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Counting of black hole microstates
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The entropy of a black hole can be oblained by counting stutes 1n loop quantum gravity The dominant term depends ¢

the hmmirz1 parameter involved n the quantization and 15 proportionl to the area of the horizon, while there 1s a logarithmic correctic

with coclficient -1/2
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It is an honour and a pleasure 10 wrte n the volume
dedicated to Professor Amal Kumar Raychaudhun, eminent
theoretical physicist and revered teacher of generations of
Physics students The theory of gravitation, with which he
meaccupied himself, 1s progressing steadily, and although
« full quantum theory 1s not yet at hand. a lot of interesting
tesults are available

A framework for the description of quantum gravity
using holonomy vaniables has become popular as loop
quantum gravity [1] A start was made in this work in the
direction of counting of black hole microstates. Further
progress was made in |2], [3] and n [4]. In the present
aricle we shall try to tie up some loose ends left there
Other discussions of the subject can be found m [5,6)

In this approach, there 15 a classical 1solated horizon
and guantum states are sought to be built up by
dociating spin variables with punctures on the horizon
The cntropy 1s obtained by counting the possible states
that are consistent with a particular area, or more precisely
with a particular eigenvalue of the area operator [1)

We set units such that 4myfi= 1, where y 1s the
Immirzi parameter and ¢p the Planck length. Equating the
tassical area A of the horizon to the eigenvalue of the
drea operator we find

Correspanding Author

N
A=23 [5G, +D. )

where the p-th puncture cames a spin j,, more accurately
an irreducible representation labelled by j,, and contributes
a quantum of area 2‘/ J,(J, +1) to the total area spectrum
For math al conv e let us replace the half-odd
mteger spins by integers n, = 2j,, which makes the area
equaton A= Z,«'"p(":- +2). Henceforth, n, will be
referred to as the ‘spin’ carned by the p-th puncture. A
puncture carrying zero spin contributes nothing to the
spectrum, hence such punctures are irrelevant. Since the
mimmum ‘spin’ each puncture should carry 15 umty the
total number of punctures cannot exceed A/IN3 . At the
same time, the largest ‘spin’ a puncture can carry 1s also
bounded, n < N, where JN(N+2)=A.

A sequence of ‘spins’ n,, each 1 < n, < N, will be
called permissible if 1t obeys (1) The p-th puncture gives
(n, + 1) number of quantum states In this way each
permissible sequence gives rise to a certain number of
quantum states. The task 1s to find the total number of
states for all permissible sequences. Let it be d(A). One
can subdivide the problem as follows : Fix any puncture,
say p = 1 Consider the subsel of all permissible sequences
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stuch that puncture 1 carries “spin” | For such sequences
the area equatton (1) reads
NRDEEIEN
prl -
So the total number ol quantum states given by all
/
sequences obeymg (2 s diA - VY) But the punctue |
isell gives two states ‘Therelore, the total number quantum
states given by the subset of permissible sequences m
W 2dA YY) I the

nent step consider the subset of all pernissible sequences

which punciuie 1 ocanies spm |
such that punciure I carmies “spin® 20 Arguments simlar (o
leads o the total numbar of states for such
(A

process, we end up with a recurrence relation

the abovc

I N
subsel ol sequences as V2 Contmumg  thiy

vl ~ R

diAY =Y hd (A -Jnny D) N ™
w1

This s somubar (o the elaton m 3] but ditfers from it

having all values ot m = 50 5+ 1 17 allowed

In solving (3) we employ a tal solution ) = exp(AA4)

Then (3) puts o condiion on A

‘\1| —
L(u +he )

al

Theretore, a solution for A obeying the above equation
mmphies o soluton of the recurrence 1elation (3) For large
arca A >> 1, we have N >> | Moreover, lor A = o(l) the
summand lalls off exponentially for Luge n So formally we
can extend the sum up 1o mhinity This numenically yields
A = 0861 The error we make mestimaung A4 by extendg
The

degencracy d(A) then ginves 1ise o a Boltzmann entropy

the sum all the way o mhmty 18 ofe Y total

SCU = Ind(A) = AA In physical units

Ay - A ®)
1

H
which yields A747;, 1l we choose the parameter y = A/r
This s the basic wdea behind the counting and  thereby,
making a predichon for the pparameter m order that an
malches a
derive  the

cntirely  quantum  geometric  calculation
Thus  we

semiclassical world but can adjust our parameters in the

semiclassical formula cannol

theory such that the semiclassical world emerges

In the above counting process we completely miss
which configuration of spins dommates the counting. m
other words contiibutes the largest number ol quantum

stales A common misconception 1s that the smalleg S
n = | at every puncture gives rise to the larges( Bumfy.
of quantum states It anses from the mtuition thy W,
conliguration maximizes the number of puncture, and .
therefore senuclassically lavoured The following NI
will show that such an intuition 18 incorrect We Locuy 4
punctuies carrymg identical spms This is comewfy 0
analogy with statistical mechanies: where we ool |,
particles cartymg the same energy. Let the numher
punctures canrymg “spin’ i be s, Soin the area equayy,
(1) the sum over punctures can be replaced by the

over spins

AZS i) )
" \

kquation (6) fuither symbolizes the lact that spin ity
mote  fundamental i this problem than puncturc \\
configuration of “spms’ s, will be called permissible ) ¢
obeys (6) Fach conhigwation yields [ (n+ 1) quanun,
states but cach ot the configurations can be chosen 1,
(A7, ! ways (punctutes are considered distingun,
able) Theielore, the total number of quantum states pny.

by such a conliguration 15

-
d = L['%""?'l:lm F)™

Howcver, the configuiation in (7) may not be permissibi
To obtan a permissible contiguration, we maximize In
by varymg v, subject to the constraint (6). In the variauon
we o assume that s, >> 1 Jor each n (or only sud
conhigurations dommate the counting) Such an assumpti
clearly breaks down i A ~ o(1) The vanational eyuatien
OInd = ASA, where A 1s a Lagrange muluphier, g

Anns Yy

)
==+
2

Cleatly, fo1 consistencey, 4 obeys (4) with N = oo (¢ f (71
As alrcady observed this hardly makes a difference, mor

L

precisely the differences are exponenually suppress!
ofe *) for large arcas. Moreover, although cach , > |
the sum X,
exponentially suppressed This can be exphcitly seen by

s convergenl, since large n terms ¢

plugging n (8) mto (6), which yields

T, = A[Z(m Dt + 2)e '“_’] '_03424

Let us denote the configuration (8) dormnating the count

The total number of quantum states 15 obvioush
ible

by ¥,

d=Y, d_ where the sum extends over all permis
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_onfizurations. However, the largest number of states come
Jpom ~ore domimant configuration 3, . So we can expand
1 more accurately the entropy Ind., around this dominant
_enltgurauon and the result should be expiessible in the

1 . )
jor Ind = Indg, 3 2 L0, K, +0(8)), where &,
el the arca equation 25_\“1,"("-}2):()_ which

jollows by requirmg that the displaced configuranon 5, +
o also obeys the arca equation (6) Onc may wonder al
fivs point whether such a condition can ever be met since
o are miegers whereas n(n_+-?.; are wrratonal Strctly
pcdhmg the area cquation (6) we requnce that the sum
E\"\fﬁunl) should be close 10 A, In other words
srnge -1z A< 4o where 4 << AL must exist such that
me sum hes mothe range This amounts to saying that
S.w 5 \-n_ln +ﬁ) be & number € - o(l), wheic € may
varv with configurations but the vamation s slow  The
matiie A, which depends on ¥, s symmetiic. A simple
aculaton pives K= 8, /3, =1/(Xs,,). The total number

W tates can be expressed as

d Z(' X ’M'AMM"O‘(ZS.\" n(n-+_2)).

whete the sum extends over all Muctuations The Jarge

,

(10)

Hictnatons dic’out exponentially The Gaussian sum over
ilictuations would have produced a factor l/,/del(l() if
i Jdelta function were not there 1t s easy to see that K
fuisazero ergenvalue (2 L =0), 50 this hypothetical
ector would be divergent But the delta function makes
the sum over the zero mode of K fimite Note that each
nonzeto eigenvalue of K scales hke 1/A, so the fluctuations
M, which have 1o be rewnitten in terms of normal modes
9\ ol K, have o be converted o 8/ /JA . producing
Qi factors of VA for each summation. As one summation
I~ temoved by the delta function,

o [l

where € does not involve A. Plugging (8) nto (7) and
eplecung o(1) factors, we find

d —cxp(lA)[Z{"]l“/n(Znin)”"

Noung that the factors of VA cancel, we get d = exp (AA)
Up 1o factors of o(1) which will anyway be of o(1) in the

“htropy and therefore have been neglected throughout n
the Calenlation

an

(12)
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The above steps illustrate the basic points of the
calculaion which now can be adapted to the actual
counting  The actual counting problem nvolves another
crucial condition Each puncture carrying a representation
labelled by *spin® n must be associated with a state |rm)
where m 1s half-odd teger valued spin projections. —n/2
< m < n/2 The conditon 1s that 2,, m, = 0 where the sum
extends over all punctures Therefore, a sequence of *spms’
m, 15 permissible if 1t obeys the area equation and the spin
projection equations simultancously The task 15 to count
the number of states for all such permissible sequences A
tecurrence relation, similar to (3), can be found also in this
case Followmg [3], we relax the spm-projection equation
o Z,,"',. = v where v 15 a half-odd integer that can take
any sign - Let the total number of states be d,(A) As
belore fix a punctute, say 1, and let it carry ‘spm” | For
such sequences, the mea and the spin projection equations
become EM /nﬂ(nﬁ +2)=A-3 and E,,'",. =vtl/2
respectively Theictore, the nunber of quantum states [or
all permissible configurations such that the puncture 1
spin’ 1w (I““:(A—\/i) +d, .,I(A—\/f-&)
Continumg this process as before, we end up with the
recurrence relation

carries

N1 a2

dm=3¥ Y d ,(A-Jnn¥2)+1,

wheie the largest *spin” N contributes only one state (0
the above sum. provided v belongs to the set of allowed
values of m = [ -N/2. N2} In order to solve (13), we
consider the Fourter transtorm of d,(A)

a3

m dw

d (A= _[ U—4_7r—d"'

(Aye™ U4

and 1e-express the recurrence relation v terms of d,(A)

d,(A) = Edm (A— Jn(u +2))Ecos(mw)

(15)

In an attempt to solve (I1S5), we again cmploy a tnal
solution d,(A) = exp (4,A), which on being plugged nto
the recurrence telauon yields a condition on A4, :

1= Ee"\"/"_‘—m ZCOS (mw) (16)
The above equation (16) clearly shows that 4, 1s a penodic
funcuon of @. It 1s also multi-valued. However, 1t has a
local maximum at @ = 0 and 1n a small neighbourhood of
this maximum it can be approximated by a power senes 4,
= A+ a +a,w*+ - Values of 4, ay a, efc can
then be obtained from (16) by comparing various powers
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of @ It can be ecasily shown that A obeys the same
1ecurrence relation as (3), therefore the same as before,

T AJuTn'Tz'.E I m

2
a = - 015 a7
2(" + I)\/;Hn+ 2)e afninedy )
Finally, we aie interested
dym=[" 4O aa_ O 4 gherea -0t (8)
0 “n 4x \m ' J
which yields an entropy S(A)=}.A-l|n A, or
2
um:-ﬂ;-—lm. a9
amy(), 2

m physical units  Thus, ncorporation ol the projection
equation Zrn =0 does not alter the leading expression of
entiopy. hence does not give a different requirement on
the p-parameter to make the leading cntropy agree with the
semuclassical formula, but gives a umiversal log-correction
10 the semiclassical formula with a factor of 172

The counung using the domunant configuration 1s
cleaner when the projection equation 18 incorporated  Here
we present the detmled calculation  As before, let s,
denotes the number ol punctures carrying ‘spin’ n and
projection m The area and spin projection cquations take
the form

A= 2\" m N +—2-). 0= 2"”11 m

nm nm

(20)

A configuration s, ,, will be called permissible 1f 1t sausfies
both of these equations (20) Since now the m-quantum
numbers are also specified, cach puncture is i a definite
quantum state spectfied by two quantum numbers n, m.
The total number of quantum states for all configurauons
1s the number of ways a configuraton can be chosen This
can be done n two steps Note that wSum =5, So
first, the configuration s, can be chosen in (2“"-)'/1—1""'
ways Then out of s, the configuration s,,, can be chosen
mn s, '/l_[m Sy ways and finally a n" has to be taken
Thus we get

Co)er ot (Toan)
3 ROTLL S ) p

To obtamn permussible configurations which contribute the
largest number of quantum states we maximize Ind, by

d, = @n

varying s,, subject to the two conditions (20) The
calculauon s 1dentical as before and the result can be
expressed in terms of two Lagrange multpliers A, o

S _ e»/l [i(n+2) am
pR

Tnm

[v2]

Consistency requires that A and a be related to each other
. ~AJn(ne D) ~am _

as Z,.“ E,,." =1 In order that (22) sausfy
the spin projection equation we must require the sum

;A nin+2) —xm _

> J Y., me™ =0 This is possible if and only
if ), me™™" =0 for all n, which essentially implies ¢ =
0 (The value 217 15 excluded by positivity requirements)
Therefore, the condition on A hecomes the same as before

The sum E\M =E.\,, 1s also the same as before

The total number of quantum states for all permussible
configurations 1s clearly d(A) =Z\ d, To estimate
d(A) we agamm expand Ind around the dommant

configuration (22). denoted by ¥ .. As before, 1t gives
1 2

Ind = Ind, == 388, 0Ky Sy +00651) where K

8,6, 17,

an '

1s the symmetric matnx K, =
—I/ZH.T“ All vanations 5, +8s
two conditions (20) which give the two condition
Et)".r" aynn+2) = 0 and 25:,,',""1:0. Taking mto

account these equations the total number of states can be

must satisfy the

expressed as

CRL .
amd S

3 (38, D)5 (85,.m)
= cd, [ﬂﬁ]/A. @

where C’ 1s again ndependent of A. Inserting (22) into (21)
and dropping o(1) factors, we get

d; =expaA)(X5,0)" [T] x5, @

Plugging these expressions into d we finally get

QX aa
d=—¢"", where a ~ o(l), (¢a)
Ja
leading once agan to the formula (19) for the entropy The
origm of an extra /4 can be easily traced in this approach
which 1s the additional condition mem =0. Thus the
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Lelticrent of the log-correction 1s absolutely robust and
Jocs not depend on the details of the configurations at all
s direetly linked with the boundary conditions, the
Jonzon must satisfy
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