here, we
used the Full Potential-Lineanized Augmented Plane Wave (FP-
LLAPW) method within the Density Functional Theory 1n its
Local Density Approximation The calculation 1s done with
WIEN 97 package developed by Blaha eral [21] In this package,
a basis set 1s obtained by dividing the umt cell into non-
overlapping atomic spheres and an interstinal region Within
the atomic sphere, we used a linear combination of radial
tunctions multiphed by spherical harmonics, whereas within the

Table 1 Structural parameters of MgS. Ca8. SrS and BaS

Present work  Other calculated values

Mg$

a(hy 5 2402 5 142(25] 5203(15]
B(Mbar) 0742 0 R28([25) 0777126}
B 42702 3 98[26] 15[26]
(a8

a(A) 57242 5 69(15] 3 8[8]
H(Mbar) 0569

B 41778

a(A) 0 0658 6 076[30] 5774[34]
B(Mbar) 0469 047 [30) 062 [34]
B 5 1306 419 [30]

Bas

a(A) 64312 6 294(35)

B(Mbar) 0448 0 524[35] '

[} 513099

nterstitial region, we used a plane wave expansion which .
augmented by an atomic-like function in every atomic sphere
In this calculation, the exchange and correlation potenyal
incorporated by using the scheme of Ceperly-Alder as wy,
parameterized by Perdew-Zunger [22] and 1n GGA, by using the
scheme of Perdew-Burke-Emzerhof (PBE-GGA) [20).

In the present calculation, therefore, the sphere radit of Mg,
Ca, Sr and Ba are chosen as 2 3,2 8.2 7 and 2 8 atomic umy,
respectively, whereas the sphere radn for the corresponding §
are 2 4 atomic units  In these spheres, the charge density and
potential are expanded in terms of crystal harmonics up 10
angular momenta | = 6. We carried out the Brilloun zonc
integration by using 100 K-points in the irreducible Brilloum
zone The convergence was obtained at R, K, =9, wheie
R, 15 the atomic sphere radi and K, 15 the interstitial plane
wave cut-off '

3. Results and discussion

In this work, the structural parameters of MgS, CaS, Si$ and
Ba$ were obtained by calculating the total energy at various
values of the lattice parameters around the experimental values
This was carried out within the FP-LAPW method with GGA
scheme without the spin orbit couphing effects By fitung the
Murnaghan equation of state [23] to total ener gies ver sus lattice
parameters, we obtamned the equilibruim lattice parament (a,, )
bulk modulus B and pressure derivative of bulk modulus 8
which are compared with previous theoretical and experimental
studies in Table | Here, present results for MgS, Ca$S, S18§ and
BaS$ are compared with previous experimental and theoretical
results The band structures of MgS, CaS, StS and BaS in rocksalt
structure are shown in tigures 1, 2, 3 and 4 respectively while
the density of states for MgS, CaS. SrS. and Ba$ are shown in

Expenment
5 135[26] 5 244[17) 5 106{13) 52033124}
08511171 0819(13]
3077117) 403113)
1 75(6] 5 690(24)
6 02([33]
0 58[33]
6 387[27]
0.394([27)
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Table 2. Energy band gaps (eV) for MgS, CaS$. SrS and BaS

Present Work  FP-LMTO LDA Other Calculated values
MgS 2794 276 2 657 27014] 27013) 4 59[15] 4 0(8]
Cas 24 32115] 1 5(8] 21317}
SIS 2 484 230 245[30)
BaS 22097 23128) 21[29)
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Figure 4. Band structure of BaS
figures 5, 6,7 and 8. In MgS, valence band maximum occurs at

the T point. This observation is in agreement with earlier works  as well as in the self-consistent Hatree-Fock method including
Uing the Tight Binding Linear Muffin-Tin Orbital method [13]  correlation [14]. Similarly, for the CaS, SrS and BaS, the valence
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band maximum occurs at the G point. Thus, all four compounds,
MgS, CaS, SrS, and Ba$, are found to be indirect band gap
materials with the band gap occurring between G and X point
Thus result 1s in agreement with earlier calculation by the LAPW
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method [7] The eneigy band gaps obtaned from Mgs. {
SrS, and BaS are given in Table 2 The values are compaied 4 i
previous studies It 1s seen that our results agree favourdbly
with past results

3. Conclusions

In this paper, we have used the hirst principle Full Potenudl
Lineanzed Augmented Plane Wave (FP-LAPW) method using
the Density Functional Theory (DFT) in its Local Density
Approximation (LDA). The exchange and corielation poientil
within the LDA 1s calculated by adopting the scheme of Ceperley
— Alder as parameterized by Perdew — Zunger and within th¢
Generalized Gradient Approximation (GGA) using the scheme
ot Perdew ~ Burke ~ Einzerhof (PBE - GGA) The wa
relativistic approach was adopted for the valence state whe
the core states are treated fully relativistically In this way w(
have calculated the equilibruim lattice parameter () bt
modulus B, pressure derivative of bulk modulus B and enct
band gaps for MgS, CaS, SrS and BaS The results obtun
show that MgS, CaS, SrS and BaS are indirect band gap matct .
In this work. our results are comparable with the values oblame
with other techniques even though efidugh experimental value
are not available for more realistic comparison
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