Counting of black hole microstates

A Ghosh and P Mitra*
Theory Division, Saha Institute of Nuclear Physics, I/AF Bidhannagar, Kolkata 700 064, India

E-mall parthasarathı mıtra@saha ac

Abitract The entropy of a black hole can be obtained by counting states in loop quantum gravity The dominant term depends e the Immirn parameter involved in the quantization and is proporional to the area of the horizon, while there is a logarithmic correctic uith coclicient - $1 / 2$

Keywords : Black hole, entropy, loop quantum gravity
PAC'S Nos - 04 70 Dy, 0460 Pp

II 1 a an honour and a pleasure to write in the volume deduated to Professor Amal Kumar Raychaudhuri, eminent heureticall physicist and revered teacher of generations of Physics students The theory of gravitation, with which he preoccupied himself, is progressing steadily, and although d tull quantum theory is not yet at hand, a lot of interesting results are available

A framework for the description of quantum gravity using holonomy variables has become popular as loop guantum gravity [1] A start was made in this work in the direction of counting of black hole microstates. Further progress was made in [2], [3] and in [4]. In the present article we shall try to the up some loose ends left there Other discussions of the subject can be found in $[5,6]$

In this approach, there is a classical isolated horizon and quantum states are sought to be built up by dsoclating spin variables with punctures on the horizon The entropy is obtained by counting the possible states that are consistent with a particular area, or more precisely with a particular eggenvalue of the area operator [1]

We set units such that $4 \pi \gamma \rho_{P}^{2}=1$, where γ is the Immirzi parameter and ρ_{P} the Planck length. Equating the classical area A of the horizon to the eigenvalue of the ared operator we find

$$
\begin{equation*}
\Lambda=2 \sum \sqrt{J_{r}\left(J_{p}+1\right)} \tag{1}
\end{equation*}
$$

where the p-th puncture cames a spin J_{p}, more accurately an irreducible representation labelled by J_{p}, and contributes a quantum of area $2 \sqrt{J_{\rho}\left(J_{p}+1\right)}$ to the total area spectrum For mathematical convenience let us replace the half-odd integer spins by integers $n_{p}=2 j_{p}$, which makes the area equation $A=\sum_{p} \sqrt{n_{p}\left(n_{p}+2\right)}$. Henceforth, n_{p} will be referred to as the 'spin' carried by the p-th puncture. A puncture carrying zero spin contributes nothing to the spectrum, hence such punctures are irrelevant. Since the minımum 'spin' each puncture should carry is unity the total number of punctures cannot exceed $A / \sqrt{3}$. At the same time, the largest 'spin' a puncture can carry is also bounded, $n \leq N$, where $\sqrt{N(N+2)}=A$.

A sequence of 'spins' n_{p}, each $1 \leq n_{p} \leq N$, will be called permissible if it obeys (1) The p-th puncture gives ($n_{p}+1$) number of quantum states In this way each permissible sequence gives rise to a certain number of quantum states. The task is to find the total number of states for all permissible sequences. Let it be $d(A)$. One can subdivide the problem as follows : Fix any puncture, say $p=1$ Consider the subset of all permissible sequences
such that puncture 1 cantes 'ypur' I for such sequelle the alea equation (1) teach

$$
\begin{equation*}
\sum_{p=1} \sqrt{n_{p}}\left(n_{p}+2\right) A-\sqrt{3} \tag{2}
\end{equation*}
$$

So the total mumber of guantum stath given by all

 statces green by the subset of permmsible seguences in

 the aboce keads to the total number of states for such
 procss, we end up with a recturence redation

$$
\begin{equation*}
d(d)-\sum_{n=1}^{v i} 1 n+1 n d(\Lambda-\sqrt{n}(n+2)+v+1 \tag{3}
\end{equation*}
$$

 having all value of $m=1,1+1+1$ dllowed

In solving (3) we empley a thal solutum d $(\lambda)=\operatorname{erp}(\lambda \lambda)$
Then (3) puts a condtuon on λ

$$
\begin{equation*}
\sum_{n}^{1}(n+1) c^{\prime} \quad m^{-n} n^{2}-1 \tag{+}
\end{equation*}
$$

Thestone, a solution for i obeymg the above equation mples a solution of the recomence ielation (3) Fon large aled $A \gg 1$, we have $N \gg 1$ Moteoter, lor $\lambda=o(1)$ the summand lalls ofl exponentally for lage n So lomally we can extend the sum up to minaty Tho numentally gelds $\lambda=0801$ The erron we mate in entmatung λ by evtending the stim all the u d) to mimety is o($\left(^{\prime}\right.$) the total
 $S(-1)=\ln d(d)=\lambda A$ ln physical unis

$$
\begin{equation*}
A(A)-\frac{\lambda A}{4 \pi \gamma 1_{r}^{2}} \tag{5}
\end{equation*}
$$

wheh yelds $A / 41$, it we choose the parameter $\gamma=\lambda / \pi$ This is the basis alea behond the counting and thereby, mahing a prediction tor the γ-parameter in order that an entacly quantum geometric calculation matches a semectassad lommala Thus we comnol derive the semelassical wotd but can adjust ous patameters in the theory such that the semuclabsal woild emerges

In the above counting process we completely miss which winliguration of spme dommates the counting. in other word contibutes the largest number of quantum
shater A common misconception is that the smallest spin $n=1$ all every puncture gives rise to the largest numbro. of guantum states It allses from the mintion that will comburation maximizes the number of punctures and. therelore semu lassically lavoured 'The following athals, will show thall such an mturion is meorect We locus:" punctuies carrying identical spms This is somenhat an analogy with satistical mechanies where we look lie particles carrymg the same energy. Let the number ${ }^{\prime}$ punctures carymge 'spin' n be s^{\prime} So in the allea equallan (1) the sum over punctures can be replaced by the sum over יpum

$$
\begin{equation*}
A-\sum_{n} n_{n} \sqrt{n(n+2)} \tag{16}
\end{equation*}
$$

tequation (6) futher symbolizes the lact that ypan ill mote fundamental in this problem than puncturs i' conflyuratoon of 'phom' s, will be called permosuble al a obeys (6) 「'ach conleguation yiclds $\Pi_{n}(n+1)^{\prime}$ guantur. shate but eash of the configurations can be chosen in
 able) Ihenelore, the total number of quantum states gne: by such at combguration is

$$
d_{n^{\prime}}=\frac{\left(\sum_{n}^{\prime} n_{n}\right)^{\prime}}{\left[I_{n}{ }^{\prime}{ }^{\prime}{ }^{\prime}\right.} \prod_{n}(n+1)^{\prime}
$$

However, the contgenation in (7) may not be permasibit Io oblam a perminsable contguration, we maximice in d by varymg :, vabject to the constrant (6). In the vallatum we dshume that in $\gg 1$ for each n (or only vul conlguatioms dommate the counting) Such an assumpuran clearly breah down it $A \sim o(1)$ The vartational equatu" $\delta \ln d_{\text {s }}=\lambda \delta A$, where λ is a Lagrange multipleet, gre

$$
\begin{equation*}
\frac{\sum_{n}}{\sum_{n}}=(n+1) n^{\wedge \sqrt{n} \overline{n+\cdots}} \tag{x}
\end{equation*}
$$

Cleanly, tor comsslency, λ obeys ($\mathcal{4}$) with $N=\infty$ (c f [7] As already observed this hardly makes a difference, molle precisely the differences are exponentailly supprestel $o\left(e^{\wedge}\right)$ for large areas. Moreover, although each $s_{n} \gg 1$ the sum $\sum,{ }^{\prime}$, is convergent, since large n terms ali exponentially suppressed This can be exphicilly seen hi plugging in (8) into (6), which yields

$$
\sum_{n}=A\left[\sum(n+1) \sqrt{n(n+2)} e^{-1 \sqrt{n(n+2)}}\right]^{\prime}=0342 \lambda
$$

Let us denote the contiguration (8) dommating the counturg by T_{n} The total number of quantum states is obviouth $d=\sum, d$, where the sum extends over all permissible
.onligurations. However, the largest number of states come IINO whut dommant configuration $\bar{\pi}_{n}$. So we can expand a more accurately the entropy $\ln d$. around this dominant . inthuration and the result should be expiessible in the lorm $\ln d=\ln d_{\mathrm{in}}-\frac{1}{2} \sum_{n, n} \delta s_{n} K_{n n}+o\left(\delta s_{n}^{?}\right)$, where δs_{n} ...Nは保 the area equation $\sum \delta s_{n} \sqrt{n(n+2)}=0$, which rallaw bi requiring that the displaced configuration $s_{n}+$ \therefore alse obew the arca equation (6) One may wonder at liv, poomt whether such a condition can ever be met sunce \therefore ine micger whereas $\sqrt{n(n+2)}$ are imrational Strictly an whing in the area equation (6) we requite that the sum ㄴ․․ $\left.\Gamma^{-} n+2\right)$, hould be close to A. In other words \therefore dulle- $1=A=J$ where $d \ll A$. must exist such that min sum hes $!$, the range This amounts in saying that ᄃㄴ, $\bar{m} n+2$) be a number $\in-o(1)$, where \in may 1.9: with conlugurations but the varsation is slow The math: K, wheh depends on \bar{T}_{n} is symmetue A smple
 " hate wall be expressed as

$$
\begin{equation*}
d d \sum r^{\prime} \Sigma, \cdots, \ldots \ldots n\left(\sum \delta s_{n} \sqrt{n(n+2)}\right) \tag{10}
\end{equation*}
$$

White the sum extends over all Iluctuations the large lluluallull die out exponentrally The Gausstan sum over ilutuatuons would have produced a factor $1 / \sqrt{\operatorname{det}(K)}$ if Hh. Welta functon were not there It is easy to see that K lis. ., stor ergenvalue $\left(\sum K_{n n}{ }^{\prime} n^{\prime}=0\right)$, so this hypothetical \because Ull would be divergent But the delta function makes the sum owe the rero mode of K limite Note that each imminio ceqenvalue of K scales like $1 / A$, so the fluctuations is. which lave to be rewniten in terms of normal modes \therefore of k, have to be converted to $\delta s_{n}^{\prime} / \sqrt{A}$, producing wha lithers of \sqrt{A} for each summation. As one summation 1. Iemoved by the delta function,

$$
\begin{equation*}
l=C d_{s}\left[\prod_{n} \sqrt{A}\right] / \sqrt{A} \tag{11}
\end{equation*}
$$

where $($ does not involve A. Plugging (8) into (7) and wetlecting $o(1)$ tactors, we find

$$
\begin{equation*}
d-\exp (\lambda A)\left[\sum s_{n}\right]^{1 / 2} / \prod_{n}\left(2 \pi \bar{s}_{n}\right)^{1 / 2} \tag{12}
\end{equation*}
$$

lolung that the factors of \sqrt{A} cancel, we get $d=\exp (\lambda A)$ up in factors of $O(1)$ which will anyway be of $O(1)$ in the intropy and therefore have been neglected throughout in the c.lionlation

The above steps illustrate the basic points of the calculation which now can be adapted to the actual counting The actual counting problem involves another crucial condition Each puncture carrying a representation labelled by 'spin' n must be associated with a state $|n, m\rangle$ where m is half-odd integer valued spin projections. $\rightarrow n / 2$ $\leq m \leq n / 2$ The condition is that $\sum_{r} m_{r}=0$ where the sum extends oves all punctures Theretore, a sequence of 'spins' n_{p}, is permissible it it obeys the area equation and the spon projection equations smultaneously The lash is to count the number of states for all such permissible sequences A recurrence relation, smmar to (3), can be found also in this case Following [3], we relax the upin-projection equation $10 \sum_{r} m_{r^{\prime}}=1$ where i is a half-odd integer that can take any ugn Let the total number of states be $d_{1}(A)$ As hetore fix a puncture, say 1 , and let il carry 'spin' I For such sequences, the area and the spin projection equations become $\sum_{p, 1} \sqrt{n_{p}\left(n_{p}+2\right)}=A-\sqrt{3}$ and $\sum_{p} m_{p}=v \pm 1 / 2$ respectively Theictore, the number of quantum states for all peomissible configurations such that the puncture 1 callies 'spin' 1 is $d_{1,1 / 2}(A-\sqrt{3})+d_{1 / 2}(A-\sqrt{3})$ Continumg this process a before, we end up with the recurrence relation

$$
\begin{equation*}
d_{1}(\Lambda)=\sum^{\nu} \sum^{\prime \prime 2} d_{1}{ }_{m}(\Lambda-\sqrt{n(n+2)})+1 \tag{13}
\end{equation*}
$$

where the largest 'spin' N contributes only one state to the above sum, provided v helongs to the set of allowed values of $m=\mid . N / 2$. .N/2| In order to solve (13), we consider the Founter transtorm of $d_{v}(\Lambda)$

$$
\begin{equation*}
d_{v}(A)=\int_{2 \pi}^{2 \pi} \frac{d \omega}{4 \pi} d_{t w}(A) e^{\mu " n n} \tag{14}
\end{equation*}
$$

and ie-express the recurrence telation in terms of $d_{w 1}(A)$

$$
\begin{equation*}
d_{w,}(A)=\sum_{n} d_{w}(A-\sqrt{n(n+2)}) \sum_{m} \cos (m \omega) \tag{15}
\end{equation*}
$$

In an attempt to solve (15), we again employ a trial solution $d_{\omega}(A)=\exp \left(\lambda_{t /} A\right)$, which on being plugged into the recurrence telation yields a condition on λ_{10} :

$$
\begin{equation*}
1=\sum e^{-\lambda_{1 n} \sqrt{n!n+2}} \sum \cos (m \omega) \tag{16}
\end{equation*}
$$

The above equation (16) clearly shows that λ_{ω} is a penodic function of ω. It is also multi-valued. However, it has a local maximuin at $\omega=0$ and in a small neighbourhood of this maximum it can be approximated by a power senes λ_{w} $=\lambda+a_{2}\left(\omega^{2}+a_{4} \omega^{4}+\quad\right.$ Values of λ, a_{2}, a_{4}, eic can then be obtained from (16) by comparing various powers
of $t 1$ It can be easily shown that λ obeys the same recurrence relation ds (3), therefore the same as before,

$$
\begin{equation*}
\left.a_{1}=-\frac{\sum c^{\lambda \sqrt{n n+2}} \sum_{2}^{1} m^{2}}{\sum(n+1) \sqrt{n(n+2)} c^{1 \sqrt{n(n+2)}}}=-0\right) 151 \tag{17}
\end{equation*}
$$

Findlly, we ae interested in

$$
\begin{equation*}
d_{0}(A)=\int_{-י n}^{2 \pi} \frac{d \omega}{4 \pi} e^{\lambda_{\mathrm{u}} A}=\frac{\alpha}{\sqrt{\Lambda}} e^{\lambda_{A}}, \text { where } \alpha \sim o(1) \tag{18}
\end{equation*}
$$

which yields an entropy $S(A)=\lambda A-\frac{1}{2} \ln A$, or

$$
\begin{equation*}
S(A)=\frac{\lambda \Lambda}{4 \pi \gamma C_{p}^{;}}-\frac{1}{2} \ln \Lambda \tag{19}
\end{equation*}
$$

III phystal unts Thus, incorporation of the projection equation $\sum m=0$ does not alter the leading expression of entuopy, hence does not give a different requirement on the γ-parameter to make the leading entropy agree with the semiclassical formula, hut gives a universal log-correction to the semiclassical formula with a factor of $1 / 2$

The counting using the dominant configuration is cleaner when the projection equation is incorporated Here we present the detalled calculation As betore, let $s_{n \prime \prime}$ denotes the number of punctures carrying 'spin' n and piopection m The area and spin projection equations take the form

$$
\begin{equation*}
\Lambda=\sum_{n \cdots 1} n_{n} \sqrt{n(n+2)}, 0=\sum_{n, m} m s_{n m} \tag{20}
\end{equation*}
$$

A configuration $s_{n \prime \prime}$ will be called permissible it it satisfies both of these equations (20) Since now the m-quantum numbers are also specified, each puncture is in a definite quantum state specified by two quantum numbers n, m. The total number of quantum states for all configurations is the number of ways a configuration can be chosen This can be done in two steps Note that $\sum_{m} s_{n m}=s_{n}$. So firut, the configuration s_{n} can be chosen in $\left(\sum s_{n}\right)^{\prime} / \prod_{n}{ }^{\prime}$ ways Then out of s_{n} the configuration $s_{n} m$ can be chosen in $s_{n} / / \prod_{n \prime \prime} '_{n},{ }^{\prime}$ ' ways and finally a \prod_{n} has to be taken Thus we get

$$
\begin{equation*}
d_{s_{n, m}}=\frac{\left(\sum_{n}{ }^{3}{ }^{\prime}\right)^{\prime}}{\prod_{n}{ }^{\prime}{ }^{\prime}{ }^{\prime}} \prod_{n} \frac{s_{n}!}{\prod_{m}{ }^{s_{n, m}}{ }^{\prime}}=\frac{\left(\sum_{n m} s_{n, m}\right)!}{\prod_{n, m} s_{n m}{ }^{\prime}} \tag{21}
\end{equation*}
$$

To obtain permissible configurations which contribute the largest number of quantum states we maximize $\ln d_{s_{1}}$. by
varying $s_{n, m}$ subject to the two conditions (20) The calculation is identical as before and the result can be expressed in terms of two Lagrange multupliers λ, α

$$
\begin{equation*}
\frac{s_{n m}}{\sum s_{n m}}=e^{-\lambda \sqrt{n(n+2)} \alpha m} \tag{1}
\end{equation*}
$$

Consistency requires that λ and α be related to each other as $\sum_{n} e^{-\lambda \sqrt{n(n+2)}} \sum_{m} e^{-\alpha m}=1$ In order that (22) satisfy the spin projection equation we must require the sum $\sum_{n} p^{-\lambda \sqrt{m(n+2)}} \sum_{m} m e^{-(z m}=0$ This is possible if and only If $\sum_{m} m e^{-\alpha m}=0$ for all n, which essentally imples $\alpha=$ 0 (The value $2 i \pi$ is excluded by positivity requirements, Therefore, the condition on λ becomes the same as before The sum $\sum s_{n, m}=\sum s_{n}$ is also the same as before

The total number of quantum states for all permissible configurations is clearly $d(A)=\sum_{1_{1, m}} d_{1_{1, \ldots}}$ To estımate $d(\Lambda)$ we again expand In d around the dominant configuration (22), denoted by $\bar{s}_{n m}$. As before, 11 gives $\ln d=\ln d_{\varsigma_{n \prime m}}-\frac{1}{2} \sum \delta s_{n m} K_{n, m, n, m^{\prime}} \delta s_{n^{\prime} m n^{\prime}}+\sigma\left(\delta s_{n m}^{2}\right)$ whele K is the symmetric matrix $K_{n, m n^{\prime} m^{\prime}}=\delta_{n n} \delta_{m n^{\prime}} / \bar{n}_{n, n}$ $-1 / \sum_{k}, \bar{x}_{h 1}$ All variations $\bar{s}_{n, m}+\delta s_{n, m}$ must satisfy the two conditions (20) which give the two conditions $\sum \delta s_{n m} \sqrt{n(n+2)}=0$ and $\sum \delta s_{n, m} m=0$. Taking into account these equations the total number of states can be expressed as

$$
\begin{align*}
d= & d_{s_{n m}} \sum_{-\infty}^{\infty} e^{-\frac{1}{2} \sum \delta_{n m} \Lambda_{n m n m} s_{n m}} \\
& \times \delta\left(\sum \delta s_{n m} \sqrt{n(n+2)}\right) \delta\left(\sum \delta s_{n, n} m\right) \\
& =C^{\prime} d_{s_{n m}}\left[\prod_{n m} \sqrt{A}\right] / A \tag{23}
\end{align*}
$$

where C^{\prime} is again independent of A. Inserting (22) into (21) and dropping $o(1)$ factors, we get

$$
\begin{equation*}
d_{\bar{\Gamma}_{1, m}}=\exp (\lambda A)\left(\sum \bar{s}_{n, m}\right)^{1 / 2} / \Pi\left(2 \pi \bar{s}_{n, m}\right)^{1 / 2} \tag{24}
\end{equation*}
$$

Plugging these expressions into d we finally get

$$
\begin{equation*}
d=\frac{\alpha}{\sqrt{A}} e^{\lambda A}, \text { where } \alpha-o(1) \tag{25}
\end{equation*}
$$

leading once agan to the formula (19) for the entropy The origm of an extra \sqrt{A} can be easily traced in this approach. which is the additional condition $\sum m s_{n, m}=0$. Thus the
weflicient of the log-correction is absolutely robust and dow not depend on the detalls of the configurations at all II is directly linked with the boundary conditions, the hiorieun must satisfy

References

'1) A Ashtekar, J Baez and K Krasnov Adv Theor Marh Phr' 41 (2000)
[2] A Ghosh and P Mitru Phu Reי D7] 027502 (20015)
|3| K A Meissner Class Quant Grav 215245 (2004)
14| A Ghosh and P Mitra Phys Letf H616 114 (2005)
|5| Г Tamakı and HI Nomura Phvi Rev D72 107501 (2005)
[6] C -H Chou et al gr-qc/0511084
[7] K V Krasnov Phes Kev D55 3505 (1997), A P Polychronakos D69 044010 (2004)

