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Introduction

g the past two decades, much effort has been devoted to
understanding of x -conjugated polymers [1-7]. From
vsical point of view, most interest has been on the structural,

fectromie and conduction propertics. Among various types of

vhvmers, poly-acetylene (PA), especially trans-polyacetylene,
nd polythiophene (PT) have drawn much attention of the
aearchers, This has been due to the fact that while being the
mplest 7 -conjugated polymers, they also have considerable
wiential apphications as alternative conductors. For example
he possibnlity of the metal-insulator transition and the capability
Ihecoming a very conductive matenal like copper | 7] has been
he ieason for the experimental and theoretical investigations
wihe physical propertics of PA in comparison (o the other
dbeol polymers. There are many articles concerning the study
! ground and excited states of these quasi-one dimensional
Wiems | 7-13). At present, however, some of the most interesting
ndactive research areas are the study of the cffccts of disorder
I mpurities upon r -electrons' behaviour, lattice-relaxation
don the increasing of conductivity. The factor that dircctly
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affects the conductivity of this system has been found to be the
appearance of the localized electronic states due to the presence
of impunities and defccets. In this paper we present a detailed
numerical study of this aspect of the problem by means of direct
diagonalizatuon [14] and use of Continucd-Fractions
Representation (CFR). and thus we investigate the effects of
model impurities (site and bond-type) and sohtons (geometrical
defects in PA structure) on g -electrons wave functions. The
paper 1s organized as follows

In Section 2, we introduce the model Hamiltonian and then
describe the method for calculation of the density of states
(DOS) of & -clectrons, In Seetion 3, the effects of the impurities
and defects on the electronic structure are presented. In general,
we find that (i) Site and bond-type model impurities produce
localized electronic states in bandgap (intragap states) and
beyond the encrgy bands (ultraband states). In addition, there
may be other localized electronic states which are situated at
the center of the gap and are produced by the presence of one
or several solitons. (i) For low concentration of impuritics the
polymeric chain preserves its main periodic characteristics and
one 1s able to use the CER scheme just as one does for a regular
chain In Scction 4, the magnitude of the wave functions, |y|*,
for some typical samples is calculated. We find that the wave
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functions arc well localized around site and bond-type impuritics
for the states at the upper cdge of each band but they have
semilocalized behaviour for energy values at the lower edge of
the same band. Finally, Scction 5 gives a summary and the
conclusions.

2. Themodel Hamiltonian and description of the method

There arec many conjugated polymers with similarities and
differences 1n their structural, clectronic and conduction
propertes. Compared to the others, however, transPA (and also
PT) has a very simple gecometrical structure and may become
highly conductive. Thus, the investigations of its physical
properties has been the center of attention for the last decade.

To present a correct theoretical model it becomes necessary
to understand the structural and clectronic characteristics of
r -conjugated polymers. As pointed above, PA has a very simple
structure so that cach monomer only contains carbon and
hydrogen atoms. All of the polymer atoms lie in once planc and
the carbon atoms are SP* hybridized. The SP* hybridized carbon
atom has two types of bond, the three ¢ -bonds in the plane of
the polymer and the 7 -bond perpendicular to this plane. In
molccules with SP? hybridized carbon atoms. it 1s often sufficient
to take only the m-clectrons into account to calculate the
clectronie properties. This 1s duc to the Tact that the @ -bonds
forms completly filled bands in considerably lower energices,
whercas encrgies at and around the Fermi level coincide with
the & -clectrons and so the 7 -bonds Icad to the partially filled
energy band that is responsible for the significant electronic
properties ol PA. The two-fold degencracy in ground state of
trans-PA 1s another important characteristic of this quasi-one
dimensional system. Addition of charged dopants, creates
geometrnical defects in the polymer. In PA these defects, as the
most important excitations, are 'solitons' [ 1]. The soliton defect
changes the geometry from one ground-state into the other and
the lattice potential energy decreasces due to the presence of the
defect, so the soliton formation energy is quite small. PT, on the
other hand. 1s a specific example ol a xr -conjugated polymer in
which the ground-state degeneracy 1s weakly hifted and the
important excitations are polarons and bipolarons [7].

2.1. The maodel Hamiltonian :

The following gencralized Hamiltonian is used for description
of doped PA

H=Hgy +H +H,, )

where Hg, M and H, arc the well-known SSH Hamiltonian [ 1,
15]. the site-type model impuritics Hamiltonian and the bond-

type modcl impuritics Hamiltonian, respectively. For the SSH
Hamiltonian we have

Hggy, = —Z[I(, +a(u, —u,,”)] (l n><n+l |+|n+l ><n I)
n

| 2 P,,z
+;K2(un-un+l) +22M (03)

in which the first term is the z -bond clectronic encrgy |
the nearcst-ncighbour transfer integral of an undimery g Lhi,l
a the clectron-phonon coupling constant and | i > the \; l
vector of 7 -bond on the n-th carbon atom. The referenc, @
is choscen such that the carbon onsite energy is zero. T scu»;
term in cq. (2) approximates the effect of o -electron, Using
stiffncss constant K which is determined both by the dire,
ion intcractions and by the o -clectron interactions p Nl
mass of a (CH) unit, u, the displacement of the n-th carbyy, Ay
from its cquilibrium position and P, is thc momentum Conjugy
to «,. The spin and e—e¢ interaction are ignored and the Peniog,
boundary conditions is applied. Throughout this paper fo

Al
Nerg

bandgap 24, = 1.4 ¢V, we shall usc the parameters ol Ry

So. a=41eV/IA K=21eV /A 1,=25ev

correspond (o a cquilibrium dimerization amplitude 1, - (),

‘“]\‘\

The H_Hamiltonian 1s given by
n, = 2|m >V, <.

in which the local potential £V, corresponds to the accepo

type (for sign +) or the donor-type (for sign =) impurity, af
site. The bond-type impurity Hamiltonian is given by

Hy =Y Vo(lm><m+1|+|m+1><m|)

where V"': is the bond-type impurity strength acts on the b

between sites mand i+ 1. V2 < 0(V2 >0y leads w me,
states (ultraband states).

The above discussion may be extended to build the mad
Hamiltoman for PT. For this purpose and also to madel t
explicity lifting of the ground state degeneracy, one canadd il
following tenn to SSH Hamiltonian | 16)

AH=A,,Z(—I)"(In><n+l|+|n+l><n|), §

in which 4, << 4, modulates the onc-clectron potential theiel
giving rise to a one-clectron energy gap in the absence «
lattice distortion [7].

2.2 Description of the method :

To study the impurity states, solitons and their clfects on 7
clectrons wave functions, we present our method for (
calculation of these cffccts on the electronic structure. Tiki
the lattice to be homogencously dimerized, i.e., neglect ol
lattice relaxation due to the clectron-phonon interactt
(following Ref. [17]), the advanced and retarded temperatt
double-time Green functions are written

G (1) = 2i8(F1) ({a, (1), a}y@)). ‘
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L= .
G:m(’):E;J._-dEe blcfm(E¥ln); n—+0. @)

in cq. (6), 6(1) is Heaviside step function, a,(a))
nihlation (creation) operator of an electron at n-th site and
,oular braket denotc the thermodynamic average. The set of
r

juations of motion for Green function matrix clement
- EFim = GL.(w3) with w; = EFin can be written as
i

8
x _ 1 b 4
(w4 —6,,) Gum - 5um +rn—|.mGu—l.m +'m.mlcm.n+l - (8)

Throughout this study, £, and r, are onsite cnergy (1s
hen 1o be zero) and nearcst-neighbour transfer integral,
spectively. Our task is to evaluate the diagonal Green function
;.. the imagnary part of which gives the local density of
n
uies P, (@4) . Considering only the retarded Green function

S, =G

. m With @, = . then p, (@) is given as

l .
[),,((U):—;’Elﬂlolln {G,,,,(w)}; w=E+in. ©)
Following Ref. [ 18], the diagonal matrix element G, (w)
n be represented as
Gy () = .
w-e,,—l",, -r, (10)

n

where the self-cnergies I“,f arc given by Continued-Fractions

r = ’::- L
‘n=l.n-2
w-£, w —e
,.+ - "nandd
'1|-+I,n+2 1
W=, - w:} - (an

)

The CIR of the one-particle Green functions has already
been widely used for tight-binding clcctrons [ 18, 19] and different
fcthods have been applied to obtain a suitable convergence. It
Aould e noted that, however. most studies have been aimed
algetung the clectronic band structure of non-translationally
Marant systems. Here, onc usually starts from the local
[envum\mcm the atom and using approximate methods to obtain
he convergence by termination of the Continued-Fractions | 18].
Thc advantages of the CFR become clear when treating the 7 -
"jugated polymeric chain, as the periodic nonuniform systems

(alternaging bond). In the case of perfectly dimerized, these chains

have . .
¢ bonds as ... t,r_t,r_.. leading to cxact values for the

C . . . . .
ntinued-Fractions (11).If r, =r_ withperiod | is dcfined as

&

a basis for comparison (uniform chain) then for t, #1_ the
Continucd-Fractions (11) will have a pertod 2 and can be written

r=—%=__

r'=
w-T! "

w-T, (12)

For perfectly dimerized PA with 4, =(=1)"u, and

24 =801y, onc obtains 1, = [r(, £1(=Dh" An] in which (with

£, =0) 4, = L4¢V is magnitude of the bandgap. Solving egs.
(12) for Iy, the following form will be resulted for G,,, (@) :

(;"“(w) = t' (l})
Iy Al y b a2
m which B(w) = [((0' =1y —12)" =41 f‘] With n=0,ie.,
for @ = [ the dominator in ¢q. (13) 18 real and nonzero within
. v, 22 .. . N
the regions (1, +17)< E° < 17 =12 butatis imagmary for

. » 1,00 .
;=12 <E <7 +17) It follows that the density of states

P, (E) s finite n latter region and 1s given as

. E
po(E)=——"e |

n\/ﬁ(—l;

It is clear that p,(E) vamishes n the former region.

(14

Calculating p,(F), onc can find the expected clectronic
structure of PA (or PT) in which valance and conduction bands
separated by a gap of width 24, (for further detauls Ref. [18]1s
rccommended). Its straightforward 10 extend this analysis to
higher periods of 2 and there arc no principal difficulties in
procceding the analytic caleulations of p, (E) for larger periods,
cxcept that they become more cumbersome | 20].

The cnergy cigenvalues spectrum {E}, and the
corresponding clectronic wave functions {y}, are calculated
using i direct diagonalization procedure based on the Lanczos
algonithm [ 14]. This diagonalization method 1s known to be very
cfficient for large matrices. We applied this method to the
Hamiltonian (2) with the penodic boundary conditions and the
resulling energy spectrum was used to caleulate the electronic
DOS. The results of the numerical calculations for the DOS of a
perfectly dimenized PA (PT) chain is presented in Figure 1.

3. The effects of the impurities and solitons on the electronic
structure

Although in general, the CFR 1s not applied to disordered
systems containing a random distribution of 1impuritics, our
results show so far as the concentration of dopants is taken to
be small (< 10% in a long chain), the system under consideration
preserves the homogencously geometrical periodicity and one
can cxtend the use of CFR together with the recursion method
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(its main advantage is its high numerical stability) in case of
such irregular systems. A complete formalism and discussion
of the method may be (ound in Ref. [21]. We used this method
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Figure 1. The clectronic DOS for a typical chain with N = 2000 atoms
(a) 1s for PA and (b) 1s for PT The left band 1s valance band and the nght
1s the conduction band Bandgap 2.3, = 14¢V for PA and 2(4,+4,)
=175¢V for PT 1 clear

for calculation of the DOS. and we found that for trans-PA chains
containing dopants in which the Hamiltonian (with ncarest-
ncighbour interactions) has a tridiagonal representation, the
Continucd-Fractions for sclf-cnergics 'Y became quickly
convergent and 1n comparison to the results of Section (2), these
ncw results indicate, no principal changes. Similar applications
of this procedure may be found in the literature, for example we
refer to the well-known papers of Turchi et al | 20]. Haydock et
al [22], and Wiessmann and Cohan [23].

3.1 Site, Interstitial and bond-type impurities :

It is well-known that the ground-state of the Hamiltonian (2)
with onc-clectron per site (i.¢., in the half-filled band problem),
is dimerized and a bandgap 24, 1s opened at the Fermi level
separating the states of the filled valance band from those of
the empty conduction band. Adding onc or scveral impurities
of cither type (interstitial-type or site and bond-type impurity)
and the creation of solitons markedly affect the clectronic

structurc. Our calculations confirm the above statemenyy y,

. . . high
arc discussed in detail below.

The experimental measurements [24-26] indicate 1py, tle
enhancement of impurity concentration of either type in
‘pristine’ samples of PA, cause (o increase the conductivily Thy,
for high doping concentrations (~ 10%), contrary |, the
conventional semiconductors the metal-insulator tranuyy,
occur in these materials and even the 'best’ sampley becom,
metalic with a nonzero conductivity at zero temperatyre 127,
Throughout this study, the maximum percentage of the Mpuye,
and solitons 1s taken 1o be 8% and 10%, respectively.

Another important point is thatin the presence of impury,,
the localized electronic states occur in the forbidden cney,
regions, i.c.. in the bandgap (intragap states) as well as bey oy,
the clectronic structure, re., below the bottom of the valyy,
band and above the top of the conduction band (ultraby,
states). The single-impurity problem has already been study,
widcly by different methods [7.28,29). Thus in this section, w,
present our results on the effects of random distribuyon o
unpuritics of cither type on the clectronic structure and i
next section we will discuss the localization ql’clcclmmc slale
and show that the locahized electronic states (\;cur atthe enery
cigenvalues equal to the impurity levels

Our studies started with considering a perfectly dimerize
lattice, where we investigated the effects of distottions duc
introducing ol impuritics, on the electronic structure of sysin
In order to discuss the effects of a random distribution of wie
type impuritics, we added the Hamiltonan (3). 1.

H, = Z m>V.) <m
m

arc independent variables that, with a finite concentration i(

0.08 in our samples), randomly occupy the lattice siter

to SSH Hamiultonian i which the v

V, <0(V,) >0) corresponds to impunity of donor (aceepton

type. In general, the enhancement of the |V, | causes the increa
ol the magnitude of the wave function at impurity sites Th
details of our investigations of the effect of various kinds .

impuritics are discussed below ¢

1 \ 4 . vve oy \
(i) V,, <0 (donor-type impurity) produces tocalize
electronic states at the bottom of the conduction band (intrag:
states) as well as the bottom of the valance band (ultraba

states). For decper impurity potential, i.e., larger WVl il
intragap energy states arc extended towards the midgap (=
while those at the bottom of valance band approach 1o v
large negative energy values (Figure 2(a)).

(iyFor v}

'» > 0 (acceptor-type impurity) the similar behavio
is observed, i.e., we obtain the strongly localized states at |
top of conduction band and weaker localized states at the top

valance band (Figure 2(b)).

(iii) We also investigate another impurity distribution in whe
the impuritics settle in the interstitial regions. Such impunt
modify the clcctronic onsite encrgy on both ends of the bﬂ.I
by the same amount, so we simulate this type of model impur!
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il distribution of paired-sites randomly placed on the chain.
[n comparison to the site-type model impurity, we find that the
clectronic structure undergoes only a few modifications. Figure
3(c) shows this situation. Introducing these type of impuritics
into the sample ol Figure 1, the results for C = 0.08 and
WV, I= 041, are ploted in Figure 2. The study of these figures
Jow that, as expected, the site-type impuritics destroy the
mirmsic clectron-hole symmetry of the SSH Hamiltonian [1].
Therefore with this type of impuritics the electronic structure

v
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Figure 2. The DOS of trans-PA chain with site-type impurities The
‘ncentration of impurity 1s C = 0.08 (a) 1s for V), =-04¢, (donor). (b)

W for V,, =+041, (acceptor) and (c) 1s for impurities of interstitial-type
With the same parameters n (a).

(thc bandgap and the edges of band) to be changed
nonsymmeltrically. On the other hand, however, a random
distribution of bond-type impurities does not affect the
symmeltry.

The Hamiltonian (4), i.e.,

! Q
H, = zmvm’(lm ><m+ I|+|m+ I>< ml) to SSH Hamiltonian
induces states duc to bond-type impunities. These localized
states always occur in pairs, syminetrically located with respect

to midgap (E = 0). For V,,',' >0 always produces a pair of

addition  of the

ultraband states If the sign of V" 1y chosen such that

m

strengthens a weak bond or weakens a strong bond, then a pair

of intragap states is produced. Figure 3 shows this situation for
C = 0.08 of bond-type impurities with [V?1= 02 1y -

m
1.0

!
i
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1
oe»‘i
g1
oaL\
" \\»-\_‘____4, A\ ______ .//
DO

Energy (ev)
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o8t
(b)

0 6r

o4 [\ }!

| |
o \_ )L J
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OU 1 el 1 1 1
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Energy (ev)

J B R 1 1

Figure 3. The DOS of rrans-PA chuin with bond-type impurtties The
concentration of imputity 1s ¢ = 0 08 with |\’,£:|=().2I(, (a) 1s shown
intragap and (b) ultruband states

3.2 Solitons :

The solitons in PA that can propagate freely, arc domain walls
between the two degenerate phases of dimerization, a phase
with (+ ) and the other with (-u,,). We are intcrested in those
gencral propertics of the solitons that depend on symmetries of
thc Hamiltonian (2). For a long chain, a soliton corresponds to a
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phonon ficld conliguration that approaches the phase (+ u) for
N — —co and the phase ( —ug) for N — +o0, and also mimmizes
the total energy [ 1]. In the presence of a soliton the total number
of electrons or states in the filled valance band in the vicinity of
the soliton decreases by one-half |7]. so that if one calculates
the encrgy Lo create a soliton in a large but finite chain, a difficulty
arises. To overcome this problem and to make sure that the total
number of states in the valance band is an integer, it is suggested
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Figure 4. The clectronic structure of rrans-PA n the presence of solitons
(a) is for one soliton. The peaks | and 2 are discussed in the text (b) is for
three solitons (¢) shows the localized electronic state at midgap.

that following the creation of a soliton, an antisolitop | be
created, too [ 1]. Accordingly, there is a valance band depleyqy
of one state. Our results show this electronic state is prodyce
at top of valance band at E =-033 ¢V . As discussed befoy,
from the electron-hole symmetry of the SSH Hamiltonian iy follow;
that one state is also missing from the conduction band. Ty,
electronic state is produced at the bottom of conduction hypg
at E =+4033¢V . The peaks numbered | and 2 in Figurc ()
show this situation. Any increase in the number of soliton, |,
directly proportional to the number of these symmetrically paieq.
states. Thus, the solitons in undoped polyacetylene struciyye
are directly responsible for narrowing of the bandgap. We [
that for one soliton, the bandgap is lowered about 0.1 ¢V (),
investigations suggest that cven if the increase of concentiayoy
of solitons, with a random distribution, approaches the criey
amount (~ 10%) the bandgap will not close. In general, due 1
Peierls — distortion, the system remains insulating for all doping
levels In order to observe how the bangap 1s suppressed, one
necds to consider three-dimensional (3D) cffcclts. Adding
intcrchain interactions in 3D-polymeric systems leads 1o the
gapless state [13]. As the interchain interactiop is turned oy
the bandgap is reduced and closed at a cX

concentration of solitons.

riaun crial

In the perfectly dimerized trans-PA, the displacements o
the carbon atoms are described by = (=1)",. In the presence
of solitons these displacements are determined such that
minimizc the total energy and to give the optimum shape for th
soliton Accordingly, the displacements of the carbon atom
arc modcled as [30, 31)

(n—m)a
u, =(-1"u, l_I lunh[ = (15)
" "

where 2€ = 14a, witha=1.22 A (latiice constant). 1s the widih
ol asoliton. (/ma) 1s the location of the center of i the solton on
the chain. In our model, the m vanables arc gencrated such that
the domain walls do not overlap. For values of the parameters
o, K, 1y and &, the soliton formation cnergy at rest is
E =064, ¢V [1]. Since the chermical potential is midgap for the
undoped sample, this shows a soliton 1s less costly to create
than an electron (hole). It is for this rcason that solitons aic
spontaneously generated when charged dopants are injected
into the sample [7]. Figure 4¢a) shows one soliton at the cenler
of the chain and Figure 4(b) shows three solitons with centers
symmetrically placed with respect to the center of a cham with
N = 2001 atoms, respectively. When a soliton is created 4
localized electronic state is produced at the midgap. In factit
acombination of the symmetry states 1 and 2. Figure 4(c) shows
this state (for more clarity the intragap states F and G arc not
shown). The presence of the intragap states F and G is obvious
Because when a soliton is created (1n our model at site m = 1001)
on a dimerization phasc (+ uy or — u), the single-bonds ( weak)
and the double-bonds (strong) are interchanged with cach other
(Figure 5). Now, compared with the results of Subsection 3l
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Figure §. The scheme of a soliton in PA. the soliton changes the
dimerization from one ground-state to the other, i e. the single and
Jouble-bonds are interchanged. The length of the soliton has been reduced
{or clanty
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Filum 6. The clectronic structure of a trans-PA chain n the presence of
ljlndomly distributed solitons. In (n) the concentration isC=002(b) C
=008 and (c) € = 0.1 The inset shows ncar the midgap.
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this situation corresponds to the case of bond-type impurity
which leads 10 intragap states. In our model, the centers of the
solitons are placed at fixed distances from cach other and from
the chain cnds. The distribution of solitons remain symmetric,
with respect to the center of chain, up to certain concentration
and beyond that we have a random distribution for the solitons.
To ensure that the hirst and the last bond of the carbon chan
remains a double bond. we have placed an even (odd) number

of solitons on chains with an ¢ven (odd) number of carbon
atoms.

In the presence of solitons, the ground-state of trans-PA is
a 'soliton latiee’ with the centers of solitons approximately
cqually spaced along the chain [31]. When the clectronic states
assoctated with the solitons overlap, a soliton band 1s formed in
the bandgap of the undoped polymer. The soliton band is filled
or empticd depending on the type of doping (donor or acceptor).
Increasing the number of solitons by doping will widen the
soliton band and thus reduces the bandgap of PA. Figure 6
shows the ceffect of different concentrations of the sohtons on
the clectronic structure of a chain with N = 2000 atoms. Figure
6(¢) suggested that even in criical concentration (~ 10%) with
random distribution of solitons, the bandgap 1s not closed.

In Figure 7, we have shown the magnitude of the wave
function ||;/ol1 , assoctated with the localized electronic state at
the midgap for atypical sample with N= 201 atoms. The localized
state is exponentially confined around the soliton to the region
with the approximate width £ . Since in our model, the center of
the soliton is placed on site m = 101 (odd). then by symmetry,

| |l
Yo

1s only non-zcro on odd sites.
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Figure 7. The magnitude of the wave function, IV()'J- for the localized
clectronic state at the midgap The insct shows the region with the

approximate width &

4. Thelocalized impurity states

To study the 7 -electrons behaviour., we calculated numerically
. . 2 .

the magnitude of the wave [unction, |'I’o| , for those cnergy

eigenvalues where the impurity levels occur. We apply the direct

diagonalization to the clectronic part of the Hamiltonian (2) with

the periodic boundary conditions. The 7 -clectrons are scattered
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when encountered by the impurities that act as forward (site-
type impurity) or backward (bond-type impurity) scattering
centers. Thercfore onc expects that the amphitude of the wave
function 10 increase around the impurity. In other words, there
occurs 'localization’, which means that the amplitude of the wave
function becomes very large around the impurity in a imited
rcgion and decays rapidly outside this region The localization
mostly occurs exponcntially (in the regime of strong Jocalization),
i.e., the asymptotic behaviour of the magnitude of the wave
function is given as |y/(r)|2 ~¢ . [32]). where A is the
localization length and |r| 1s the distance from the center of the
localized wave Our results show that the wave functions of the
e -clectrons are locahized at the location of the impurity levels
(according to the sign of impurity potential) and ths localization
1s strong for the energy eigenvalucs above the conduction band
(ultraband states) and weaker for the intragap states. Figure 8
shows the magnitude of the wave functions, lw ' |Z . (correspond
(o Figure 2(b)) for energy cigenvalues at the upper edge of a
certain site-type impurity band. The concentration of impuritics
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! wl“m
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0 000 L
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Figure 8. Magnitude of the wave function, ||y£.|2. for a typical sample
contains acceplor-type impurities with N = 200 atoms C = 0 08 and

V,» =+04 1, are chosen (a) is for £ = 99 (the top of the valance band) and
(b) is for E =199 (the top of the conduction band)

is chosen to be €= 0.08, and the strength of impurity Polenyyy
ischosentobe V. = +04 1, (acceptor-type). Itis clear lor
the eigenvalue number £ = 199 (above the conduction hang,
the magnitude of |V’ Elz is larger than that for E = 99 (abgy, the

valance band). In other words, the former is localized ang the

latter has only semi-localized behaviour.

According to the above discussion, it is expected that {yr
V,, <0 (donor-typc) the states at the bottom of the conduciyy
band have semi-locahized behaviour and at the bottom the
valance band extended. Figure 9 shows the wave fungyy,

behaviour for eigenvalues number E= 103, 104 (the bottom
the conduction band) for C=0.08 and V) = -0 4 1

Figure 10 shows the results of bond-type impuritiey vy,
concentration C = 0.08 and the strengths of the potenyy
v =-0.21, (the intragap states) and V"',’ =+02

m o

ultraband states). In genceral, we [ind that the states at the uppe
edge of a certan band are localized around theimpurities wiyj,
the states at the bottom of the same band I\\Jvc only seny
localized behaviour. '
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Figure 9. Magnitude of the wave function, |\u£|2 . for a typical sl
contains donor-type impurities with N = 200 atoms. € = 008 and
V; =041, are chosen. (a) is for £ = 103 and (b) is for E = 104 (¥
bottom of the conduction band).



Numerical study of localized electronic states etc

cummary and conclusions

go this papers we have investigated in detailed the cffects ol
eral kinds of impurities and also solitons on the electronic
qucture Of r -conjugated polymers. By means of a direct
l,g(;nulitation procedure we found numerically the encrgy
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lmure 10. Magnitude of the wave function, ||y ,__-|2 . for a typical sample

"Mas bond-type impunties with N = 200 atoms In (a) and (b) C = 0 08
| =~02y, are chosen. (u) is for £ = 99 (the top of the valance band)
O s tor £ 102 (the bottom of the conduction band) (c) is for E =

%
I {the top of the conduction band) and V,,'f =+021y (correspond to the
Irahand Males)
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cigenvalue of the Hamiltonian (2) and corresponding
cigenfunctions. Using the Continued-Fraction Representation
(CFR) we have calculated the density of states (DOS) for some
7 -conjugated chains (PA and PT) in the presence of impurities
and solitons, We conclude that using the CFR for above samples
leads to acceptable results. Furthermore. we have numerically
studied the nature of the r-clectron states in frans-
polyacetylene with site and bond-type model impurities. We
find that the strongly localized states occur at the upper edge of
acertam band.

The ctfect of the presence of solitons on the clectronic
structure was also studied by this procedure. We see that as a
result of the electron-hole symmetry of the SSH Hamiltonian,
the paired-states 1s produced per soliton and a localized
clectronic state occurs at the midgap. To extend this study to
the case of Anderson localization and also the investigation of
conductivity, it 1s important to consider three-dimensional
situations with interchain interactions. Calculations in this
dircction arc in progress and the results will be presented n
near [uture.
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