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Abstract Beginning with a brief sketch of the derivation of Hawking's theorem of horizon area increase, based on iheRuychaudhuri 
cqualiun. we go on to discuss the issue as to whether gencnc black holes, undergoing Hawking radulion, cun ever remain in stable thermal c q u i l i l i n u m  with that radiation We derive a universal cnterion for such a stability, which relates the black hole mass and microcanonical 
ininipv. both of which are well-denned within the context of the Isolated Horizon, and in principle calculable within Loop Quantum 
(jijvity The criLcrion is argued to hold even when thermal fluctuations of electric charge are considered, within a grand canonical L i i s c m b i c
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1. Iiilroduction ‘

ihc eq u a tio n  fo r  th e  ra le  o f  c h a n g e  o f  e x p a n s io n  

I K a y ch a u d h u n ’s e q u a t io n )  p la y s  a c e n tr a l r o le  in  

ilic p ro o fs  o f  th e  s in g u la r ity  th e o r e m s  [1 ] .

L\cn in Its fifty -firs t year, the Raychaudhuri equation 12] 

rL'l.iins Its prime position as a tool to analyze spacetime 

sint]:ularitie.s (for a review fo r non-specialists, see [3]) 

However, lest one should feel that the equation has only 

one specialized role in general relativity, namely that o f 

delineating singularities, we remark that it has had far 

'^uler applications, as fo r example in establishing the so- 

bulled laws o f black hole mechanics. The earliest o f these 

l »ws or theorems is called Hawking's theorem o f increase 

ol horizon area o f a black hole It states that [4], 

rhe a r e a  o f  t h e  e v e n t  h o r i z o n  o f  a n  i s o l a t e d  

s ta t io n ar y  b l a c k  h o l e  c a n  n e v e r  d e c r e a s e  in  a n y  

p h y s i c a l  p r o c e s s .

We recall first that a black hole spacetime B  is the set o f 

events that lie in the c o m p l e m e n t  o f the choronological 

Pasi of events in fin ite ly distant and in fin ite ly far in the 

•'Jtore (the future asymptotic null in fin ity  I * ) .  The event 

*iorizon of the black hole is the boundary d B  o f events in

spacetime accessible to such observers. It is a null 2+1 

dimensional surface hiding the black hole singularity.

A sketch o f the proof ot Hawking’s theorem may be 

given as follows [4J - Recall that the Raychaudhuri equation 

[2]

/ “ A„0 s  —  +  R J “1‘̂
d r  3 (1)

relates the evolution o f the (volume) expansion f f(T )  o f 

(timelike and null) geodesics, to the ‘shear’ a  which 

quantifies relative stretching o f geodesics in a congruence, 

the rotation or vorticity co which exhibits how the geodesics 

twist around each other as they evolve and the spacetime 

curvature responsible for geodesic deviation.

Consider any null surface generated by null geodesics 

which we assume complete A fixed time slice o f such a 

surface is a spacelike 2 -sphere o f area A, The Raychaudhuri 

equation ( 1 ) now implies that

0 - ' ( t ) ^ - ! - t  + 0 - ‘ (O). (2)

The expansion 0  =  d l o g A / d z  Assume 0 ( 0 )  > 0 in contrast 

to the case fo r studying singularities; the area A then
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to the stales o f the quantum spacetime associated With

Figure 1. Ulack hole spaccimic cmcr^in(’ Ironi s|)hcriL.illy syiiitmlrK 
collapse of a massive star Af, ellipses deiiole sulll- s si vc  si/es nf llic 
collapsing slur, and ihc null surluce H is llie cveiil hon/on

increases locally Consider fixed lime slices A’,, o f event 

horizon at >  Tj, The number o f null geodesic

generators intersecting is at least the same or bigger 

than those intersecting A, A t any instant, A  «  n o  o j  Null 

geodesic generators, it follows then that > A,

which IS what the thcoiem states

H awking’s theorem bungs to mind the law o f entropy 

increase (for isolated systems) that follows from the second 

law o f thermodynamics Yet, for a classical black hole 

spacetime, the complete absence o f ‘microstales’ involving 

atoms, electrons, photons or other discrete entities, stymies 

pushing the analogy very far. The situation turns cunouser 

because o f other ‘ laws o f (stationary) black hole mechanics’ 

derived on the basis o f general re lativity [6 ], wherein the 

geometrical quantity known as surface gravity ( a*) appears 

as an analogue o f temperature

This thermodynamic analogy o f the theorems on 

stationary black hole mechanics, especially. Hawking’s 

theorem, led Hckenstein 15] to p o s t u l a t e  that b l a c k  h o l e s  

m u s t  h a v e  m u s t  a n  e n t r o p y  p r o p o r t i o n a l  t o  th e  a r e a  o f  

t h e i r  h o r i z o n s

(3)

Here, ^  is a dimensionless constant o f 0 (1), and If, is the 

Planck length Ip =  {Gt i /c  cm, characterizing the

length scale at which spacetime can no longer be thought 

o f  in terms o f classical Riemannian geometry It follows 

that black hole t h e r m o d y n a m i c s  must have to do w ith 

q u a n t u m ,  rather than classical, general re lativity The 

microstates from which 5̂ ;, originates must then correspond

black hole, especially the event horizon.

Similarly, black hole temperature also has quaniujr, 

origins, being associated w ith the mysterious Hawkm̂  

radiation |6 J Every generic black hole radiates particle', m 

a thermal (black bexly) spectrum, at a temperature T,  ̂ - 

surprising result, i f  one remembers that the 

surface gravity /c is purely a geometric quantity Hawkm 

radiation thus corresponds to t r a n s f o r m a t i o n  o f quaniun' 

spacetime states describing the black hole, into thermal 

particle stales In a sense, it is an inversion o f graviijtionai 

collapse whereby panicle stales collapse into spacetime 

stales The extra feature here is the ihermahzalion ol iht 

particle slates produced through Hawking radiation, winch 

eventually leads to the Information Loss conundrum

The issue wc address heie is that o f thermal slabiln\ 

o f genenc radiant black holes in the heat bath made tip of 

their own radiation The asymptotically flat Schwar/sihilil 

spacetime is well-known [71 to have a thermal imitihiht] 

the Hawking temperature for a Schwarzschild black hole ol 

mass M  is given by T  -  U M  which implies ihjt ihi 

specific heat C  =  d M / d T  <  0 < The instability is attriluiiod 

w ithin a standard canonical ensemble approach, to the 

supcicxponential growth o f the density o f stales f)(M\ - 

exp which results in the canonical partition fiiiirtior 

diverging for large M

The problems with an approach based on an equilihiiuiTi 

canonical ensemble do not exist, at least for isolated 

spherically symmelnc black holes, formulated as isvlainl 

h o rizo n s  [81 o f fixed horizon area, these can be co n s is lcn llv  

described in terms o f an equilibnum  microcanoiuial  

ensemble with fixed A  (and hence disallowing iheriiul 

fluctuations o f the energy M ) .  For A  »  lpia„ck> d been 

shown using Loop Quantum Gravity [9J, that all sp h e n ca ll)  

symmetric four dimensional isolated "horizons possess a 

microcanonical entropy obeying the Bekenstein-Hawking 

Area Law (BH AL) [5,6]. Further, the microcanonical entropy 

has corrections to the B H A L  due to quantum spacetim e 

fluctuations at fixed horizon area. These arise, in the hmd 

ot large A.  as an in fin ite  series in inverse powers of 

horizon area beginning w ith a term logarithmic in the area 

[ 1 0 ], with completely finite coefficients.

— Au z ^ o g S s f f  +  c o n s t  + O i S g l f ) , 14'

w h e r e  s  A/4l̂ p,„„,̂ .
On th e  o th e r  h a n d , a s y m p to t ic a l ly  a n t i-d e  S itter
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b lack holes with spherical symmetry are known [7] lo be 

jc s c n b a b ic  in terms o f an equilibrium canonical ensemble, 

so lo n e  as the cosmological constant is large in magnitude 

th is  range o f black hole parameters, to leading order 

,11 A th e  canonical entropy obeys the B H A L. As the 

m a g n itu d e  o f the cosmological constant is reduced, one 

a p p ro a c h e s  the so-called Hawkmg-Page phase transition 

10 a p h a s e ’ which exhibits the same thermal instability as 

n ic n l io n c d  above.

In this article, we focus on the fo llow ing 

(il Is an understanding o f the foregoing features o f 

black hole entropy and thermal stability on some 

sort o( d ‘unified’ basis possible ? We shall argue, 

lollowmg 111-15J that it is indeed so, at least in the 

case of non-rotating black holes.

MU In addition to corrections (to the area law) due lo 

f i x e d  area quantum spacetime fluctuations computed 

using a microcanonical approach, can one compute 

c o r r e c t io n s  due to t h e r m a l  fluctuations o f horizon 

a re a  within the canonical ensemble ? Once again, 

th e  a n s w e r  is  in the affirmative The result found in 

111- 15], at least for the leading log a r e a  corrections, 

(urns out to be u n i v e r s a l  in the sense that just like 

th e  BH AL, it holds fo r all black holes independent 

o l  t h e i r  parameters.

2 C anonical partition function : holography 7
I n l l o u in g  11IJ, w c  start w ith  th e  c a n o n ic a l partition  fu n ctio n  

III i l ic  q u a n tu m  c a s e

' / r ( P ) ^ 7 r c \ p - P H  (5)

K cca ll th a t in  classical general relativity m the Hamiltonian 

lu n n u la t io n ,  the bulk Hamiltonian is a first class constraint, 

VI th a t th e  entire Hamiltonian consists o f the boundary 

u i n t r ib u i i o n  on the constraint surface. In the quantum 

( I f 'in a in ,  th e  Hamiltonian operator can be written as

H = H y + H s ,  (6 )

^iih the subscripts V  and 5 signifying bulk and boundary 

respectively. The Hamiltonian constraint is then 

iiTiplemcnted by requiring

(7)

fo r e v e r y  physical state in the bulk. Choose as basis 

' “ r  th e  H a m ilto n ia n  in  ( 6 )  the slates | V ' ) v r ® | ^ ) s ‘

''*>plies that the partition function may be factonzed as

=7>-exp-/3 //

= dim l i y  Tr^ e xp -

indep o t p  twuiuliiry (8)

Thus, the relevance o f the bulk physics seems rather 

lim ited due to the constraint (7) The partition function 

further reduces to

Z e i P )  = (9)

where T i y  is the space o f bulk slates |v<) and is the 

‘boundary’ partition function given by

Z ^ ( p )  =  T r s e \ p -  (10)

Since we are considering situations where, in addition to 

the boundary at asymplopia, there is also an inner boundary 

at the black hole honzon, quantum fluctuations o f this 

boundary lead lo black hole thermodynamics The 

factorization in eq (9) manifests in the canonical entropy 

as the appearance o f an additive constant proportional to 

dim H y .  Since thermodynamic entropy is defined only upto 

an additive constant, we may argue that the bulk states do 

not play any role in black hole thermodynamics. This may 

be thought o f as the origin o f a weaker version o f the 

holographic hypothesis [16].

For our purpose, it is more convenient to rewrite (10)

Z c W ) = ' Z s ( ^ s ( M > ' ) ) ) e x p - p E , [ A ( n ) ) ,  (11)
neZ'----- -̂---*--------- '

degeneracy

where, we have made the assumptions that (a) the energy 

IS a function o f the area o f the horizon A and (b) this area 

IS quantized. The first assumption (a) basically originates 

in the idea in the last paragraph o f that black hole 

thermodynamics ensues solely from the boundary states 

whose energy ought lo be a function o f some property o f 

the boundary like area The second assumption (b) is 

actually explicitly provable in theories like NCQGR 

(nonperturbative cononical quantum general re lativity) as 

we now briefiy digress to explain.

3. Spin network basis in NCQGR

The basic canonical degrees o f freedom in NCQGR arc 

holonomies of a distributional S U i 2 )  connection and fluxes 

o f the densitized triad conjugate to this connection. The 

Gauss law (local S U ( 2 )  invariance) and momentum (spatial 

diffeomoiphism) constraints are realized as self-adjoint 

operators constructed out o f these vanables. States 

annihilated by these constraint operators span the 

kinematical Hilbert space. Particularly convenient bases for
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this kmcmatical Hilbert space are the spin network bases. 

In any o f these bases, u ( ‘spinel’ ) stale is described in 

terms o f l in ks  /,, carrying spins { S V { 2 )  irreducible 

representations) . , j„  and v e r t i c e s  carrying invariant S U { 2 )  

tensors ( ‘m lcnwiners’ ) A particularly important property 

ol such bases is that geometrical observables like area 

operator arc diagonal in this basis with d i s c r e t e  s p e c t r u m  

An internal boundaiy o f a spacetime like a horizon appears 

in this kinematical description as a punctured with each 

puncture having a deficit angle 0 =  0 ( j , ) .  i =  1, - . p, as 
shown in Figure 2

For macroscopically large boundary areas A »  /?ia„ck. 

the area spectrum is dominated b y  j ,  =  1/2, V, = 1, . , p, 

p »  1. This IS the situation when the deficit angles at 

each puncture lakes its smallest nontrivial value, so that 

a classical horizon emerges. That implies that

^ ( / 0 ~p/na,uk^F » 1 - 

This completes our digression on NCQGR

2  / ( « ) =  X  J _ f ^ e x p ( - 2 m » u:)/(.r).

Zc = /■  <it*(£(AW))exp

= Jrf£expj^S„ . ( £ ) - l o g |^ | - ^ £
dx (14)

where ■^wc -  lo g g ( £ 0  is the microcanonical entropy 

Now, in equilibnum statistical mechanics, there is an inherent 

ambiguity in the def-inition o f the microcanonical entropy 

Since It may also be defined as -  iogp(E) where p(f) 

is the density o f states. TTie relation between these two 

definitions involves the ‘Jacobian’ factor jdE/dxl~‘

-log ^1
(15j

Clearly, this ambiguity is irrelevant i f  all one is interested 

in IS the leading order BH AL. However, i f  one is interested 

in logarithmic corrections to DHAL as we are, this dilfcrencc 

IS crucial and must be taken into account

We next proceed to evaluate the partition function in 

cq. (14) using the saddle point approximation around the 

point E  =  M  where M  is to be identified with the (classical) 

mass o f the boundary (horizon). Integrating over (he 

Gau.ssian fluctuations around the saddle point, and dropping 

higher order terms, we get

Z c  = exp

( 12) (16)

4. Fluctuation effects on canonical entropy

We now move on to discuss the effect o f inclusion o f 

Gaussian thermal fluctuations o f the horizon area The 

canonical entropy is expected to receive additional 

corrections due to such fluctuations over and above those 

due to quantum space!ime fluctuations already included in 

the miciocanoncal entropy Going back to eq (11), we can 

now rewrite the partition function as an integral, using the 

Poisson resummalion formula

Using S c  =  logZ f + we obtain for the canonical

entropy S c

S c = S j , c ( M ) - - \ o g ( A ) ,

where

A s [A '( x ) f
M \ A )

(17)

(18)

(13)

For macroscopically large horizon areas A { p ) .  x  »  1, so 

that the summation on the r h s  o f (13) is dominated by the 

contnbuiion o f the m  = 0 term. In this approximation, we 

have

Thus, the canonical entropy is expressed in terms of the 

microcanonical entropy for an average large horizon area, 

and the mass which is also a function o f the area. Clearly, 

stable equilibrium ensues so long as d  > 0 .

Additional support for this condition can be gleaned 
by considering the thermal capacity o f the system, using 

the standard relation
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d M  M \ A )  

d T  r ' ( A ) ' (19)

\Hih T  being derived from the microcanonical entropy 

SVrM)- hence a function o f A .  One obtains for the 

lieal capacity the relation

CU1) =
M ' ( A )

T ( A ) A ' ( x )
(20)

so ihai C > 0 i f  only i f  > 0 Since the positivity o f the 

heal capacity is certainly a necessary condition fo r stable 

ihcnnal equilibrium, it is gratifying that an identical criterion 

ciTicrm's for J  as found from the canonical entropy (17).

Using now cq. (18) fo r the expression for zl, the 

cnicrion for thermal stability o f non-rotating macroscopic 

black holes is then easily seen to be

M(A) > i\ff'(A ) (21 )

as already mentioned in the summary. We have been using 

units in which G  =  h  =  c  =  kg =  1. I f  we revert back to 

nulls where these constants are not set to unity, the lower 

bound eq (2 1 ) can be re-expressed as

M { A )  >
he

G k i
(22)

Wc remind the reader that in contrast to semiclassical 

approaches based on specific properties o f classical melncs, 

our approach incorporates crucially the microcanonical 

entropy generated by quantum spacetime fluctuations that 

leave the horizon area constant. Apart from the plausible 

assumption o f the black hole mass being dependent only 

on I he horizon area, no other assumption has been made 

lo arrive at the result. Even so, it subsumes most results 

based on the semiclassical approach.

As a byproduct o f the above analysis, the canonical 

t'niropy for stable black holes can be expressed in terms 

ol the Bckenstein-Hawking entropy S bh fls

■̂ C = S bh - ^ ( ^ - D I oE ^ sh

- i | o g
S ' u c W M ' X A )

S " c W ¥ U )

- ^ ( € - l ) l o g S , „  + c o n s t .+ 0 (4 ji) ,  (24)

where ^  = 3 in eq. (4). Note that this is the result for an 

isolated horizon described by an S U ( 2 )  Chem Simons 

theory. For a U { 1 )  Chem Simons theory, ^  = 1 [17,13]. The 

interplay between constant area quantum spacetime 

fluctuations and thermal fluctuations is obvious in the 

coefficient o f the log (area) term where the contribution 

due to each appears with a specific sign It is not surprising 

that the thermal fluctuation contribution increases the 

canonical entropy The cancellation occurring tor horizons 

on which a residual f / ( l )  subgroup o f S U ( 2 )  survives, 

because o f additional gauge fix ing  by the boundary 

conditions describing an isolated horizon [8 ], may indicate 

a possible non-renormalizalion theorem, although no special 

symmetry like supersymmetry has been employed anywhere 

above. It is thus generic for all non-rotalmg black holes, 

including those w ith electric or dilatonic charge.

While so far we have restricted our attention to thermal 

fluctuations o f area due to energy fluctuations alone, the 

stability criterion (2 1 ) can be shown lo hold when in 

addition thermal fluctuations o f electric charge are 

incoiporated within a grand canonical ensemble [14]. As in 

[ 1 2 J, wc assume that energy spectrum is a function o f the 

discrete area .spectrum (well-known in LQG [18]) and a 

dhscrete charge spectrum. The charge spectrum is o f course 

equally spaced in general; for laige macroscopic black 

holes the area spectrum is equally spaced as well.

In a basis in which both the area and charge operators 

are simultaneously diagonal, the grand canonical partition 

function can be expressed a.s

Z a  S  S  ( '" ,« )  exp- P  [E {A ,„  ], (25)

(23)

any smooth Af(A), one can truncate its power series 

‘Expansion in A  at some large order and show that the 

quantity m square brackets in eq. (23) does not contribute 

lo the log (area) term, so that

where, is the degeneracy conesponding to the area

eigenvalue A „  and charge eigenvalue Using a 

generalization o f the Poisson resummation formula

5^/(m ,n) = 5 L | ^ y c x p {- i(tx -i-/ v )}/ (x ,y )  (26)
m.#i k j

and assuming that the partition sum is dominated by the 

large eigenvalues A „ ,  Q„. it can be expressed as a double 

integral

Zc =  JdW yexp - P {E (A ( .x ) ,Q (y ) )

-  * Q ^ y ) ] g ^ A ^ x ) . Q ( y ) ) .  (27)

Note that the transition from the discrete sum to the
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iniegral for Z q requires only that the dominant eigenvalues 

are large compared to the fundamental units o f discreteness 

which for the area is the Planck area and for the charge 

IS the electronic charge These conditions arc o f course 

fu lfilled for all astrophysical black holes.

Changing variables in eq. (27) form x, y  lo E, Q

Z„ = jdEdQJ(EQ)g(,E,Q)exp{-P(E-<S>Q)}

=  l d E d Q p i E Q ) e x p { - P ( E - < t > Q ) } ,  (28)

where, the Jacobian J  = If’J  '|Gy|'', and p  = J{E,Q) 
f { ( ^ ’Q )  the density o f slates Employing the saddlepoinl 

approximation and using eq (36) one obtains

‘S'G - G o ) =  W  - C?0) - l og  A +  c o n s t (29)

= d c in ( 4 ^ ) '(> \ , , ) ' i Q ^ ) \

where the Hessian malnx

[ ^ M C .E Q

det a  =  ( . V  X ) '  [ ( ^  E. ) ( )  -  ( A eo f  ] | „  ^

^^MC,AA^MC A [ ( ^ , e ) \ qQ

x A E E " 2 ^fcAt)AEC?]|^g^

T r Q  -  + 5/M C ,Q Q  iM .a ''

det Q  ~  l̂ î MC.EE ^ M C .Q Q  ^ M C .E Q 1

potential, we may expess the necessary conditions fop 

stability in terms o f the heat capacity C q  s  { d E  = d j )  

and the capacitance C s  ( d Q / d 0 ) £  in the following way

■ (35l

where using S ^ c  =  , Q o ) - ^ \ o g J ,  we have

defined

A = det = del Q  ( £ ,  f  (Q^,  f  I

(30)

(31)
‘̂ MC fj?

: .E Q

Since the microcanonical entropy is known to be only a 

function o f the horizon area even for c h a r g e d  non-rolatmg 

black holes [8 , 1 0 ], one can express det £2 as

(32)

The necessary and sufficient conditions for thermal stability 
are

, <0

(33)

The more stringent necessary and sufficient conditions 

can also be sim ilarly expressed in terms o f C q and C 

The grand partition function, evaluated in the saddle 

point approximation, can now be substituted in the standard 

thermodynamic relation m the presence o f a chemical 

(electrostatic) potential

5 V ;= /)M -/)G < P + lo g Z ^ , {%)

so as to yield the grand canonical entropy

which necessarily imply

^MC,EE L ,Q̂  ^Mc.oQ L  ,Q„ (34)

Note that while these conditions together imply the first o f 

the necessaiy and sufficient conditions (33) for stability o f 

they are not sufficient to guarantee the second one 

Using the microcanonical relations for temperature and

^r, -  ^Mc ~  “  ^  const. (̂ 7)

We now make use o f eq. (4) to observe that both 

and S m c a a  ^re positive denite for macroscopically large 

areas The necessary and sufficient conditions for ihcriTul 

stability, under both energy and charge fluctuations, can 

now be transcribed into the three simple inequalities

A

\ iQ < 0 .

(38)

where, we have u.scd the notation 

We have assumed o f course that the horizon area A = 

A ( M , Q )  Since we are identifying the black hole mass M 

with the mass defined fo r the isolated non-radiating non- 

accreting horizon, we can recall our earlier assumption that 

M  =  M ( A ) ,  so that A  = A ( M ( A ) , Q ) .  In other words, the 

mass associated w ith the i.solated horizon ought to relate 

to the horizon area just as the bulk Hamiltonian relates to 

the volume operator (as shown in Ref [19]). The quantum 

mass spectrum thus should be related to the area spectrum 

On the other hand, electric charge has no such geometric 

origin, and is independent o f the area, as far as one can 

make out. This implies that

A ^ M \ A ) ^ \

A u u M ' \ A )  +  A u M " W  =  0 .
(39)
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eq. (39) into the inequality (38), the stability 

pterion eq (21) emerges once again. It  is not d ifficu lt to 

that this, when substituted back into (38), merely 

reproJuces (38), thereby establishing consistency between

tin- inequalities
Is It possible to derive as a bonus, as in the case o f 

m,p.nuciuaiing charge, a general formula fo r the thcrinal 

iliii.(uaiion correction to the canonical entropy, logarithmic 

,ji the horizon area We believe it is indeed the case, but 

Jo noi include that discussion here

( an this criterion continue to hold i f  the black hole is 

luractcrized by a number o f U ( \ )  charges all

iiiclcpcnflently quantized ? This situation typically ensues 

in black holes arising in the low energy supergravity lim it 

ol cipiig theories. The matrix is then an n x  n matnx, and 

till analogues o f eq (38) now become more complicated, 

involving sums o f products o f derivatives o f 5^^- Despite 

ilns so long as one stays away from extremality, it is not 

iiKoncciveable that the mass alone decides on the stability

5 ( onduding remarks

I he laws ol black hole mechanics derived from the 

Ki\LhaLidhuri equation have inevitably led to worldwide 

jlliinpls lo seek quantum formulations o f general relativity. 

A icasonably satisfactory understanding o f black hole 

in'rnpy has been achieved . the entropy o f radiant black 

h completely described in terms o f the microcanonical 

op\ o! isolated horizons which, in turn, is more or less 

‘ iniiiily understood within the scheme o f Loop Quantum 

tfiUMi), at least for the cases without rotation. Inclusion 

ol rotation into the LQG approach to microcanonical 

jcninipv remains now foremost on the agenda, since, like 

liL' mass ot the isolated horizon, and unlike 1/ ( 1) charges, 

the angular momentum is also like ly  to be determined by 

the horizon area in the isolated case.
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