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\h slru il . Inspile of the remarkable lescmbluncc in between a black hole and an ordinary thermodynamic system, black holes never 
ijili.m- .iccoiiling to the classical laws of physics The intriMluction of quantum eflects radically changes the scenario Black holes radiate 
iloL lo qii.mliiin effects Such radiation is known us Hawking radiation and the corresponding radiation temperature is referred as Ihc 
|l,i\skmt' icmpcralurc Observational manircstulion of Hawking effect for astrophysical black holes is beyond the scope of present day's 
upcrimcnuil techniques Also Hawking quanta may posses trans-Planckiun frequencies, and physics beyond the Planck scale ts not well 
uiidLisiDod Ihc above mentioned dilficuluc!i with Hawking effect were the motivations to search for an analogous version of Hawking 
ijilMiion ami the tltcory of acousiic/unalogue black holes were thus introduced

Classical black hole analogues (alternatively, the analogue systems) are fluid dynamical analogue of general relativistic 
111,Ilk holes Such analogue eflects may be observed when the acoustic perturbation (sound waves) propagates through a classical dissipation- 
ii'.s ir.in'.onic tiuid The acoustic hon/on, which resembles the actual black hole event hon/-on in many ways, may be generated at the 
innsonic poini in the lluid How Acoustic horizon emits acoustic radiation with quasi thermal phonon spectra, winch is analogous to the , i i U u l  Hawking radiation

Iransonic accretion unto astrophysical black holes is a very interesting example of classical analogue system lound 
luiiurallv in the Universe An accreting black hole system as a classical analogue is unique in the sense that only lor such a system, hoih kind 
>>l hoii/ons, Ihe elecrroinagnctic and Ihe acoustic (generated due to Iransunicity of accreting fluid) arc umulUmeou\ty present in the some 
ivMcm Heiue, accreting astrophysical black holes are the must ideal candidate to study theoretically and to compare the properties of 
ihisi' iw(i dillcreni kind of horizons Such a system is also unique in the aspect that accretion onto the black holes represents the only 
ilasMcal analogue system foiiiid in the nature so fur, where the analogue Hawking temperature may exceed the actual Hawking temperature 
In this leview aiiicic it will be demonsiruicd that, in general. Ihe transonic accretion in astrophysics can be considered as an example of 
ilu’ iliibiLal analogue gravity model
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Black holes

Hijck holes are the vacuum solutions o f Einstein's field  

-ijuaiions in general relativity. Classically, a black hole is 

‘̂ onccived as u singularity in space time, censored from  

iIk rest of the Universe by a mathematically defined one 

surface, the event horizon. Black holes are completely 

<^hauaerized o n ly  by three e x te rna lly  observable  

pjiamcicrs, the mass o f the black hole M b h , the rotation 

and charge Qa//.- A ll other informations about 

'he mailer which formed the black hole or is falling into it,

1
^''iappear behind the event horizon, are therefore  

permanently inaccessible to the external observer Thus 

'he space time metric defining the vacuum exterior o f a

classical black hole is characterized by M b h . J b h  and Q bh 

only The most general fam ily o f black hole solutions have 

non zero values o f M bh. J hh und Q bh (rotating charged 

black holes), and are known as the Kerr-Newman black 

holes. The follow ing table classifies various categories o f 

black hole solutions according to the value o f M b h , J b h  

and Q b h -

The Isralc-(^arter-Robinson theorem (Israle 1967; Carter 

1971; Robinson 1975), when coupled with Pnee’s conjecture 

(Price 1972), ensures that any object w ith event honzon 

must rapidly settles down to the Kerr metric, radiating 

away all its irregularities and distortions which may deviate

© 2 0 0 6  lA C S



8 8 8 Tapwi Kumar Da\

them from the black hole solutions exactly described by 

the Kerr metric

Tabic 1. CtdssiriciiUun ol black holes accoidiii ĵ  ̂ U) Ihc valus ol iis mass, 
angulai momentum and charge

exactly which ol the above mentioned processe.s

Types ol b lii^  hole AiipiilJi Charge
momentum

Mill!'  n lull * 0 Qiii, * 0

•iiid

Kcrr-Newmun 
(Newman ct al iy(i‘5j

KciI (Kerr 1963) Muii-'^l Quit =

Russni-r Noidslitmi M«//M) luii ~ * 0
(Reissncr 1916. Wcyl 1917.
Nordsirdm 19 IS)

Schwai/schilil Mmi 0 Jmi -  0 Q nn = 0
(Schwar/schild 1916)

In astrophysics, black holes are the end point ol 

gravitational collapse o f massive celestial objects The 

Kerr-Newman and the Rcissnci-Nordstrom black hole 

solutions usually do not play any significant role in 

aslrophysical context Typical iistiophysical black holes 

aie supposed to be immersed m an charged plasma 

environment Any net charge Q hii w ill thus rapidly be 

neuLrilized by the ambient magnetic held The lime scale 

tor such charge relaxation would be roughly o f the Older 

o f l i s c c  ( M ( j  being the mass o f the Sun,

see, e g ,  Hughes 2005 tor further details), which is 

obviously far shorter compared to the rather long timescale 

relevant to o b s e r v i n g  rno.si ol the properties ot the 

astrophysical black holes. Hence the Kerr solution provides 

the complete description ol most stable asliophysical black 

holes However, the study ol Schwarzschild black holes, 

although less general compared to the Kerr type holes, is 

still greatly relevant m astrophysics

Astiophysical black holes may be broadly classified 

into two catcgorie.s, the stellar mass {M n/ j  -  a few A^q ), 

and super massive { M m i  >  10 ’̂ M p) black holes While the 

birth history ot the stellar mass hlack holes is theoretically 

known with almost absolute certainty (they are the cndfXJini 

ol the gravitational collapse o f ma.ssive stal^). the lormation 

scenario ot the supermassivc black hole is noi unanimously 

understood. A super massive black hole may form through 

the m onolithic collapse ol early proto-spheroid gaseous 

mass originated al the lime ol galaxy formation Or a 

number o f slellar/inlermediate mass black holes may merge 

to form it Also the runaway growth of a seed black hole 

by accretion in a specially favoured high-densily  

environment may lead to the torrnaiion o f super massive 

black holes However, i( is yet to be well understood

toward the formation o f super massive black holes 

e g ,  Rees 1984, 2002, Haiman &  Quataert 2(K)4 

Volontcii 21K)6, for comprehensive review on the formation 
and evolution o f super ma.ssive black holes

Both kind of aslrophysical black holes, the stellar 

and super massive black holes, however, accrete mattir 

Irom the surroundings Depending on the intrinsic an{*ui.ir 

momentum content o f accreting material, eithei sphericjiK 

symmetiic (zero angular momentum flow  o f matiei) 

axisymmctiic (matter llow  w ith non-zero finite Jiiijnijr 

momentum) llow geometry is invoked to study an accretin' 

black hole system (see the excellent monographs by 

King &  Rame 1992, and Kato, Fukue &  Mmeshige I9‘jh 

for details about the astrophysical accretion processes) 

Wc w ill get black to the accretion process in greater di-Ui! 

ill subsequent sections

2. Black hole thermodynamics

Within the framework ol purely classical physics. bLui 

holes m any diffeomorphism covariant theory ol gi,mi\ 

(where the field equations directly follow  lioni ik 

dilfeom oiphism  covariant Lagrangian) and in gcnci.il 

ic la tiv ity , mathematically resembles some aspeth oi 

classical thermo dynamic systems (Wald 1984, 1994, 2001 

Keifer 1998, Brown 1995, and relerenccs therein) lit carO 

.seventies, a .senes o f influential works (I3ckcnstcin 1972 

1972a, 1973, 1975; Israel 1976. Bardeen, Cartel &  Hawkini; 

1973, sec also Bckciistein 1980 for a review) revealed llic 

idea that classical hlack holes in general relativity, i)hc\ 

certain laws which beui remarkable analogy to the ordiiun 
laws ol classical thermodynamics Such analogy biMwccii 

black hole mechanics and ordinary thermodynamics (‘ lln! 

Cjcnerali/cd Second Law ', as it is customarily called) 

to the idea o f the ‘surface gravity’ o f black h o le ' ,  K  wlmli 

can be obtained by computing the norm o f the gradient ol 
the norms o f the K illin g  fields evaluated at the .slaiionan 

black hole horizon, and is found to be constant on the 

horizon (analogous to the constancy o f temperature / on 

a body in thermal equilibrium  -  the ‘Zeroth Law ol 

classical thermodynamics) Also, k  =  0  can not bt 

accomplished by performing finite  number o f operations 
(analogous to the ‘weak version’ o f the third lu'' 

classical thermodynamics where temperature o f a sysicoi 

cannot be made to reach al absolute zero, see discussion'

' The surfiice gruviiy may be derined a.s Ihe uccelcraiion 
by red-sliifl ol light rayi pa«!sing close lo the hori/on (see. '  ̂
2003. and icfercnces therein Tor furlhcr dciuils )
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,,i Keitcr 1998). I l  was found by analogy v ia  black hole 

Ĵ„Jqll̂ nL■ss theorem (see, e  g . ,  Heusler 1996, and references 

ilicicin) that the role o f entropy in classical thermodynamic 

i'' played by a constant multiple o f the surface area 

pi j  jl.issical black hole

1 Hjwking radiation
ri'scmblancc between ihe laws o f  o rd inary  

iltL-rnioclynamics to those o f black hole mechanics were, 

hiAu'vci, iniiially regarded as purely tonnal This is because, 

tliL' plivsical temperature o f a black hole is ab.soluic zero 

>CL' ( i; Wald 2001) Hence physical relationship between 

tliL Mirl.iL-C gravity o f the black hole and the temperature 

p1 .1 u.issical thermodynamic system can not be conceived 

This liirihci indicates that a classical black hole can ncvei 

uilMlc However, introduction o f quantum effects might 

Imiii' .1 ladical change to the situation. In an epoch making 

[u|)Li piihlished in 1975, Hawking (Hawking 1975) used 

qii.inuim held theoretic calculation on curved spacetime to 

siimv ilut the physical temperature and entropy o f black 

!h 1l ha\c finite non-zero value (see Page 2004 and 

hiiliii.niahhan 2(M)5 for intelligible reviews o f black hole 

VI rmodyiumics and Hawking radiation) A  classical space 

viiL- dcsLiibirig gravitational collapse leading to the 

im.iiion nl a Schwarzschild black hole was assumed to 

'liL ilvnamical back ground, and a linear quantum field, 

iii.ill> in It’s vacuum state prior to the collapse, was 

nsulcrcil to propagate against this background The 

aimi) expectation value ol the energy momentum tensor 

liiis lield lurncd out to be negative near the horizon. 

IIS phenomenon leads to the Ilux o f negative energy into 

i hole Such negative energy flux would decrease the 

ass ol Ihe black hole and would lead to the fact that the 

lanuim stale o f the outgoing mode o f the field would 

'Midiri panicles^. The expected number o f such particles 

oLild coirespond u.i radiation from  a peiicct black body 

hniie size Hence the spectrum o f such radiation is 

i-rmal ni nature, and the temperature o f such radiation, 

IV Hawking temperature T n  from a Schwarzschild black 

, (.an be computed as

1), -  -
hc^ 

^ Itk uG M n.

The semi classical description for Hawking radiation 

treats the gravitational field classically and the quantized 

radiation lield satisfies the d'Alem bert equation. At any 

time, black hole evaporation is an adiabatic pnx:ess i f  the 
residual mass ol the hole at that time remains larger than 
the Planck mass

4. Toward an analogy of Hawking effect
Substituting the values o f the fundamental constants in 

eq. ( 1 ), one can rewrite 7)/ lor a Schwarzschild black hole 
as (Heifer 2003)

M
Tfj ~ 6  2 x l 0 ~^| — — Degree Kelvin. (2)

It IS evident from the .ibovc equation that for one solar 

mass black hole, the value of the Hawking temperature 

would be too small to be expcnmenially detected A  rough 

estimate shows that 7’̂  for stellar mass black holes would 

be around 10  ̂ times colder than the cosmic microwave 

background radiation The situation for supci massive 

black hole w ill be much more worse, as T//  MM an  

Hence, T,/ would be a measurable quantity only for 

primordial black holes with very small siẑ e and. mass, i f  

such black holes leally exist, and i f  instruments can be 

fabricated to detect them 'fhe lower bound o f mass lo r 

such black holes may he estimated analytically The time- 

scale T  (in years) over which the mass o f the black hole 

changes significantly due to the Hawking’s process may 

be obtained as (Heifer 2003)

T  - ^  I l( / ’‘‘ Years. (3)

( 1 )

I"-".’ IS the universal gravitational constant, c, h and 

, Ju* Ihe velocity o f light in vacuum, the D irac’s constant 

iIk- B o ltz m a n n ’s constant, respectively

ii l in d  descnplion of Ihe physical mlerprelalion of Hawking 
. . Wald 1994. Keifcr 1998, Heifer 2003, Page 2004

abhun 2005

As the above time scale is a measure o f the lifetime o f the 

hole iLsclf, the lower hound for a primordial hole may be 

obtained by setting T  equal to the present age o f the 

Universe Hence, the lower bound for the mass o f the 

primordial black holes comes out to be around 1 0 '® gm 

The size o f such a black hole would be o f the order o f 

10"'^ cm and the corresponding T „  would be about 10" 

K, which IS comparable with the macroscopic fluid  

temperature o f the freely fa lling  matter (spherically 

symmetnc accretion) onto an one solar mass isolated 

Schwarzschild black hole (see section 12.1 for further 

details) However, present day instrumental technique is 

far from efficient to detect these primordial black holes 

with such an extremely small dimension, i f  such holes exist 

at all in first place. Hence, the observational manifestation 

o f Hawking radiation seems to be practically impossible.
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On ih f olhci hand, due lo ihc infin iie rcdshift caused 

by the event hoii/on, the initial configuration of the 

emergciil Hawking Quanta is supposed to possess trans- 

Planckian frequencies and the corresponding wave lengths 

arc beyond the Planck scale Hence, low energy elfective 

theories cannot sell consistently deal with the Hawking 

ladialioii (see, e f> . Parentani 2002 lo r further details) 

Also, Ihc nature of the fundamental degrees of freedom 

and the physics o f such ultra short distance is yet to be 

well understood Hence, some o f the fundamental issues 

like the statistical meaning o f the black hole entropy, or 

the exact physical origin ol the out going mode o f the 

quantum field, lemams unresolved (Wald 2001).

Pei haps the above ineniioncd difficulties associated 

with the lhcoi-y of Hawking radiation served as the principal 

molivalion lo launch a theory, analogous to the Hawking’s 

one, el feels ol which would be possible to comprehend 

llirough relatively more perceivable physical systems The 

theory ol analogue Hawking radiation opens up the 

possibility lo experimentally verily some basic features o f 

black hole physics by creating the sonic horizons in the 

laboratory A number ol works have been carried out lo 

formulate the condensed mattei or optical analogue of 

event horizons’ The theory of analogue Hawking radiation 

may find imporianl uses in the fields ol investigation of 

quasi-noimal modes (Dciti, Cardoso &  Lemos 2004, 

C'ardoso, Lemos &  Yoshida 2(K)4), acoustic super-radiance 

(Basak &  Majumdar 2003, Basak 2(X)5, Lepe &, Saavedra 

2 (X).‘S, Slatyei, & Savage 2(X)5, Cheiiibini, Fedenci &  Succi 

200.^, Kim, Son, &  Yoon 2003; Choy, Kruk, Carrington, 

Fugleberg. Zahn, Kobes, Kunstaticr &  Pickering 2(X)3, 

Fcdcrici, Cherubim, Sucti &  Tosi 2003), FRW cosmology 

(Baicelo, Liberali &  Vissei 2003) inflationary models, 

quantum gravity and sub-Planckian models of string theory 

(Parentani 2(X)2)

'LiiciaiuiL' DM slLidy ol uiuloguc sysicms in condensed mailer or opiics 
aie quiie large in numbcis C'oiulensed mailer or oplical analogue 
svsic-ins di‘snvc llic riglil lo be discussed as separaie review articles on 
Us own In this article, we, by no means, are able lo provide Ihe 
lom plile list ol relcienccs tor theoielical or cxpcrimcnlal works on 

icb Ito ) ha lain ciret
coiulciised miillei or optical systems, readers are refereed lo Ihe 
monograph by Novello Visscr & Volovik 2002, ihe most 
I ompicheiisue lesiew ailicle by Uaicclo, l.ibcraii & Visscr 2005, for 
leview, a greatly eii)oyab|e popular science arliclc publcshcd in the 
Sueiililic fXmerican by Jacobson & Parentani 2005, and to some of 
the represenialive papers like Jacobson & Volovik 1998, Volovik 
m99. 2 0 0 0 , 2001, (laray, Anglin, Cirac & Roller 2000, 2001. Reznik 
:000 Hresik tS: Malncs 2tK)2 ScliUi/hold K  Unruh 2002, SchUlzhold, 
tiimlei <fii Gerhard 2002 l,ennhardi 2002, 200.1, de Lorenei, Klippert 

Obukhov 2001 and Novello, Perez Beigliuffa, Salim, de Lorenci & 
Klippcil 2001 As already mentioned, lliis liM ol relcrenccs. however. . 
IS by no means compleic

For space limitation, in this article, we w ill, how ever 

mainly desenbe the formalism behind the c l a s s i c a l  analogue 

systems. By ‘classical analogue systems’ , we refer to the 

examples where the analogue effects are studied in classical 

systems (fluids), and not in quantum fluids. In the following 

sections, we discuss the basic features o f a classical 
analogue system

5. Analogue gravity model and the black hole analogue
In recent years, strong analogies have been established 

between the physics of acoustic perturbations m an 

inhomogeneous dynamical fluid system, and .some kinunaiic 

Icaiures ol space-time m general relativity. An effective 

metric, referred to us the ‘acoustic metric’ , which describes 

the geometry ol the m anifo ld  in w hich acoustic 

perturbations propagate, can be constructed This effective 

geometry can capture the properties o f curved space-timc 

in general relativity. Physical models constructed utilizing 

such analogies are called ‘analogue gravity models’ (for 
details on analogue gravity models, sec, c.f> the revicii 

articles by Barcelo, Liberati &  Visscr (2(XJ5) and Cardosn 

(2005), and the monograph by Novello, Visser &  Volovik 
(2002)),

One o f the most significant effects o f analogue gravity 

IS the ‘classical black hole analogue’ Classical black hole 

analogue effects may be observed when acoustic 

perturbations (sound waves) propagate through a classical, 

dissipation-lcss, inhomogeneous transonic flu id  Any 

acoustic perturbation, dragged by a supersonically moving 

fluid, can never e.scape upstream by penetrating the ‘sonn. 

surface’ Such a .sonic surface is a collection o f transonu. 

points in space-time, and can act as a ‘trapping’ surface 

for outgoing p h o n o n s  Hence, the sonic surface is actuallv 

an a c o u s t u  h o r i z o n ,  which resembles a black hole event 

horizon m many ways and is generated at the tran.sonic 

point in the fluid  flow  The acoustic horizon is essentially 

a null hyper surface, generators o f which are the acoustic 

null geodesics, i e  the phonons The acoustic horizon 

emits acoustic radiation with quasi thermal phonon spectra 
which is analogous to the actual Hawking radiation The 

temperature o f the radiation emitted from the acoustic 
honzon is referred lo as the analogue Hawking temperature

Hereafter, we shall u.se T/^n lo denote the analogue 

Hawking temperature, and Tn  to denote the the actual 

Hawking temperature as defined in  (1) We shall also use 

the words ‘analogue’ , ‘acoustic’ and ‘sonic’ synonymously 

in describing the horizons or black holes Also the phra.se'' 
‘analogue (acoustic) Hawking radiation/effeci/lempcratuie 

should be taken as identical in meaning w ith the phrase



Astrophysical accretion as an analogue gravity phenomena 891

iiuiopLic (acoustic) radialion/effect/temperature’ . A system 

jnJiiifcsting the effects o f analogue radiation, w ill be termed 

j,  analogue system

1,1 a pioneering work, Unruh (1981) showed that a 

jjcsical system, relatively more clearly perceivable than a 

,|uanmm black hole system, docs exist, which resembles 

ihL black hole as far as the quantum thermal radiation is 

otiHcmecl The behaviour o f a linear quantum field in a 

gravitational fie ld  was sim ulated by the 

|unpacaiion o f acoustic disturbance in a convergent fluid  

)l(,v, In such a system, it is possible to study the effect 

,,i ihL iv.iclion ol the quantum field on it ’s own mode o f 

ninpagiHioii and to contem plate the experim ental 

nu'siigalion o f the thermal emission mechanism  

L Linsiclcimg the equation o f motion for a transonic 

luioliopic molalional fluid, Uniuh (1981) showed that the 

field representing the acoustic perturbation ( / e. the 

l?f('pagalion ol sound wave) satisfies a differential equation 

v\mdi IS analogous to the equation o f a massless scaler 

iiikl pu)p.igating in a metnc Such a metric closely resembles 

i|u‘ SJmar/schild metric near the horizon Thus, acoustic 

pi.^pagalion through a supersonic fluid forms an analogue 

>i! 1. V01U hon/on, as the ‘acoustic horizon’ at the transonic 

poiiii The bchavioui o f the normal modes near the acoustic 

luiii/on indicates that the acoustic wave w ith a quasi- 

iiariihil spcciiLim 'Will be emitted Irom the acoustic honzon 

-iiid the temperature o f such acoustic emission may be 

.aluilaicd as (Unruh 1981)

I cln~ 

47rk„ t , dJ]

considered a general barotropic, inviscid fluid. The acou.stic 

metric for a point sink was shown to be conformally 

related to the Painlevef’-Gullstrand-Lemaftre form o f the 

Schwarzschild metric (Painlevd 1921; Gullstrand 1922; 

Lemaftre 1933) and a more general expression for analogue 

temperature was obtained, where unlike Unruh’s original 

expression (4), the speed o f sound was allowed to depend 
on space coordinates

In the analogue gravity systems discussed above, the 

fluid flow IS non-rclativistic in flat Minkowski space, whereas 

the sound wave propagating through the non-relaiivistic 

flu id  IS coupled to a curved pseudo-Riemannian metric. 

This approach has been extended to relativistic fluids (Bilid  

1999) by incorporating the general relativistic flu id  
dynamics.

In subsequent sections, we w ill pcdagogically develop 

the concept o f the acoustic geometry and related 

quantities, like the acoustic surface giavity and the acoustic 

Hawking temperature

6. Curved acoustic geometry in a flat space-time
Let ^  denote the velocity potential describing the fluid  

flow in Newtonian space-time, 1 e let u = -Vfp; where u is 

the velocity vector descnbing the dynamics o f a Newtonian 

flu id  The specific enthalpy h o f  a barotropic Newtonian 

fluid  satisfies P'h = (J//3) Vp, where p  and p are the 

density and the pressure o f the fluid. One then wntes the 

Euler equation as

(4)
+ h - \ - ^ ( V y / f  + 0  = 0 . (5)

'bcic fi, represents the location o f the acoustic horizon, 

IS the sound speed, wi is the component o f the 

J\n,imical flow velocity normal to the acou.stic horizon, 

I'lii represents derivative in the direction normal to 
ihc .icuuslic horizon

(-=1) has clear resemblance w ith ( 1) and hence Tah 

designated as analogue Hawking temperature and such 

HUiisi-lhermal radiation from acoustic (analogue) black hole 

I'' known as the analogue Hawking radiation Note that the 

speed c\  m Unruh’s original treatment (the above 

'̂ fiuaiion) wa.s assumed to be constant in space, l e . ,  an 

'"oiliermal equation o f state had been invoked to describe
die fluid

Unruh’s work was followed by other important papers 

Ueobson 1991, 1999, Unruh 1995; Visser 1998, Bilid 1999) 

more general treatment o f the classical analogue radiation 

Newtonian flu id  was discussed by Visser (1998), who

where 0  represents the potential associated w ith any 

external driving force Assuming small fluc-tualions around 

some steady background pn ,  p o  and (/o. one can linearize 

the continuity and the Euler equations and obtain a wave 

equation (see Landau &  Lifshitz 1959, and Visser 1998, for 

further detail).

The continuity and Euler’s equations may be expressed

^  + V ( p n )  = 0 ,  
d t

d u
P— - P

d t
V p  +  F

(6)

0 )

with F  being the sum o f all external forces acting on the 

flu id  which may be expressed in terms o f a potential 

F  =  -  p P 0 .  (8)

Eular’s equation may now be recast in the form
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^  ^  u x ( V  X U )  -  p  + ( p j (9)

Next we assume the flu id  to be inviscid, Irroialional, and 

barotropic Introducing ihe specific enlhalpy h, such that

V h  = ^  
P

+ + 0  =  0 
Bt 2

d p u
d t

Eq (10) implies

_  p,
^  ~  " T  “  ~  ■ 

d p  A)

Using this the linearized Euler equation reads

- ^  + ; ^ , + i ( r v / „ ) ^ + 0  = O;
o t  2

(If A

dp dp _  V
P i "  ^  = - ^  Po { d . ¥ i  +  «o )

+ V

Next, we define the local speed o f sound by

c := d p ld p ,

where the partial derivative is taken at constant specirit 
entropy W ith help o f the 4 x  4 matrix

(10) ^P o
- I
- u ( c ! - u h ' (Î i)

and the velocity potential fp f o r  which u  =  -  V\ff, eq (9) 

may be written as
where /  is the 3 x  3 identity matrix, one can pul eq, (pj 

to the form

( 11) =

One now linearizes the continuity and Euler's equation 

around some unperturbed background flow  variables /?o, 
Pu, (/i> Intrcxlucing

p  = P o + e  p, + 0 ( G ^ )  , P =  p , j+ 6  P , + a ( G - ) ,

I p - !/ ( ( )+ e  t / / ,+ (9 (6 ^ ), /i = / iu + e / i|,  (12)

from the continuity equation we obtain

+  V  ( P qUq ) =  0 ,  ^ + V  (PoMq + Po“ i)  =

(2(),

Eq (20) desenbes the propagation o f the linearized scalai 

potential The function represents the low ampliiude: 

lluciualions around the steady background (po, Po, v/i,i' 
and thus desenbes the propagation o f acoustic perturbaiion, 

i e. the propagation o f sound waves.

The form o f eq (20) suggests that it may be regarded 
as a d’ Alembert equation in curved spac-etime geometry In 
any pseudo-Riemannian manifold the d’ Alembertia operator 
can be expressed as (Misner, Thorne &  Wheeler 1973)

(14)
where |ĝ ,,| is the determinant and gf*'' is the inverse ot ihc 
metric Next, i f  one identifies

■ \Suv\S' (22)

one can recast the acoustic wave equation in the lonn 

(Visser 1998)

(15) (131

Re-arrangement o f the last equation together w ith the 

barotropic assumption yields
where is the acoustic metric tensor fo r the Newtonian 

flu id  The explicit form  o f G^ y  is obtained as

(16)
-  Po

Substitution o f this into the Jineanzed continuity equation 

gives the sound wave equation

- ( C ? - U ^ ) - I I

I
(241

+ Do j j  = 0 . (17)

The Lorentzian metnc desenbed by (24) has an associaî  
non-zero acoustic Riemann tensor fo r non-homogeneous 
flow ing fluids.

Thus, the propagation o f acoustic perturbation, or 

sound wave, embedded in a barotropic, irrotational. non* 

dissipative Newtonian flu id  flow  may be described by  ̂

scalar d ’ Alembert equation in a c u r v e d  acoustic gcomelO 

The corresponding acoustic metric tensor is a matrix tbai
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jL‘pcncls on dynamical and thermodynamic variables 

parameterizing the fluid flow.

por analogue systems discussed above, the flu id  

panicles are coupled to the f l a t  metric o f Mankowski's 

s[u.e (because the governing equation for fluid  dynamics 

,f, ihc above treatment is completely Newtonian), whereas 

lliL M)und wave propagating through the non-relativistic 

lluid IS coupled to the c u r v e d  pseudo-Riemannian metric, 

I’lii.nons (quanta o f acoustic perturbations) are the null 

.ndcsics, which generate the null surface, i.e ., the acoustic 

liiiii/on Introduction o f viscosity may destroy the Lorenzian 

in\aii:mce anej hence the acoustic analogue is best 

ohserved in a vorlicity free completely dissipaiion-lcss 

lliiid iVisser 1998, and references therein) That is why, the 

Icirni supcrfluids and the Bose-Einstein condensates are 

iJ j :j1 In simulate the analogue effects

riic most important issue emerging out o f the above 

discussions IS that (sec Visser 1998 and Barcelo, Liberati 

,ind Vis.sur 2(X)5 for further details) : Even i f  the governing 

ujiicUion lor fluid flow  is completely non-relativistic 

iNcwioiiiaii), the acoustic fluctuations embedded into it 

.lie (Icsciibcd by a curved pscudo-Riemanman geometry 

I ills inloiinntion is useful to portray the immense 

impoil.uicc ol the study o f the acoustic black holes, i.e 

the bl.ick hole analogue, or simply, the analogue systems 

Ihc acoustic metric (24) in many aspects resembles a 

black hole type geometry in general relativity. For example, 

ilic rioLinns such as ‘ergo region’ and ‘honzon’ may be 

inimduccd in fu ll analogy w ith those o f general relativistic 

black holes For a stationary flow , the time translation 

killinii vectoi ^  = d l ( ) t  leads to the concept o f a c o u s t i c  

('/^o sphere  as a surface at which changes its

'-igii Ihc acoustic ergo sphere is the envelop o f the 

itum.stK e r g o  r e g i o n  where is space-like w ith respect 

(0 the acoustic metne. Through the equation = g„

-  it is obvious that inside the ergo region the

'•uid IS supersonic. The ‘acoustic horizon’ can be defined 

ihe boundary o f a region from  which acoustic null 

geodesics or phonons, cannot escape. Alternatively, the 

Jeousiic honzon is defined as a time like  hypersurface 

Jelined by the equation^

(25)

“ 'hrre IS the component o f  the flu id  ve locity  

Perpendicular to the acoustic honzon Hence, any steady 

''irpersonic flow  desenbed in a stationary geometry by a 

independent velocity vector fie ld  forms an ergo- 
fegion, inside which the acoustic honzon is generated at

those points where the normal component o f the fluid  

velocity is equal to the speed o f sound.

In analogy to general relativity, one also defines the 

surface gravity and the corresponding Hawking temperature 

associated with the acoustic horizon. The acoustic surface 

gravity may be pbtained (Wald 1984) by computing the 

gradient o f the norm o f the K illin g  field which becomes 

null vector field at the acoustic honzon. The acoustic 

surface gravity /c for a Newtonian fluid  is then given by 
(Visser 1998)

2c, (26)

The corresponding Hawking temperature is then defined 
as usual

Tjoi = :
27tK, (27)

7. Curved acoustic geometry in a curved space-time
The above fonnalism may be extended to relativistic fluids 

in curved space-time background (B ilid  1999). The 

propagation o f acoustic disturbance m a perfect relativistic 

inviscid iTTOiational flu id  is also described by the wave 

equation o f the form (23) in which the acoustic metric 

tensor and its inverse are defined as (B il ii 1999, Abraham, 
Bili£ &  Das 2006; Das, B ilid  &  Dasgupta 2006)

/ic ,

P
' + ( l - - - ) u ^ u ‘' (28)

where p  and h  are, respectively, the rest-mass density and 

the specific enthalpy o f the relativistic fluid, is the four- 

velocity and gfty the background space-time metne. A  (-, 

+ + +) signature has been used to denve (28). The ergo 

region is again defined as the region where the stationary 

Killing vector ^  becomes spacelike and the acoustic horizon 

as a timelike hypersurface the wave velocity o f which 

equals the speed o f sound at every point. The defining  

equation for the acoustic horizon is again o f the form  (25) 

in which the three-velocity component perpendicular to 

the horizon is given by

“ 1 ■
(''"''O ' C » )

where rj^ is the unit normal to the horizon. For further
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details about the propagation o f the acoustic perturbation, 

see Abraham. B ilid  &  Das 2006

It may be shown that, the discriminant o f the acoustic 

metnc for an axisymmetne flow

,2 (30)

vanishes at the acoustic horizon A supersonic flow  is 

characterized by the condition P  > 0 , whereas for a 
subsonic flow, P  < 0 (Abraham, B ilid  &  Das 2(K)6) 

According to the classification o f Bercclo, Liberati, Sonego 

&  Visscr (2(K)4), a transition from a subsonic (P  < 0) to 

a supersonic (P  > 0) flow is an acoustic b l a c k  ho le ,  

whereas a transition from a supersonic to a subsonic flow  
IS an acoustic w h i t e  h o l e

For a stationary configuration, the surface gravity can 

be computed m terms o f the K illin g  vector

(31)

that IS null at the acoustic horizon Following the standard 

procedure (Wald 1984, B ilid  1999) one finds that the 

expression

"  = - C ‘ " n , ^ ( O a p z ‘‘ x ( » (32)
2 c)t}

holds at the acoustic hoiizon, where the constant A'is the 

surface gravity. Fiom this expression one deduces the 

magnitude o f the surface gravity as (see B ilid  1999, 
Abraham, Bilid &  Das 2(K)6, Das, Dilid &  Dasgupta 2(K)6 

lo r further details)

Xv a

1 - r ?

quantization proceeds in the same way as in the case of ' 

a scalar field in curved space (Birrell &  Davies 1982) w,n, 

a suitable UV cutoff fo r the scales below a typical atnmi 
size o f a few A

For our purpose, the most convenient quantr/ation 

prescription is the Euclidean path integral formulaiioo 

Consider a 2+1-dim ensional axisym m etne geometrv 
describing the fluid flow  (since we arc going to apply 

on the equatorial plane o f the axisymmetne black hole 
accretion disc, see section 13 fo r further details) ihc 

equation o f motion (23) with (28) follows from the vanational 
principle applied to the action functional

S [ip] = J cltclrd(l)\J-GG^' () (̂pd̂ ,q>

Wc define the functional integral

: = jV ( p e ~ ' ' ' (351

where S t  is the Euclidean action obtained from (34) b\ 

setting / = /ra n d  continuing the Euclidean time r  from 

imaginary to real values For a field theory at /cm 
temperature, the integral over r  extends up to mfiiniN 
Here, owing to the presence o f the acoustic horizon, ihc 
integral over r  w ill be cut at the inverse Hawking 

temperature 27t / k ' where fc denotes the analogue surlacc 

gravity To illuslrale how this happens, considci, lor 

simplicity, u non-rotating fluid { v ^  =  0) in the Schwarzschild 

space-time It may be easily shown that the acoustic inclriL 

lakes the form

(33) - d r - 2 h -----^  d r d i
\ - u ^

8. Quantization of phonons and the Hawking effect
The purpose o f this section (has been adopted from Das, 

B ilid  &  Dasgupta 2006) is to demonstrate how the 

quantization o f phonons in the presence o f the acoustic 

horizon yields acoustic Hawking radiation The acoustic 

perturbations considered here are classical sound waves 

or p h o n o m  that satisfy the massless wave equation in 

curved background, / e  the general relativistic analogue o f 

(23), with the metric given by (28). Irrespective o f the 

underlying microscopic structure, acoustic perturbations 

arc quantized. A precise quantization scheme for an 

analogue gravity system may be rather involved (Unruh &  

SchUizhold 2003). However, at the scales larger than the 

atomic scales below which a perfect fluid description 

breaks down, the atomic substructure may be neglected 

and the field may be considered elementary. Hence, the

1 2 - c ~ u ^  2 2 ,.*2
-------------- —̂ d r ^  + r ^ d 0  , (Vi)
fin \ - i r

where g„ = - ( I  -  2 / r ) ,  u  = | V r k V ~ ^ ’

omitted the irrelevant conformal fa d e r p l ( h c s )  Using ihf

coordinate transformation

u \ - c \
d t - ^ d t - ^ -------;— V  d r . (371

we remove the off-diagonal part from  (36) and obtain

=  Su
1 - m"

- d t ^ - ^
Sii

2 - c y

1 - m"

d r ~  +r^d<f>^.
(381
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WL‘ evaluate the metric near the acoustic horizon at 

, T. I,, u 'ff’g expansion in r  -  at first order

, 2 r ,  ~ ( c , - i < )  ( r - r ^ )
d r

.,nd making the substitution

-J?,r d
r - n ,  ■■

2 f , ( l - c ' : )  dr
( t‘i -  M)

(39)

(40)

where R denotes a new radial variable. Neglecting the first 

K-rm in ihe square brackets m (38) and .setting t =  i r , we 

i,hi.iin ihc Euclidean metric in the form

(l̂ f̂ = k ~R^cIt ~ +dR~ +rhd0‘ ,

whcic

l - r r M '"  Ir,

(41)

(42)

Hence, the metric near r  = o, is the product of the metric 
nil S' and the Euclidean Rindlcr space-time

cisj -- dR^  +  R ^ d l K T Y (43)

Willi the periodic idenlification r  =  T +  2 n  f  k , the metric 

i4M desuihcs in plane polar coordinates

l iirlhcrmore, making the sub.stitutions R = c'^Vx' and 

0 i/r„ + 7T, the Euclidean action takes the form o f the 

I-dimensional Iree scalar field action at non-zero

luiipeiatiire

d r j  r/arj d y ^ { d ^ < p ) ^ . (44)

where we have set the upper and lower bounds o f the 

I'licpral over d y  to + ~  and -«». respectively, assuming 

thji //, IS sufficiently large Hence, the functional integral 

^ ni (15) IS evaluated over the fields <p{x , y ,  r )  that are 

ptruxlic in r  with period I tt/ k  In this way, the functional 

IS just the partition function fo r a grandcanonical 

‘-■nscmblc of free bosons at the Hawking temperature = 

KlilTtKn) However, the radiation spectrum w ill not be 

cx,icily thermal since we have to cut o ff  the scales below 

atomic scale (Unruh 1995). The choice o f the cutoff 

Jnd the deviation o f the acoustic radiation spectrum from  

thermal spectrum is closely related to the so-called 

"̂ "̂''‘p la n c k ia n  p r o b l e m  o f Hawking radiation (Jacobson 

l ‘)9‘Ja, 1992, Corley &  Jacobson 1996)

In the Newtonian approximation, (42) reduces to the

usual non-rclativistic expression for the acoustic surface 
gravity represented by (26)

9. Salient features of acoustic black holes and its 
connection to astrophysics

In summary, analogue (acoustic) black holes (or systems) 

are fluid-dynamic analogue o f general relativistic black 

holes. Analogue black holes possess analogue (acoustic) 

event horizons at local transonic points Analogue black 

holes emit analogue Hawking radiation, the temperature of 

which IS termed as analogue Hawking temperature, which 

may be computed using Newtonian description o f fluid  

flow  Black hole analogues arc important to study because 

it may be possible to create them experimentally m 

laboratories to study some properties o f the black bole 

event horizon, and to study the experimental manifestation 

o f Hawking radiation.

According to the discussion presented in previous 

.sections, it is now obvious that to calculate the analogue 

surface gravity and the analogue Hawking temperature 

T ah for a classical analogue gravity system, one d o e s  need 

to know the e x a c t  location (the radial length .scale) o f the 

acoustic horizon n,, the dynamical and the acoustic velocity 

conespondmg to the flow ing fluid at the acoustic horizon, 

and Its space derivatives, respectively Hence, an 

astrophysical fluid system, for which the above mentioned 

quantities can be calculated, can be shown to represent an 

classical analogue gravity model

For acoustic black holes, in general, the ergo-sphere 

and the acoustic horizon do not coincide However, for 

some specific stationary geometry they do. This is the 

case, e  g .  m the following two examples .

(i) Stationary sphencally symmetnc configuiation where 

fluid IS radially falling into a pomt-like dram at the 

origin Since u = e v e r y w h e r e ,  there w ill be no 

distinction between the ergo-sphere and the acoustic 

horizon. An astiophysical example o f .such a 

situation is the stationary spherically symmetric 

B ondi-type  accretion (B ond i 1952) onto a 

Schwarzschild black hole, or onto other non rotating 

compact astrophysical objects m general, .see section 

10  2  for further details on spherically .symmetric 

astrophysical accretion

(li) Two-dimensional axisymmetne configuration, where 

the flu id  is radially moving towards a dram placed 

at the origin Since only the radial component o f 

the velocity is non-zero, u =  everywhere Hence,
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for ihis system, the acoustic hori/on will coincide 
with the ergo region An asirophysical example i& 
an axially symmetric accretion with 7cio angular 
momentum onto a Schwar/schilcl black hole or onto 
A non-rotating neutron star, see section 10 3 for 
lurthci details ol axisymmelric accietion 

In subscc|uent sections, we thus concentrate on 
transonic black hole accretion in astrophysics We will first 
review vaiious kind of astiophysical accretion, emphasizing 
mostly on the black hole accretion processes We will then 
show that sonic |xiinls may form in such accretion and the 
soniL surlace is essentially an acoustic horizon Wc will 
provide the formalism using which one can calculate the 
exact location of the acoustic horizon (sonic points) ry„ the 
dynamical accretion velocity u and the acoustic velocity c, 
at rh, and the space giadicnt of those velocities (dufdr)  

and ( d i j d r )  at r̂ . respectively Using those quantities, we 
will then calculate k and Tah lor an accreting black hole 
system Sui'h calculation will ensure that accretion processes 
in astiophysics can he regarded as a natural example ol 
classical analogue gravity model

10. Trunsonic black hole accretion in astrophysics

JO 1 A genera! oven'irw

Gravitational capture of surrounding fluid by massive 
astrophysical objects is known as accretion There remains 
a ma|or diKerence between black hole accretion and 
accretion onto other cosmic objects including neutron 
stars and white dwarfs For celestial bodies other than 
black holes, infall of matter terminates cither by a direct 
collision with (he hard surface of the accrctor or with the 
outei boundary of the magneto-sphere, resulting the 
luminosity (through energy release) from the surface 
Whereas for black hole accretion, matter ultimately dives 
through the event horizon from where radiation is prohibited 
to escape according to the rule of classical general 
rclaliviiy. and the emergence of luminosity occurs on the 

WAV towards the black hole event horizon The efficiency 
of accretion process may be thought as a measure of the 
fractional conversion of gravitational binding energy of 
mailer to the emergent radiation, and is considerably high 
for black hole accretion compared to accretion onto any 
other astrophysical objects Hence accretion onto classical 
astrophysical black holes has been recognized as a 
fundamental phenomena of increasing importance in 
relativistic and high energy astrophysics The extraction of 
gravitational eneigy from the black hole accretion is 
believed to power the energy generation mechanism of

X-ray binaries and of the most luminous objects of \\  ̂

Universe, the Quasars and active galactic nuclei (Pr̂ nî  
King & Rainc 1992). The black hole accretion is, thus 

most appealing way through which the all pervading 
of gravity is explicitly manifested.

As It is absolutely impossible to provide a deuii 
discussion ol a topic as vast and diverse as accrciioi, 
onto various astrophysical objects in such a small spm, 
this section will mention only a few topic and will 
concentrate on (ewer still, related mostly to accretion nm,) 

black hole. For details of various aspects ol accreiinn 
processes onto compact objects, recent reviews like Pringle 
1981, Chakrabarti 1996a; Wiila 1998, Lin & Papaloi/ou 
1996; Blandford 1999, Rees 1997, Bisnovayati-Kogan 
Abramowicz et a l  1998, and the monographs by Frank > 
King &  Raine 1992, and Kaio, Fukue &  Mineshigc Piyn 
will be of great help

Accretion processes onto black holes may be hroadlv 

classified into two different categories When accrdnii; 
materidl does not have any intnnsic angular niomciilum 
flow IS spherically sym-metnc and any parameters governing 
the accretion will be a function of radial distance only On 

the other hand, for matter accreting with considerable 
intrinsic angular momentum'*, flow geometry is not tlur 
trivial. In this situation, before the intalling matter plunges 
through the event honzon, accreting fluid will be thrown 
into circular orbits around the hole, moving inward usualh 
when viscous stress in the fluid helps to transport dwa\ 
the excess amount of angular momentum This outward 
VISCOUS transport of angular momentum of the accreting 
matter leads to the formation of accretion disc around the 
hole The structure and radiation spectrum of these disĉ  
depends on various physical parameters governing ihc 

(low and on specific boundary conditions

If the instantaneous dynamical velocity and local 
acoustic velocity of the accreting fluid, moving along a 

space curve parameterized by r, are u(r) and Cj(r). 

respectively, then the local Mach number Af(r) of the fluid 

can be defined as M {r ) =  u(r)tc \{r).  The flow will be 
locally subsonic or supersonic according to M(r) < 1 

> L ie .  according to w(r) < c,(r) or u(r) > c,(r) The flow 

IS transonic i f  at any moment it crosses M = 1- 
happens when a subsonic to supersonic or supersonic to

Ît happens when matter falling onlo the black holes comes from ilî  
neighbouring slellar companion in the binary, or when the 
appears as a result of a tidal disruption of stars whose

■ could piapproaches sufficiently close to the hole so that self-gravity
overcome The first situation ts observed in many galactic X 
sources containing a stellar mass black hole and the second one happf 
in Quasars and AGNs if the central supermassive hole «  surmundt 
a dense stellar cluster.
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,iifisunic transition lakes place either continuously or 

iis,oiUimiously. The pomt(s) where such crossing takes 

tonuniiously is (are) called sonic point(s), and where 

,i,Ji Lfossing takes place disconlinuously are called shocks 

jisLontinuities A t a distance far away from the black 

aLLfcting material almost always remains subsonic

i.'VL.pi lor the supersonic stellar wind fed accretion) since 

ii pnsM̂ sscs negligible dynamical flow  velocity. On the 

uihi'r liiind. the flow  velcx:ity w ill approach the velocity of

(f) while crossing the event horizon, while the 

maximum iTossiblc value o f sound speed (even fo i the 

sit'ipisi possible equation of state) would be r /V 3 , 

n'MjliiiiL’, ^ I close to the event horizon In order to 

,.iiisl  ̂ such inner boundary condition imposed by the 

■a'lit hni 1/ 011, accretion onto black holes exhibit transonic 

piopcities 111 general

‘, ‘ 2 M t f n n - i i a n s o n i (  s p h e r u n l  a c c r e t i o n  

Iiiusiigation of accielion processes onto celestial objects 

V ,iiii i ia fa ] by llo y lc  &  Lyltleton (1939) by computing 

lik- u it’ ut which pressure-less matter would be captured 

In a moving star Subsequently, theory o f stationary, 

jiliincall) symmetric and transonic hydnxiynainic accretion 

.i| .iLluihjliL (luid onto a gravitating astrophysical object at 

!LM w.is iorimilated in u seminal paper by Bondi (1952) 

iMiu- inirely Newtonian potential and by including the 

pnnsiire cllect o1 the accreting material Later on, Michel 

discussed fu lly  general re la tivistic polytropic  

.kui'iion on to a Schwarzschild black hole by formulating 

ihc governing equations for steady spherical flow o f perfect 

liiiui III SLhvvar/schild metric Following M ichel’s relativistic 

gciiL*i.ili/ation o f Bondi’s treatment, Begelman (1978) and 

MnnuiL'l (1980) discussed some aspects o f the sonic 

iwinis ol the How for such an accretion. Spherical accretion 

anil wind m general re lativity have also been considered 

using equations of stale other than the polytropic one and 

meorporaimg various radiative processes (Shapiro 1973, 

Hlinnenthal &  Mathews 1976; Brmkmann 1980) 

^jlec (1999) provided the solution for general relativistic 

"’Pliriical accretion w ith and w ithout back reaction, and 

''I'f̂ vved that relativistic effects enhance mass accretion 

d̂icn hack reaction is neglected The exact values o f 

^^'lumical and thenmxlynamic accretion variables on the 

surface, and at extreme close vic in ity  o f the black 

huie event horizons, have recently been calculated using 

‘̂ '•niplcie general relativistic (Das 2002) as well as pseudo 

^tnenil relativistic (Das &  Sarkar 2001) treatments.

* igurc 1 p iclorially illustrates the generation o f the 

Jt̂ oustic horizon for spherical transonic accretion. Let us

F ig u re  1. S p h c iic a lly  s y m m c liic  lu n s o n
JuoiisiK liun/nn

jL k  hole i ic rc l io n  w ith

assume that an isolated black hole at rest accretes mailer 

The black hole (denoted by B in the figure) is assumed to 

be o f Schwarzschild type, and is embedded by an 

gravitational event horizon o( radius 2 G M g „ l c -  Infalling  

mutter is assumed not to possess any intrinsic angular 

momentum, and hence, falls Ircely on to the black hole 

radially. Such an accreting system possesses spherical 

symmetry Far away fiorn the black hole the dynamical 

fluid veltx:ily is negligible and hence the matter is subsonic, 

which IS demonstrated m the figure by M < 1 In course 

of Its motion toward the event horizon, accreting material 

acquires sufficiently large dynamical velocity due to the 

black hole’s strong gravitational attiaction. Consequently, 

at a certain radial distance, the Mach number becomes 

unity 'I’he particular value o f r, for which M = 1, is referred 

as the transonic point or the sonic point, and is denoted 

by as mentioned in the above section For r  < r/,,

matter becomes supersonic and any acoustic signal created 

in that region is h o u n d  to be dragged toward the black 

hole, and can not escape to the region r  >  r^ In other 

words, any co-moving observer from  r < r̂ , can not 

communicate with another observer at r  > o, by sending 

any signal traveling with velocity U,ign.ti ^  c, Hence, the 

spherical surface through r/, is actually an acoustic horizon 

for stationary configuration, which is generated when 

accreting fluid  makes a transition from subsonic (M < 1) 
to thd supersonic (M > 1) state. In subsequent sections.
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wc w ill dcmonslratc how one can determine the location o f 

ft, and how the surface gravity and the analogue Hawking 

temperature corresponding to such n, can be computed. 

Note, howcvci, that for spherically symmetric accretion, 

o n l y  o n e  acoustic horizon may form for a given set o f 

in itia l boundary configuration characterizing the stationary 

configuration For matter accreting with non-zero intrinsic 

angular momentum, m u l t i p l e  acoustic horizons can be 

obtained. Details o f such configurations w ill be discussed 

in subsequent sections

It IS perhaps relevant to mention that spherical black 

hole accretion can allow standing shock formation  

Perturbations of various kinds may produce disconlmuilies 
in an astrophysical fluid How. By d i s c o n t i n u i t y  at a surface 

in a fluid flow  we understand any discontinuous change 
of a dynamical or a IhcimodyiiaiTiic quantity across the 
surface The corresponding surface is called a s u r f a c e  o j  

d i s c o n t i n u i t y  Certain boundary conditions must be satisfied 

across such surfaces and according to these conditions, 

surfaces o f discontinuities aie classified into various 

categories. The most important such discontinuities are 
s h o c k  w a v e s  or s h o c k s

While the possibility o f the formation o f a standing 

spherical shock around compact objects was first conceived 

long ago (Bisnovatyi-Kogan, 2!el‘Dovich, &  Sunyaev 1971), 

most o f the works on shock formation in spherical accretion 

share more or less the same philosophy that one should 
mcoiporatc shock formation to increase the efficiency of 

directed radial inlall m order to explain the high luminosity 

o f ACj N s and QSOs and to model their broad band 
spcctruin (Jones &. Rlhson 1991) Considerable work has 

been done m this direction wheic several authors have 
investigated the lorrnation and dynamics o f standing shock 

in spherical accretion (Mes/siros &  Ostriker 1983, Protheros 

&  Kazanas 1983, Chang &  Osttriker 198.'), Kazanas &  
Elhsion 1986, Babul, Ostriker &  Mes/aros 1989, Park 1990, 

1990a)

Study ol spherically symmetric black hole accretion 

leads to the discoveiy o f related interesting problems like 

eniropic-acoustic or various other instabilities in spherical 

accretion (Foglizzo &  Tagger 2000; Blondin &. Ellison 2(X)1, 

Lai &  Goldreich 2fXX), Foglizzo 2(X)1, Kovalenko &  Eremin 

1998), the realizability and the stability properties o f Bondi 

solutions (Ray &  Bhattachurjee 2(X)2), production o f high 

energy cosmic rays from AGNs (Protheroe &  Szabo 1992), 
study o f the hadronic model o f AGNs (Blondin &  Konigl 

1987, Contopoulos &  Kazanas 1995), high energetic 

emission from relativistic particles in our galactic centre 
(M arkoff. M elia &  Sarcevic 1999), explanation o f high 
lith ium  abundances in the late-type, low-mass companions

o f the soft X-ray transient, (Gucssoum &  Kazanas 1999) 

study of accretion powered sphencal winds emanatm 

from galactic and extra galactic black hole environinents 
(Das 2(X)I). '

J 0 .3 .  B r e a k i n g  th e  s p h e r i c a l  s y m m e t r y  : a c c r e t i o n  disc

10.3.1 A  general overview .

In .sixties, possible disc-like structures around one ol ihe 

binary components were found (K raft 1963) and some 

tentative suggestions that matter should accrete m ihc 

form o f discs were put forward (Pendergest &  Burbidge 
1968, Lynden-Bcll 1969) Meanwhile, it wa.s undcrsiood 
that for spherically symmetric accretion discussed above, 

the (radial) infall velocity is very high, hence emission 

from such a rapidly fa lling matter was not found to he 

strong enough to explain the high luminosity o f Quasar 

and AGNs Introducing the idea o f magnetic dissipation, 
efforts were made to improve the luminosity (Shvarlsman 

1971, 1971a; Shapiro 1973, 1973a)

Theoretically, accretion discs around black holes were 
first envisaged to occur w ith in a binary stellar system 

where one ol the components is compact object ( i . e , while 

dwarfs, neutron stars or a black hole) and the secondar) 

would feed matter onto the primary either through an wind 
or through Rtx;hc lobe overflow. In either case, the accreted 
matter would clearly possesses substantial intrinsic angular 

momentum with respect to the compact object (a black 

hole, for our di.scussion). A flow  with that much angular 

momentum will have much smaller infall velocity and much 
higher density compared to the spherical accretion The 

in fa ll time being higher, viscosity w ithin the fluid, 

presumably produced by turbulence or magnetic field, 
would have time to dissipate angular momentum (except m 

regions close to the black holes, since large radial velociiv 

clo.se the event horizon leads to the typical value of 
dynamical time scale much smaller compared to the vi.scoii'i 

time scale) and energy As matter loses angular momentum. 

It .sinks deeper into the gravitational potential well and 

radiate more efficiently The flow  encircles the compaci 

accretor and forms a quasistationary disc like structure 

around the compact object and preferably in the orbital 
plane o f it. Clear evidences for such accretion discs around 

white dwarfs in binaries was provided by analysis of 

Cataclysmic variable (Robinson 1976).

Accre tion  fo rm in g  a Keplanan disc^ a ro u n d  a

'The 'K eplenan ' angular momcnium refers lo the value of 
momentum of a rotating fluid for which ihe cenirifugul force cxoci' 
compensates for the gravitational allraclion If the angular momc’"*"’ 
disiribution is suh-Keplenan, accretion flow will possess non-rero 
advectivc velocity
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,̂ ^̂ l,\̂ arzschild black hole produces efficiency r] (the fraction 
griivitalional energy released) o f the order o f -  0 057 

iriJ iiLcretion onto a maximally rotating Kerr black hole is 

iVL-n more efficient, yielding r} -  0.42. However, the actual 

efficiencies depends on quantities such as viscosity 

p.iramcieis and the cooling process inside the disc (see 

Wiiij 1998 and references therein). This energy is rclea.scd 

in ihc enlire electromagnetic spectrum and the success o f 

j  disc model depends on its ability to describe the way 

ihis energy is distributed in various frequency band 

h  ca.se of binary systems, where one o f the 

lomponcnts is a compact object like white dwarfs, neutron 

siai or a black hole, the companion is stripped o ff its 

injiicr due to the tidal ellects I'he stripped o il matter, with 

anjfulai momentum equal to that of the companion, gradually 

i,ilK towards the central compact object as the angular 

momcniiim is removed by viscosity As the flow pos.scsses 

.1 considerable angular momentum to begin with, it is 

rcastmabic to assume that the disc w ill form and the 

\^LOsiiy would iran.sport angular momcnluni from inner 

p.ui ol the disc radially to the outer part which allows 

matter to further fall onto the compact body This situation 

LOiild be described properly by standard thin accretion 

disc, which may be Kcplarian in nature On the other hand, 

in the case o f active galaxies and quasars, the situation 

u)uld he som-ewhal d iffe re n t The supcrm assive

'Mu,I : l f)^ A ^ ( j)  central black hole is immersed m the 

mtcrgalactic matter In absence of any binaiy companion, 

Muitin IS supplied to the central black hole very 

miLTinitlenlly and the angular momentum o f the accreting

m.iik'i at the outer edge o f the disc may be sub-Keplarian 

This low angular momentum flow  departs the disc from 

Keplaiidii in nature and a ‘ thick disc’ is more appropriate 

lo dc’sciibe the behaviour instead o f standard thin, 

•kcplarian Shakura Sunyaev (Shakura &  Sunyaev 1973) 
disc

1012 Thin di.se model ;

In standard thin di.se model (Shakura &  Sunyaev 1973, 

Novikov &  Thorne 1973), originally conceived to desenbe 

l̂ «che lobe accretion m a binary system, the local height 

of the disc IS assumed to be small enough compared 

lo the local radius o f the disc n i .e . ,  the ‘thinness’ 

condition is dictated by the fact that H ( r )  «  r  Pressure 

neglected so that the radial force balance equations 

• •̂ouics the specific angular momentum distribution to 

^^coinc Kcplarian and the radial velocity is negligible 

compared to the azimuthal velocity (Vr «  v^). Unlike the 

'■'pherical accretion, temperature distribution is far below

than virial. Undci the above mentioned set o f assumptions, 

radial equations o f steady stale disc .structure could be 

decoupled from the vertical ones and could be solved 

independently The complete solutions dc.scribmg the 

steady state disc structure can be obtained by solving 

four relativistic conservation equations, namely, the 

conservation o f rest mass, specific angular momentum, 

specific energy and vertical momentum balance condition 

In addition, a viscosity law may be specified which may 

transport angular momentum outwards allowing matter to 

tall m On the lop o f it, m standard thin disc model, the 

shear is approximated as propoitional to the pressure o f 

the disc with ptoporlionaliiy constant a ,  a  being the 

viscosity parameter having numerical value less than unity.

High uncertainty remains m investigating the exact 

nature o f the viscosity inside a thin accretion disc (see 

Wiita 1998 and references therein). One of the major 

pioblems is to explain the origin o f sufficiently large 

viscosity that seems to be present inside accretion discs 

m the binary system Unfortunately, under nearly all 

astrophysically relevant circumstances, all o f the well 

understood microscopic transverse momentum transport 

mechanism such as ionic, molecular and radiative viscosity 

arc extremely small Observations with direct relevance to 

the nature and strength o f the macroscopic viscosity 

mechanism are very d ifficult to make, the only fairly direct 

observational evidence for the strength o f disc viscosity 

comes from the dwarf novae system. For a black hole as 

compact accretor, such observational evidences is far from 

reality till date 'I’herefore advances m understanding the 

disc viscosity is largely ba.sed on theoretical analysis and 

numerical techniques Usually accepted view is that the 

viscosity may be due to magnetic transport o f angular 

momentum or due to small scale turbulent dissipation 

Over the past several years, an explanation o f viscosity in 

terms o f Velikhov-Chandrasckhar-Balbus-Hawley instability 

(linear magnetic instability) has been investigated; see,

e .g . ,  Balbus &  Hawle 1998 for further details

10 3.3 Thick disc model :

The assumptions im plying accretion discs are always thin 

can break down m the innermost region. Careful 

consideration o f the effects o f general relativity show that 

the flow must go supersonically through a cusp For 

considerably high accretion rale, radiation emitted by the 

in-falling matter exerts a significant pressure on the gas. 

The radiation pressure inflates the disc, and make it 

geometrically thick ( H ( r )  -  r: at least for the inner 10  -  

lOOr .̂), which is often otherwi.se known as ‘accretion torus’ .
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m s  comulcuibic .unounl ot i:idiulion pressure must be 

mcorporated lo find die dynamical striictuie ot the disc 

and in deteiminirig the thermodynamical quantities inside 

the d i s c  Jncoiporalion ot the radiation picssuic term in 
huter equation dictates the anyulai momentum deviation 

trom that ot the Kcpianan The angular momentum 

distribution becomes supci (sub) Keplarian il the pressure 

gradient is positive (negative)

Intioducing a posl-Newtonian (these ‘pseudo’ potentials 

ate widely used to ininiic the space time around the 

Schwar/schild oi the Kerr inetriL very nicely, sec section 

14 lo i details) </» -  ( ( . i M m iK r  -  2r,.)) m lieu ol the usual 

HI “  - ( H M n n l r )  (where ly is the ‘gravilationar 
radius), Pac/yn'sKi and WiiUi ( l ‘W)) piovided the llis l thick 

disc mtxJel which )oins with the standard thin disc at laigc 

radius without any discontinuity They pointed out several 

important leatures ol these configuration It has been 

shown that the structure o f thick disc m inner region is 

nearly independent ol the viscosity and efficiency ol 

accretion drops dramatically Moie sophisticated model o f 

radiation sup|)orted thick disc meluding sclf-giavity ol the 

disc with full general relativistic irealmeiit was mtioduccd 

later (Wiila 1982, Lan/.a 1992)

10,3 4. Further developments

Despite having a couple o f interesting features, standard 

thick accretion disc model suffers from some limitations for 

which Its study fell fiom favour in the late ’ 80s Firstly, the 

strong anisotropic nature ol the emission properties o f the 

ihsc has been .i major disadvantage Secondly, a non- 

accreting thick disc IS found to be dynamically and globally 

unstable to non-axisymmclnc perturbations Howevei, an 

ideal ‘classical thick disc’ , i f  modified to incorporate high 

accielion rates involving both low angular momentum and 

considerable ladial infall velocity self-consistently, may 

lemain viable Also, it had been reali7ed that neither the 

Bondi (1952) flow  nor the standard thin disc model could 

individually fit the b ill completely. Aecmiion disc theorists 

weie convinced about the necessity ol having an 

intermediate model which could bridge the gap between 

purely spherical flow (Bondi type) and ptiiely rotating flow  

(standard th in disc) Such m odification  could be 

accomplished by mcoipoiating a self-consistent ‘advcclion’ 

term which could take care ol finite ladial velocity o f 

accreting material (for the black hole candidates which may 

graduall> appioaches the velocity o f light lo satisfy the 

inner boundary condition on event horizon) along with its 

rotational velocity and generalized heating and cooling 

terms (Hoshi &  Shiba/aki 1977; Liang &  'fliompson 1980,

Iclumaru i977; Paczynski &  Bisnobhatyt-Kogan 198 

Abrajnowicz &  Zurek 1981; Muchotrzeb &  Paczynski I9ij! 

Muchotrzeb 1983; Fukue 1987; Abramowicz et  qI J9(jj 
Narayan &  Yi 1994; Chakrabarti 1989, 1996)

1 0  4  M u l t i - t r a m o r u c  a c c r e t i o n  d i s c  :

Foi certain values o f the intnnsic angular momentum densnv 

of accreting material, the number o f sonic point, unlike 

spherical accretion, may e x c e e d  one, and accretion n, 

called ‘multi-transomc’ Study o f such multi-transoiuqiy 

was initiatetl by Abramowicv &  Zurek (1981) SubsequentK 

millli-transonic accretion disc has been studied in a number 

of works (Fukue 1987, Chakrabarti 1990, 1996, Kafatos 4  

Yang 1994, 'Vang &  Kafalos 1995, Pariev 1996, Peii? i, 
AppI 1997; Lasota &  Abramowicz 1997, Lu, Yu, Yuan & 
Young 1997, Das 2(X)4; Barai, Das &  Wiita 2004, Abraham, 
Bihd &  Das 2(K)6, Das, Blll(^ &  Dasgupta 2006) All ilu; 

above works, except Barai. Das &  Wiiia 2(X)4, usually deal 

with low angular momentum sub-Keplenan mvisncJ ikrv, 

around a Schwarzschild black hole or a prograde llnv̂  

around a Kerr black hole. Barai, Das &  Wiita 2(X)4 studied 

the retrograde flows as well and showed that a highei 

angular momentum (as high as Keplenan) retrograde How 

can also produce mulli-transomcily Sub-Keplenan wcukh 

rotating flows aie exhibited in various physical situations 

such as detached binary systems fed by accretion fioni 

OB stellar winds (Illarionov &  Sunyaev 1975, Liang i  

Nolan 1984), semi-detached low-mass non-magnetic binaiies 

(Bisikalo cl al 1998), and super-massivc black holes led bv 

accretion Irom slowly rotating central stellar clusters 

(Illarionov 1988, Ho 1999 and references therein) Even ior 

a standard Keplenan accretion disc, turbulence may produce 

such low angulai momentum flow (see, e .g  , Igumenshthev 

&  Abramowicz 1999, and references therein).

JO 5  N n n - a x L s \ m m e t n c  a c c r e t i o n  d i s c  :

A ll the above mentioned works deal w ith ‘axisymmctric 

accretion, lo r which the orbital angular momentum of the 

entire disc plane remains aligned w ith the spin angular 

momentum o f the compact object o f our consideration In 

a strongly coupled binary system (w ith a compact object 

as one o f the components), accretion may experience a 

non-axisymmetric potential because the secondary donoi 

star may exert non-axisymmetnc tidal force on the accretion 
disc around the compact primary. In general, non- 

axisymmetric tilted disc may form i f  the accretion takes 

place out o f the symmetry plane o f the spinning compad 

object. Matter in such misaligned disc w ill experience  a 

torque due to the general rebativistic Lense-Thimng

(Lense &  Th im ng 1918), leading to the precession of
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er plane. The differential preces.sion with radius 

,v cjiise stress and dissipative effects in the disc I f  the 

lorcjue remains strong enough compared to the internal 

Skills Inrce, the inner region o f the in itia lly  lilted disc 

,11IV be forced to realigned itself w ith the spin angular 

[iiomenmin (symmetry plane) o f the central accretor This 

plicnomena ot partial rc-alignment (out to a certain radial 

disL.iiKC known as the ‘ transition radius’ or the ‘alignment 

, of the initially non-axisymmetnc disc is known as 

lilt' Bardccn-Pelterson effect’ (Bardeen &  Petlerson 1975) 

SiilIi a lunsition radius can be obtained by balancing the 

piut'ssion .ind the inward d rift or the viscous lime scale 

\sliopliysical accretion disc subjected to the Bardecn- 

I\lU'r-.on cltect becomes ‘tw isted’ or ‘warped’ , A large 

s,..ilc viarp (twist) m the disc may m odify the emergent 
v|v».lriim and can influence the direction o f the Quasar 
and iniLTo-quasar jcl.s emanating out from the inner region 

,i| (hi accretion disc (sec, e . g  , Maccaronc 2002, I.u &  

/luHi 2 0 0 \  and rclcrcnccs therein)

Such a twisted disc may be thought o f as an ensemble 
.ii aii'uili of increasing radii, for which the vanation o f the 
diM-iion of the orbital angular momentum occurs smoothly 

\hi!c (.rossiiig the alignment radius System o f equations 

dL'snibinc such twisted disc have been formulated by 
s.M.'ial aulhois (sec, e g ,  Peterson 1977, Kumar 1988, 

Dcmiaiiski Ivanov 1997, and references thcicm), and the 
lime scale required for a Kerr black hole to align its spin 
.mpiil.n momentum with that o f the in itia lly  misaligned 

kuvimn disc, has also been estimated (Scheuer &  Feiler 
Ihhh) Numeiical simulation using three dimensional 

Newtonian Smooth Particle Hydrodynamics (SPH) code 
Ndsuii Papaloi/ou 2(KX)) as well as using fu lly general 

iclatiusljc Iramework (Fragile &  Anninos 2005) leveal the 
ticoineinc structure o f such discs.

We would, however, not like to explore the non- 
<iMsymmeiric accretion lurther in this review One o f the 
rniiin reasons lor which is, as long as the acoustic horizon 

h'rins at a radial length scale smaller than that o f the 

jligiimeni ladius (typically lOOr^ -  l(XX)r^, according to the 

anginal estimation o f Bardeen &  Petterson 1975), one need 
'HM implement the non-axisymmelnc geometry to study the 
analogue effects

1(1 f) A n g u l a r  m o m e n t u m  s u p p o r t e d  s h o c k  in m u l t i -  

iftwutnic a c c r e t i o n  d i s c  ■

'n nil adiabatic flow  o f the Newtonian fluid, the shocks 

uhey the lollow ing conditions (Landau &  L ifsh itz 1959)

1' 1pw] ]  = 0 , [ [ p  + p « ^ ] ]  = 0 , - +  h = 0 , (45)

where fl f  ]1 denotes the discontinuity of /  across the 
surface o f discontinuity, i e

(46)

with / t and /) being the boundary values o f the quantity 

/  on the two sides o f the sutface Such shock waves arc 

quite often generated in various kinds o f supersonic 

astrophysical flow's having intrinsic angular momentum, 

resulting m a flow w'hich becomes subsonic This is 

because the repulsive centrifugal potential barrier 

experienced by such llow's is su ifiuenllv  strong to brake 

the in la lling motion and a siaiionaiy solution could be 

introduced only through a shock Rotating, transonic 

astrophysical fluid flows are thus believed to be ‘prone’ to 

the shock lormation phenomena

One also expects that a shock formation m black-hole 

accretion discs might be a general phenomenon because 

shock waves in lotating astrophysical flows potentially 

pnivule an important and elTicieiil mechanism for conversion 

o f a significant amount ol the gravitational energy into 

radiation by randorni/ang the directed infall motion of the 

accreting fluid Hence, the shocks play an important role 

in governing the overall dynamical and radiative processes 

taking place in astrophysical fluids and plasma accreting 

onto black holes The study ol steady, standing, stationary 

shock waves produced in black hole accretion has acquired 

an impoilanl status, and a numbei of works studied the 

shock fonnalion iii black hole accretion di.scs (Fukue 1983, 

Hawley Wilson &  Smarr 1984, Ferrari e l  a t  1985, Sawada, 
Matsuda He Hachisu 1986, Spruit 1987. Cliakrabarli 1989, 
Abramowicz & Chakiabaiti 1990, Yang &  Kafatos 1995; 
Chakrabarti 1996a, Lu, Yu, Yuan &  Young 1997, Caditz &  
Tsuruta 1998, Toth, Keppens &  Boldiev 1998, Das 2(X)2, 

Takahashi, R illc l, Fukumura & Tsuruta 2002; Das, 

Pendharkar &  M ilra 2(X)3; Das 2004, Chakrabarti &. Das 
2(X)4, Fukumura &  Tsuruta 2004, Abraham, B ilid  &  Das 
2006, Das, B ilic &  Dasgupla 2006) For more details and 

for a more exhaustive list o f references see, e.g  , Chakrabarti 
1996c and Das 2002

Generally, the issue of the formation o f steady, standing 

shock waves in black-hole accretion discs is addressed in 

two different ways First, one can study the formation o f 

Rankme-Hugoniot shock waves in a polylropic flow  

Radiative cooling in this type o f shock is quite inefficient 

No energy is dissipated at the shock and the total specific 

energy o f the accreting material is a shock-conserved 

quantity Entropy is generated at the shock and the post

shock flow  possesses a higher entropy accretion rate than 

Its pre-shock counterpart The flow  changes its temperature 

permanently at the shock. Higher post-shock temperature
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pufls up the post-shock How and a quasi-sphencai, quasi- 

toroidal centrifugal pressure supported region is formed in 

the inner region o f the accretion disc (sec Das 2(KJ2, and 

refeiences therein tor tnnher detail) which locally mimics a 

thick accretion How

Another class o f the shock studies concentrates on 

the shock foimation in isothermal black-hole accietion 

discs The chaiacterisiic leaiures o f such shocks are quiic 

ditfererit Irom the non-dissipalivc shocks discussed above 

In isolhctmal shocks, the accretion flow  dissipates a part 

o f Its energy and entropy at the shock surface to keep the 

post-shock temperature equal to its pre-shock value. This 

maintains the vertical thickness ol the flow  exactly the 

same just before and just after the shock is formed 

Simultaneous jumps m energy and entropy jo in the pre- 

shock .supersonic flow  to its post-shock subsonic 

counterpart For detailed di.scus.sion and relercnce.s see, 

e . g  , Da.s, Pcndhaikar &  M itra 2003, and h’ukumura &  
Tsuruta 2004

In section 13 5, we w ill construct and solve the 

equations governing the general relativistic Rankinc- 

Hugomot shock The shocked accretion flow  in general 

relativity and in post-Newioman pseudo-Schwar/schild 

potentials w ill be discussed in the sections 13 5-13 8 and 

10 2  lespeclively

11. Motivation to .study the analogue liehaviour of tnuisonir 
black hole accretion

Since the publication o f the seminal paper by Bondi m 

1952 (Bondi 1952), the transonic behaviour o f accreting 

flu id  onto compact astrophysical objects has been 

extensively studied in the astrophy.sic.s community, and 

the pioneering w oik by Unruh m 1981 (Unruh 1981), 

initiated a substantial number o f works m the theory ol 

analogue Hawking radiation w ith  diverse fields o f 

application slated in section 4-5  It is surprising that no 

attempt was made to bridge these two categories o f 

research, astrophysical black hole accretion and the theory 

o f analogue Hawking radiation, by piovidmg a self- 

consistcnl study of analogue Hawking radiation for real 

astrophysical lluid flows, i . f  , by establishing the fact that 

accreting black holes cun be considered as a natural 

example ol analogue system Since both the theory of 

transonic astrophysical accretion and the theory o f 

analogue Hawking radiation stem from almost exactly the 

same physics, the propagation o f a transonic fluid with 

acoustic disturbances embedded into it, it is important to 

study analogue Hawking radiation tor traii.somc accretion 

onto astrophysical black holes and to compute Tah for

such accretion

In the follow ing sections, we w ill desenbe the details 

of the transonic accretion and w ill show how the accrctiiij; 

black hole system can be considered as a classical analogue 

system We w ill first di.scuss general relativcstic accretion 

of spherically symmetric (rnono-transomc Bondi (1952) typ̂  

accretion) and axisymmctric (multi-iran.sonic di.se accretion) 

flow We w ill then introduce a number o f posi-Ncwionian 
pscudo-Schwarzschild black hole potential, and w ill discuss 

black hole accretion under the influence o f such modified 

potentials

12. General relativi.stic spherical accretion as an analogue 
gravity mudel
In this section, we w ill demonstrate how one can conslruu 

and solve the equations governing the general relativiMic. 

spherically symmetric, steady stale accretion flow  onto a 

Schwarzschild black hole This .section is largely based mi 

Das 2004a

Accretion flow  described m this section is & and 

symmetric and pos.scsses only radial in fiow  velocity In 

this section, we use the gravitational ladius r̂ . as ~ 

2 G M i i n / ( -  The ladial distances and velocities are scaled 

in units ol and c respectively and all other derived 

quantities are .sealed accordingly, G  =  c =  My,, = 1 is 

used Accretion is governed by the radial part of the 

general relativistic time independent Euler and continuity 

equations m Schwarzschild metric We w ill consider the 

stationary solutions We assume the dynamical in-fall iinie 

scale to be short compared with any dissipation time scale 

during the accretion process

12  1 T h e  G o v e r n i n g  e q u a t i o n s

To describe the fluid, we use a polytropic equation of 

state (this is common m the theory o f relativistic black 

hole accretion) o f the form

l> = - OT

where the polytropic index y  (equal to the ratio o f the two 

.specific heals r,, and c,.) ol the accreting material n 

assumed to be constant throughout the fluid  A more 

realistic model o f the flow would perhaps require a variable 

polytropic index having a functional dependence on the 

radial distance, t e  y =  y { r )  However, we have performed 

the calculations for a sufficiently large range o f y  and wc 

believe that all astrophysically relevant polyiropic indices 

arc covered m our analysis

The constant K  in (47) may be related to the specific 

entropy o f the flu id , provided there is no entropy 

generation during the flow  I f  m addition to (47).
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equation for an ideal gas holds

(48)

I ̂ ĥerc T is ihe locally measured temperature, p the mean 
molecular weight, m u  -  mp  the mass o f the hydrogen atom, 

[ ihcn I he specific entropy, i .e . the entropy per particle, is 

,,vmi bv (Landau &  L ifsh itz 1959) :

(j -------- log K  + --------+ constant,
Y - \  y - 1 (49)

(/H 6 )
(50)

t-- p-i
y - 1

Ihe (idiabatic speed o f sound is defined by

^  ^  LoiiMunl ciiintpy 

rom (51) wc obtain

f)6

y - 1

h-~- y - 1

y - 1  -  c J

p ^ K  v - i| r z i r '
Y I l y - i - c , "

y  J l y - i - f r

(57)

(58)

6 =  A' I y - 1  y-' c

y y - i - c

wiiere the constant depends on the chemical composition 

j1 ihc accreting material. Eq. (49) confirms that A  in (47) 

is .1 measure ol the specific entropy o f the accreting

maltcT

Ihc specific enthalpy o f the accreting matter can now

lx (Jclined as

1 . 1
y y - i - t ; (59)

\vlieie the energy density e  includes the rest-mass density 

.mil the internal energy and may be written as

The conserved specific flow  energy f  (the relativistic 

analogue of Bernoulli’s constant) along each stream line 

reads f  = hii,, (Anderson 1989) where h and Up arc the 

specific enthalpy and the Colii velocity, which can be re

cast m terms o f the radial three velocity u and the 

polytropic sound speed r, to obtain

y - 1

ombination o f (52) and (47) gives

d  G

I the above relations, one obtains the expression for
I ihf specihc enthalpy

(51)

(52)

(53)

(54)

y - 1 1 - 1 / a

1 -
(60)

One concentrates on positive Bernoulli constant solutions. 

The mass accretion rate M  may be obtained by integrating 

the continuity equation

M  =  A t rp u r '■ I (61)

where p  is the proper mass density

We define the ‘entropy accretion rate’ E  as a quasi- 

constant multiple o f the mass accretion rate in the following 
way

E  =   ̂M  =  4 n p u r '■ c H ir
V r ( l - « 2 )

c : ( y - l )

y - ( i  + c?)
. (62)

(55)

, '"i* rest-mass density p ,  the pressure p, the temperature 

 ̂ the flow and the energy density £ ‘may be expressed 

teinis o f the speed o f sound c, as

(56)

Note that in the absence o f creation or annihilation o f 

matter, the mass accretion rale is a universal constant o f 

motion, whereas the entropy accretion rate is not. As the 

expression for E  contains the quantity A  s  p / p ^ s  which 

measures the specific entropy o f the flow, the entropy rale 

E  remains constant throughout the flow  o n l y  i f  the 

entropy per particle remains locally unchanged. This latter 

condition may be violated i f  the accretion is accompanied 

by a shock. Thus, S' is a constant o f motion for shock-free
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polylropic accretion and becomes discontinuous (increases) 

at the shock location i f  a shock forms m the accretion 

One can solve the two conservation equations tor f  and 

E  to obtain the complete accretion profile

72 2  T n m \ o n i ( U \

Simultaneous solution ol (60-b2) piovides the dynamical 

three velocity gradient at any radial distance r

du « ( l - f r ) | ( ; ' ( 4 i - 3 )  • I
------------- L------------- - . — 1-  (63)

d/' 2 r(/ l ) ( / r : ) V ( t , //. f J

A real physical tiansonic flow must be smooth everywheic, 

except possibly at a shock Hence, il the denominator P  

(^ u, (,) ol (63) vanishes at a point, the nimierator A'(/. ii, 

( 0  must also vanish at that point to ensuie the physical 

conliiunty ol the (low fioirowing the terminology tiom  the 

dynamical systems theory (see, e ,e • Iordan &. Smith 2005), 

one therefore anivcs at the c r i t u a l  p o i n t  conditions by 

making P in  u, r J  and u, t 's) o f (61) simultaiieoLisly 

equal to /cm  We thus obtain the critical point conditions

V 4/, - 3 ( W )

tf! +

^  2 r “ ( 2 - 3 y )  + 9 ( y - I )

' 4 ( y - l ) ( f ' ' - l )

^ - ( 3 y - 2 ) - ^ - 2 7 ( / - l ) - ^  

3 2 ( f " - l ) ( r - l ) ‘
r ,  -  I

27

64(/:‘ iWi,

being the location ol the c iilica l point or the so called 

‘ fixed point' o f the dillerential equation (63)

From (64), one easily obtains that ;V/,, the Mach number 

at the critical point, is t w a i t l v  equal to i in i tv  This ensuies 

that the ciitical points n/c actually the sonic points, and 

thus, r, IS actually the location o f the acoustic event 

hori/on In this section, hcicailer, we w ill thus use o, m 

place of r, Note, liowevei, that the ec|uivalence ol the 

critical point with the sonic point (and thus with the 

acoustic hori/on) is n o l  a generic featuie Such an 

equivalence strongly depends on the flow geometry and 

the ec|uation ol stale used For spherically symmetric 

accretion (using any equation ol state), or polytropic disc 

accretion where the expression for the disc height is taken 

to be constant (Abraham, Bihd &, Das 21K)6), 01 isothermal 

disc accietion with variable disc height, such an equivalence 

holds good. For all other kind o f disc accretion, critical 

points and the sonic points arc n o l  equivalent, and the 

acoustic hoii/on lorms at the some points and nol at the 

critical point We w ill get back to this issue in greater 

detail m section 1 3 3

Substitution ol and ) into (60) for r  =

r,, provides

Solution of (65) provides the location o f the aciniMK 

hori/on m terms ol only two accretion paramcteis 

which IS the two paiameler input set to study the llmv

We now set the appiopnate lim its on ( i;y )  to modd 

the leahslic situations encountered m astrophysics ( 

IS scaled m terms o f the lest mass energy and includes ihi 

rest mass energy, r  <  I corresponds to the nepjiivj 

energy accretion state where radiative extraction ol rcsî  

mass energy Irom the fluid is required For such cxtraLlinn 

to be made possible, the accreting flu id  has to poi,scss 

viscosity or othei dissipative mechanisms, which ni.i\ 

violate the Loren/ian invariance On the other h.iiid 

although almost any  ̂ > 1 is mathematically allowed, Lips, 

values ol t represents Hows starling from infiniiy will, 

extremely high thermal energy (,sce Section 13.4 for luiilur 

detail), and r  > 2 accretion represents enormousK liu. 

How configurations at very large distance from the hlaik 

hole, w'hich arc nol properly conceivable in reahsiiL 

astiophysical situations. Hence one sets 1 < c‘ < 2 Nnw 

y =  1 corresponds to isothermal accretion where actrcliiiL 

fluid icmains optically thin This is the physical lower hinii 

for and /  < 1 is not realistic in accretion astrophv.si:'' 

On the other hand, y  >  2  is  possible only for supeideiisL 

matter with substantially large magnetic field (which lequiî '̂  

the accreting rnatenal to be governed by general relalivNii 
rnagncto-hydiodynarnic equations, dealing with which 

beyond the scope o f this article) and direction dcpendeni 

anisotropic pressure One thus sets 1 < y < 2  as well. 

{ / , y }  has the boundaries l < { f , y [ < 2 .  However, one 

should note that the most preferred values o f y  for realrslii. 
black hole accretion ranges from 4/3 to 5/3 (Frank, King & 

Raine 1992).

For any specific value o f ( f .y ) ,  (65) can be solved 
c o m p l e t e l y  a n a l y t i c a l l y  by em ploying the Cardano 

Tarlaglia-dcl Ferro technique. One defines •

3 r , - 7 V 9 r \ ] \ - n r , - 2 F l

54
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<2, -• + V S : + S j ,

C-)
S i

3

cosf
(0  + A n S i

3

, =  / s ,  C f  =  ( f l ,  ± f l , ) ,  ( 6 7 )

, iliat ihc Ihicc roots fo r r/, come out to be

r , where

0 , 2 1  - 4 0 , 0 j / 2 0 , ,

ao)

(68)

Hi 'ul'mm, note that nol all 'r/,{i = 1, 2, 3) would be real 

, ,1 all \! y ) iM s easy to show that il V' > 0 , only one 

I/O! IS i ial , il 0, all roots are real and at least two o f 

iii/ui aie idemical, and il V' < 0 , all roots are real and 

iiisiiiKi Si lcciion ol the real physical (;/, has to be greater 

i|i 111 mills) loots requires a close look ai the solution for 

, loi die asirophysically relevant range ol ( f ,y )  One 

:iuls dial toi the prefened range ot [ t , y ] ,  one a l w a y s  

i.iiains */" e 0  Hence the roots are always real and thiec 

iL’ ii iiiieL|ual roots can be computed as ■

V 4 ^ 3  ■  4 r ^ - 3 ‘
«>, = - ------ - [ 4 / - , , ( y - l ) - ( 3 y - 2 ) ] ,

= 7 7 -'^ 'In  [ ' ; ? ( /  -  l)= -  -i, (1 Oy ̂  -  19y + 9)
(4r,, ~ J)

+ (6 y ’  - l l j '  + S lJ,

^  _ 2 ( 2 r „ - l ) - y ( 4 , - „ - 3 )  

’  4 ( ;,,-1 )
01)

12 3 A n a l o g u e  t e m p e r a t u r e  .

For spherically symmetric general relativistic flow  onto 

Schwar^schild black holes, one can evaluate the exact 

value of the K illing  fields and K illin g  vectors to calculate 

the surface gravity for that geometry. The analogue 

Hawking temperature for such geometry comes out to be 
(Das 20()4a)

(69) hc^

A n K i j G M  B

(•ill. Imds that loi a l l  I < l£ ,y )  < 2 , becomes negative 

(i i" observed that {'/■/„>/,) > I for most values o f the 

‘Oiio|)liysiLMlIy tuiicd [ L , y ]  Howcver, it is also found that 

' doc  ̂ not allow steady physical flows to pass through 

" iiilia  II, 01 or both, becomes superluminal before the 

rcathes the actual event horizon, or the Mach number 

l'''•hlL’ shows intrinsic fluctuations for r  < //,. This 

"''orni.uion is obtained by numerically integrating the 

 ̂ ’mpkic flow profile passing through Hence it turns 

'•Ji ihdi one needs to concentrate o n l y  on for realistic 

J^iiupiivsical black hole accretion. Both large e  and large 

' '■iiImikc the thermal energy o f the flow  so that the 

I velocity to overcome

m the close vic in ity o f the black hole Hence r  ̂

"’d sorrdates with (f, / ) .  To obtain ( d u / d r )  and { d c j d r )  

 ̂ ^(cousiic horizon, L ’ Hospital's rule is applied to 
10 have

in, - 0  75)

( ' ■ / . - i r
7 - ( ^  - « ) |

(72)

where the values o f ( d u /d r ) i ,  and { d c j d r ) ^  are obtained 

using the system o f units and scaling used in this article.

It IS evident from (72) that the e x a c t  value o f T^h can 

be a n a l y t i c a l l y  calculated from the results obtained in the 

previous section While (6 8 ) provides the location o f the 

acoustic horizon (r/,), the value of \ { d  /  d r ) { c  is

obtained from (70-71) as a function o f r  and y  both o f 

which are real, physical, measurable quantities Note again, 

that, since r^ and other quantities appearing in (72) are 

a n a l y t i c a l l y  calculated as a function o f \ e ^ y ] ,  (72) provides 

an e x a c t  a n a l y t i c a l  v a l u e  o f the general re lativistic  

analogue Hawking temperature fo r a l l  p o s s i b l e  s o l u t i o n s  

o f an sphencally accreting astrophysical black hole sy.stem, 

something which has never been done in the literature 

before I f  - 3 ( 1 /2  -  I/<p4)(<Pi2 -  <^123) > 1, one
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ahva\’\ oblains (d( Jdr <  du/dr)^ Irom (7U), which indicates 

the picscncc ol the m o i i s t u  w h i t e  h o l e s  at /̂, This 

inc(.|iiality holds good loi certain astrophysically relevant 

lan^zc o f { f . y ] ,  thus acoustic w lu r c  h o l e  s o lu t i o n s  are 

obtained foi i’cneral id.itivistie, spherically symmetne hlack 

hole accielion see Das 2(K)4a lo i liirlhcr detail

f‘or a partiu ilai value o( \ t , y \ ,  one can define the 

qiianliiv r  lo be llie latio ol / , / /  and Ti, as

where 3JJ and are the fluid (matter) part and ihf 

Maxwellian (electromagnetic) part ol the energy momcnium 

tensor 3 jĵ  and 3 ^' inity he expressed as

35*; = piV't/' -\-ip-gO)ĥ  ̂ +ry^i/ +v̂ u\

(■741

(73)

3 {;‘ - ( / r i / z /  + /? - / i^ ' '- 2 /?^/?’’ )
S;r (7̂1

It linns oul Ih.il r  is independent ol the mass ol the black 

hole llu is by coinpiiiing the value o f r, w'c can compare 

Ihe piopeiiies ol the acoustic versus event hori/ori ol an 

accicling black hole ol a n v  mass, starting Irom the 

piimoichal black hole lo the super massive black holes al 

the dynamical cciiire ol the galaxies

Foi geneial relativistic sphciical accretion, one Unds 

that loi ceilain lange ol (z ;/ ) .  1 ui r u e e d s  (i e , r >  1) the 

value ol I/ / ,  hence the analogue Hawking tcm|x:ialuie can 

be lari’ei lhaii the actual Hawking tempeiaiure, sec Das 

2004a loi luither details

13. Multi-transonic, relativistic accretion disc as analogue 
gravity model

/,V y Ih e  siiess ene i^v  leiisoi a nd  (low ( \ iuunus  

To provide a generali/ed desuiption o f axisymmetnc fluid  

How m stiong giavity, one needs to solve the cc]iiations 

ol motion loi die Hind and the Rinsiem e(|ualions Ihe  

pioblem may be made tiaclable by assuming Ihe accietion 

lo be non-self gravil.ilmg so lhal the Hind dynamics may 

he deall in a meliic without back-ieactions To desenbe tfie 

Him, we use the Hoyei-landciuist eooidinalc (Boyer 

Lindc|uist 10()7), and an aznmithally Lorent/ boosted 

oithonoimal tetrad basis co-ioiatmg with the accieting 

llu id We del me A to he the six:cific angular momentum ol 

the How Since wc aic not mteiested in non-axisymmelnc 

disc stiuciLire, we neglect any gravo-magnctoviscous non- 

alignment between A  and black hole spin angular 

momentum We consider the How to be non-self gravitating 

to exclude any back reaction on the metric For this 

section, the giavitational ladius is taken lo be G M n n /

In the above expression, p v ^ ^ v '  is the total mass ciiugv 

density excluding the fro/en-in magnetic field mass encrn\ 

density as measured in the local rest fiame o f the barvons 

(local orthonormal frame, hereafter LRF, in which thcic is 

no net haryon flux m any direction) p l d ‘ '̂ is the isolropn 

picssuie tor incompressible gas (had it been the case th<n 

& would be zero) c and r) are the coefficient of hulk 

viscosity and of dynamic viscosity, respectively IleiiLc 

gOh^'' and -2rjCTf‘'' arc the isotropic viscous stiess ,md 

the VISCO US shear stress, respectively, V' 4- is ilk 

energy and momentum flux, respectively, in LRF of ilk 

baryons In the expression for 3 /“  . B -/8 ;r  in the first inm 

represents the energy density, in the second term repicscnu 

the magnetic pressure orthogonal to the magnetic lickl 

lines, and in third term magnetic tension along the lidd 

lines (all terms expressed in LRF), respectively

Here, the electromagnetic field is described by llic held 

tensor and i t ’s dual T * * ' '  (obtained (rom iisin;: 

Lcvi-C iviia  ‘ Hipping’ tensor satisfying the Max\M‘!l

equations through the vanishing o f the four-divergcniL’ oi 

A complete description o f How behaviour ccnild Iv 

obtained by taking the co-variani derivative ol 3^" tii'il 

p i y  to obtain the energy momentum conservation 

equations and the conservation o f baryonic mass

However, at this stage, the complete solution remain'' 

analytically untenable unless we are forced to adopt j 

number o f sim plified approximations. Wc would like to 

study the i n v i u i d  accretion o f h y d r o d y n a m i c  Hind Heiiet:

3 “̂  may be described by the standard form of the energy 

momentum (stress-energy) tensor o f a perfect perfect llu'

3^" = (G +^)L»^i>„ +

The most gcncial loim  ol the energy momentum tensor 

foi the compicssible hydiomagnctic astrophysical fluid  

(w'lth a frozen in nvagnetK held) vulnerable to the shear, 

bulk viscosity and gcncialized energy exchange, may be 

expiesscd as (Novikov lVc Thorne 197,3)

T -  (G - \ - p )v  p g

Our calculation w ill thus be focused on the stationJf' 

axisymmetnc solution o f the energy momentum and barvof 

number conservation equations



Astrophysical accretion as an analogue gravity phenomena 907

=0, (77)

^jiccilvmg ihc metnc lo be stationary and axially symmetric,

1^0 generators =  K ^ l d i Y  and s  { d l d t f t y  o f the 

icm|X'ral and axial isometry, respectively, arc Killing vectors.

VVe consider the flow  lo be ‘advective’ , i . e  to possess 

.oii^ideiablc ladiul three-velocity The above-mentioned 

icKcttivc velocity, which we hereafter denote by u and 

.oMsidci It to be confined on the equatorial plane, is 

^suiiullv the threc-vciocily component perpendicular to 

ilu' Ml ol hypci surfaces {£^,1 defined by v~ = const, 

\slwic V !'> the magnitude o f the .1 -velocily Rach is 

iiiiiv'likc since Its normal rj ,̂ “  is spacclikc and may

Iv normalized as -  1

Wl- then define the specific angular momentum A  and

tin' anizulai velocity Q  as

t / ^p0
(78)

I lie meiiiL on (he equatorial plane is given by (Novikov 

iV'lhvimc 1973)

J r  - - - — clf^ -  ̂—  UI(J>-(0cl t)^
A  r~

+ “ d r^  + f/’ " (79)

A r ^ A

< l- i | - ) { / \ ^ - 4 A « r A  + A V ^ ( 4 r - r ^ 4 ) }

dissipation time scale during the accretion process We 

have performed the calculations for a sufficiently large 

range ol yand we believe that all aslrophysically relevant 

polytropic indices are covered in our work.

1 3  2 D i s c  g e o m e t t y  a n d  c a n s c r y a i i o n  e q u a t i o n s  - 

We assume that the disc has a radius-dependent local 

thickness //(r) , and its central plane coincides with the 

equatorial plane ol the black hole It is a standard practice 

in accretion disc theory (Maisumolo e i  a l  1984; Paczynski 

1987, Abramowicz, Czerny, Lasota &  Szuszkiewicz 1988, 

Chen &  Taam 1993, Kafatos &  Yang 1994, Arlemova, 
BjOmsson &  Novikov 1996, Narayan, Kalo &  Honma 1997; 

Wiita 1999, Hawley& Kro lik 2001. Armitage. Reynolds &  

Chiang 2001) to use the vertically integrated model in 

describing the black-holc accretion discs where the 

equations o f motion apply to the equatorial plane o f the 

black hole, assuming the flow to be iii hydrostatic 

equilibrium in the transverse direction, The assumption of 

hydrostatic equilibrium is justified for a thin How becau.se 

for such Hows, the inlall time scale is expected to exceed 

the local sound crossing time scale in the direction 

transverse to the flow We lollow the same procedure here 

The thermodynamic How variables are averaged over the 

di.se height, i.e., a thermodynamic quantity y  used in our 

model IS vertically integrated over the disc height and

i\hciL’ J -  n  -  2/ + i d ,  A  =  r"* +  r - a ~  + 2ra ~,  and 

I'l- 2iiilA,  (I l>eing the Kerr paiametcr related lo tlic black- 

lioU spin The normalization condition =  -  1 together 

' îih ihc expressions foi A  and f 2  in (78), provides the 

iLl>iiionsliip between the advective velocity u and the 

iiiiipoial component o f the four velocity

averaged as y  =  \  (')() ( ) y/ |  ( r),i / /  (/-)

.(80)

I'l order to solve (77), we need lo  specify a realistic 

iiuatioii of siaic |n this work, we concentrate on polylropic 

Juiciion However, polytropic accretion is not the only 

iioiu* to describe the general relativistic axi.symmetric 

accretion. Equations o f state other than the 

one, such as the isothermal equation (Yang &  
kjtaiDs 1 9 9 5 ) Q, two-temperature plasma (Manmoto 

h,ivc also been used to study the black-hole 
‘"-'-'■‘'lioii flow

Like spherical accretion, here also we assume the 
'^yiiiniKal m-fall time scale to be short compared w ith any

In Figure 2, wc schematically represent the above 

mentioned modelling The yellow circular patch with BH  

written in,side represents the black hole and the pink 

dashed boundary mimics the event horizon. The wedge 

shaped dark green lines represents the envelop o f the 

accretion disc. The light green line centrally flanked by the 

two dark green disk boundaries, is the equatorial plane, on 

which all o f the dynamical quantities ( e . g . ,  the advective 

velocity «) are as.sumed lo be confined. Any thermodynamic

Figure 2. Height averaged ihcrmodynamic quunlilies for di.se accretion
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quantity {e . f( , the flow  density) is averaged over the local 

disc height h { r )  as shown in the figure

We follow  Abramowicz, Lan/a &  Pcrcival (1997) to 

derive an expression for the disc height H ( r )  in our flow  
geometry since the relevant equations in Abramowicz, 

fanza &  Pcrcival (1997) are non-singular on the horizon 

and can accommodate both the axial and a quasi-spherical 

flow geometry In the Newtonian framework, the disc height 

in vertical equilibrium is obtained from the z  component o f 

the non-relativistic Euler equation where all the terms 

involving velocities and the higher powers o f ( z j r )  arc 

neglected In the case o f a general relativistic disc, the 

vertical pressure gradient in the comoving frame is 

compensated by the tidal gravitational field We then 

obtain the disc height

H { r )
i y  -  Dcf

[y  -  (1 + c? -  t r  ( v ,  ~ i) }

y - d  + t : )

1

l ~ n ‘

A r M

-  4 A a r A  + A " r"(4 a "  -  r ~ A )

M  = p  -

I I r - ' 4;iA
' - - 1

H { r )

One can solve the conservation equations for e; M  

E  to obtain the complete accretion profile

13  3  T r a n s o n i c i t y

The gradient of the acoustic velocity can be computed b\ 

differentiating (84) and can be obtained as *

dc^ _ c ^ ( y - i - c f ) 

d r l + y

X W a  2  i r 2  + mg^,

4 r  2 u \  \ - u ^  j d r
(K5i

The dynamical velocity gradient can then be calculated b) 

differentiating (83) w ith the help o f (85) as ■

d r

2 r :

(y + 1)

r - l   ̂ 2  v , a x  

A r  Ay/

2 c

( « I )
which, by making use of (80), may be be expressed in 

terms ol the advcctivc velocity u

The temporal component o f the energy momentum 

tensor conservation equation leads to the constancy along 

each streamline ol the fiow specific energy i  { t  =  h v , ) ,  and 

hence Irom (80) and (55) it follows that .

( y - i )

( l - i r )  (y + l ) ( l - i / ) u

where

y /  =  A^u," - a ~ { v ,  -  I),

i//„ -  I I -  —  j, cr = 2A“li, -

U V , G

' ~2W

m

I d Ax = - — + - d Q d r

6  d r  ( \ - £ 2 X )  d r  

The critical point conditions can he obtained as

(S7i

(82) M~(y+ l)y/

The rest-mass accretion rate M  is obtained by integrating 

the relativistic continuity equation (77)

One finds

2 y /  -  u~v,(T

2 r ( r - l )  +  4 A
(8b)

(83)
y / l - i r

Here, we adopt the sign convention that a positive u 

corresponds to accretion The entropy accretion rate E  

can be expressed as

m

For any value o f [f, A. y, a], substitution o f the values of 

u  ) and ( j 1;.^  ̂ m terms o f r, in the expression for f 

(82), provides a polynomial in r , ,  the solution of 

determines the location o f the critical poml(s) rc

It IS obvious from (8 8 ) that, unlike relativistic spherical 

accretion, “  l(r= rj ^  ^\r^r and hence the Mach number 

the critical point is n o t  equal to unity in general This 

phenomena can more explicitly be demonstrated for a = '̂ 

L e , for relativistic disc accretion m the S c h w a r z s c h iU  

metnc,

For Schwarzschild black hole, one can calculate the
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\ liJ i number o f ihe flow  at Ihe critical point as*̂  (Das, 

Bilitf Diisgupta 2(X)6)

If 2 ]
(89)

hca-

3 /  - 2 AV, +3A^
/ , ( r  , A )  -  — 7- - - - - - - - - - - - - - - - - - - - - - - -

' r,-*-AV,(r, - 2 )

2/; - 3  2r / - A V ,  + A -

- 2 ) r .-^ -A v , (r, - 2 )
(90)

( liMilv Af, IS gcncially not equal to unity, and foi / >  ] ,

IS jlv^.ivs less than one

lIiiiLL- wc clislinguish a sonic point from u critical 

iHHiu In ihc literature on transonic black-holc accretion 

diss'-, liie concepts o f critical and sonic points are often 

iii.ulf svnonynious by defining an ‘effective' sound speed 

LMtliiig Id Ihe ‘efiectivc’ Mach number (for further details, 

,u ( ,e Matsiimolo e t  a l  1984, Chakrabarli 1989) Such 

' l  l Millions were proposed as effects o f a specific disc 

A (unci I > We, however, prefer to maintain the usual 

(li'lmiiion of the Mach number for two reasons

Imisi, in the existing literature on transonic disc 

.luiciion the Mach number at the critical point turns out 

III K* a liiiiciion o f y^only, and hence remains constant 

d )' IS Lonsianl For example, using the Paczyifski and 

wiik' pseudo-Schwarzschild potential to describe

ihi ailuliMlit accretion phenomena leads to (see section

1 1 loi the derivation and for further details)

M, -  - - - (91)

= |r, -

9 0 9

(92)

I lie above expression does not depend on the location o f 

il'L' LI meal point and depends only on the value o f the 

Jdiahaiic index chosen to describe the flow. Note that for 

|''t)ilicimal accretion y =  1 and hence the sonic pmnls and 

uiiieal points a r e  equivalent (since M ,  = 1), see (169) 

seLimn 16.1 2  for further details.

However, the quantity M ,  in eq (89) as well as in (8 8 ) 

clearly a function o f r,, and hence, generally, it lakes 

"^hltneni values for different r, for transonic accretion. The 

tlilliicnce between the 'rad ii o f the critical point and the 

ôniL point may be quite significant. One defines the radial 

^ibciencc o f the cntical and the sonic point (where the 

'^‘lUi number is exactly equal to unity) as

vimL expression can be obluined by pulling o = 0 in (88)

The quantity Ar,'‘ may be a complicated function o f [£; A  

y, a], the form o f which can not be expressed analytically 

The radius r, in cq. (92) is the radius o f the sonic point 

corresponding to the same [f, A  y  «l for which the ladius 

o f the critical point r, is evaluated. Note, however, that 

since r, is calculated by integrating the How from Ar^' 

is defined only for saddle-type cntical points (see susequent 

paragraphs tor further detail) This is because, a physically 

acceptable transonic solution can be constructed only 

thiough a saddle-lypc critical point One can then show 

that Ar^' can be as large as lO^i,, or even more (tor further 

details, see Das, Bilic^ &  Dasgupta 2006)

The second and perhaps the more important reason for 

keeping r, and r, distinct is the fo llow ing In addition to 

studying the dynamics o f general relativistic transonic 

black-hole accretion, we are also inlciesled irt studying the 

analogue Hawking effects for such accretion flow Wc 

need to identify the location of the acoustic horizon as a 

radial distance at which the Mach equals to one. hence, 

a s o n i c  p o i n t ,  and not a c r i t i c a l  p o i n t  w ill be o f our 

particular interest. To this end, we first calculate the critical 

point r, for a particular [z; A  y. a ]  following the procedure 

discussed above, and then wc compute the location o f the 

sonic point (the radial distance where the Mach number 

exactly equals to unity) by mtcgiatmg the flow  equations 

starting from the critical points 1 'he dynamical and the 

acoustic velocity, as well as their space derivatives, at the 

s o n i c  point, are then evaluated. The details o f this 

procedure for the Schwarz,schild metric are provided in 
Das, Bilid  &. Dasgupta 2006.

Furthermore, the definition o f the acoustic metric m 

terms o f the sound speed does not seem to be 

mathematically consistent with the idea o f an ‘e lfectivc’ 

sound sp)eed, irrespective o f whether one deals with the 

Newtonian, post Newtonian, or a relativistic description o f 

the accretion disc. Hence, we do not adopt the idea o f 

identifying critical a point with a sonic point. However, for 

saddle-type critical points, r, and r, should always have 

one-to-one correspondence, in the sense that every critical 

point that allows a steady solution to pass through it is 

accompanied by a .sonic point, generally at a different 

radial distance r.

It IS worth emphasizing that the distinction between 

critical and sonic points is a direct manifestation o f the 

non-tnvial functional dependence o f the disc thickness on 

the fluid  velocity, the sound speed and the radial distance 

In the simplest idealized case when the disc thickness is
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assumed lo be constant, one would expect no distinction 
between critical and sonic points. In this case, as has been 
demonstrated foi a thin disc accretion onto the Kerr black 
hole (Abraham, Bilnf & Dus 2(X)6), the quantity 
vanishes identically for any astrophysicully relevant value 
of Ic A, Y< «l Hereultcr, we will use to denote the sonic 
point since a sonic point is actually the location of the 
acoustic hon/xin

13 4  M u lth f ia n s o n ic  h c fw v io u r

Unlike spherical accielion. one finds three (at most) critical 
points for relativistic disc accretion for some values of [i, 

Y- I” figure 3, we classify the U; A] parameter space, 
for a fixed value of adiabatic index (y = 4/3) and the Keir 
parameter {a = 0 3), lo show the formation of various kind 
ol critical points The green region corresponds lo the 
formation ol a single critical point, and hence the mono- 
irafusonu disc acciclion is piodiiccd for such region In 
the green region marked by I, the critical points are called 
‘inner type’ ciitical points since thc.se points arc quite 
clo.se to the event horizon, approximately in the langc 
2<  r'" < 10 In the green region marked by O, the critical 
points are called ‘outer type’ critical points, because these 
points aic located considerably far away from the black 
iiolc Depending on the value ol (̂ ; A. y, a\, an outer 
(.'itiLal point may be as far us 10* / or more

P A kA M lllR  SI-ATI lOH MUI II-IKA\M)Nir ALt'Hl 1 ION

eveni

I (KMI 

I IKJR

I (H)1 

I on: 

I (XII

velocity r, at a larger radial distance from the 
horizon, leading to the generation of supersonic flow ,|[ 
large value of r, which rcsult.s the formation of the some 
point (and hence the corresponding critical point) far 
from the black hole event horizon On the contrary, \\̂  ̂
inner type critical points are formed, as is observed from 
the figure, lor strongly lolating flow in general Owing m 
the fact that such flow would posses a large amount oi 
loialional energy, only a small fraction of the total spcufi;. 
energy of the flow will be spent lo increase the r,idu| 
dynamical vcUxity u Hence for such flow, u can ovnconv 
f, only at a very .small distance (very close to the evcni 
horizon) whcie the intensity of the gravitational ||i;|(j 
becomes enormously large, producing a vciy high value n|, 
the linear kinetic cncigy ol the How (high u), over shedding, 
the contribution to the total specific energy from all oHu'r' 
sources However, from the figure it is also observed ihai 
the inner type sonic points aie lormed also foi modcraidv 
low values of the angular momentum as well (cspcciall\ in 
the region close to the vertex ol the blue tinted /one) for 
such regions, the total conserved specific energy is i|uiK' 
high In the asymptotic limit, the expression lor the luiai 
specific energy is governed by the Newtonian iTicLh,inii.s 
and one can have

y -1

) f ^1 2̂  - I ' '/̂ iiiviUiuuial ,
V AiltdllOlUl

H|>urc .1. Pariim eicr spiiLC for gcnciu l leljliv i.v lic  mulli-triinsoiiK . 
accrcim n and wind in Kcii yeom tlry, see icxl lor delud

The outer type critical points for the rnono-transomc 
region arc formed, as is obvious from the figure, foi 
weakly rotating flow For low angular momentum, accretion 
flow contains less amount ol rotational energy, thus most 
of the kinetic energy m utilized to increase the radial 
dynamical velocity u at a lastcr rate, leading to a higher 
value of dhtldr^ Under such circumstances, the dynamical 
velocity u becomes large enough to overcome the acoustic

where 0  is the gravitational potential energy in iIil 
asymptotic limit, sec Section 16 11 for further detail from 
(93). I t IS obvious that at a considerably large disiaiKC 

Irom the black hole, the contribution to the total cncigy ol 
the How comes mainly (rather entirely) fiom the ihcimjl 
energy A high value of f  (flow energy in excess to its rĉi 
mass energy) corresponds lo a ‘hot' How starling from 
infinity Hence, the acoustic velocity corresponding to ilit 
‘hot’ flow obeying such outer boundary condition would 
be quite large f^or such accretion, flow has to travel <i 
large distance subsonically and can acquire a supersonic 
dynamical velocity u only at a very close proximity i® 
event horizon, where the gravitational pull would be 
enormously strong.

The \£, A] region corresponding lo the read and ibf
blue tinted wedge shaped regions produces three critical

points, among which the largest and the s m a l l e s t  valuta 
correspond lo the X type (saddle type), the outer
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iiiriL-i r,"' - crilical points respectively. The O type 
) iTiKidlc critical point, . which is unphysical 

lic M'list: that no steady transonic solution passes 
ii- between /-/" and r""' The following

,,. usM()ii piovides the methodology for finding out the 
(Whether saddle/ccntrc type) in brief, see Goswami, 

l̂,„, Kjy it Das 2006 foi further detail

1(̂ 1 (Kb) could be recast as

yn 1
I c)s!2 r

f

1

I t r
-

y +1 i r y + l ;;i r)/r

,/t y I 1 '
1 L

f  '

('H)

C‘>5)

I iliL pi lines repieseiiting full derivatives with respect 
.iml f IS an arbitraly mathematical paiametcr Hcic,

/ ./ ) - _ Ĉ'i'(' ) =

I.M / a ) -  ” r-“----- . ' =  +

Ilk'Miliuil Lomlilions are obtained wnih the simultaneous 
.nnli'iic ol ihc right hand side, and the coelliucnl of 
; ■( |̂ /l in the lell hand side in (04) This will provide

I li e,

1 -  ii- r  y + 1 M-
2 f\- I

y + 1 ^ 21
= 0 ,

Jh
/Ah'

‘ f ■ ‘ r L-f

/■ = r + Sr

Oil

(W)

in ihe paiainetrised scl ol auionoinous riisi'Ordci diMeieniial 
equations,

(97)
I'' ihc iwo critical point conditions Some simple algebraic 
’iniipnlaiions will show that

(98)

and

‘'’■c hxed

ch_
( It

i
\ + u

' a l . .L _ r
i ) f

- L  '
Y + • ir y t 1 .V:lf

(KX))

( 101)

with f  being an arbiliaiv paiametie In the two equations 
above (S'l ~ can be closed in lei ms ol (Su- and Sr with the 
help of (85) Having done so, one could then make use ol 
solutions ol the lorm, Sr ~ exp( I2 r ) and ~ exp( iI t ), 
from w'hich, £2 would give the eigenvahics-growlh lalcs 
of Sii- and Sr in f  space - ol the stabilil) matrix implied 
by (100-101) Detailed caleulations will show the 
eigenvalues to be

12 ‘ ( 102)

'"llinving which r? can be rendered as a function of 
• 'i')'. and lurther. by use of (82), r̂ , and can all 
lî ecl m terms of the constants of motion like F. A, 

a Having fixed the critical points, it should now be 
"' t̂essarv to study their nature m their phase portrait ol 
" n-Mfo t To that end one applies a perturbation about

point values, going as

where ft - ^ 2  l(y- \) and Z\- Si î 'id tan be expicssed 
as polynomials ol r (see Closwami, Khan, Kay &. Das 2(X)6 
for the explicit form ol the polynomial), hence i2 can be 
evaluated loi any U. A. y n\ once the value of the 
corresponding ciilical point i, is krunvn Ihe structure ol 
(102) immediately shovs's that the only admissible critical 
points 111 Ihc conserved Ken system will be either saddle 
points or centre type points for a saddle point, £2 > 0,
while lor a centie-type point, i2" < 0

hor multi-tiansonic flow characleri/ed by a specific set 
of \l-. A y r/f one can obtain the value of £2' to be 
positive for r/" and showing tluit those critical
points aic ol saddle type m nature i2‘ comes out to be 
negative for , confirming that the middle >onic point 
IS of ccntic type and hence no transonic solution passes 
through It One can also confirm that nil mono-transonic 
How (How with a single critical point characterized by \r, 
A| used from the giecn tinted region, either I or O) 
corresponds lo saddle type ciitical point,

However, there is a distinct ditlereiice between the 
multi-transonic flow characterized by If. Aj taken Ircim the 
red region (marked by A) and the blue region (marked by 
W) Foi region marked by A, the cntiopy accretion rale E 
for flows passing through the inner critical point is f ir ra te r  

than that of the outer critical point
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5 (r ;" )>  5 ( r ;“ (103)

while for the region miirked by W, ihe following relation 
holds

5 ( r ; " ) < 3 ( r ; ’"̂ ) (1(H)

I'he above two relations show that [e.A] region marked by 
A represents miilti-lransonic accretion, while \r,A] e U,/^]w 
corresponds to the mono-lransonic accretion but multi- 
iransonic wind More details about such classdicalion will 
be discussed in the lollowing paiagraphs

There arc other regions foi \i.A\ space tor which either 
no critical points aic formed, or two critical points aic 
torined I'hesc legions aie not shown in the llgure However, 
none ol thc.se regions is ol our interest If no critical point 
IS found. It IS obvious that transonic accretion docs not 
lorm foi those set ol \i',A\ For two critical point region, 
one of the critical points arc always of ‘O’ tyjx:, since 
according to the standard dynamical systems theory two 
successive critical points can not be of same type (both 
saddle, or both centre) Hcncc. the solution which passes 
through the saddle type critical point would encompass 
the centre type critical point by forming a loop (see, c g . 
Das, Bilid & Dasgupta 2()()6 for such loop formation in 
Schwarzschild metric) like structure and hence such solution 
would not be physically acceptable since that solution will 
form a ilouul loop and will not connect infinity to the 
event horizon

13 5 Multi-iransoim flow topolofix ami sho( k formation 
To obtain the dynamical velocity gradient at the critical 
point, we apply L’Hospital’s rule on (86) Alter .some 
algebraic manipulations, the following quadratic equation 
IS formed, which can be solved to obtain j
(sec Barai, Das & Wiila 2(M)4 for further details)

where the coefficients are

+ g = 0 ,

( l - i r ) "  y + l

r ff l-r fo )  ir v .a
Ol = --------- ~ , ot - -  —

y + l

m( 1 - m‘ ) 2v/

 ̂ 1 2A“ (7 .  . r 2 u v ,6 ^  1
(̂ 3 = — + -----------, c\ = ‘5, -  + ^ J -  ,

V , (7 y j

6*5 = 3a- -1  
«(!-//■)

_ ^ 4 _  _ <v(y - 1 -  < ;•)

l~t!>2 a ^{[-u ^)

2r: 2 (1 -(5 .)’

/ - - I   ̂ ? a u , x  ^  _ ( 4 A \  - o - ) y /

r 4if/ a\ff

r , ' 2(/- - l)  ^ 2  v,<J J x
4i// f - 4i/r ij,

y + l - I . A ,

(y + D(l - / r ) (lIKi

Note that all the above quantities arc evaluated ,ii ii,: 
critical point

Hence wc compute the critical advcctive vclouh 
gradient as

(Kf'

(103)

whcic the ‘+ ’ sign conesponds to the accretion soIliIidii 

and the ’ sign corresponds to the wind solution, see ih.' 
following drscussion (oi further details, Similarly, the spj., 
gradient of the acoustic velocity di Jdi and its viilue ,i 
the critical point can also be calculated.

The How topology characleiized by \t\M  coriespoiuli 
to the I Ol O region (gieen tinted) is easy to obtain sinu' 
the flow passes through only one saddle type criiiul 
point Some of such rcpicsentative topologies will he 
found in Das, Bilid & Dasgupta 20064or the Schwar/sclnld 
metric Foi Kerr metiic, the flow profile would exiicilytv 
the same, only the numerical values for the critical/sonn. 

point would be different, leading to the different values 
u, and other corresponding accretion parameters at iIil' 
same radial distance r. In this section we concentrate on 
multi-transonic flow topology, i.e.. How topology fo''
E  ff,A)A or [t,A\ E  [f,A]w. Figure 4 represents one suih 
topology While the local radial flow Mach number hJ' 
been plotted along the Y axis, the distance from the cm-'HI 
horizon (scaled in the unit of GMa^lc^) in logarithmic m"' 
has been plotted along the X axis

The solid red line marked by A corresponds to
transonic accretion passing through the outer c;riiicjl
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(^i(K)oi r=4/i .1 = 01

loQ in(r)

h 'i i i ( '4  Soliiiimi in jiu lo^y  Toi niiilli-lrLinsoniL j i u c l i o n  in Ken 
,,iiun \ <111 a spLiilic '<cl ol 1/ A, y, a \  as shmvn in iho lig ine Sec 

M il

iiuiiii I Kill}: a specific set ol \f. A, y, r;! as shown 
i;i iIk Ipmiic one lirsl solves the equation for t at the 
,niK.il |ioml (using the ciilical point conditions as expressed 
I' , SSi  III lintl out the corresponding thiee critical points, 

i\|H‘ (4 279 i\), centre type (14 97 i^) and
,,kullL i\|»e (3315 01 r̂ .) The critical value ol the
.iJulUu velocity gradient at is then calculated
iiMir’ 'l()5 107) Suih ''1 ,,^ ,,. and  ̂ ^
s'1,1. as the initial value condition lor perloiming the 
iHiiiieriLal integration of the advcctive velocity giadicnt 
î <i) Using the lourlh-ordci Runge-Kulta method Such 
mk-j'iatioii piovides the outer sonic point <
) ), the local julvectivc velocity, the polytiopic sound
'isul ihe Mach nuinbei, the fluid density, the disc height, 
ilii hulk tenipeiatiirc ol the How, and any other relevant 
tlMiamkal and thei modynamic tptanlity charactcri/ing the
lk'\̂

Hie doited green line marked by W is obtained foi the 
vilik ol  ̂ corresponds to the sign in (107)

a solution is called the coiresponding ‘wind’ solution 
Ok- accretion and the wind solution intersects at the 
^uiical point (hcic, at This wind branch is just a
III iilicinaiical counterpart of the accretion solution (velocity 
level sal synmictry of accretion), owing to the presence ol
*lk' i|iia(lraiic term of the dynamical velocity m the equation 
k’l'veiiiing iiiL- energy momentum conservation The term 
'̂ iikl solution’ has a historical origin. The solai wind 
('liiiion hrsi introduced by Parker (1965) has the same 
‘̂'|k>!ogy profile as that of the wind solution obtained in 
dassical Newtonian Bondi accretion (Bondi 1952) Hence, 

name ‘wind solution’ has been adopted in a more 
general sense The wind solution thus represents a 

piocess, in which, instead of starting from 
"iliiiilv and heading towards the black hole, the flow

generated near the black-hole event hoii/on would tly 
away Mom the black hole towards infinity

The dashed blue line marked by 'a' and the dotted 
magenta line muiked by ‘w* * aie the icspcctivc accretion 
and the wind solutions passing through the inner critical 
point (the inteisection ot the accretion and the wind 
branch is the location ol f ) Such accretion and wind 
profile ate obtained following exactly the same procedure 
as has been used to draw the accretion and wind topologies 
(red and green lines) passing through the outer critical 
point Note, however, that Ihe accretion solution through

folds h(u k OHIO the w'oul solution and the accretion- 
wind closed loop encompasses the middle sonic point, 
location ol which is leprcsenled by M in the figure One 
should note that an ‘acceptable' physical transonic solution 
must be globally consistent, le  it imisl connect the ladial 
infinity ; with the hlack-hole event horizon r =
Hence, loi multi-liansonic accretion, there is no individual 
existence ol physically acceptable accrction/wind solution 
passing thiough the iniiei critical (sonic) point, although 
such solution can be ‘clubbed’ with the accietion solution 
passing through thiough shock foimation, see the
following discussions tor lurthei details

’Hie set U,/^1a (or more generally H. A, y, «1a) thus 
produces doubly dcgcnciatc accrclion/wind .solutions Such 
two fold degeneracy may be removed by the entropy 
considerations since the entropy accretion rales E ( )
and E ( ) arc generally not equal For any |r. A, y, a]
G \t. A, y u|v we find that the entropy accretion rale E 
evaluated for the complete accretion solution passing 
through Ihe outer critical point is less than that of Ihe rale 
evaluated foi the incomplete accielion/wind solution 
passing through the innci critical point Since the quantity 
E IS a measuie of the specific cntiopy density of the 
flow, the solution passing through r"“' will naturally tend 
to make a transition to its higher entropy counterpart, i c. 
the incomplete accretion solution passing through r,l" 
Hence, if there existed a mechanism for the accietion 
solution passing through the outer critical point (solid red 
line marked with A) to increa.se its entropy accretion rate 
by an amount

Z \= - - 5 ( r ; " ) - £ ( r r ) .  008)

there would be a transition to the incomplete accretion 
solution (dashed blue line marked with a’) passing through 
the inner critical point. Such a transition would lake place

H h is  a cL c p ia b ilily  LO iis lrm nl fu r lh c r  dem ands l liu t ihc  c n lic a l p u in l 

corrcspunding lu  the (low  should he o l u saddle or a nodal type Th is  

c o iid iu o n  IS necessary a llhough  no l s u f l iu e n l
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al .1 radial distance somcwhcie between the radius of ihc 
inner sonic point and the radius of the accrciion/wind 
turning point (75 7 t^) marked by G in the figure In this 
way, one would obtain a combined accretion solution 
connecting r with r ~ 2 (the event hoiizon) which
includes a part ol the accretion solution passing ihiough 
the mnei critical, and hence the inner sonic jioini One 
finds that toi some specific values of U, A. y, r/1̂ , a 
standing Rankine-1 lugomol shock may accomplish this 
task A supcisonic accretion through the outer \ouu point 

(which in obtained by integrating the flow staiting 
fiom the oLiiei critical point ) can genciate entropy 
through such a shock loimation and can join the flow 
passing IhiOLigh the inner sonu point (which m
obtained by integialmg the flow starting tiom the outer 
critical point r,'" ) Below we will carry on a detail 
discussion on such shock loimation

In this aiticle, the basic ecjiiations governing the flow 
arc the eneigy and baryon number conservation c'cpiations 
which contain no dissipative icims and the flow is assumed 
to be niviseid Hence, the shock which may be produced 
in this way can only be of Rankinc-Hugoniot type which 
conserves energy The shock thickness must be very small 
in this case, otherwise non-dissipativc Hows may radiate 
eneigy through the upper and the lowei boundaiies 
because ol the piesence of stiong tem|viatuie giadient m 
between the mnci and outei boundaries of the shock 
thickness In the piesence ol a shock (he How ma> have 
the following piofile A subsoiik flow starting Irom infinity 
first becomes supersonic after crossing the outer sonic 
point and somewheie in between the outer sonic point and 
tlie inner sonic point tlic shock transition takes place and 
forces the solution to )ump onto the corresponding 
subsonic branch 1 he hot and dense post-shock subsonic 
flow produced in this way becomes supersonic again alter 
crossing the inner sonic point and ultimately dives 
supersonically into the black hole A flow' heading towards 
a neutron star can have the liberty of undergoing another 
shock transition alter it crosses the inner sonic point**, 
because the hard surface boundary condition of a neutron 
siai by no means pievents the flow Irom hitting the star 
surface subsomcally

Foi the complete general relativistic accretion flow 

discussed in this article, the energy momentum tensor 3^’, 
the foui-velocity and the speed of sound c, may have 
discontinuities at a hypersurtaLt* S with its normal

'Or, .ilicriuiivcU, ,i slioLkcil Mow he.idmg towards a neulmii star need 
nol have lo ciuoiiiiici ihc inner some point at all

Using the energy momentum conservation and 
conlmiuly equation, one has

II'),, =('■[ [o '"  ]]f), = 0 (Hlij.

For a perfect fluid, one can thus formulaic the rclutiviMî  
Rankmc-Hugomot conditions as

[I

1 [ 3 , „ ' ) "  l ] - - [ | ( / < + e » i ) , " / ’„  | ]  =  0 ,

[ 1 ' ) ' ' ' ) '  j ]  =  [ [ i / > + £ ' " ■  t ' , ;  +  / ’ ] ]  =  '»•

(lllli

(1 1 2 i

w'heie / '  =r.\/yj\-if- is the Uoient/ factor The first i\m' 
conditions (1 10) and (111) arc trivially satisfied owiny ii 
the constancy of the specific energy and mass actreiuii' 
rale The constancy of mass accretion yields

1 ~ V u------
V i- i r

(11)
The thud Rankmc-llugomot condition (112) may now h 
wriiteii as

A-
r ^

I /u (y - c ; )  + t;

1 t : ( i - / / ' )

(If

Simultaneous solution of cqs (113) and (114) yields tli 
‘shock mvarianf quantity

ly + i 1

\  = ' /  ' ( r - l - t O ’" " O - i r i -

X [-I'K,’ -«■(>', - I ) ]  ’

which changes continuously ucioss the shock surface, V 
also define the shock strength S, and the entroi 
enhancement €-) as the ratio of the pre-shock to pos 
shock Mach numbers (5, = M /M+), and as the ratio ' 
the post-shock to pre-shock entropy accretion wl' 
{0  = E ^ !E ^ ^  of the flow, respectively. Hc*iic 
& = E (//") / E  ) for accretion and 0  = E (/■"“') / *  
for wind, respectively.
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I-hL- shock location in multi-transonic accretion is found 
P ihc lollowing way Consider the multi-transonic flow 
opology as depicted in the Figure 4 Integrating along the 
.nliiiion passing through the outer critical point, we 
il̂ iilaie ihe shock invanant Si, in addition to u, (\ and M 

\\̂  ,ilso calculate S,, while integrating along the solution 
ihrough the inner critical point, starting from the 

iinu sonu point up to the point of inflexion (/ We then 
jtiL'rminc the radial distance /j,, where the numerical 
.;iims ot Sh, obtained by integrating the two different 
,IVmis described above, are equal. Generally, for any 
,,ihio ol U, A Y> allowing shock formation, one finds 
,.,j shock locations marked by ,SI (the ‘outer’ sh(x:k, 
oiiiicd ai 65 31 - between the outer and the middle
,niik points) and S2 (the ‘inner’ shock, formed at 6 31 
iiiwccn the inner and the middle sonic points) m the 
I'Liic Actoidmg to a standard local stability analysis 

A.' Katatos 1995). for a multi-transnnic accretion, one 
Ai] show that only the shock formed between the middle 
uul [lie oiilci sonic point is stable The shock strength is 
li[h/tni loi (he mnei and for the outer shock For the 
a.iblc (O llie r) shock, the shock strength for the case 
houii 111 the ligure is 5 586, hence it is a strong shock 
IIkilUhc, in the multi-traiisonic accretion with the topology 
JiowM in fijniie 4, Ihc slu>ck al SI is stable and that at 

^ unsiahlc ricicaftei, whenever we mention the shock
v.iimn we icfer to the stable shock location only

/ ’ b D i m  g e o n i e t r v  a n d  s h o c k  g e n e r a t e d  o u t f lo w  

\''  ̂ u)nsL‘c|uence of the shock lormation in an accietion 
low the posl'sliock flow tempcraluic will also mcieasc 
ii’iiipil)' The post- to pre-shock temperature ratio T+ZT is, 
II I’L'iieial a sensitive function of \t\ A, y, a\ In Figure 5, 

piesent the disc structure obtained by solving (81) tor

MI(H M 1) INNI-KiJAHI Ol AlCRUION IJISC AKOIIND A k l HR III A fK  IlOU

■'"'J 100 -60 0  SO 100 160

bulirt 5  p ,,,. tiisc gcom ciry  with ihcim olly driven
'Pik.iiiy iiiiLk halo  See Icxl lor further dclail

the combined shocked accretion flow. The point B 
represents the black-hole event horizon, The pre- and 
post-shock regions of the disc arc clearly distinguished in 
the figure and show that the post-shock disc puffs up 
sigmticantly The prc-shock supersonic disc is shown by 
the red lines The post-shock subsonic part of the disc is 
shown by dotted blue lines and the post-shock supcisomc 
part (veiy close to the event hori/on since r/" = 4 279 r̂ ,) 
IS shown by dotted magenta lines (not well resolved in the 
figure though) The bulk flow temperature will be increased 
in the post-shock region Such an inueased disc 
temperature may lead to a disc evapoialion resulting in the 
formation of an optically thick halo, which are schematically 
shown using yellow coloured elliptic structures Besides, a 
strong temperature enhancement may lead to the formation 
of thermally dnven outflows The generation of ccnlrifugally 
driven and thermally diivcn outflows Irom black-hole 
accretion di.scs has been discussed in the post-Newtonian 
framework (Das & Chakrabarti 1999, Das, Rao & Vadawalc 
2(K)3) The post-Newtonian approach may be extended to 
general relativity using the formalism presented here. 

Owing to the very high radial component of the mtall 
velocity of accreting matciial close to the black hole, the 
viscous time scale is imich largei than the iiifall lime scale 
Hence, in the vicinity ol the black hole, a lotalmg inflow 
entering the black hole will have an almost constant 
s|x:cific angular momentum lor any motlerate viscous stress 
This angular momentum yields a very strong ceiitrilugal 
force which increases much lastci than the giaviialional 
force These two forces become comparable al some 
specific radial distance Al llial point the mattei starts 
piling up and produces a boundary layer supported by the 
centrifugal pressure, which may break the inflow to produce 
the shock 3’his actually happens not quite at the point 
where the giaviialional and cenlrifugal forces become equal 
but slightly farther out owing to the thermal pressure Still 
clo.ser to the black hole, gravity inevitably wins and matter 
enleis the horizon supensomcally after passing through a 
sonic point. The fomialion ol such a layer may be attributed 
to the shock formation in accreting fluid. The post-shock 
flow becomes hotter and den.ser, and for all practical 
purpo.ses, behaves as the stellar atmosphere as far as the 
formation of outflows is concerned A part of the hot and 
dense shock-compressed in-flowing material is then 
‘squirted’ as an outflow from the post-shock region 
Subsonic outflows originating from the puffed up hotter 
post-shock accretion disc (as shown in the figure) pass 
through the outflow sonic points and reach large distances 
as in a wind solution.
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The i>cncr.ilion ol such shock-driven outflows is a 
lejsonuble assumption A calculation desuibing the change 
of lincai momentum ol the accreting matciial in the cliratioii 
perpendicular to the plane of the disc is beyond the scope 
of the disc model desciibed m this article because the 
explicit variation of dynamical variables along the /  axis 
(axis peipendicular to the equatorial plane of the disc) 
cannot be treated analytically. The enoimous post-shock 
thermal pressure is capable ol providing a substantial 
amount ol ‘hard push’ to the accreting material against the 
giaviiational attraction ol the black hole. This ‘thermal 
kick' plays an impoilant role m le-distnbuting the lincai 
momentum ol the inllow and generates a iion-/,eio 
Lomponent along the Z diiection In othei woids, the 
thermal pressure at the post-sluK’k legion, being anisotropic 
in natuie, may deflect a part ol the inflow' perpendiuilai to 
the c(|uatoiial plane of the disc Recent woik shows that 
(Moscibi(Kl/ka, Das & C'/erny 2006) such shock-outilow' 
model can be applied to successfully investigate the origin 
and dynamics ol the stiong X-ray flares emanating out 
liom oui galactic centie

13 7 Mii(l i -fnm<>oiii ( w t m l

The blue coloured wedge shaped region marked by VV 
reprc.sents the f/, A, y, r/| /one lor w'hich thice critical 
points, the inner, the middle and the outer are also found 
However, in contrast to f/; A, y a] f= \i. A, y. the set 
(r. A. y, a\ e  \{, A, y, uU yields solutions loi which 
E ( )  IS lew than E ( )  Besides, the topological 
flow piolile of these solutions is dilleient Here the closed 
loop like sliuctuie is lormed through the oiiier ciitic.il 
point One such .solution topology is presented m l iguie 
6 lor a speedic set ol \l. A, y. a] as shown m the figure

i e

1̂1 0001 A-1 f) Y='̂ rt .1 = 0 1

J'lie same colour-scheme which has been used to denui. 
various accretion and wind branches (through vanôi;; | 
critical points) ol multi-transonic accretion (Figure 4) i 
been u.sed here as well to manifest how the loop Inrrnmion 
switches Irom Ilow through r'^ (multi-lransonic accicimfl 
Figuic 4) to Ilow through (mulli-transonic wind, Figurt 
6) This topology is interpreted in the following way 
flow (blue dashed line marked by ‘a’) passing through iiij. 
inner critical piint (3.456 r̂ ] is the complete mono-transonic 
accretion flow, and the dotted magenta line marked by 
IS Its coiresponding wind .solution The solutions passint 
thiough the outer critical point (3307.318 ;y), repiesuiK 
the incomplete accretion (solid icd line marked by ,V|' 
wind (dashed green line marked by ‘W’) solution Howcvci 
as E ( ) turns out to be less than E ( ), the \\w\\\
solution through r'" can make a shock transition to |oii)̂  
Its counter wind solution passing through r/”", .iiul' 
iheieby nuiease the entropy accretion rate by the uituHim 
J E  = E ( )  - E ( i'" ) lleic the numerical values ol 
S i, along the wnul solution passing through the imia 
critical point aic compaicd with the numerical values ol y 
along the wind solution passing thiough the outer criiiui 
point, and the shock locations SI and S2 foi the wind aie 
loLind accordingly Heie also, two thcoielical shicl 
locations aie obtained, which aie shown by dot das 

a/.uie vertical lines marked by SI (at 649 41 r̂ ) and S2 lai 
6 42 /-,,), out of which only one is stable The sIiol'k 
sticngth conespondmg to the stable outer shock Cv̂i k 
calculated to be 20 24 Hence, evv/enie/y strong sIkkIss ar.' 
formed lor rnulti-tiansomc wind m general A part ol llu’ 
region [t. A, y, r/Jw thus corresponds to mono-frumoni< 
accretion solutions with multi-tran,sonic wind solutions 
with a shock

Besides y -  4/3 and ri = 0 3, for which Figure 3 lu'̂  
been drawn, one can perform a similar classification lor 
any astiophysically iclevant value ol y and a as well 
Some chaiacteristic leature.s of [l. would be charigcil 
ĵ 'is being varied. For example, il is the maximum vjlue 
ol the energy and if and /l,n,n ure the maximum and 
the minimum valuc.s of the angular momentum, respcctiveh
for /IIa for a fixed value of A, then (t;nuni

C5' ,

Y m u r v  6 . Solul mil lopiilu^y lor riiiilti-lransonic wind iti Ken geomciry 
for j  spL'ulic sel ol p , /i y, n] as shown m die ligurc Sec Icxl for 
delait

A„J an"
eoiTclates with y Hence, as the Bow makes a iransinan 
Irom Its ultra-relativistic to it.s purely non-rclativi.slic bni"' 
the area representing U‘,/1]a decreases.

13 S. Dependence o f shock location on ctrcrclK'” 
parameters ‘
One finds that the shock location correlates with A rh*" 
IS obvious because the higher the flow angular momeniuni'
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iTiijiL'i ihc rotational energy content of the flow As 
.onst-qiJt'no?, the strength of the centrifugal barrier 

jiiji IS resiMinsible to break the mcOTTimg flow by forming 
ick will he higher and the location of such a barrier 

ill he lailher away from the event hori/on. However, the 
location anti-correlates with E and y This means 

III loi ihc same E and y in the purely non-relalivislic 
,,u ihc shock will form closer to the black hole compared 
,ih  the ullra-ielalivistic flow Besides, we find that the 
iiiv̂k slicnglh 5, anti-correlates with the shock location 

\«,luLh indicates that the closer to the black hole the 
lorms, the higher the strength 5, and the entropy 

iiliaiicL-nienl ratio S  are fhe ultra-relativistic flows are 
ipfuised to produce the strongest shocks The reason 
otmicl this IS also easy to understand The closer to the
1,1, k hole the shock lorms, the higher the available 
M,il.i!ional potential energy must be released, and the 

a ihcc live  velocity ict|iiircd to have a more vigorous 
inik iiimii will be laigei Besides we note that as the llow' 
i,iilij,illv appioachcs its purely noii-relaiivislic limit, the 
)ik iiui> lonn loi lowei .ind lowei aiigulai momentum, 

liiJi indicates that for puiely non-iclativislic accretion, 
i‘‘ slii^k lorinalion may take place even for a quasi- 
’iiuru.il ilow However, it is important to mention that a 
link loiIllation will be allowed not loi every A, y, r/1 
|/ /, y, </|a, eq (115) will be satisfied only for a sivcific 

iW'i ol |/, A, y (/]^, loi which a steady, standing shock 
'lulion will be lound

 ̂ Analofiuc Icmpcraturc
!ic siiriace gravity is defined according to (33) koi 
MS', iniiu'tiic accretion described in the above sections, 
ML Ljii calculate that (Abraham, Bilid & Das 2006, Das, 
'ilic Dasgupta 2(K)6)

J r/
------j
1 -  c\“ ilr

(119)

,1- y" y — ryfAB
(116)\ ■'V r ' -1- a' r + 2a" -  2Aa

B Lan be defined as

(117)
lllu-

1

-fSrr
(118)

expiession
JlLulaied as

for the’ analogue temperature can be

O J I f
V '•/. i n, j

where

^2(//,, r/, A) -  / /' +  a ' 1/̂  ^ 2a~ — 2 A a ,

C|2(//,, 1/, A) -  /y/ +  + 2 /-y /r ,

g il(r /,,f/. A) -  (r,; 2/y, H-  ̂ r),'' -  A )

t2 ,,;(2 fl '-2 A «  + A )i-r; (c/'-Ar/^^)

(f/ -  2A I- 1) -t 4ry, (r / ‘ -  2At/ + A )] ( 120)

Using eqs (K4-88, 105-107), along with the expression for 
UicJ(h) at one can calculate the location of the acoustic 
lion/on (the llow \onu point), and the value ol du/dr 
and (U Jd r at the acoustic, horizon, by integrating the llow 
fiom the critical point upto the acoustic horizon (sonic 
point) Such values can be implemented in the expiession 
foi Tfyn in (119-120) to calculate the analogue tcmpeiatuie 
rile ratio r = 7\nlTn can also be calculated accordingly

One can calculate the analogue temperature for the 
following five ditfeient categories of aicretion Bow all 
together, since we are not interested at this moment to 
study the analogue effects in wind solutions

(i) Mono-transonic flow passing through the single 
inner type cntical/sonic point I’he range ol \f. A, y 
a\ used to obtain the result for this region 
corresponds to the region of higure 3 marked by I

(ii) Mono-iiansonic flow' passing through the single 
outer tyjx' cntical/sonic point The range of |r. A, 
y (i\ used to obtain the result lor this region 
corresponds to the tegion ol figure 3 marked by O

(ill) Multi-transonic accretion passing through the inner 
cmical/sonic point The range ol [f. A, y a] used to 
obtain the result for this region corresponds to the 
region of Figure 3 marked by A

(iv) Mulli-transonic accretion passing through the outer 
critical/somc point The range of {£, A, y a] used to 
obtain the icsult for this region corresponds to the 
region of Figure 3 marked by A.

(V) Mono-transonic accretion passing through the inner 
cntical/sonic point for the mu III-transonic wind zone
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The nini^c of Ir. A, y. al used uj »blain the result 
loi this rc t̂ion corresponds to the icgion o1 Figure 
J marked by W

In ttiis scLlion, we would mainly like to conceiiirate to 
the study the dependence ot T,\// on the Ken parameter a, 
also, we would like to demonstrate that for some values ot 
U. A, y aj, the analogue tcmperatuie may be comparable 
to the actual Hawking temperature Hence we aie interested 
in the legion ot |f, A, y  n| lor which r  can have a value 
as large as possible We lound that large value of T  can 
be obtained only lor very high eneigy flow with large 
value ol the adiabatic index Such an almost purely 
nonreldtivislic hot accielion diK-s not produce multi- 
transonicity, it produce only mono-transonic flow passing 
through the inner type ciUical/sonic point Hence in the 
Fnguic 7, we show the variation ol rw ith a lor a specific 
value ot [i, A, y\ (as shown in the figuie) lor which [f, A, 
y\ e  [f, A yli Howevei, same t  -  a figuics can be diaw'ii 
toi any (/, A, y, nl taking (or any of the other four 
categories ol accretion mentioned above

In rnguie 7, the ratio o( the analogue to the actual 
Hawking temperature r  has been plotted along the Y axis, 
while the black hole spin parameter (the Kerr parameter u) 
has been plotted along the X axis It is obvious fiom the 
figure that r  anti co-ielates with a This is an extremely 
important finding since it manifest the fact that the black 
hole spin anf’iilur momentum does infhiem e the analogue 
gravity ejfect Also one linds that the retrograde (counter
rotating) flow enhances the analogue gravity effects, see 
Baiai & Das 2006 for further details Note that r  > 1 is 
possible to obtain lor an extremely large value ol f  having

I t-12 A.̂ :0 Ŷ lh I

01 ^

1 -OH 0 6  -04  -02  0 02 04 06 OH 1

F Ikiitv 7 Varijiit^n ol ilu ' r.u io  of analogue lo ihc a c iu ji H aw king 
lem peraiurc r  with the hlack hole spin aiigulai m oiiiciiluni (Ihc Kerr 
p aram eie i n )  C learly  ihe re lm g ra d e  flow  en h a n ee s  the ana logue 
g ravily  el feci sec lexl foi lurihci details

Ihc a d ia b a tic  in d e x  aJm ost e q u a l lo  its purely non-rel 

lim it  (y= 5/3).

As mentioned earlier, Ihc discriminant J) ^  
corresponding acoustic metric changes sign whenever [[,. 
stale of transonicity of the flow flips from sub- to 
somcity or vice versa. For mulli-transonic shocked accrciiof 
flow, such stale flipping occurs three limes, first, iroip 
subsonic to a supersonic state al the outer sonic pomi
(the outer acoustic hori/on ‘ ), then  fro m  the ‘'Upersonî
lo the subsonic stale al the shock ItKalion through iî  
Rankme-Hugoniol shock, and then from the subsunn. 
the supersonic stale again at the inner sonic pomi uh.> 
inner acoustic horizon r,"’ ) A transition fiom D < i, 
(subsonic flow) to 'D > 0 (supersonic flow) pioduccs 4,1 
acoustic black hole, while the reverse transition (V > 0 -̂  
V  < 0 ) pioduces an acoustic white hole (Berccio, Libcrjil\ 
Sonego & Visser 2(K)4; Abraham, Bilii5 & Das 2(K)6i It 
thus obvious that for mulli-transonic accretion encourUcriiii! 
a stable shock, two acoustic black holes are formed, oik 
at the Miner and the other al the oilier acoustic hoii/om 
(the inner and ouicr sonic points), and an acou.slic n/n/, 
hole IS produced al the shock For relativistic acactioi 
disc with constant thickness, this has formally bcci 
demonstiaied (Abiaharn, Biliĉ  & Das 2(X)6) by compuim̂  
the value of D for the whole span of r ranging Imrr 
infinity to the event horizon to demonstrate thal the P< 
0 —> 27 > 0 transition indeed takes place al ^ a n d  a 

, and D > 0 —> 27 < 0 transition takes place ,il iln 
shock location Similar calculation can also be perlurma 
for the disc geometry with the specific form of disc heigli 
(81) used in this work

14. Black hole accretion in ^niodified' Newtonian polentul! 
Rigorous investigation of the complete general relaiivisiii 
miilti-lransonic black hole accretion di.se stiuclurc i' 
extremely complicated At the same lime it is undcrslooi 
that, as relativistic effects play an Important role in 

regions close to the accreting black hole (where mosi ol 
the gravitational potential energy is r e i c a . s e d ) ,  

Newtonian gravitational fKilcnlial cannot be a reali''0t 
choice to describe transonic black hole accretion in gener-i' 
To compromise between the ease of handling oi ' 
Newtonian description ol gravily and the realistic situation' 
described by complicated general relativistic c a l c u l a i i o n v  J 

series of ‘modified’ Newtonian potentials have 
introduced to describe the general relativistic effects ihai 
are most important for accretion disk structure around 
Schwarzschild and Kerr black holes (see ArteniovD 
Bjomsson & Novikov 1996; Das 2(X)2, and reference-'̂
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,.,Lin tor lurther discussion).
" i.moduciion of such potentials allows one to investigate 

Imiplicalcd physical processes taking place in disc 
" .n 1 semi-Newtonian framework by avoiding pure 
,.nl lelJtivislic calculations so that most ol the teatures 
''pliLClimc around a compact object are retained and 

cuiual properties of the analogous relativistic 
>Knioiis o( disc structure could be rcpioduced with high 

Hlmicc, those potentials might be designated as 
,v luIo-Kci r’ or ‘ pseudo-Schwar/schild’ potentials, 
.poiKlini: on whether they are used to mimic the space 

arniiiul a rapidly rotating or non rntaling/slowly 
(Kui parameter a ~ 0) black holes respectively 

, l „ v .  w e  d e s c r i b e  lour such pseudo-Schwarzschild 
,4uiiub on which we will concentrate m this article. In 
II seuion, as well as in the folUiwing sections, we will 
,, ihc \.ilue ol /„ to be equal to 2(lM i,n /(^

1: IS iinpoitant to note that as long as one is not 
111 asuophysical processes exlicmely close (within 

: t ) ,0 a blatk hole hoii/on, one may salcly use the 
ilKmiiiL’ black hole potentials to study accretion on to a 
Jiuar/sthild black hole with the advantage that use ol 
vse potentials would simplify calculations by allowing 
!„■ 1,1 use some basic features ol Hal geometry (additivity 
I eiieies oi dc-coupling of various energy components,
. ihcinial < '/ ( y - l ) .  kinetic i i r /2 )  oi giaviiational ( 0 )  

a SL‘L siibscciuenl discussions) which is not possible 
'[ kaVuLiiioiis III a purely Schwar/schild or a Kerr mcliic 
, .11 one urn study more complex many body pioblcms 
uJi .IS .KLrclion liom an ensemble ol companions oi 
.ei.ill elfkiciiLy of accretion onto an ensemble of black 
tiles m .1 galaxy or for studying numerical hydrodynamic 
.kUiion Hows around a black hole etc as simply as can 
e ilime in a Newtonian framework, but with far better 
t-uii.iLV .So a compaiutive study of multi-lransonic 
ksu'tion How using all these potentials might be quite 
''î lul in understanding some important features ol the 
ivilinnic piopcriies of astrophysical accretion.

Msu one of the mam ‘charms’ of the classical analogue 
' n'ii\ loimahsm is that even if the governing equations 
' lliiicl How IS completely non-relativislic (New'lonian),
‘ piopagahon of acou.stic fluctuations embedded into it 

ilckcrihcd by a curved pseudo-Riemannian geometry 
' connection to a.stiophysical accretion, one of the best 

U) manifest such interesting effect would be to study 
analogue cllccls in the Newtonian and post-Newtonian 

‘'■ c'ciion (low However, one should be careful in using 
potentials because none of these potentials discussed 

'' ibc; .subsequent paragraphs are ‘exact’ in a sense that

they are not directly derivable from the Einstein equations. 
These potentials could only be used to obtain more 
accurate correction terms over and above the pure 
Newtonian results and any ‘radically’ new results obtained 
using these potentials should be cross-checked very 
carefully with the exact general iclalivistic theory.

Paczynski and Wiita (1980) proposed a pscudo- 
Schwar/schild potential of the form

0, r-. ( 121)2 (r-  1)
which accurately rcpioduccs the posilions of the marginally 
stable orbit i\ and the maiguially hound orbit and 
piovidcs the value ol clficiency to be --() 062.5, which is in 
close agreement with the value obtained m full general 
relativistic calculations Also the Keplarian distribution of 
angular momentum obtained using this potential is exactly 
same as that obtained in pure .Schwaizschild geometry It 
IS worth mentioning here that this potential was first 
introduced to study a thick accretion disc with super 
Eddington Luminosity Also, it is mteicsting to note that 
although I t had been thought of in teims of disc accretion. 
0^ IS spherically symmetiic with a scale shift of r^

To analyze the normal modes of acoustic oscillations 
within a ihm accietion disc around a compact object 
(slowly rotating black hole oi weakly magnetized neutron 
star), Nowak and Wagoner (1991) approximated some of 
the dominant relativistic cflects of the accietmg black hole 
(slowly rotating or non-rotating) via a modified Newtonian 

potential of the form

0 ,  -  - 2/ i 2 ,
( 122)

0 )  has correct form ol r, as in the SchWiirzschild case but 
IS unable to reproduce the value ol r,, This potential has 
the coneci general relativistic value ol the angular veUrcity 
£2, at r,. Also it reproduces the radial cpicyclic frequency 
iv, (loi r  > r j  clo.se to its value obtained Irom general 
lelativistic calculations, and among all black hole potentials, 

provides the best apprriximation for £2, and v,. However, 
this potential gives the value of efficiency as -0.064 which 
IS Uirgci than that puKluced by 0 u  hence the disc spectrum 
computed using 0 i  would be more luminous compared to 
a disc structure studied using 0 \

Considering the fact that the free-fall acceleration plays 
a very crucial role in Newtonian gravity. Artemova, 
Bjoms.son & Novikov (1996) proposed two different black 
hole potentials to study disc accretion around a non- 
rotating black hole. The first potential proposed by them
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produces exactly the same value ol Ihc free-l'all uccelcrahon 
of a test particle at a given value of r as is obtained lor 
a test particle at rest with respect to the Schwar/schild 
relcreiice Iramc, and is given by

(that IS, S,  IS a measure of the numerical value ol

0 ,  -- I +1 I -  -

i ./

‘‘ "Y  I Ih ,

(123)

I he second one gives the value ol the Iree lull acccicialion 
that IS equal to the value of the covariant eoniponenl ol 
the three dimensional lice-lall .leceleratioii vector ol a test 
particle that is at lest in the Schwai/sehild rcicience fiaine 
and IS given by

potential at a radial distance r), we find that for > > i
<  Sn < 5 i <  S^ < Sd,

which indicates that while 0? ts a ‘llatlcr’ poieim 
compared to the pure Newtonian ixitenlial C(Vj, all 
pseudo potentials arc ‘steeper’ to </Vi lor r > 2r,

One can write the modulus of free fall accelcruhoii 
obtained from all ‘pseudo’ potentials except for 0, ^
compact form as

I
(Pj

(124)

Rincieiicies produced by 0 i  and 0^ are -0 0X1 and -0 07X 
respectively The magnitude ol efficiency pioduced by 0 , 
being maximum, calculation of disc slriietuic using 0 i  will 
give the maxinuim amount ol eneigy dissipation and the 
coriespoiulmg spectrum would be the most luminous one 
Heicultcr we will rcfci to all these foui potentials by 0  in 
general, where |; = 1, 2. 3, 4) would eoiicspond to 
0i(l21), 0 7 ( 1 2 2 ), 0i(123) and 0i(124) icspectively One 
should notice that while all othei 0  have singularity at / 
= only 0 1  has a singularity at r = 0

III f'lguie X (leprodused Irom Das Saikai 2001), we 
plot various 0  as a lunction ol the ladial distance measuied 
Irom the aecieting black hole in units ol ) .̂ Also in the 
same plot, purely Newtonian potential is plotted If we 
now deliiie a quantity to be the ‘relative stillness’ ol 
a potential 0  as

'■('•-I)"'

wheie r)(| = 2, tl)', = 1/2 and fl>4 = 1 |0 |  denotes H],. 
absolute value ol the space deiivalive of 0 .  / r ,

U/0,
, / r  \

wheicas acceleration pioduced by 0 . can be eonipnuil ^

K P '

, ,  1 , ,1 >)
1,- I o ,-

(Pfi.

boi axisymmelnc accretion, at any radial distance / mcasuiv 

lioni the accictoi, one can define the effective pounn,,, 
0̂ *̂ " (/ ) to be the summation ol the gravitational pokniM 
and the cenlnlugal potential lor matter accreting iindci iIk 
inlluence ol /Ih pseudo potential 0 |-“ (r) can be expiesscn

0, (r) - 0 ( / )  + ip:

wheic A(r) is the non-constant distance dependent s|VLilk 
angular momentum ol aceictmg material One then 
shows that A{r) may have an upper limit ;

= (I»

wheie 0 / ( / )  represents the derivative of 0 , (r) wiili 
respect to r For weakly viscous oi inviscid How, angulJ'' 
momentum can be taken as a consHint parameter (2) jnd 
(127) can be approximated as

0 ; " ( , ) ^ 0 ( r )  + - (12̂'

IWjlO(r)

Ki|>urv K N ew innian poieiiii.il ami oihci pseuilo-poieniials *7>,(r) (i = 
1. ?. 3, 4) are plollcil as a lu iu lion  ol llie lo ^ jn lh m i( la d u l ctisiancc 
Irom  the arere lm g  hlack hole This litoire is repiodiiced fiom  Dii> &  

S arkar 2001

For general lelativistic treatment of accretion, the ellainL’ 
potential can not be decoupled m to its g ra v ita tio n a l  ■n'*! 
centrilugal components The general relativistic clledoî
potential 0^/j^(r) (excluding the rest m ass) experienced 1"
the fluid accreting on to a Schwar/schild black hole san ^ 
expres.scd as ‘

(IDI
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ân understand that the effective potentials m general 
^iDuiy be obtained by linearly combining us

viUKmal and rotational contributions because vanous 
'. L-ies in general relativity arc combined together to 
"liULL- nun-linearly coupled new terms.

Figuic 9 (reproduced from Das 2002), wc plot 
(L)htained from (129)) and ^^'^(r) as a function 

I , ,,i loganihmic scale The value of A is taken to be 2 
miih ol 2GM/C curves for different 0, arc marked

ijiuri. ') I tU U iv L  bUn.k ho le  p o ie n iia ls  fo r  j;ene ra l rc la h v is l ic  

i/',, I ' l l  .1, well JS lo r pseudo pcneral re la liv ishc  aecrelion

....... . .1 iuiiLiion of ihe diM ante (m easured from the eveiil horizon
i iKMi' i.i / ) jilolled in logaiilhmu scale 'I'lic specific angular 
. 1,1 MI.],11 IS iliosLii lo be 2 m geometric unils The figure is reproduced 
, . in- ’1)02

sskiMvdv in the figure and the curve marked by G** 
L'l'aMnls the vaiialion of ^f^jjfir) with r One can observe 
Ik'i (/»," (/) IS in excellent agreement with < ' ( r )  Only 
I'l .1 \cry small value of r (r—>rĵ .), starts deviating
"'111 ) and this deviation keeps increasing as matter
il'puuches closer and closer to the event horizon, All 
"ihii 0 ‘'‘(/)s approaches to at a radial distance
iffiLMsiiivd from the black hole) considerably larger compared 
i" ihc case for 0,'’̂* (r) If one defines A ^ \ r )  to be the 
‘iiLMsmc o( ilic deviation of 0 “̂ *̂ (r) with 0p,jf(r) at any
piiinl

obseivcs that is always negative for 0 “̂ ^(r),
loi othei 0 “̂̂* (r) , it normally remains positive for low 

ut A but may become negative for a very high 
‘‘ut of A If |a f ( r ) \  be the modules or the absolute 

' jIuc o| one can also see that, although only for
.small range of radial distance very close to the 

'̂•'̂ 111 horizon, 2l'*^(r) is maximum, for the whole range of

distance scale while 0  is the best approximation of 
general relativistic space time, 0  is the worst approximation 
and 04 and 0  arc the second and the third besi 
approximation as long as the total effective potential 
experienced by the accreting fluid is concerned. It can be 
shown that nonlincarly anti-correlates with A.
The reason behind this is understandable As A decreases, 
rotational mass as well as its coupling term with 
gravitational mass decreases for general relativistic accretion 
material while lor accretion m any 0 ,  centrifugal force 
becomes weak and gravity dominates, hence deviation 
from general relativistic case will be more prominent because 
general relativity is basically a manifestation of strong 
gravity close to the compact objects

Fiom the figure it is clear that for 0cji(O well as 
for all <Ii^^\r), a peak appears close to the honzon The 
height ol these peaks may roughly be considered as the 
measure of the strength of the centrifugal barrier 
encountered by the accreting material for respective cases 
The deliberate use of the word ‘roughly’ instead ol ‘exactly’
IS due lo the fact that here wc are dealing with lluid 
accretion, and unlike particle dynamic.s, the distance at 
which the strength of the centrifugal barrier is maximum, is 
located further away from the peak of the eflective potential 
because here the total pressure contain.s the contribution 
due to fluid or ‘ram’ pressure also. Naturally, the peak 
height for 0 jJ ( r )  as well as for 0,"" (r) increases with 
increase of A and the location of this barrier moves away 
from the black hole with higher values ol angular 
momentum. If the specific angular momentum of accreting 
maienal lies between the marginally bound and marginally 
stable value, an accretion disc is formed For mviscid or 
weakly viscous flow, the higher will be the value of A, the 
higher will be the strength of the centrifugal barrier and 
the more will be the amount of radial velocity or the 
thermal energy that the accreting matenal must have to 
begin with so that it can be made to accrete on to the 
black hole. In this connection it is important to observe 
from the figure that accretion under 0 ( r )  will encounter a 
centrifugal barrier farthest away from the black hole 
compared to other 0  For accretion under all 0,,s except 
0 ,  the strength of centrifugal bamer at a particular distance 
will be more compared to its value for full general relauvisuc 
accretion.

In subsequent sections, we will use the above 
mentioned potentials to study the analogue effects in 
spherically symmetric and in axisymmelric black hole 
accretion
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15. Newtonian and po»t-Newtonian spherical accretion as 
analogue model

In this section, we study the analogue gravity phenomena 
in the spherical accretion onto astrophysical black holes 
under the influence of Newtonian as well as various post- 
Newtonian pseudo-Schwarzschild potentials descnbed 
above. We use the expressions ‘post-Newtonian* and 
‘pseudo-Schwarzschild’ synonymously Our main goal is 
to provide a scir-consislenl calculation of the analogue 
horizon temperature T^u in terms of the minimum number 
of physical accretion parameters, and to study the 
dependence of on various flow properties. This 
section IS largely based on Dasgupta, Bilid &. Das 2005.

15 I Equation o f motion :
The non-relativistic equation of motion for spherically 
accreting matter in a gravitational potential denoted by 0  
may be wntlen as

du ()u 1 ()p d 0—  + M —  + ---- -  + ---- = 0,
dr dr p  dr dr (131)

The First icim in (131) is the Eulenan time denvative of the 
dynamical velocity, the second term is the ‘advective* 
term, the third term is the momentum deposition due to the 
pressure gradient and the last term is the gravitational 
force Another equation necessary to describe the motion 
of the fluid is the continuity equation

dp
di

J_ A
-2 d r '

15 2 Sonic quantities ‘

15 2 1. Poly tropic accretion
We employ a polytropic equation of state of the form p = 
Kp^. The sound speed c, is defined by

dp p

f  = ---  + ---^  + 0
2 r - 1

M = 4npur^.

Eq ('34) is obtained from (131), and (135) follows dwtew 
from (132) ''

Substituting p  m terms of Cj and differentiating (13 ,̂ 
with respect to r, we obtain

(1361

where ' denotes the derivative with respect to r. Next, we 
differentiate (134) and eliminating c, with the help of (1351 
we obtain

, 2 c : t r ~ 0 '
u = -

u - c ^ / u

One thus finds the critical point conditions as

(138i

As described in section 12 2, here also the cntical puini 
and the sonic points are equivalent, and the location ol 
the sonic point is identical to the location of the acnustii 
horizon due to the assumption of stationanty and sphencdl 
symmetry. Thus, hereafter we denote r* as the sonic poirii 
and the sphere of radius r/, as the acoustic horizon 
Hereafter, the subscript h indicates that a particular quamiiv 
is evaluated at r/,. The location of the acoustic horizon is 
obtained by solving the algebraic equation

(132) 1 f y + \
4l y -1

= 0 (H9i

The derivative Uf, at the corresponding sonic point 
obtained by solving the quadratic equation

( l-^ y )(u ;) ' + 2 ( y - l ) j ^ u .

(133) - j - ( 2 y - l ) ^ + 0 ;^  = 0, (14(J)

Assuming stationanty of the flow, we find the following 
conservation equations ■

(1) Con.servation of energy implies constancy of the 
specific energy f

(134)

(ii)) Conservation of the baryon number implies 
constancy of the accretion rate M

(135)

which follows from (137) in the limit r— evaluated wiiti 
the help of L’Hospital’s rule

Finally, the gradient of the sound speed at the acoustic 
honzon is obtained by substituting u'h obtained from (1^  ̂
into equation (136) at the acoustic horizon

(141)

15.2.2. Isothermal accretion :
We employ the isothermal equation of state of the fo>̂
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RT
r- p ^ e t p . (142)

where T IS the temperature, R and fj. are the universal gas 
,,iisidnt and the mean molecular weight, respectively The 
lujniiiy i, !!• the isothermal sound speed defined by

= 0 7 , (143)

i + 0T ln  p + d>,
1 (144)

wiiereas the accretion rate is given by (135) as before. 
The radial change rate of the dynamical velocity is 

12Jin given by (137) From (137) and with (143), we find 
le some point condition as

(145)

Miicc f , does not depend on r The derivative of u at 
h ohunned from (137) by making use of L'Hospital’s rule 

hdorc We find

1 1
(146)

1 ~ 0̂0

V 2ĉ \ - c ^ \d r (c, - « )

The quantities required to calculate the analogue 
temperature (148) are obtained using the formalism 
presented in section 15.2. For poly tropic accretion, using 
eqs (136)-(141) one finds

whfif the derivative is taken at fixed temperature and the 
. msidnl 0  = Kb!{M^h) with mu = mp being the mass of 
Ik- liydmgcn atom In our model, we assume that the 
jLirL-tiiig matter is predominantly hydrogen, hence p  r  1- 
\(ivi the specific energy equation takes the form

: ^ Z k  = 4 — ?— 1
T„ V 2 [ 2 - r , 0 , j

(149)

where/(y) = (0 (XK)75y2 _ 5 (X)15r + 3 00075) Tlie quantities 
0h, and are obtained by calculating the values of 
various potentials at r̂ , and r̂  is calculated from (139) for 
an astrophysically relevant choice of (f, y]

Note that if (c\ -  m')* is negative, one obtains an 
acoustic white-hole solution Hence, the condition for the 
existence of the acoustic white hole is

( m

Since y and can never be negative, and since 0i, and 
arc always real for the preferred domain of {e.y], 

unlike general relativistic sphencal accretion, acoustic whitc- 
hole solutions are excluded in the asttrophysical accretion 
governed by the Newtonian or post-Newtonian potentials.

For an isothermal flow, the quantity is zero and 
using (146) we find

here the minus sign in front ol the square root indicates 
uiLiion (the plus would correspond to a wind solution). 

Nou' ih,i( the quantities in equations (145) and (146) are 
luiiLtions of the fluid temperature T only Hence the 
i''riihcrmal sphencal accretion can be essentially described 

a onc-parameter solution of the hydrodynamical 
parametenzed by T

'  ̂ Analogue temperature : 
from (33) in Newtonian limit, i.e .

■=4yfl 1
1 + (151)

(147)

ijives a general expression for the temperature of the 
laingue Hawking radiation in a spherically accreting fluid 
ibe Newtonian as well as in any pseudo-Schwarzschild 

national potential

(148)

where ri, should be evaluated using (145). Clearly, the fluid 
temperature T completely determines the analogue Hawking 
temperature Hence, a spherical isothermally accreting 
astrophysical black hole provides a simple system where 
analogue gravity can he theoretically studied using only 
one free parameter

For both polytropic and isothermal accretion, for Certain 
range of the parameter space, the analogue Hawking 
temperature T^h may become higher than the actual 
Hawking temperature T/y, (see Dasgupta, Bilid & Das 2(X)5 
for further details).

16. Post-Newtonian m ulti-transonic accretion disc as 
analogiue model

In this section, we will study the analogue gravity 
phenomena for polytropic (adiabatic) and isothermal 
rotating, advective, multi-transonic accretion disc in various 
pseudo-Schwarzschild potentials described in Section 14.
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16.1 Flow dynamics and arc rt'Uon variables at the critical 
point ,

16 I I Polytropic accretion
The local hali-lhicknes*., h,(r) of the disc for any </>, can 
be obtained by balancing the gravilalional force by pressure 
gradient and can be expressed as

h,{r) -  c\ yJrJ{y0') , tl52)

du 1 cW df ------1--------- 4 —
dr p  dr dr

r - i r  +
y -  1 2r^

and the continuity equation 

d
dr

[uprh,(r)\ = 0

M
4 -

lopy

V 2 ^^ ,y l/2

The cntiopy accretion rate E can be expressed as

r ^ 'h 0 ; )

and

L l l
y + l 2 0 ; 2r u dt

\  + 0 ;cr) 
r  J y + l

2 r ^

3  ̂ 0 ',\r)  
0[{r)

uir + i)

where 0 , represents the derivative of 0", Hence [[, 
critical point condition comes out to be

TTy r

I Util
0 '{r)  + y0,'(r) I + r^0l{r) 

3 0 '{r) + r0 ^ r )

where 0', = cl0,ldr For a non-viscoiis flow obeying the 
poly tropic equation of state p = Kk/) ,̂ integration ol radial 
momenluiTi equation

Note that the Mach number M, at the critical pomi is 
equal to unity, rather .

(153) ]lr + i

leads to the following energy conservation equation 
(on the equatorial plane of the disc) in steady state .

(154)

(155)

M, =

Hence, the critical points and the sonic points an* ntj; 
equivalent. One needs to calculate the sonic point, \\hitH 
IS the location of the acoustic horizon, following iM 
procedure as described in Section 13.5

For any Fixed set of ( ;̂ A, y), the critical points can Iv 
obtained by solving the following polynomial of 1

can be integrated to obtain the baryon number conservation 
equation

2y
y - - l

(156)

0 ' ( I ) + y0 /(r) ( A- + r'^0'(r) 
r- 30 '(r) + r0l'(r)

= 0 (Uci

The dynamical velocity gradient at the critical point can In: 

obtained by solving the following equation for (duldn,.,

(157)

One can simultaneously solve (154) and (157) for any 
particular 0i and for a particular set of values of {f., A, y) 
For a particular value of {̂ ; A y), it is now quite stniighl- 
forward to derive the space gradient of the acoustic 
velocity {dcjdr), and the dynamical flow velocity (duldr), 
for flow in any particular r-th black hole potential 0, '

4y ( du Y
2 H

‘ y + l r 0 '(r)
{ill I
Ur I .

■ ( ~h \
f-2 2y (r)

•P.V) (l + r f

6 ( y - l )  ( 0 ; ' ( n ]  6 (2 y - l)

(158)

(159)

+ 0 ,

y (y + i)H  +

3A = 0 (It).'*

where the subscript (c, /') indicates that the correspo''̂ "' 
quantities for any i-th potential is being measured 
corre.sponding cntical point and d>" = I dr )
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I he

) l;,othermal accretion .

solhcrnial sound speed is defined as

- 6> 7 1/2 (164)

„lu>re 6  ^ yJTt<s^)fOn„) is a constant, ~ nip being 
,li mass ol the hydrogen atom and Kb is Boltzmann’s 

The local half-thickness /i,(r) of the disc for any 
(/),/) u.in he obtained by balancing the gravitational force 
In prc'̂ Miic gradient and can be expressed as

(165)

soliJiu'ii ol the radial momentum conservation equation 
„ij itiL' Lontinuily equation provides the following two 
iiiu.jial ol motion on the equatorial plane of the isothermal
.iL.K'iion disc

" * m  In /)(r) + — +0 ,  = Constant (166)
? 2 r“

M -  t)p { r )u {r ) i 1 : (167)

Ilk dvikimiLiil flow velocity for a particular value of (f; A] 
L III Ik- expiessed as

If w -r  A - 1 f I „2,,.0,"(<-)
II  ̂ s -  - 6̂  f —T—./,( I I J [ 2 <P[{r)

0 " /

^ : L r

3
i [  ^
2 I 0 ;

0^1  '
3

r .6
2A‘

7’0 '

925

= 0

(170)
The dynamical velocity gradient at the acoustic horizon 
can be obtained as

- 0 - 7

- (171)

If) 2 Multi-transonicUy and shock formation

As in the case of general lelativistic accretion disc, 
axisyminemc accretion under the influence of a generalized 
pseudo-Schwarzschild potential 0  also produces multiple 
critical/sonic points, both for polytropic as well as for the 
isothermal flow For polytropic flow. (162) can be solved to 
obtain various critical points, and the flow equations can 
be integrated from such critical points to find the 
corresponding sonic points

For accrction/wind solutions under the influence of 
various </>, one can define the square of the eigenvalue 
n  in the following way (Chaudhuri, Ray & Das 2(X)6) ■

(168)

wk'ie 0 /  ~ { d ^ 0 jd r ^ )  Since the flow is isothermal, 
d(J(h = 0 eveiywhcrc identically

The critical point condition can be expressed as •

)|c^|
12- ---------------

(y + 1)'
(y -l)> l-2 y ( l + C) + 2y BC\

- - 4 — r
A r.(r )L

4 / + (y-l)>4 + 2y TO]

^ J
(172)

where

A  = r, 0 " i n ) 3, 5  = 1 + r,

(169)

thji the Mach number at the critical point is exactly 
'̂ 4Lial to unity, hence the critical points and the sonic 
Ponu\ are identical fo r  isothermal accretion disc 
•herclore, r is actually the location of the acoustic event 
‘̂”■1/1)11 r, and for a specific value of (z; A], r̂  can be 

'̂ *̂'nputcd by solving the following equation for .

0 \r ^ ) ’ ' ^  "(r,) ‘ 0'{r^)

(? = >4-h3, A ,̂(/-) = r V ( r )  (173)

For isothermal flows, a similar expression for the related 
eigenvalues may likewise be derived. The algebra in this 
case IS much simpler and it is an easy exercise to assure 
oneself that for isothermal flows one simply needs to set 
y = 1 in (172), to arrive at a corresponding relation for 

A generic conclusion that can be drawn about the 
cntical points from the form o f  £ 2 ^  in (172), is that for a 
conserved pseudo-Schwarzschild axisymmetric flow driven 
by any potential, the only admissible cntical points will be
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saddle points and centre-type points For a saddle point, 
£2^ > 0 , while lor a centre-type point, £2  ̂ < 0 . Once the 
behaviour ol all the physically relevant critical points has 
been understood m this way, a complete qualitative picture 
of the flow solutions passing thiough these points (if they 
are saddle points), or in the neighbourhood of these 
points (if they are centre-type points), can be constructed, 
along with an impression of the direction that these 
solutions can have in the phase portrait of the flow (see 
Chaudhuri, Ray & Das 2006 for lurthcr detail)

Application ol the above mentioned methodology lor 
finding out the nature of the critical point leads to the 
conclusion that lot rnulli-transonic accretion and wind, the 
inner critical point r'" and the outer cntical ixnnl r ‘’“' are 
ol saddle type (M" type), whereas the middle critical point 

IS ol centre type CO' type) For mono-transonic 
accretion, the critical point will always be of saddle type 
and will be located either quite close to the event horizon 
(mono-transonic accretion passing through the ‘inner type’ 
critical point) or quite far away Irom the black hole (mono- 
transonic accretion passing through the ‘outer type’ cntical 
point).

Hereafter, we will use the notation [V] for a set of 
values of (c, A, y\ jxilytropic accretion in any particular
O, For all one finds a signilicant region of parameter 
space spanned hy \P^\ which allows the multiplicity of 
critical points foi accretion as well as for wind where two 
real physical inner and outci (with lespect to the location 
of the black hole event hori/on) saddle type critical points

and encompass one centre type unphysical
middle sonic point m between For a particular 0„ if 
A, \V,] denotes the universal set representing the entiie 
parameter space covering all values of [P,], and if [P,l 
rcpicsents one particular subset of A, \V,\ which contains 
only the particular values of \V,\ hir which the above 
mentioned three critical points are obtained, then B, [V,] 
can further be decomposed into two subsets C, f7̂ ,J and
P, \V,] such that

C,\V,\^ e,\V, I only lor S (r,'" ) > S (r,™‘ ),

P , |T ; |q B,1T;1 only for (174)

then for [P,l e tJ |7’,J, we get rnulti-lransonic accretion 
and for [P,\ e P  [P,] one obtains multitiansomc wind.

For the Paczyifski &Wiita 1980 potential 0 |, in Figure 
10 we classify the whole U; A] parameter space for a fixed 
value oi y = 4/3 The region marked by 1 represents the

Figure to  The com plelc irlassincalion o f | f  ./i] for polytropic accrcimn 
III ihc Pac/.yiiski &  W iiia (1980) potenlidl The value ol y is 
U) be equal lo 4/^ M ono-lransom c regions are marked hy I (jcLrciirlr 
through Ihc innei sonic point only) and O  (accretion through ihc ojk̂  
son ic point on ly) T he reg ions m arked  by A  and VV represents ih( 
m ulti iranson ic  accre tion  and w ind, re spective ly  The shaded regmr 
represents the co licc lion  o f | r ,  A \  (for y =  4 /3 ) for which the suhl, 
Rankine-H ugom oi shock solutions arc obtained

values of (£; A] for which accretion will be mono-transom 
and will pass through the saddle type inner critical pmni 

whereas the region marked by O represents the values o 

[l, A] for which accretion will be mono-transonic and vul 
pass through the saddle type outer critical point flu 
wedge shaped region bounded by heavy solid lines am 

marked by A (including the shaded region) represents tin 
multi-transonic accretion zone for which (i’l, Ai) g \V,]i 
C,[Pt] Q B,[P,l whereas the wedge shaped region bounds 
by the heavy solid line and marked by VV represents ih 
multi-transonic wind and monotransomc accretion zone lo 
which (f|. A|) e [PA G VilPf] Q A similar kind o
parameter space division can easily be obtained for othc 

0, a.s well, see Das 2(X)2 and Chaudhury, Ray & Das 20(> 
for further detail

If shock forms m accretion, then fP,] responsible fc 

shock formation must be somewhere from the region fo 
which \P,\ £ C,[P,J, though not all [PA e  Ĉ [PA will allov 
shock transition. One can denve (see Das 2002 for furlhc 
detail) the Rankine-Hugoniot shock condition for th' 
generalized potential 0, in the following form which will •> 
.satisfied only at the shock location

(i-K ) M

log’r
- )3|(1 + -  Ptomp

+(i+A)-'=o.

where M is the mass accretion rate as defined in (1̂^̂ 
is the total specific thermal plus mechanical encrgl
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I the accreting fluid . (̂Ai +//i) = e ------- +
2r^ ' /̂ omp und

] are the density compression and entropy enhancement 
respectively, defined as pcon,p = ipJp~) and 0  =

r /£■ ) respectively, fix = \ -  ^  and P  = 0Aon.p,

and ‘ icier to the post- and pre-shock quantities 
liL- shock strength S, (ratio oF the pre- to post-shock 
KkIi number of the flow) can be calculated as

- /Icomp (1 + A)- (176)

g,, M7'̂ ) and (176) cannot be solved analytically because 
H-v arc non-linearly coupled. However, one can solve the 

)\c set of equations using iterative numerical techniques 
ji cllicient numerical ctxle has been developed in Das 
oo: whith takes fP,! and 0, as us input and can 
,iLul,iie the shock location r̂ n along with any sonic or 

ttk Ljuanlity as a function of [V,]. One obtains a two- 
)lil tJL-pencracy for r,h, and the local stability analysis

, lh.j( the shock which forms in between the sonic 
Minis .md stable for all 0, Hereafter, we will

inieiesled only in such stable shocks and related 
ujnlilics

II |T P,\V,\ C [7̂ /1 represents the region of 
MianicuT for which multi-lransonic supersonic flows 

apcLicd lo encounter a Rankine-Hugoniol shock at r̂ h, 
diLTc they become hotici, shock compressed and subsonic 
nil will again become supersonic only alter passing 
hiDuph r,„ before uiMmately crossing the event horizon, 
liLii OIK- can also define [P,l e Q, \Vi\ which is complement 
1 r \V,\ related lo C, [Vt\ so that for ■

C^iPJ and [V,]  ̂ (177)

I’l’ shock location becomes imaginary in hence no
»ijble shock forms in that region. Numerical simulation 
lows that (Molleni, Sponholz & Chakrabarti 1996) the 

>hod keeps oscillating back and forth in this region. One 
sniicipaies that Q\P,] is also an important zone which 
*”liht be responsible for the Quasi-Penodic Oscillation 
WPO) ol ihe black hole candidates, and the frequency for 
^̂ '̂ h Qpo can be computed for all pseudo-Schwarzschild 
P̂ îeniidls (see Das 2003 for further details).

The wedge shaped region in Figure 10 represents the 
|T] g P\P] ^ C,[V,\ zone, for which steady standing 
bihle Rankinc-Hugoniol shock forms, while the white 

of the multi-transonic accretion (marked by ,/4) 
■P̂‘̂'‘ent.s the {g, [V,]\[V,]e C, [7^] and [V,U  P,VP,])^

Similarly, solution ol (170) provides the muiti-transomc 
accretion and wind regions for the i.sothermal accretion in 
various 0, The corresponding shock conditions can also 
be constructed and can be solved for a particular value of 
[r,ŷ ,l to find the region ol parameter space responsible for 
the formation for stable shock solutions See Das, 
Pendharkar & Milru 2003 for details about the multi- 
transoniciy and shock tormation m isothermal accretion 
disc around astrophysical black holes.
16 J. Analogue temperature

For axisymmelnc accretion in Newtonian limit, one obtains 
(Bihd, Das & Roy 2(K)6) from (33)

A'
2 0

A- (178)

Hence the analogue Icmpcralurc for the pseiido- 
Schwarzschild, axisymmctnc, transonic accretion with space 
dependent acoustic ' clocity would be (Bilid, Das & Roy 
2006) •

1  A H ----- (1 + 2<J>)|

1 !</ , M) (179)

As discussed earlier, once the critical points arc found by 
solving (162), one can inlegiate the flow equation.s to find 
the sonic point r , which actually is the location ol the 
acoustic horizon r̂  ̂ One then finds the value of 
{du/clr)^ and Idr)^^,^ Thus once a specific set 
of values lor [f, A y] for polytropic accretion is provided, 
all the corresponding terms m (179) could readily be 
known and one thus comes up with an accurate estimation 
of Tah, well as r, the ratio of the analogue to the actual 
Hawking temperature, as a function of [f; A Y\

In Figure 11, we demonstrate the variation of t (plotted 
along the Z axis) on \f. A] (for a fixed value of y = 4/3) 
for multi-transomc shiKkcd accretion flow in Paczyifski & 
Wiita 1980 potential 0i. [e, A] used to obtain such result, 
corresponds to the shaded region of Figure 10 (for which 
stable Rankine-Hugoniol shock lorms in polytropic 
accretion) As discussed in Section 13 9, two acoustic 
black holes are formed at the inner and the outer sonic 
points, and an acoustic white hole is formed at the shock 
location. The analogue temperature corresponding to the 
white hole in not defined. The red surface in the figure 
corresponds to the variation of t  with [£. A] for the outer
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One can propose that the general relativistic as well 
the Nevy^tonian/post-Newlonian accretion flow around
astrophysical black hole can be considered as an cxaitipif

Hgure I I  VuMiitiiJii nl ru n  / and A hji inulti-lransuim stiockcd iKirclinn 
111 the Pac/ydsk i W iila (1980) pnicnlial 0 ,  The red surlace in the 
fig u re  en rresp o n d s in the v aria tio n  o f r  w ith \ f . A\ toi the o u ter 
aeoiisliL hoiizons and tlie blue huilace Lorresponds In ih t va tu lion  ol r  

with (/’, A\ (oi the inner .uoiislic hori/ . This figure lias been rcprodiKcd 
Irom Bilid, Das &  Roy 2000

acoustic horizon (the outei sonic points) and the blue 
surface conesponds to the variation ol rwith |/; A] lor the 
inner acoustic horizons (the inner sonic points) It is 
observed that for a fixed value of U, A, y], r  > T ....

Although the above figuic has been oblained tor a 
fixed value ol /(=4/3), one can obtain the same 1 r  - t -  
A\ vaiiation for any value ol yprtxiucing the imilti-transonic 
shocked acciction flow In general, t co-ielates with y. 
\t -  f  -  A\ variation can also be studied lor mono- 
transonic accretion passing through the innei or the outer 
some point only, and tor mono-transonic accretion Ilow in 
multi-transonic wind region (Ilow described by (f, A\ 
obtained from the W legion of the Figure 10).

All the above mentioned variation can also be studied 
for all other (see Bilid, Das & Roy 21K)6 for lurthcr 
detail)

It IS now easy to calculate the analogue temperature 
for isothermal axisymmetnc accretion in pseudo- 
Schwarzschild polemial Since r, is a function of the bulk 
temperature of the Ilow T, and since for isothcmial accretion 
T IS constant throughout, the space derivative of the 
acoustic velocity (r/< ,/r/r) is identically zero everywhere for 
any potential (P, Hence the expression for the analogue 
temperature can be obtained by setting (dcjdr) = 0 in 
(179) 'Phe dependence of on If, A\ has been discussed 
m Bilid, Das & Roy 2006 in detail

17. Epilogue
The primary motivation of this review article is to 
demonstrate the following

ol classical analogue gravity model realized in nature 1̂, 
accomplish this task, one first formulates and solves tĥ 
equations describing the accretion processes around hlaci 
holes, and then provides the arguments that such accieiion 
IS transonic in generar and the accreting material muii 
encounter a some point at some specific length stale 
determined by various accretion parameters. The collcuion 
of such sonic points forms a null hypersurface, gcneiators 
ol which arc the acoustic null geodesics, re the plioiiun 
trajectories Such a surface can be shown to he idcnuul 
with an acoustic event horizon The acoustic surtiiu 
gravity and the corresponding analogue horizon lemiTcraiun- 
I ah die acoustic horizon arc then computed in terms ol 
lundamcntal accretion parameters. Physically, the analonue 
tcmt:>eralure is associated with the thermal phonon radution 
analogous to the Hawking radiation of the black-hoi.; 
horizon Acoustic whuc hales can also be generated i1 ihe 
accretion flow is multi-transonic and if such multi-traiisimk 
black-hole accretion encounters a stable shock SiiJ', j 
while hole, produced at the shock, is always Hanked b\ 
two acoustic black holes generated at the innct and the 
outer sonic points

At this point one might as a crucial question Dols 
the accretion processes onh around a black hole rcpiCMiit̂  
an analogue system, or any kind of astrophysical acciciior, 
exhibits the analogue gravity phenomena in f>cncml 
From the discussions presented in this article, one 
understands that two of the essential requirements lor j 
physical system to manifest the classical analogue gra\ii\ 
effects are the following .

(i) The system should consists of transonic, baroirop' 
lluid, and the fluid should, preferably, be invisud in 
ordei not to violate the Loienzian invariance

(ii) An acoustic perturbation (or equivalent perturbation, 
a surface gravity wave for example, see, i ^ 
SchUtzhold & Unruh 2002) should propagate wilhm 
such fluid for which a space time metric can lx 
constructed Such metric should incorporate J 
singularity (not always in  a formal sense though), 
from which one can come up with the notion ol the 
acoustic horizon

Hence, it is obvious that hydrtxlynamic, non-dissipaf'^

''Kxcepi to r  a very few  special case*. For example, i f  infallm g  ̂

supplied from  ihe supersonic stellar w ind , accretion may not be nxn  ̂

i f  there is no shock fo rm a tion  at a length scale reasonable well 

fro m  the even l ho rizo n
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[(.■iu»n onto any asirophysical object should manifest 
,,„aloguc gravity phenomena, if such accretion exhibits 

iiisonn; properties, and if such accreting fluid 
i,.iimuralion possesses a specific well defined symmetry 
sphcriLjlly symmetric or axisymmetric flow, for example) 
IlPlc hvdrodynamic, transonic, astrophysical accretion 
,̂ ,ssL>sing a suitable symmetnc geometrical configuration 

culiibii the analogue properties in general, where the 
ardoi resembles the sink

li,tnu>nir iucretion in astrophysics can be conceived 
an extremly important class o f classical 

'll ,i/n;rir i;n/v’//v model Among all the classical analogue 
iis suidicd in the literature so far, only an accieting 

siuiphysical object incorporates gravity (through the 
viiLT,i! h(Kly force term in the Euler’s equation, even if the 
iLfdioii IS studied within the framework of the Newtonian 
lULC'iimc) in the analogue model. Also, the simplest 
uissilili- analogue model may be constructed for such 
•bicds I'oi example, the spherically symmetnc accretion 

ivjitu’iiiial lluid onto a Ncwtonian/semi-Newtonian 
laMt.iiing mass constitutes an analogue system which 

X Lonipleiely determined using a single parameter, 
iiL hulk How temperature of the mfallmg material (see
NulhUl LS "<)

Howlmci, among all the accreting asirophysical systems 
jp.ihlc ol manifesting the classical analogue effect, black 

' .iLLidion process deserves a very special status The 
K tiiî - asirophysical black holes arc the only real physical 

iMiUiduies tor which both the black-hole event horizon 
I u! ihc analogue some horizon may co-cxist Hence, the 
ippliLaiioii ol ihe analogue Hawking effect to the theory 
i iiansnniL black hole accretion will be useful to compare 
iL' piopeities of these two types of honzons.

l̂ c’U'iiily, the spacetime geometry on the equatorial 
li'-L' ihiough a Kerr black hole has been shown to be 
'|i‘ivalcni to the geometry experienced by phonons in a 
'Whiling iiiiiij vortex (Visser & Weinfurtncr 2005) Since
n.iiu asiiophysical black holes' are expected to possess 
T'l' L̂To spin (the Kerr parameter a), a clear understanding 
’I ihc influence of spin on analogue models will be of 

importance. Some important features on the 
•̂'pendonce of the analogue temperature on the black hole 
pill angular momentum of an astrophysical black hole has 

discussed in this article. In section 13.9 (Figure 7 and 
iitd discussions), it has been shown that the black hole 

'P'n r/ot s influence the analogue gravity effect in a rotating 
'̂-'‘iiivistic fluid around it. Also the spin (of the black

hole) . angular momentum (of the accreting malenal)
"̂upling modulates such effect. Analogue effect is more

prominent for retrograde (counier-rolating) flow, resulting a 
higher value of the corresponding analogue temperature.

In connection to the acoustic geometry, one can define 
an ‘anti-trapped surface’ to be a hypersurface in which Ihe 
fluid flow will be outward directed with the normal 
component of the three-velocity greater than the local 
speed ol sound. In stationary geometry, an anti-trapped 
surface will naturally be constructed by the collection of 
sonic points corresponding to a spherically symmetric or 
axisymmetric transonic wind .solution emanating out from 
an astrophysical source Transonic outflow (wind) is 
ubiquitous in astrophysics, spanning a wide range from 
solar/stellar winds to large-scale outflows from active 
galaxies, quasars, galactic micro-quasars and energetic 
gamma ray bursts (GRB) In Section 13 7, it has been 
.shown how to identify the critical and the sonic points 
corresponding to the wind solutions Such a scheme can 
be useful in studying the iransomc properties of outllow 
from astrophysical sources Hence the lormalism presented 
m this paper can be applied to study the analogue effects 
in transonic winds as well. Recently Kinoshita. Sendouda 
& lakahashi (2(X)4) performed the causality analysis of the 
spherical GRB outHow using the concept of effective 
acoustic geometry Such an investigation can be extended 
into a more robust form by incorporating the kind of work 
pre.senlcd in this article, to study the causal structure of 
the transonic GRB outflows in axisymmeiry, le  for energetic 
directed outflow originating from a black-hole accretion 
disc system progenitor

In connection to the study of accreting black hole 
system as a classical analogue gravity model, .so far the 
analogy has been applied to de.scribc the classical 
perturbation of the fluid in terms of a field satisfying the 
wave equation in an elTective geometry Such works do 
not aim to provide a formulation by which the phonon 
field generated in this system could be quantized. To 
accomplish this task, one would need to show that the 
effective action for the acoustic perturbation is equivalent 
to a field theoretical action in curved space, and the 
corre.sponding commutation and dispersion relations should 
directly follow (see, e g , Unruh & SchUtzhold 2003) Such 
considerations are beyond the scope of this article

While describing the accretion disc dynamics, the 
viscous transport of the angular momentum is not explicitly 
taken into account. Viscosity, however, is quite a subtle 
issue in studying the analogue effects for disc accretion 
Even thirty three years after the discovery of standard 
accretion disc theory (Shakura & Sunyaev 1973; Novikov 
& Thome 1973), exact modeling of viscous transonic
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hlack'hole accretion, including proper heating and cooling 
mechanisms, is still quite an arduous task, even for a 
Newtonian flow, let alone for general relativistic accretion 
On the other hand, from the analogue model point of view, 
viscosity IS likely to destroy Lorenz invariance, and hence 
the assumptions behind building up an analogue model 
may not be quite consistent Nevertheless, extremely large 
radial velocity close to the black hole implies r,n/ « 
where r,„, and the infall and the viscous time
scales, respectively. Large radial vclcxzities even at larger 
distances arc due to the fact that the angular momentum 
content of the accreting fluid is relatively low (Beloborodov 
& Illarionov 1991, Igumenshchcv &. Beloborodov 1997, 
Progd & Begelman 2(X)3) Hence, the assumption of in viscid 
flow IS not unjustified from an astrophysical point ot view 
However, one of the most significant effects of the 
introduction of viscosity would be the reduction of the 
angular momentum. It has been observed that the location 
of the sonic points anli-correlales with A, i c weakly 
rotating flow makes the dynamical velocity gradient stcejicr, 
which indicates that for viscous flow the acoustic horizons 
will be pushed further out and the flow would become 
supersonic at a larger distance for the same set of other 
initial boundary conditions

In section 13 2, while constructing the gcomctiy of the 
general relativistic accretion disc, the expression lor the 
disc height has been derived using the prescription of 
Abramowic?, Lanza & Pcri'ival 1997) However, a number 
of other models tor the disc height exist in the literature 
(Novikov & Thorne 1973, Riffcrt & Herold 1995, Paricv 
1996, Peitz & AppI 1997, Lasola & Abramowicz 1997). The 
use of any other di.se height model would not alter our 
conclusion that black-hole accretion disc solutions form an 
important class of analogue gravity models (see, e g , Das 
2004 for further details about the investigation of the 
relativistic di.se dynamics using the disc height proposed 
by Lasota & Abramowicz 1997). However, the numerical 
values of T^n and other related quantities would be 
different for different di.se heights.

For all types of accretion discussed here, the analogue 
temperature Tmi is many orders of magnitude lower 
compared with the fluid temperature of accreting matter 
However, the study of analogue effects may be measurably 
significant for accretion onto pnmurdial black holes because 
the analogue as well as the actual Hawking temperature 
may be considerably high for such situations. There may 
he a possibility that intense Hawking radiation may not 
allow any accretion due to the domination of strong 
radiation pressure However, the situation may be

completely different for Randall-Sundrum type n cosrnolo 
where during the high energy regime of braneworid 
cosmology, accretion may have significant effects op 
increasing the mass of the primordial black holes (Guedens 
Clancy & Liddle 2002, Guedens, Clancy & Liddle 2002a 
Majumdar 2003). In braneworld scenario, the accretion 
onto the primordial black holes from surrounding radiation 
bath may completely dominate over the evaporation process 
as long as ladiation dominations persists. It would be 
interesting to investigate the analogue effects in primordial 

black hole accretion in Randall-Sundrum type-II cosniolooj 
to study whether analogue radiation can really dommait 
over the accretion phase, resulting tlie enhancement of the 
black hole evaporation process One may also like i,j 
investigate whether the first ‘black hole explosions' dueio 
Hawking radiation would be acoustic-mediated cxplosion\ 
of the medium surrounding the primordial black hole'

In recent years, considerable attention has been focused 
on the study of gravitational collapse of massive mailer 

clump, in particular, on the investigation of the final laic 

of such collap.se (for a review see, e g ,  Krolak IWjj 
Goswami and Joshi (2004) have studied the role ol the 

equation of state and initial data m determining the fm 
fate of the continual spherical collapse of barolropic fluid 

in terms of naked singularities and the black-hole fornuiion 
It is tempting to study the analogue effects in such a 
collapse model. Since at .some stage the velocity of llic 
collapsing fluid will exceed the velocity of local acousiu 
perturbation one might encounter a sonic horizons al ihc 

ladial locations ol the corre.sponding transonic points in a 
stationary configuration. One should, however, be Lurclul 
about the issue that many results in analogue models urc 

based on the assumption of a stationary flow, whereiis a 
collapse scenario is a full time dependent dynamical 

process.
The correspondence between general relativity and 

analogue gravity has so far been exploited only on a 
kmematical, i e geometrical level. The analogue graviiv 
sy.sterns lack a proper dynamical scheme, such as Einsteins 
field equations in general relativity and hence the analog) 
IS not complete. A certain progress in this direction 
recently been made by Cadoni and Mignemi (Cadoni 2005 
Cadoni & Mignemi 2(X)5), who have e.stablished * 
dynamical correspondence between analogue and dib'o" 
gravity in l+I dimensions. We believe that the 
presented in this article in which an arbitrary backgro“  ̂
geometry serves as a source for fluid dynamics may * 
a new light towards a full analogy between general relati''i'y 
and analogue gravity.
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