dian J. Phys. T6A (5), 467-471 (2002)

I1JP A

— an international journal

Magnetic symmetry, flux screening and colour confinement in dual QCD

Hemwati Nandan, H C Pandey and H C Chandola*

Department of Physics, Kumaun University,
Namital-263 002, Uttaranchal. India

E-mail

chandolahc@yahoo com

Received 22 November 2001, accepied 18 April 2002

Ahstract

Investugating the magnetic symmetry structuie of QCD. a teld-theotetical
e been done i dual QCD The topological structure associated with the ficld cquations has been used to establish the scree

analysis for exploung the colour confining mechanism
ning currents

maenetcally condensed QCD vacuum The density effects and varous confinement parameters along with ther timplications on the nature of QCD

wuam have been discussed n infrared regime of the dual QCD
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. Introduction

Ouantun Chromodynamics (QCD) 1s the lundamental theory of
e stong interaction | 1.2] which describes the properties and
the underlying structure of hadrons in terms of quarks and
tliony Due to the asymptotic degree of freedom, the gauge
waphing constant of QCD becomes small in the high energy
e where the perturbative QCD behaviour gives a nice
desanipion of the hadronic system in terms of quarks and gluons.
Onthe ather hand. in the low energy region, the strong coupling
natwe ol QCD leads to the nonperturbative features like colour
conlinement, dynamical chiral symmetry breaking and the
wonivial topological effect [3.4], and 1t is hard to understand
hew by dealing the quarks and gluons in a simple perturbative
manner In mid seventies , Nambu, 't Hooft and Mandelstam
Proposed e interesting idea that quark confinement may be
understand using the dual version of the microscopic theory of
the conventional superconductivity [5-7]. In such formulations,
the magnetic charges of QCD vacuum are expected to condense
Wdlead o the dual Meissner effect, which constricts the colour
dectnie hields mto thin flux tubes and paves the way for quark
‘onlimement [8). Furthermore, there has been an extensive study
:;l:'l“:‘\:-ll‘l‘C\guugc scclgr of the lattice QCD [9,10] also, where

energy hadronic phenomena such as quark confinement
and chipg) symmeltry breaking have been analysed by using the
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Abclian gauge lixing approach [6] In view of the fact that the
non-Abchan gauge theories exhibit an inherent built-in dual
structure and the assocrated magnetic symmetry might play an
important role in various low-encrgy hadronic phenomena, we
have recently formulated [11] an eflecuve theory of non-
perturbative QCD by magnetic gauge fNixing and have used it to
establish the link between dual version of microscopic theory
ol superconductivity and the continement of coloured charges
in dual QCD vacuum The purpose of this paper 1s to further
explore the magneuc symmetry structure of the QCD vacuum
and to investigate the {lux screening conditions al microscopic
scale to analyse the response of the dual QCD vacuum.

2. Magnetic symmetry and dual QCD Lagrangian

Let us first bricfly review the magnetic symmetry [ 12] structure
associated with the colour gauge theory. We define the magnetic
symmetry as an additional 1isometry of the internal space
described by a Killing vector field st which has the Cartan's
subgroup of the gauge symmetry as its little group. For the
simple case of gauge group G = SU(2) and the little group
H = U(1). the Killing condition associated with the unified
(4 + n) dimensional metric manifold, in fact. reduces to the gauge
covariant condition given by,

D,ri=d m+gW, xm =0, ()
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where, ni constitutes the adjoint representation of the gauge
group G and W, is the gauge potential associated with the
gauge group G. This condition thus implies that the magnctic
symmetry imposes a constraint on the metric as well as on
connection and may therefore be regarded as the symmetry of
the potential. The muluplet 7 may thus be viewed to identily
the homotopy of the mapping ;zz(sz ) (5* heing the group coset
space) and the monopole then emerges as a topological object
which is associated with the clements of the sccond homotopy
group 7,(G/ H). The typical gauge potential which satsfies
eq. (1), may then be identified as.

W,=A,m-g II;IX(7“ m, Q)

where, A, 15 the Abclian component of W, and the sccond
part on right hand side. which 1s completely determined by the
magnetic symmetry, is the magnetic (dual) counterpart. With
the choice of G and H as simple SU(2) and U(1) gauge groups,
onc can fix the magnetic gauge by rotating s (o the third
dirccuion m isospace such that, i—— &, =[0,0, 1) It then

leads 1o the redefinition of the potenual (eq. (2) ) as given below,
W, W, =(A“+B‘,)§¢ 3
with the paramelterization

Tsina cos B
sina sm B and U =exp(-at.)exp (=B 1).

\COS o

The part B, 1s the magneuic potential lixed completely by
the magnetic symmetry. The corresponding field strength (in
magncetic gauge) may then be identified as,

Gy =W, =W, +gW,xW,

=(F g b

=\ + v )5S 4)
where, F, = Ay~ A, and ”L'(-) =B, =By, .

Hence, the topological properties of the magnetic symmetry
may be brought into the dynamics explicitly. However, in order
to avord the problems due to the point-like structure and the
singular behaviour of the potential associated with monopolcs,

we usc the dual magnetic potential BL"' ( with associated field
strength as B, ) for topological (magnetic) part of the
formulation and at the same time introduce a complex scalar
field @ for the monopole. Such considerations Icads to the
following gauge invariant QCD Lagrangian in presence of the
quark doublet source (¥(a)). given by,
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. 1 .2 . —
£= -ZGW +y(x)iy# Dy y(x)=m, ¥ (x)y(,, 5

In the magnetic gauge, it leads to the dual symmetrig fj)g
cquations given in the following form,

vy ()v — RY _

Guvo=Fyv=Jy and Gu)" =By, .=k, . ()

Such non-trivial dual structurc has a close rclalmmlup with

the confining properties of QCD vacuum. In order (o explore tfye

typical dual QCD vacuum properties and the dynamic, the

system, let us express the Lagrangian given by eq. (5) the

quenched approximation (in absence of quarks) in the follcy, Ny

form, :

|
£ = B, 0,.+i4”»8,‘,‘“ -V(p'e).

where the cllective potential V(¢ *@) is obtained by using the
single-loop expansion technique [ 13] along with the requiremien
of the ultra-violet finiteness and infrared instabilny ul\hu dual
QCD Lagrangian and has the following form,

V(¢*¢n=3§; o+ ¢ 2m 22,

)

19 ®

where ¢ = (¢¢*)0 is the vacuum expectation value of ¢ Ihe
one-loop effective potential then induces magnetic symmeln
breaking in a dynamical way which leads 10 the magnen,
condensation of the QCD vacuum. The presence of the
monopole [ield thus signals the cross-over to the condensed
phase of QCD vacuum and therefore acts as an order parameter
for such a phase transition. Further, the above Lagrangun ha-
the form that exictly coincides with that of the Ginzbere and
Landau type Lagrangian [14] of the microscopic theoy ol
superconductivity and, thercfore, essentially has the fn
confining leatures associated with it. Tt, in fact, ensures (h
appearance ol two phases in QCD vacuum. Onc 1 tht
deconfinement phase, where the magnetic symmetry 1s presened
and the other is the confinement phase, where the magnetit
symmetry is indced broken dynamically. In the first phase. ol
only the quarks but the monopoles also appear as the physicil
particle states. On the other hand, in the confincment phas.
they disappear from the physical spectrum of the theory The
magnetic condensation of QCD vacuum, therefore, leads o the
emergence of an effect which is dual to the well knowd
Meissener effect of conventional superconductivity. As resul
the confinement of any coloured (electric) source becomes
unavoidable in such a vacuum in its confined phase. In addiion
the confined phase reflects itself in terms of the appearanct of
two different mass modes, scalar and vector ones. 0l the
condensed vacuum. The vector mode which is essentially linke/
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oo the mass of the dual gauge field (my) determines the
magnitude of the dual Meissner effcct and the scalar mode (71,)
corresponds (0 the threshold energy to excite the monopoles in
Jual QUD vacuum. In the magnetically condensed QCD vacuum
with fimte monopole density, the parameters specifying these
mass modes of dual QCD vacuum are closely related (o the

Jensity of the condensed monopoles n,, (¢) which is identified

1, (9) =| 9)

(e numerical computation of which will be used to explain the
.ontiming properties of dual QCD vacuum in the next section.

3. Flux screening in magnetically condensed dual QCD
vacuum and confinement mechanism

In vrder to visualise these relationships and their possible
guphcations on the nature of dual QCD vacuum and colour
conlmement, let us try to analyse the supercurrent structure of
dual QCD vacuum resulting from the condensation of monopole
onfrgwmations For this purpose, let us start with the field
cquations associated with the Lagrangian given by cq. (7) which
acdenved in the forim as given below,

f‘y 4.“ () i’_r_ )
v Mg +iZ gl

m’:i [400=1n{0i* @+ |0 =o0. (10)

4 - n
b+ (940,0) - 3275 B9 9% = 0.
[

(I
I

These tield equations governimg the magnetic condensation
ol QUD vacuum, involve the interaction between the
macroscopie field @ and the dual gauge field Bf" and hence
leadto typical flux screening currents due to strong correlations
among topological charges. For small variations in the monopole
field which are small enough in comparison with coherence
length (1n the confinement rcgime), the field satisfies,

9= 0= d,¢ ,andeq. (11) then takes the form given as,

I2x

VB =""" BY n,(¢) (12)
In Lotents gauge, this equation may be cxpressed as.
2’
O+=7% n,(¢) B =0. (13
8

This equation appears as the equation of the massive vector
bPe which may be identified with that of the condensed mode
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of the dual QCD vacuum and therefore leads to the mass of the
vector mode (/m,) as given below,
32r*

2
a

2
my =

n,, (¢) ( ]4)

The vector mode mass thus appears as a function of the
density of QCD monopoles participating in the vacuum
condensation. The QCD scale is thus expected to restrict the
monopole density upto a finite critical value for the colour
confinement of colour isocharges. The massive vector eq. (13)
also demonstrates that the QCD vacuum, as a result of dynamical
breaking ol magnetic symmetry. acquires properties similar to
that of a relativisuc superconductor where the quantum ficlds
generate the non-zero expectation value and induce the
screeming currents The massless (dual) gauge gquanta which
propagates in s dual QCD (condensed) vacuum then satisfies
aequauon of the form,

oy _ S -
O B“ =J, (m¢) (15)
where, J':‘ (M, @) is the current that resides in the vacuum and
15 generated as a result of the magnetic condensation of the

QCD vacuum. Comparison of ¢q (13) and eq. (15) along with
the use of ¢q. (14) then leads w0

TSP 2z 1)
Jo i @) =~my By (16)
which is the typical screening current condition established in
dual QCD vacuum. In the stauc case, it reduces to the form
given as,

J3 (i g)=—m; B (17

The setting-up of such condition for the screening currents
in dual QCD vacuum then makes the conliement of any
coloured source incvitable. In the present dual formalism, the
ficld strength B, hasats ficld contentas H ,, (colour magnetic
field) and - E_ (colour electric field), with the colour clectric
ficld identificd as,

E,=VxB. (18)
In the static casc, it satisfics the field equation given by,
VxE, =J%(mo) (19)

Using the screeming current condition given by cq. (17) along
witheq. (18) and taking the curl of ¢q. (19), one can immediately
deduce.

VE, =m} E, 20
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For the simplest case of onc-dimensional variation in colour
cletric field in the half- plane x 20, eq. (20) reduces to the
equation given by

d’E
= =my E, Q1)
dx”

which has its exponential solution given by,
Em = Em (U] cxXp (—"lH,\') .

This equation demonstrates that the colour clectric field
penetrates the dual QCD vacuum upto a depth of A‘g(’v,, given
by,

an -

l((;l().n =m},l =I: . ,’2n,,,(¢) ] ) 23)

It clearly shows that the screening current in dual QCD
viacuum as a result of monopole condensation, gives rise (0 a
force with range inversely proportional to the mass of the
condensed vector mode m,. The above rclation between
penetration depth and the density of condensed monopoles
plays an important role in further exploring the QCD vacuum
propertics. The characteristic mass and length scales in dual
QCD depend on the strong coupling constant, o, = g 14rm.
and the coupling constant in QCD is known to have the running
behaviour as confirmed by the varous deep inelastic lepton-
nucleon scattering and ¢* — ¢ annthilation experiments. In low
energy regime GeV, the strong coupling rises (o, > 0.2) and all
the non-perturbative effects (like the colour confinement) start
appearing there. As such, for the numerical computation of the
dual QCD characteristic scales, let us use the different extreme
values of a (>0.2) in non-perturbative region and  the

associated parameters [ 11] as given by,

g=1.66. n,(¢) =0.63 for o, =0.22,

£=347, n,(¢) =0.87 for a, =0.96

Using the ratio of two characteristic mass scales as fixed by
1

the effective potential and givenby my, /m ,=/3 (2ra,) 2,

we can evaluate the mass of the vector and scalar modes for
strong couplings in the non-perturbative regime as,

my, =1.66 GeV, ny =2.44GeV for o, =0.22;

m, =0.93GeV, My =0.65GeV for a, =0.96.

The inverse of these two mass scales straightforwardly leads
(o the penetration and coherence lengths respectively in dual
(superconducting) QCD vacuum. The two length scales then
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leads the Ginzburg- Landau (GL) parameter as given by.

-1
k ‘(;lC)'D = T8
my ! (24
which plays an important role in idenufying the behaviyy, of

QCD vacuum. In the present scenario, it may then be showy

that the GL -parameter takes the value, ké‘QD > 1, for the cue
of low density of condensed monopoles. which belong, the
region of relatively lower couplings in infrared regime Moy,
precisely, as an example for the case of o, =0.22, w, gel

k;j’(?,, =1.47, which guarantecs the type-I1 superconduciy,

behaviour of dual QCD vacuum. However, in casc of sul ficiently
high density of condensed monopoles which belongs (o (he
case of relatively higher couplings, the GL-parameters takey i,
values (e.g., for o, =0.96, k{,’ﬁ-’,, =1.47)), the GI. parameter
is estimated as k{,‘?,, =069, which indicates that the Q1
vacuum hehaves like type-I superconducting vacuum, Mdicony
for the purpose of comparison and to see the effect of the {fenan
of condensed monopoles on the QCD vacuum structur, one
can further esumate the various valucs of the characierisig
length and mass scales discussed above in an idenucal way for
analysing the nature of QCD vacuum. Such an estimae
summarized in Table 1 and has been graphically presented iy
Figure 1.

Table 1. Length scales and condensed monopole density estimate i

QCD vacuum

Ny, (@) 1((‘;(’7) s:l(}l()l' h, ;i i

GeV (fm") (fm) (fm)
0.22 1 66 0156 0.634 0118 0 080 14’
024 173 0159 0 654 0121 0086 10
047 242 0170 075 0.157 0157 1 oo
096 347 0183 087 0209 0 200 06y

The graphical plot of different values of penctration and
coherence lengths for various values of density of the
condensed monopoles demonstrates that the QCD vacuum
changes its nature from type-1 to type-11 at a particular valuc ol
the density of the condensed monopoles. In other words. the
phase change in QCD vacuum from type-I to type-IT occurs for
the critical value of the density of the condensed monopoles 10
induce the phase change in QCD vacuum from type-1to type-1l
behaviour, is computed as  nf, (¢) = 0.75 fm * as shown
Figure 1.

4. Conclusions

. (i cl
The above analysis shows that the dual superconductng mode

for QCD vacuum based on the dynamical breaking of the
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pagnelic symmetry provides an attractive possibility for the
C\pl.mmion of quark confinement. The screening mass for the
Jual gauge bosons has a direct dependence on the density of
~ondensed monopoles in QCD vacuum and leads to some
JeIesng insights for the dual QCD vacuum. The graphical
plattor 1he characteristic length scales clearly shows that in the
deep mnirared regime with considerably high density of the
_ondensed monopoles,  the QCD vacuum favours type-]
\upmmnducling behaviour whereas it switches over 1o type-
i \upmconducting once the monopole density falls down
Lensilerably to its critical value.
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gurd | Plots for the charactenstic lengths in dual QCD showing the
sllercat natwre of the superconducting QCI) vacuum m high and relatively
low dden 1y sectots of the condensed monopoles

In addition, the characteristic length scales computed here,
lanther lead 1o the estimation of the masses  of (he magnetic
tluchalls in dual QCD vacuum . As a specific case for, atypical
value ol strong coupling, @, =0.22 the vector glucball assumes
amass close to the value of 1.66 GeV whereas the scalar glucball
mass lie close to 2.44 GeV. Since the corresponding monopole
density (0,63 fm2) falls much below the critical value , the QCD
Yacuum favours type-11 behaviour in such case. However,

beyond the cnitical coupling value of o, = 0.47 (at which the
charactenstic length scales lead to the vector and scalar glueball
masses as 1.25 GeV each), which corresponds to the critical
monopole density pomnt (0.75 fm?), the QCD vacuum 1s pushed
to the type-I superconducting phase which gurantees the
absolute confinement of any colour electric source present. Itis
interesting that all the confinement parameters discussed above
are in good agreement with our previous results based on flux
be model [ 11} of the QCD vacuum as well as with the results
obtained by other authors |15] also.
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