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L. Introduction

the cquation for the rate of change of expansion
(Raychaudhurt’s equation) plays a central role in
the proofs of the singularity theorems [1].

Lyven in ats Tifty-first year, the Raychaudhuri equation [2]
reluns 1ts prime position as a tool to analyze spacetime
smgulanies (for a review for non-specialists, see [3])
However, lest one should feel that the equation has only
onc speciahzed role in general relauvity, namely that of
delincating singularines, we remark that it has had far
wider applications, as for example in establishing the so-
«illed laws of black hole mechanics. The earliest of these
laws or theorems 1s called Hawking's theorem of increase
ol horizon area of a black hole It states that [4].

The area of the event horizon of an isolated

stationary black hole can never decrease in any

physical process.
We recall first that a black hole spacetime B is the set of
cvenis that hie in the complement of the choronological
Past of events infinitely distant and infinitely far in the
luture (the future asymptotic null infinity Z*). The event
horizon of the black hole 1s the boundary JB of events in

spacetime accessible to such observers. It 1s a null 2+1
dimensional surface hiding the black hole singularity.

A sketch of the proof ot Hawking's theorem may be
given as follows [4] - Recall that the Raychaudhuri equation
[2)

Ia, esﬁu— 62
dt

—ol+w? -R,II° )
relates the evolution of the (volume) expansion &(7) of
(timelike and null) geodesics, to the ‘shear’ o which
quantifies relative stretching of geodesics i a congruence,
the rotation or vorticity @ which exhibits how the geodesics
twist around each other as they evolve and the spacetime
curvature responsible for gecodesic deviation.

Consider any null surface generated by null geodesics
which we assume complete A fixed time slice of such a
surface 1s a spacelike 2-sphere of area A. The Raychaudhuri
equation (1) now implies that

8'r)2 %r+9"‘(0)_ (V)

The expansion & = dlog A/dz Assume 6(0) > O in contrast
to the case for studying singularities; the area A then
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Flgure 1. Black hole spacetme emerging Irom spherically symmetric
collapse of a massive star M, ellipses denote successive sizes of the
collapsing star, and the null surface H 1s the event honizon

increases locally Consider fixed time shces §,, S» of cvent
honzon at 7, 7, > 7. The number of null geodesic
generators ntersecting S, 1s at least the same or bigger
than those intersecting S, At any nstant, A o< no of Null
geodesic generators, 1t follows then that = A, 2 A,
which 15 what the theoiem states

Hawking’s thecorem brings to muind the law of entropy
increase (for 1solated systems) that follows from the second
law of thermodynamics Yet, for a classical black hole
spacetime, the complete absence of ‘microstates’ mvolving
atoms, electrons, photons or other discrete entities, stymies
pushing the analogy very far. The situation turns curiouser
because of other ‘laws of (stauonary) black hole mechanics’
derived on the basis of general relauvity [6], wherem the
geometrical quantity known as surface gravity (&) appears
as an analogue of temperature

This thermodynamic analogy of the thcorems on
stationary black hole mechanics, cspecially, Hawking's
theorem, led Rekenstein [5] to postulate that black holes
must have must an entropy proportional to the area of

their horizons
A
Sy =6kg l_z 3
r

Here, ¢ 1s a dimensionless constant of O(1), and /, is the
Planck length 1, = (G#/c ') ~ 107 cm, characterizing the
length scale at which spacetime can no longer be thought
of in terms of classical Riemannian geometry It follows
that black hole thermodynamics must have to do with
quantum, rather than classical, general relativity The
microstates from which S, originates must then correspond

to the states of the quantum spacelime associated w, he
black hole, especially the event horizon.

Similarly, black hole temperature also has Quantyy,
ongns, being associated with the mysterious Hawy,
radiation [6] Every generic black hole radiates partcley
a thermal (black body) spectrum, at a temperature T, <
HKyoneww @ surprising result, 1f one remembers (hy the
surface gravity & 1s purely a geometric quantity Hawiy,
radiation thus corresponds to transformation of quaniyp,
spaccume states describing the black hole, mto thermy
particle states In a sense, it 1s an mversion of gravittiony
collapse whereby particle states collapse into spaceime
states The extra featurc here 1s the thermalization of g
partcle states produced through Hawking radiation, whgy
cventually leads to the Information Loss conundrum

The 1ssue we address here 18 that of thermal stahili
of genenc radiant black holes n the heat bath made up of
their own radiation The asymptotically flat Schwarzschild
spacetime 1s well-known [7] (o have a thermal instabiin
the Hawking temperature for a Schwarzschild black hole ¢!
mass M as given by T ~ I/M which implics that th
specific heat €= dM/JT < 0 ! The nstability 15 attributed
within a standard canonical ensemble approach, to th
superexponential growth of the density ol states p(M) ~
exp M?* which results in the canonical partition function
diverging for large M

The problems with an approach based on an equilibiun
canonmical ensemble do not exist, at least for isolatd
sphencally symmetnc black holes, formulated as tsolated
horizons (8] of fixed honizon area, these can be consistenlly
descnbed 1n terms of an equilibnum microcanomcl
ensemble with fixed A (and hence disallowing thermil
fluctuations of the energy M). For A >> [}, 1L has been
shown using Loop Quantum Gravity [9], that all sphencally
symmetric four dimensional isolatcd "hornizons possess 2
microcanonical entropy obeying the Bekensten-Hawking
Area Law (BHAL) [5,6). Further, the microcanonical entrop
has corrections to the BHAL due o quantum spacetim¢
fluctuations at fixed horizon arca. These arise, in the !
of large A, as an finite series In inverse powers of
horizon arca beginning with a term logarithmic 1n the at
[10]. with completely fimte coefficients,

Suc =Sy — % Tog Sz +const +O(Szh), @

where Sgy = A/AL,
On the other hand, asymptotically anti-de Sitter (ads)
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black holes with spherical symmetry are known [7] to be
Jescribable 1n terms of an equilibrium canonical ensemble,
+o long as the cosmological constant 1s large in magnitude
for this range of black hole parameters, to leading order
n A the canomical entropy obeys the BHAL. As the
magmtude of the cosmological constant is reduced, one
approaches the so-called Hawking-Page phase transition
w a ‘phase’ which exibits the same thermal instability as
mentioned above.

In this article, we focus on the following

i 1< an understanding of the foregoing features of
black hole entropy and thcrmal stability on some
surt ol a ‘unified’ basis possible ? We shall argue,
followmng {11-15] that 1t 1s indeed so, at least n the
case of non-rotating black holes.

my In addiuon to corrections (to the area law) due to
fixed area quantum spacetime fluctuations computed
using a microcanonical approach, can one compute
corrections due to thermal fluctuations of horizon
arca within the canomical ensemble ? Once again,
the answer 1s 1n the affirmative The result found in
[11- 15]. at least for the leading log area corrections,
turns out to be universal n the sense that just like
the BHAL., 1t holds for all black holes independent
ol their parameters.

2 Canonical partition function : holography ?

Following [11], we start with the canonical partiion function
m the quantum case

7:AB)=Trexp- BH ©)

Recall that in classical general relativity i the Hamiltonian
lormulauion, the bulk Hamultoman s a first class constraint,
so that the enuire Hamillonian consists of the boundary
contnbution Hy on the constraint surface. In the quantum
domain, the Harmltonian operator can be written as

A=f, A, ®
With the subscripts V and § sigmifying bulk and boundary
rms respectively. The Hamiltonian constraint 1s then
mplemented by requiring

i ly), =0 o

or every physical state [¥), in the bulk. Choose as basis
lor the Hammltonian n (6) the states lw), ®|x);- This
mplies that the partition function may be factonized as

Zc =Trexp- BH
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=dim ™, Tr, exp- BH
_is—p,_ﬂ_‘, @®)
indep ol boundary

Thus, the relevance of the bulk physics seems rather
hmited due to the constraint (7) The partition function
further reduces to

Zc(B)=dimH,Zs (), O]

where Hy 15 the space of bulk states |y) and Z; is the
‘boundary’ partition function given by

Z,(B)=Trgexp- BH, 10

Since we are considering sttuations where, in addition to
the boundary at asymplopia, there is also an inner boundary
at the black hole honzon, quantum fluctuations of this
boundary lead to black hole thermodynamics The
factonization i1n eq (9) manifests in the canonical entropy
as the appearance of an additive constant proportional to
dim H,. Since thermodynamic entropy 1s defined only upto
an additive constant, we may argue that the bulk states do
not play any role in black hole thermodynamics. This may
be thought of as the origin of a weaker version of the
holographic hypothesis [16].

For our purpose, it 1s more convenient to rewrite (10)
as

Z.(B) = Z g (Es (A(m))exp- BEs (Am), an

neZ degereracy

where, we have made the assumptions that (a) the energy
1s a function of the area of the honzon A and (b) this area
1s quantized. The first assumption (a) basically originates
in the idca in the last paragraph of that black hole
thermodynamics ensues solely from the boundary states
whose energy ought to be a function of some property of
the boundary like area The seccond assumption (b) is
actually explicitly provable in theonies hke NCQGR
(nonperturbative cononical quantum general relativity) as
we now briefly digress to explain.

3. Spin network basis in NCQGR

The basic canonical degrees of freedom in NCQGR are
holonomies of a distnbutional SU(2) connection and fluxes
of the densitized triad conjugate to this connection. The
Gauss law (local SU(2) invariance) and momentum (spatial
diffeomorphism) constraints are realized as self-adjoint
operators constructed out of these vanables. States
annihilated by these constraint operators span the
kinematical Hilbert space. Particularly convenient bases for
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this kinematical Hilbert space are the spin network bases.
In any of these bases, a (‘spinet’) state is described in
terms of links I, 1, carrying spins (SU(2) irreducible
representations) . ., J, and vertices carrying invanant SU(2)
tensors (‘intentwiners’) A particularly important property
ol such bases 1s that geometrical observables like area
operator are diagonal 1n this basis with discrete spectrum
An intemal boundary of a spacetme hke a horizon appears
n this kinematical description as a punctured S? with each
puncture having a deficit angle 8= (), 1 =1, ., p, as
shown n Figure 2

Figure 2 Intemnal boundary (horizon) pierced by spinet links

For macroscopically large boundary arcas A >> I
the arca spectrum 1s domumnated by 3, = 1/2, v, =1, . , p,
p >> 1. This 15 the situation when the deficit angles at
cach puncture lakes 1ts smallest nontrivial value, so that
a classical horizon emerges. That implies that

AP) ~ Pl P >> 1. a2

This completes our digression on NCQGR

4. Fluctuation cffects on canonical entropy

We now move on to discuss the effect of inclusion of
Gaussian thermal fluctuations of the horizon area The
canonical entropy 1s cxpected to receive additional
correcttons due to such fluctuations over and above those
due to quantum spacctime fluctuations already included in
the miciocanoncal entropy Going back to eq (11), we can
now rewnte the pariion function as an integral, using the
Poisson resummation formula

i Sm)= i f_ drexp(=2mimx) f (x). a3

For macroscopically large horizon areas A(p), x >> 1, so
that the summation on the rhs of (13) is dominated by the
contnbuuion of the m = 0 term. In this approximation, we
have

Z. = [~ dxg (E(A(x)exp - BE(A(x)

—j'dEexp[ e (E)— log

‘“5] 1

where Sy¢ = log g(E) is the microcanonical entropy
Now, in equilibrium statistical mechanics, therc is an inheren
ambiguity in the def-mition of the microcanonical entropy,
since 1t may also be defined as §,,. = logo(E) where p(E)
1s the density of states. The relation between these two
defimtions mvolves the ‘Jacobian’ factor |dE/dx|™

= dE
Suc = Syc —logl—|-
MC MC 4 e

(15)

Clearly, this ambiguity 1s wrrelevant if all one is nterested
in 1s the leading order BHAL. However, if one 1s nterested
n loganthmic corrections to BHAL as we are, this difference
1s crucial and must be taken into account
We nexlt proceed to evaluate the partition function in

cq. (I14) using the saddic point approximation around the
pomnt E = M where M 1s to be idenufied with the (classical)
mass of thc boundary (horizon). Integrating over the
Gaussian fluctuations around the saddle point, and dropping
higher order terms, we get

dE ]}

dx gy

Zc= cxp{sm(M) - M —log

1/2
T 1)
AT (
Using S¢c = logZ + fM, we obtain for the canonial

entropy Sc

1
sc = SMC(M)—EME(A)'

-2 . (17
a5,

where

i ))-S,’Jc( )] (18)

A=[AW] [S;,(.(A)
Thus, the canonical entropy 1s expressed m terms of the
microcanonical entropy for an average large horizon ard.
and the mass which 1s also a function of the area. Clearly.
stable equilibrium ensues so long as 4 > 0.

Addutional support for this condition can be gleﬂned
by considering the thermal capacity of the system, usin
the standard relation
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_dM _M'(A)
C(A)= T 19

with T beng derived from the microcanonical entropy
$.riA). and hence a function of A. One obtams for the
heal capacity the relation

M T .
T(A)A'(X) '

w that C > 0 1f only if 4> 0 Since the positivity of the
heat capacity 1s certainly a necessary condition for stable
{hermal equilibrium, it is gratifying that an identical criterion
emerges for 4 as found from the canonical entropy (17).

((A)=[ (20)

Using now eq. (18) for the expression for 4, the
cnterion for thermal stability of non-rotating macroscopic
black holes is then casily seen to be

M(A) > Suc(A) @n

45 already mentioned in the summary. We have been using
umty in which G = h = ¢ = kg = 1. If we revert back to
units where these constants are not set to unity, the lower
bound eq (21) can be re-expressed as

172
h
M(A‘>[G_I:""J Spc(A) @

B

We remind the reader that in contrast to semiclassical
approaches based on specific properties of classical metncs,
our approach incorporates crucially the microcanonical
enropy generated by quantum spacetime fluctuations that
leave the horizon area constant. Apart from the plausible
awsumption of the black hole mass being dependent only
on the horizon area, no other assumption has bcen made
lo amve at the result. Even so, 1t subsumes most results
based on the semiclassical approach.

As a byproduct of the above analysis, the canonical
entropy for stable black holes can be expressed in terms
of the Bckenstein-Hawking entropy Sgy as

. 1
Se=Spy "E(ﬁ—l)logsun

Ly [S;,C(A)M”(A)]

270 Suc (M (A) @

For any smooth M(A), one can truncate its power series
Xpansion in A at some large order and show that the
uantty mn square brackets in eq. (23) does not contribute
10 the log(area) term, so that

883

Se =8 —%({-I)logS,H +const.+O(Sz, ). (v2))

where £ = 3 in eq. (4). Note that this 1s the result for an
1solated honzon described by an SU(2) Chem Simons
theory. For a U(1) Chem Simons theory, £ = 1 [17,13]. The
interplay between constant area quantum spacetime
fluctuations and thermal fluctuations 1s obvious in the
coefficient of the log (area) term where the contribution
due to each appears with a specific sign It 1s not surpnsing
that the thermal fluctuation contribution increases the
canonical entropy The cancellation occurring tor horizons
on which a residual U(1) subgroup of SU(2) survives,
because of additional gauge fixing by the boundary
conditions describing an 1solated horizon [8], may indicate
a possible non-renormalization theorem, although no special
symmetry like supersymmetry has been employed anywhere
above. It 1s thus generic for all non-rotating black holes,
including those with electric or dilatonic charge.

While so far we have restncted our attention to thermal
fluctuauons of area due to energy fluctuations alone, the
stability criterion (21) can be shown to hold when in
addition thermal fluctuations of electric charge are
incorporated within a grand canonical ensemble [14]. As in
112], we assume that energy spectrum 1s a function of the
discrete area spectrum (well-known in LQG [18]) and a
discrete charge spectrum. The charge spectrum is of course
equally spaced n general; for laige macroscopic black
holes the area spectrum 1s equally spaced as well.

In a basis in which both the area and charge operators
are simultaneously diagonal, the grand canonical partition
function can be expressed as

ZGEg(m,n)exp—ﬁ[E(Am.Q,,)-d’Q,,]. @5)
where, g(m,n) is the degeneracy corresponding to the area
eigenvalue A, and charge cigenvalue Q, Using a
generahzation of the Poisson resummation formula

Y fmny=Y, [dxdyexp{-tthx+y)} £ (x.y) (26)
mn ki

and assuming that the partition sum 1s dominated by the
large eigenvalues A,, O, 1L can be expressed as a double
integral

Z,= jdxdyexp - B{E(A(x).Q(»)

- ©O(»}2(AX),Q(y)). @n
Note that the transition from the discrete sum to the
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integral for Z; requires only that the dominant eigenvalues
are large compared to the fundamental units of discreteness
which for the area 1s the Planck area and for the charge
1s the electronic charge These conditions are of course
fulfilled for all astrophysical black holes.

Changing vanables in eq. (27) form x, y 10 E, Q

2, = [dEdQ T (EQ)g(E.Q)exp{-B(E - ®Q)}

= [dEdQp(E Q) exp{-B(E-20Q)}, (28)

where, the Jacobian J = |E,|"|Q ", and p = AEQ)
&(E.Q) 1s the density of statles Employing the saddlepomt
approximation and using eq (36) one obtamns

sG(M,Q,)=S,,C(M.QO)—%IogMcon,sl (29)

where using S, = log p = §,,c(M, Q) +log J. we have
defined

A=det Q7= det QE, V@,

=4l QA A Q)] . oo
where the Hessian matnx
Sucre S
Q= MC.EE MC FQ . (31)
Suc.eo Swcee )y, @

Since the microcanonical entropy 1s known to be only a
function of the honzon area even for charged non-rolating
black holes [8,10], one can express detQ as

_ 2 _ 2
detQ = (Syc [ (Ae NAg) - (Aso)' ],
+Suc.aaSuc a [(A.E)z Ago +(Ag )

xAp =24, ApAL ]lu.q, 32

The necessary and sufficient conditions for thermal stability
are

Trf2 = Syc.ee IM.Q, + Suc.oo |M.q,,<0

det Q = [Suc.ss Suc.ve ~Shc.co ]M,Q,, >0 3
which necessarily imply
s“m|M o <0 and Sy 00 |M o <0 34

Note that while these conditions together imply the first of
the necessary and sufficient conditions (33) for stability of
£2, they are not sufficient to guarantec the second one

Using the mucrocanonical relations for temperature and

polential, we may expess the necessary conditions fo
stability in terms of the heat capacity C, = (JE = 37)Q
and the capacitance C = (J0Q/Jd @), 1n the following way

C, >0and Co <T| —3—%) . @)
\ E
The more stringent necessary and sufficient condiyong
can also be similarly expressed in terms of C, and ¢
The grand partition function, evaluated in the saddle
point approximation, can now be substituted in the standarg
thermodynamic relation 1n the presence of a chemicy
(electrostatic) potenual

S; =BM - pO® +log Z,, (36)
so as to yicld the grand canonical entropy

S =Sy —%Iog det £ + const. (1)

We now make use of eq. (4) to observe that both §,,
and Sycaa are positive denite for macroscopically large
arcas The necessary and sufficient conditions for thermal
stability, under both energy and charge fluctuations, can
now be transcnbed nto the threc simple inequahtics

‘_4!";'1 + §ﬂ‘ AL L0,

Ay MC A
S
ﬁg +MCAL <,

Ay Suca

2
Au, S0 [ Suc.an o
Ay 5o | Suca

where, we have uscd the notation Arr Ma = Aym eic
We have assumed of course that the horizon area A =
A(M,Q) Since we are identifying the black hole mass ¥
with the mass defined for the 1solated n9n-radiuung non-
accreting honzon, we can recall our earlier assumption that
M = M(A), so that A = A(M(A),Q). In other words, the
mass associated with the isolated horizon ought to relaie
to the horizon area just as the bulk Hamultonian relates ©0
the volume operator (as shown in Ref [19]). The quantum
mass spectrum thus should be related to the area spectrum
On the other hand, electric charge has no such geomelrt
origin, and 1s independent of the area, as far as one ¢af
make out. This implies that

AM(A)=1

Ay M (A)+ A,M"(A)=0. )
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quhstituting €q. (39) into the inequality (38), the stability
.enion eq (21) emerges once again. It 15 not difficult to

that this, when substituted back into (38), merely
reproduces (38), thereby establishing consistency between
{he inequahties

I« 1t possible to denive as a bonus, as in the case of
son-fluctuating charge, a general formula for the thermal
Jlu twation correction to the canonical entropy, loganthmic
wa the honzon area 7 We believe it 1s indeed the case, but
4o not nclude that discussion here

Can this cnterion continue to hold if the black hole 1s
jusacterized by a number of U(1) charges Q,.... O, all
mdependently quantized ? This situation typically ensues
i black holes ansing in the low energy supergravity limit
of anng theorics. The matrix 1s then an n X n matnix, and
dn analogues of eq (38) now become morc complicated,
maolving sums of products of derivatives of Syc. Despite
i o long as one stays away from extremality, it 1s not
meoncerveable that the mass alone decides on the stability

5 Concluding remarks

The laws of black hole mechanics derived from the
Kuchaudhun equation have incvitably led to worldwide
alempls (o seek quantum formulations of general relativity.
A reasonably sansfactory understanding of black hole
enropy has been achieved . the entropy of radiant black
iholes 1s completely described m terms of the microcanonical
opy of 1solated horizons which, in tumn, 1s more or less
:Lnlm'ly understood within the scheme of Loop Quantum
tGrny, at least for the cases without rotation. Inclusion
of roation into the LQG  approach to microcanonical
[t‘nlmpw remais now foremost on the agenda, since, like
he mass ot the 1solated horizon, and unlike U(1) charges,
the anpular momentum 1s also Iikely to be determined by
the horizon area in the 1solated case.
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