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Abstract

In-memory cluster computing platforms have gained momentum in the last years, due to their ability to
analyse big amounts of data in parallel. These platforms are complex and difficult-to-manage environments.
In addition, there is a lack of tools to better understand and optimize such platforms that consequently
form backbone of big data infrastructure and technologies. This directly leads to underutilization of avail-
able resources and application failures in such environment. One of the key aspects that can address this
problem is optimization of the task parallelism of application in such environments. In this paper, we
propose a machine learning based method that recommends optimal parameters for task parallelization in
big data workloads. By monitoring and gathering metrics at system and application level, we are able to
find statistical correlations that allow us to characterize and predict the effect of different parallelism set-
tings on performance. These predictions are used to recommend an optimal configuration to users before
launching their workloads in the cluster, avoiding possible failures, performance degradation and wastage
of resources. We evaluate our method with a benchmark of 15 Spark applications on the Grid5000 testbed.
We observe up to a 51% gain on performance when using the recommended parallelism settings. The model
is also interpretable and can give insights to the user into how different metrics and parameters affect the
performance.
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1. Introduction

Big data technology and services market is esti-
mated to grow at a CAGR1 of 22.6% from 2015 to
2020 and reach $58.9 billion in 2020 [1]. Highly vis-
ible early adopters such as Yahoo, eBay and Face-
book have demonstrated the value of mining com-
plex information sets, and now many companies are
eager to unlock the value in their own data. In order
to address big data challenges, many different par-
allel programming frameworks, like Map Reduce,
Apache Spark or Flink have been developed [2, 3, 4].

Planning big data processes effectively on these
platforms can become problematic. They involve
complex ecosystems where developers need to dis-
cover the main causes of performance degradation
in terms of time, cost or energy. However, process-
ing collected logs and metrics can be a tedious and
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1Compound Annual Growth Rate

difficult task. In addition, there are several param-
eters that can be adjusted and have an important
impact on application performance.

While users have to deal with the challenge of
controlling this complex environment, there is a
fundamental lack of tools to simplify big data in-
frastructure and platform management. Some tools
like YARN or Mesos [5, 6] help in decoupling the
programming platform from the resource manage-
ment. Still, they don’t tackle the problem of opti-
mizing application and cluster performance.

One of the most important challenges is finding
the best parallelization strategy for a particular ap-
plication running on a parallel computing frame-
work. Big data platforms like Spark2 or Flink3

use JVM’s distributed along the cluster to perform
computations. Parallelization policies can be con-
trolled programmatically through APIs or by tun-

2http://spark.apache.org/ (last accessed Jan 2017)
3https://flink.apache.org/ (last accessed Jan 2017)
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ing parameters. These policies are normally left as
their default values by the users. However, they
control the number of tasks running concurrently
on each machine, which constitutes the foundation
of big data platforms. This factor can affect both
correct execution and application execution time.
Nonetheless, we lack concrete methods to optimize
the parallelism of an application before its execu-
tion.

In this paper, we propose a method to recom-
mend optimal parallelization settings to users de-
pending on the type of application. Our method
includes the development of a model that can tune
the parameters controlling these settings. We solve
this optimization problem through machine learn-
ing, based on system and application metrics col-
lected from previous executions. This way, we can
detect and explain the correlation between an appli-
cation, its level of parallelism and the observed per-
formance. The model keeps learning from the exe-
cutions in the cluster, becoming more accurate and
providing several benefits to the user, without any
considerable overhead. In addition, we also con-
sider executions that failed and provide new config-
urations to avoid these kinds of errors. The main
two contributions of this paper are:

• A novel method to characterize the effect of
parallelism in the performance of big data
Workloads. This characterization is further
leveraged to optimize in-memory big data ex-
ecutions by effective modelling of the per-
formance correlation with application, system
and parallelism metrics.

• A novel algorithm to optimize parallelism of
applications using machine learning. Further-
more, a flavour of our proposed algorithm ad-
dresses the problem of accurate settings in the
execution of applications due to its ability to
draw predictions and learn from the compari-
son with actual results dynamically.

We choose Spark running on YARN as the frame-
work to test our model because of its wide adoption
for big data processing. The same principles can be
applied to other frameworks, like Flink, since they
also parallelize applications in the same manner.

This paper is structured as it follows. Section 2
provides some background about Spark and YARN.
In Section 3, we motivate the problem at hand
through some examples. Section 4 details the pro-
posed model and learning process. In Section 5,

we evaluate the model using Grid 5000 testbed [7].
Section 6 discusses related work. Finally, Section 7
presents future work lines and conclusions.

2. Overview of YARN and Spark

2.1. YARN: A cluster resource manager

YARN was born from the necessity of decou-
pling the programming model from the resource
management in the cluster. The execution logic is
left to the framework (e.g, Spark) and YARN con-
trols the CPU and memory resources in the nodes.
This tracking is done through the Resource Man-
ager (RM), a daemon that runs in a machine of the
cluster.

An application in YARN is coordinated by a unit
called the Application Master (AM). AM is respon-
sible for allocating resources, taking care of task
faults and managing the execution flow. We can
consider the AM as the agent that negotiates with
the manager to get the resources needed by the ap-
plication. In response to this request, resources are
allocated for the application in the form of contain-
ers in each machine. The last entity involved is the
Node Manager (NM). It is responsible for setting
up the container’s environment, copying any depen-
dencies to the node and evicting any containers if
needed. A graphical explanation of the architecture
is depicted in Figure 1.

The number of available resources can be seen
as a two dimensional space formed by mem-
ory and cores that are allocated to containers.
Both the MB and cores available in each node
are configured through the node manager prop-
erties: yarn.nodemanager.resource.memory-mb

and yarn.nodemanager.resource.cpu-vcores re-
spectively. An important aspect to take into ac-
count is how the scheduler considers these re-
sources through the ResourceCalculator. The de-
fault option, DefaultResourceCalculator, only con-
siders memory when allocating containers while
DominantResourceCalculator, takes into account
both dimensions and make decisions based on what
is the dominant or bottleneck resource [8]. Since
CPU is an elastic resource and we do not want to
have a limit on it, we will use the DefaultResource-
Calculator for YARN in our experiments. By doing
this, we will be able to scale up or down the num-
ber of tasks running without reaching a CPU usage
limit.
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Figure 1: YARN Architecture. In the example a MPI and MapReduce application have their containers running in different
nodes. Each node manager is going to have some memory and cores assigned to allocate containers [5]

2.2. Spark: A large data processing engine

Spark [9] is a fault-tolerant, in-memory data an-
alytics engine. Spark is based on a concept called
resilient distributed dataset (RDDs). RDDs are
immutable resilient distributed collections of data
structures partitioned across nodes that can reside
in memory or disk. These records of data can be
manipulated through transformations (e.g map or
filter). A RDD is lazy in the way that will only
be computed when an action is invoked (e.g count
number of lines, save as a text file). A Spark ap-
plication is implemented as a series of actions on
these RDDs. When we execute an action over a
RDD, a job triggers. Spark then formulates an exe-
cution Directed-Acylic-Graph (DAG) whose nodes
will represent stages. These stages are composed
of a number of tasks that will run in parallel over
chunks of our input data, similar to the MapRe-
duce platform. In Figure 2 we can see a sample
DAG that represents a WordCount application.

When we launch a Spark application, an ap-
plication master is created. This AM asks the
resource manager, YARN in our case, to start the
containers in the different machines of the cluster.
These containers are also called executors in the
Spark framework. The request consists of number
of executors, number of cores per executor and
memory per executor. We can provide these values
through the --num-executors option together
with the parameters spark.executor.cores

and spark.executor.memory. One unit of
spark.executor.cores translates into one task

slot. Spark offers a way of dynamically asking for
additional executors in the cluster as long as an
application has tasks backlogged and resources
available. Also executors can be released by
an application if it does not have any running
tasks. This feature is called dynamic allocation
[10] and it turns into better resource utilization.
We use this feature in all of our experiments.
This means that we do not have to specify the
number of executors for an application as Spark
will launch the proper number, based on the
available resources. The aim of this paper is to
find a combination for spark.executor.memory

and spark.executor.cores to launch an optimal
number of parallel tasks in terms of performance.

3. Studying the impact of parallelism

The possibility of splitting data into chunks and
processing each part in different machines in a di-
vide and conquer manner makes it possible to anal-
yse big amounts of data in seconds. In Spark, this
parallelism is achieved through tasks that run inside
executors across the cluster. Users need to choose
the memory size and the number of tasks running
inside each executor. By default, Spark considers
that each executor size will be of 1GB with one
task running inside. This rule of thumb is not opti-
mal, since each application is going to have different
requirements, leading to wastage of resources, long
running times and possible failures in the execution
among other problems.
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Figure 2: Example DAG for WordCount

We explore these effects in the following exper-
iments. We deployed Spark in four nodes of the
Taurus cluster in the Grid 5000 testbed [7]. We
choose this cluster because we can also evaluate the
power consumption through watt-meters in each
machine [11]. These machines have two processors
Intel Xeon E5-2630 with six cores each, 32GB of
memory, 10 Gigabit Ethernet connection and two
hard disks of 300 GB. The operating system in-
stalled in the nodes is Debian 3.2.68, and the soft-
ware versions are Hadoop 2.6.0 and Spark 1.6.2.
We configure the Hadoop cluster with four nodes
working as datanodes, one of them as master node
and the other three as nodemanagers. Each nodem-
anager is going to have 28GB of memory available
for containers. We set the value of vcores to the
same number as physical cores. Note however that
we are using all the default settings for YARN and
by default the resource calculator is going to be De-
faultResourceCalculator [12]. This means that only
memory is going to be taken into account when
deciding if there are enough resources for a given
application. HDFS is used as the parallel filesys-
tem where we read the files. We intend to illus-
trate the difference in level of parallelism for appli-
cations that have varied requirements in terms of
I/O, CPU and memory. To this end, we utilize one
commonly used application which is CPU intensive,
like kMeans and another common one that is inten-
sive in consumption of I/O, CPU and memory, like
PageRank.

Our objective is to see what is the ef-
fect of the number of concurrently running

spark.executor.memory spark.executor.cores
512m 1

1g 1
2g 1
2g 2
2g 3
3g 1
3g 3
3g 4
4g 1
4g 3
4g 6
6g 1

Table 1: Combinations of Spark parameters used for the
experiments

tasks on the performance of an application.
To do that, we are going to try different
combinations of spark.executor.memory and
spark.executor.cores, as seen in Table 1. We
choose these values to consider different scenarios
including many small JVM’s with one task each,
few JVM’s with many tasks or big JVM’s which
only host one task.

In Figure 3, we can see the time and energy
it takes to run a kMeans application in the clus-
ter with the default, best and worst configuration.
We can observe several effects in both energy and
duration for each configuration. Firstly, we ob-
serve that the best configuration is 4GB and 6
spark.executor.cores. Since kMeans only shuf-
fles a small amount of data, the memory pressure
and I/O per task are low, allowing this configura-
tion to run a higher number of tasks concurrently
and reducing execution times. Additionally, we can
see that the worst configuration is the one with
512MB and 1 spark.executor.core. Spark al-
lows us to store data in memory for iterative work-
loads like kMeans. Since spark.executor.memory

is sized as 512MB, the system does not have enough
space to cache data blocks into the executors. This
means that in later stages we will have to read that
block from disk, incurring in additional latency,
specially if that block is in another rack.

The other example is Page Rank, a graph ap-
plication. Its DAG involves many stages and the
configuration will have a great impact on the ap-
plication performance, as we can see in Figure 4.
There is a difference of almost 14 minutes between
the best execution and the worst one. In compar-
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Figure 3: Run time in seconds and power consumption in
watts for a kMeans App. The default, best and worst

configurations are depicted
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Figure 4: Run time in seconds and power consumption in
watts for a Page Rank App. The default, best and worst

configurations are depicted

ison to kMeans, PageRank caches data into mem-
ory that grows with every iteration, filling the heap
space often. It also shuffles gigabytes of data that
have to be sent through the network and buffered
in memory space. The best configuration is the 2g
and 2 spark.executor.cores configuration since
it provides the best balance between memory space
and number of concurrent tasks. For the default
one, the executors are not able to meet the mem-
ory requirements and the application crashed with
an out of memory error. Also, we observed that
for the 6g and 1 spark.executor.cores, the par-
allelism is really poor with only a few tasks running
concurrently in each node.

We can draw the conclusion that setting the right

level of parallelism does have an impact on big data
applications in terms of time and energy. The de-
gree of this impact varies depending on the appli-
cation. For PageRank it can prevent the applica-
tion from crashing while for kMeans it is only a
small gain. Even so, this moderate benefit may
have a large impact in organizations that run the
same jobs repeatedly. Avoiding bad configurations
is equally important. Providing a recommendation
to the user can help him to avoid out of memory er-
rors, suboptimal running times and wasting cluster
resources through constant trial and error runs.

4. Model to find the optimal level of paral-
lelism

As we have seen in the previous section, setting
the right level of parallelism can be done for each
application through its spark.executor.memory

and spark.executor.cores parameters. These
values are supposed to be entered by the user and
are then used by the resource manager to allocate
JVM’s. However, clusters are often seen as black-
boxes where it is difficult for the user to perform
this process. Our objective is to propose a model
to facilitate this task. Several challenges need to be
tackled to achieve this objective:

• The act of setting these parallelization
parameters cannot be detached from the
status of the cluster: Normally, the user
set some parameters without considering the
memory and cores available at that moment in
the cluster. However, the problem of setting
the right executor size is highly dependent on
the memory available in each node. We need
the current resource status on YARN as a vari-
able when making these decisions.

• Expert knowledge about the application
behaviour is needed: This needs monitoring
the resources consumed and metrics of both the
application plus the system side.

• We have to build a model that adapts to
the environment we are using: Different
machines and technologies give room to differ-
ent configurations and parallelism setting.

• We have to be able to apply the experi-
ence of previous observations to new ex-
ecutions: This will simplify the tuning part
to the user every time he launches a new ap-
plication.
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To solve these problems we leverage the machine
learning techniques. Our approach is as follows.
First, we will use our knowledge about YARN in-
ternals to calculate the number of tasks per node
we can concurrently run for different configurations,
depending on the available cluster memory. These
calculations, together with metrics gathered from
previous executions for that application, will form
the input of the machine learning module. Then,
the predictions will be used to find the best configu-
ration. In the following subsections we will explain
how we gather the metrics, how we build a dataset
that can be used for this problem and the method-
ology we use to make the recommendations.

4.1. Gathering the metrics and building new fea-
tures

Normally predictive machine learning algorithms
need a dataset with a vector of features x1, x2, ...xn

as an input. In this section we will explain which
features we use to characterize Spark applications.
They can be classified in three groups:

• Parallelism features: They are metrics that
describe the concurrent tasks running on
the machine and the cluster. Please note
that these are different from the paralleliza-
tion parameters. The parallelization pa-
rameters are the spark.executor.cores and
spark.executor.memory parameters, which
are set up by the users, while the parallelism
features describe the effect of these parameters
on the applications. We elaborate upon these
features in Subsection 4.1.1.

• Application features: These are the metrics
that describe the status of execution in Spark.
Examples of these features are number of tasks
launched, bytes shuffled or the proportion of
data that was cached.

• System features: These are the metrics that
represent the load of the machines involved.
Examples include CPU load, number of I/O
operations or context switches.

In the following subsections, we will explain how
we monitor these metrics and how we build new
additional metrics, like the number of tasks waves
spanned by a given configuration or the RDD per-
sistence capabilities of Spark. An exhaustive list of
metrics is included as an appendix (see Table A.3),
together with a notation table, to ease the under-
standing of this section (Table B.4).

4.1.1. Parallelism features

A Spark stage spans the number of tasks that are
equal to the number of partitions of our RDD. By
default, the number of partitions when reading an
HDFS file is given by the number of HDFS blocks of
that file. It can also be set statically for that imple-
mentation through instructions in the Spark API.
Since we want to configure the workload parallelism
at launch time, depending on variable factors, like
the resources available in YARN, we will not con-
sider the API approach. The goal is to calculate,
before launching an application, the number of ex-
ecutors, tasks per executors and tasks per machine
that will run with a given configuration and YARN
memory available. These metrics will be later used
by the model to predict the optimal configuration.
To formulate this, we are going to use the calcula-
tions followed by YARN to size the containers. We
need the following variables:

• Filesize (fsize): The number of tasks spanned
by Spark is given by the file size of the input
file.

• dfs.block.size (bhdfs): An HDFS parameter
that specifies the size of the block in the filesys-
tem. We keep the default value of 128MB.

• yarn.scheduler.minimum.allocation-mb
(minyarn): The minimum size for any
container request. If we make requests under
this threshold it will be set to this value. We
use its default value of 1024MB.

• spark.executor.memory (memspark): The size
of the memory to be used by the executors.
This is not the final size of the YARN con-
tainer, as we will explain later, since some off-
heap memory is needed.

• spark.executor.cores (corspark): The number
of tasks that will run inside each executor.

• yarn.nodemanager.resource.memory-mb pa-
rameter (memnode): This sets the amount of
memory that YARN will have availabe in each
node.

• spark.yarn.executor.memoryOverhead
(overyarn): The amount of available off-
heap memory. By default, its value its
384.
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• Total available nodes (Nnodes): This represents
the number of nodes where we can run our ex-
ecutors.

The size of an executor is given by:

Sizeexec = memspark + max(overyarn,memspark ∗ 0.10)

(1)
The 0.10 is a fixed factor in Spark and it is used to

reserve a fraction of memory for the off-heap mem-
ory. We then round up the size of the executor to
the nearest multiple of yarn minyarn to get the fi-
nal size. For example, if we get a Sizeexec = 1408,
we will round up to two units of minyarn result-
ing in Sizeexec = 2048. Now we can calculate
the number of executors in each node as Nexec =
bmemnode/Sizeexecc and the number of task slots
in each node as slotsnode = bNexec ∗ corsparkc.
Consequently, the total number of slots in the clus-
ter are slotscluster = bslotsnode ∗Nnodesc.

Finally, we also want to know the number of
waves that will be needed to run all the tasks of
that stage. By waves we mean the number of times
a tasks slot of an executor will be used, as de-
picted in Figure 5. We first calculate the number
of tasks that will be needed to process the input
data. This is given by Ntasks = bfsize/bhdfsc. Then
the number of waves is found by dividing this task
number between the number of slots in the clus-
ter Nwaves = bNtasks/slotsclusterc. Summarizing
all the previous metrics that are useful to us, we
get the following set of metrics, which we will call
parallelism metrics:

{Ntasks, slotsnode, slotscluster, Nwaves, sizeexec, corspark}
(2)

These are the metrics that will vary depending on
the resources available in YARN and the configu-
ration we choose for the Spark executors and that
will help us to model performance in terms of par-
allelism.

4.1.2. Application features

Spark emits an event every time the application
performs an action at the task, stage, job and ap-
plication levels explained in Section 2.2. These
events include metrics that we capture through
Slim4, a node.js server that stores these metrics in a

4https://github.com/hammerlab/slim (last accessed Jan
2017)

Figure 5: A set of waves spanned by two executors with
three spark.executor.cores. If we have 16 tasks to be

executed then it will take three waves to run them in the
cluster

Figure 6: Slim bottom-up aggregation. If we have the
metrics for the tasks, Slim can aggregate the ones

belonging to a stage to calculate that stage metrics. It does
the same at the job and application execution level

MongoDB5 database and aggregates them at task,
stage, job and application level in a bottom to up
manner. This means that if we aggregate the coun-
ters for all the tasks belonging to a stage, we will
have the overall metrics for that stage. The same is
done at job level, by aggregating the stage metrics
and at application level, by aggregating the jobs, as
shown in Figure 6.

This however creates an issue. We want to char-
acterize applications, but if we aggregate the met-
rics for each tasks then we will have very different
results depending on the number of tasks launched.
As we explained in Section 4.1.1, the number of
tasks spanned depends on the size of the input file.
This is not descriptive as we want to be able to de-
tect similar applications, based on their behaviour
and the operations they perform, even if they op-
erate with different file sizes. Let’s assume we have
some metrics we gathered by monitoring the only
stage of the Grep application with 64 tasks. We
need these metrics to describe the application, inde-

5https://www.mongodb.com/ (last accessed Jan 2017)
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pendently of the file size with which it was executed.
In this example, if this same stage is launched again
in the future with 128 tasks, its metrics have to be
similar to the ones of the 64 tasks execution in or-
der to apply what the model learned so far for Grep
or similar behaving applications.

To even out these situations, we calculate the
mean of the metrics for the tasks of that stage. Fig-
ure 7 shows that the mean gives us similar metrics
independently of the filesize for a stage of Sort. The
metrics are normalized from 0 to 1 to be able to plot
them together, since they have different scales.

We also define an additional metric at the appli-
cation level to describe how Spark persists data. We
derive a persistence score vector for each stage of
an application that describes how much of the total
input was read from memory, local disk, HDFS or
through the network. For a stage S, we have a to-
tal number of task (Ntasks). We count the number
of these tasks that read their input from different
sources as memory (Nmemory), disk (Ndisk), HDFS
(Nhdfs) and network Nnetwork. The vector for that
stage VS is:

VS =

{
Nmemory

Ntasks
,
Ndisk

Ntasks
,
Nhdfs

Ntasks
,
Nnetwork

Ntasks

}

This vector will describe if the stage processes
data that is persisted in memory, disk or if it was
not on that node at all and had to be read through
the network. We also use the HDFS variable to
know if the stage reads the data from the dis-
tributed file system. Usually this belongs to the
first stage of an application, since it is the moment
when we first read data and create the RDD.

An important issue to notice here is that VS can
change depending on the execution. Sometimes,
Spark will be able to allocate tasks in the same
node where the data is persisted. In some other
executions, it will not be possible because all slots
are occupied or because the system has run out of
memory. However, the objective is not to have a de-
tailed description of the number of tasks that read
persisted data. Instead, we want to know if that
stage persists data at all and how much it was able
to. Later on, the model will use this to statistically
infer how different configurations can affect a stage
that persists data.

4.1.3. System features

There are aspects of the workload that cannot
be monitored at application level, but at system
level, like the time the CPU is waiting for I/O op-
erations or the number of bytes of memory paged
in and out. To have a complete and detailed sig-
nature of the behaviour of an application, we also
include these kind of metrics. We include here fea-
tures like cpu usr, bytes paged in/out or bytes sent
through the network interface. To capture them,
we use GMone [13]. GMone is a cloud monitoring
tool that can capture metrics of our interest on the
different machines of the cluster. GMone is highly
customizable and it allows developing plugins that
will be used by the monitors in each node. We
developed a plugin that uses Dstat6. With this,
we obtain a measure per second of the state of the
CPU, disk, network and memory of the machines
in our cluster.

Since one task will run only in one node, we cal-
culate the mean of the system metrics on the node
during the lifespan of that task. This will give us
descriptive statistics about the impact of that task
at the system level. Then, for each stage we will
calculate the mean of the metrics for all of its tasks
in a similar bottom up way, as we explained Section

6http://dag.wiee.rs/home-made/dstat/ (last accessed
Jan 2017)
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in 4.1.2. This will represent what happened at the
system level while this application was running.

4.2. Building the dataset and training the model

For each stage executed in our cluster, we get a
vector that we use as a data point. We will repre-
sent this database of stages as:

stagesDB = {Xapp, Xsystem, Xparallelism, Yduration}

where the X’s are the features at application (Sec-
tion 4.1.2), system (Section 4.1.3) and parallelism
level (Section 4.1.1) and Yduration is the duration
of that stage or target variable to predict. Now
we have to build the dataset that we will use to
train the model. We want to answer the following
question: If we have a stage with metrics Xapp and
Xsystem, collected under some Xparallelism condi-
tions and its duration was Yduration, what will be the
new duration under some different Xparallelism con-
ditions?. We can regress this effect from the data
points we have from previous executions. However,
we have to take into account that metrics change
depending on the original conditions in which that
stage was executed. For instance it is not the same
executing a stage with executors of 1GB and 1 task
compared to 3GB and 4 tasks. Metrics like garbage
collection time will increase if tasks have less mem-
ory for their objects. In addition, CPU wait will
increase if we have many tasks in the same machine
competing for I/O. We can see this effect in Figure
8, where the metrics of a stage of a support vector
machine implementation in Spark change depend-
ing on the number of tasks per node we choose.

To solve this variance in the metrics, we have to
include two set of parallelism values in the learning
process:

• The parallelism conditions under which the
metrics were collected. We will call them
Xparallelismref

.

• The new parallelism conditions under which
we will run the application. We will call them
Xparallelismrun

.

Now building the dataset is just a matter of
performing a cartesian product between the met-
rics {Xapp, Xsystem, Xparallelism} of a stage and the
{Xparallelism, Yduration} of all the executions we
have for that same stage. For example, let’s as-
sume we have two executions of a stage with differ-
ent configurations like 10 and 4 tasks per node. We

also have all their features, including system plus
application metrics, and the duration of the stage.
The logic behind this cartesian product is: If we
have the metrics (X10) and the duration (Y10) of an
execution with 10 tasks per node and we have the
metrics (X4) and the duration (Y4) of an execution
with 4 tasks per node (tpn), then the metrics of the
10 tasks execution together with a configuration of
4 tasks per node can be correlated with the duration
of the 4 tpn execution, creating a new point like:

{
X10app, X10system, X10parallelismref

, X4parallelismrun , Y4duration

}
(3)

Note here that we consider that two stages are
the same when they belong to the same application
and the same position in the DAG. The algorithm
is shown in Algorithm 1.

Now we can train the machine learning model
with this dataset and check its prediction accuracy.
First we have to choose the most accurate imple-
mentation. Since this is a regression problem, we
try different state-of-the-art regression algorithms:
Bayesian Ridge, Linear Regression, SGD Regres-
sor, Lasso, Gradient Boosting Regressor, Support
Vector Regression and MLPRegressor, all from the
sklearn Python library [14]. First of all, we choose
these regression algorithms versus other solutions,
like Deep Learning, because they are interpretable.
Apart from this, the chosen algorithms are easily
evaluated with cross validation techniques, as K-
fold, Leave P-out or Leave One Group Out, among
others. From a practical point of view, these al-
gorithms are available in the scikit-learn package,
which provides implementations ready to be used
right out of the box. They also allow us to create
pipelines where we perform a series of preprocessing
steps before training the model. We build a pipeline
for each of the previous algorithms, where we first
standardize the data and then fit the model. Stan-
dardization of the data is a common previous step of
many machine learning estimators. It is performed
for each feature, by removing its mean value, and
then scaling it by dividing by its standard devi-
ation. This ensures an equal impact of different
variables on the final outcome and not being biased
towards variables that have higher or lower numer-
ical values. Then for each pipeline, we perform a
ten times cross validation with 3 k-folds [15]. The
results are shown in Figure 9. The metric used to
evaluate the score is Mean Absolute Error (MAE)
[16]. It is calculated by averaging the absolute er-
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Figure 8: Changes in the metrics for a stage of a support vector machine implementation in Spark. Note how the CPU
metrics change depending on the number of tasks per node. Also garbage collection and the deserialize time of an stage

increases with this number

Algorithm 1 Building the training dataset for the machine learning algorithm

1: procedure buildataset
2: stages = {(Xapp, Xsystem, Xparallelism, Yduration)n} . The stage executions that we have
3: dataset = ∅
4: for all s ∈ stages do
5: B = {x ∈ stages | x = s } . All the stages that are the same as s
6: new = s[Xapp, Xsystem, Xparallelismref

]×B[Xparallelismrun , Yduration]
7: add new to dataset
8: end for
9: return dataset

10: end procedure
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rors between predicted and true values for all the
data points. MAE will allow us to evaluate how
close the different predictors are to the real values.
We do not include SGD Regressor, since its MAE
is just too high to compare with the other meth-
ods. As we can see, boosted regression trees have
the best accuracy amongst the seven methods and
also the lowest variance. In addition, decision trees
are interpretable. This means that we will be able
to quantify the effect of any of the features of the
model on the overall performance of the applica-
tion.

4.3. Using the model: providing recommendations
for applications

So far, we have only characterized and built our
model for stages. An application is a DAG made
out of stages. So how we provide a paralleliza-
tion recommendation based on the previous ex-
plained concepts?. Remember that a configuration
in Spark is given at application level. Thus, if we
set some values for spark.executor.memory and
spark.executor.cores, they will be applied to all
the stages. If we have a list listofconfs with com-
binations of different values for these two parame-
ters, and we launch an application with a different
combination each time, each execution will have dif-
ferent tasks per node, waves of tasks and memory
per task settings. In other words, and following the
previously introduced notation, each execution will
have different Xparallelism features. The dataset
built in Algorithm 1 had data points like:

{Xapp, Xsystem, Xparallelismref
, Xparallelismrun

, Yduration}
(4)

therefore, we can plug in new values for
Xparallelismrun by iterating through the different
configurations in listofconfs, and predict the new
Yduration for the parameters. In addition, the ob-
jective is to know the effect of a given configuration
on the whole application. So we can perform this
process for all the stages that are part of the ap-
plication and sum the predictions for each config-
uration. Then we only have to choose as the opti-
mal configuration the one from the list that yields
the minimum predicted duration. Algorithm 2 de-
scribes this process for a given application and its
input data size. The time complexity of the boosted
decision trees model, used to make the predictions,
is O(ntree∗n∗d), where ntree is the number of trees
of the boosted model, d is the depth of those trees
and n is the number of data points to be predicted.
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Figure 9: 10 CV with 3 K-Fold MAE score for different
regression algorithms. GradientBoostingRegressor is the

clear winner with a median absolute error of 23 seconds, a
maximum of 94 seconds in the last 10th iteration and a

minimum of 2.7 seconds for the 3rd iteration

We have to do this prediction for the nconf configu-
rations of the configuration list, which transforms it
into O(ntree∗n∗d∗nconf). Note that the only term
that is variable here is the number of data points n,
that will grow as we have more executions on our
system. The rest will remain constant as they are
fixed the moment we train the model and are small
numbers. We have to point out that we do not con-
sider stages that launch only one task, since it is
trivial that parallelism will not bring any benefit
to them. The DAG engine of Spark can also detect
that some stages do not have to be recomputed and
so they can be skipped. We do not consider these
kind of stages in the DAG either since their runtime
is always 0. Figure 10 shows a graphical depiction
of the workflow for a Sort app example.

4.4. Dealing with applications that fail

When we explained the process by which we pre-
dict the best parallelism configuration, we assumed
that we have seen at least once all the stages of an
application. However, this is not always the case,
since some configurations may crash. For exam-
ple, for a Spark ConnectedComponent application
with a filesize of 8GB, the only configurations that
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Algorithm 2 Recommending a parallelism configuration for an application and its input datasize

1: procedure predictconfboosted(app, filesize, listofconfs)
2: S = { s ∈ stages | s ∈ DAG(app) } . All the stages that belong to the app
3: listofconfsandduration = ∅
4: for all conf ∈ listofconfs do
5: for all s ∈ S do
6: if s.ntasks 6= 1 then . Some stages only have on task. We do not consider those
7: s[Xparallelismrun ] = calculateParallelism(filesize, conf) . As explained in 4.1.1
8: duration = duration + predictBoostedTrees(s) . we accumulate the prediction of each

stage
9: end if

10: end for
11: add (duration, conf) to listofconfsandduration
12: end for
13: return min(listofconfsandduration)
14: end procedure

Figure 10: An example with a Sort App, where we iterate through a configuration list. Notice the different parallelism
features: {p1, ..., pn}ref represent the parallelism conditions under which the metrics were collected, {p1, ..., pn}run the

parallelism conditions under which the application run for that execution and {p1, ..., pn}new the new parallelism conditions
that we want to try and the ones we will pass to the machine learning module. The rest of the metrics are kept constant.

Then we just have to group by configuration and sum up each of the stages predictions to know which one is best
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Figure 11: A deadlock situation in which the same
configuration is recommended continuously. The

application crashes with the default configuration. Based
on whichever stages executed successfully the next

recommendation also crashes. If we do not get past the
crashing point the recommendation will always be the same

were able to complete successfully in our experi-
ments were the ones with 4GB and 1 core and 6GB
and 1 core. The reason behind it is that graph
processing applications are resource hungry and it-
erative by nature. This can put a lot of pressure in
the memory management, specially when we cache
RDD’s like in these kind of implementations. In
this particular example, the 8GB file we initially
read from HDFS grows to a 17.4GB cached RDD
in the final stages of the application.

Thus, if we choose an insufficient memory setting,
like the default 1GB configuration, the application
will not finish successfully and we will not have ei-
ther the complete number of stages or the metrics
for that application. Incomplete information means
that the next configuration recommended could be
non-optimal, drawing us into a loop where the ap-
plication continuously crashes, as depicted in Fig-
ure 11.

To solve this, we use the approach explained in
Algorithm 3. When a user launches an applica-
tion, we check if there are any successful executions
for it. If we cannot find any then we retrieve the
furthest stage the application got to. This can be
considered as the point where the execution could

not continue. For that stage we find the k-nearest
neighbours from all the stages that we have seen
so far. These neighbouring stages belong to a set
of applications. Then we follow a conservative ap-
proach where we choose the configuration amongst
these applications that resulted in the most num-
ber of stages completed. The intuition behind it is
that a configuration with a high number of com-
pleted stages means better stability to the appli-
cation. With this, we aim to achieve a complete
execution of the application and to collect the fea-
tures of all the stages with it. If the user executes
the same application in the future, we can use this
complete information together with the standard
boosted gradient model to recommend a new config-
uration. By trying different values for the number
of k neighbours, we found that 3 is a good number
for this parameter. Going above this value can re-
trieve too many diverse stages, which could make
the application to crash again. Going below it can
take us to the same deadlock depicted in Figure
11. Remember that the objective is not to find an
optimal configuration, but a conservative configu-
ration, which enables a complete execution without
failures.

The kNeighbours approach uses a K-D Tree
search approach, where the complexity is O(log(n))
with n being the number of data points.

4.5. The recommendation workflow

Now that we have developed the models with
which we make recommendations, we can connect
everything together and describe the workflow we
follow to find the best parallelism settings. When a
user wants to execute an application, first we check
if we have any information of it in our database of
previously seen applications. If we do not have it,
we execute it with the default configuration. This
execution will give us the metrics we need to tune
the application in future executions. If we do have
information about that application, we check if it
completed successfully or not:

• In case it did not, we apply the procedure of
Algorithm 3 for crashed executions.

• In case it did, we apply the Algorithm 2 with
the boosted regression trees model.

Whatever the case is, the monitoring system adds
the metrics for that run to our database so they
can be applied for future executions. Applications
in a cluster are recurring [17]. This means that the
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Algorithm 3 Finding a configuration for an application that failed

1: procedure predictconfkneighbours(app)
2: S = { s ∈ stages | s ∈ DAG(app) ∧ s[status] = failed }
3: x = lastexecutedstage ∈ S
4: neighbours = find3neighbours(x, stages)
5: res = {n ∈ neighbours | n.stagesCompleted = max(n.stagesCompleted) }
6: return res.configuration
7: end procedure

precision of the model will increase with the time
since we will have more data points. We assume
the machine learning algorithm has been trained
beforehand and we consider out of the scope of this
paper and as future work, when and how to retrain
it. A final algorithm for the process is depicted in
Algorithm 4.

5. Evaluation

We perform an offline evaluation of the model
with the traces we got from a series of experiments
in Grid 5000.

Cluster setup: Six nodes of the Adonis clus-
ter in the Grid 5000 testbed. These machines have
two processors Intel Xeon E5520 with four cores
each, 24GB of memory, 1 Gigabit Ethernet and
1 card InfiniBand 40G and a single SATA hard
disk of 250 GB. The operating system installed in
the nodes is Debian 3.2.68, and the software ver-
sions are Hadoop 2.6.0 and Spark 1.6.2. We con-
figure the Hadoop cluster with six nodes working
as datanodes, one of them as master node and the
other five as nodemanagers. Each nodemanager has
21GB of memory available for containers. We set
the value of vcores to the same number as physical
cores. We build a benchmark that is a combination
of Spark-bench [18], Bigdatabench [19] and some
workloads that we implemented on our own. The
latter ones were implemented to have a broader va-
riety of stages and each one has different nature:

• RDDRelation: Here we use Spark SQL and the
dataframes API. We read a file that has pairs
of (key, value). First we count the number of
keys using the RDD API and then using the
Dataframe API with a select count(*) type
of query. After that, we do a select from

query in a range of values and store the data in
a Parquet data format7. This workflow consist

7https://parquet.apache.org/ (last accessed Jan 2017)

of four stages in total.

• NGramsExample: We read a text file and we
construct a dataframe where a row is a line in
the text. Then we separate these lines in words
and we calculate the NGrams=2 for each line.
Finally these Ngrams are saved in a text file in
HDFS. This gives us a stage in total since it is
all a matter of mapping the values and there is
no shuffles involved.

• GroupByTest: Here we do not read any data
from disk but we rather generate an RDD with
pairs of (randomkey, values). The keys are
generated inside a fixed range so there will be
duplicate keys. The idea is to group by key and
then perform a count of each key. The number
of pairs, the number of partitions of the RDD
and consequently the number of tasks can be
changed through the input parameters of the
application. This gives us two stages like in a
typical GroupBy operation.

We run all the applications of this unified bench-
mark with three different file sizes as we want to
check how the model reacts when executing the
same application with different amounts of data.
Some implementations, like the machine learning
ones, expect a series of hyperparameters. These are
kept constant across executions and their effect is
left out of the scope of this paper. We also try
different values for spark.executor.memory and
spark.executor.cores for each application and
data size combinations. These executions generate
a series of traces that we use to train and evaluate
our model offline. Since the usefulness of our ap-
proach is that it can predict the performance of new
unseen applications, we train the model by leav-
ing some apps outside of the training set. Those
apps will be later used as a test set. A descrip-
tion of the benchmark is depicted in Table 2. The
reason for choosing this benchmark, is to have a
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Algorithm 4 Providing an optimal configuration for a application and a given input file size

1: procedure configurationforapplication(application, filesize)
2: A = { apps ∈ appDB | apps.name = application) }
3: if A = ∅ then
4: conf = (1g, 1)
5: else if A 6= ∅ then
6: if (∀app ∈ A | app.status = failed) then
7: conf = predictconfkneighbours(app)
8: else
9: conf = predictconfboosted(app, filesize)

10: end if
11: end if
12: submittospark(app, conf)
13: add monitored features to stageDB and appDB
14: end procedure

representative collection of batch processing appli-
cations that are affected differently by their paral-
lelization, i.e. graph processing, text processing and
machine learning. These three groups allow us to
prove that applications with different resource con-
sumption profiles have different optimal configura-
tions. We leave as future work the effect of paral-
lelization in data streaming applications. The files
were generated synthetically. At the end we have
5583 stages to work with. As before we use the
dynamic allocation feature of Spark and the De-
faulResourceAllocator for YARN.

5.1. Overhead of the system

In this section, we want to evaluate the overhead
of monitoring the system, training the model and
calculating a prediction. The first concern is if Slim
and GMone introduce some overhead when launch-
ing applications. We executed five batches of two
applications running in succession: Grep and Lin-
earRegression. We measured the time it took to
execute these five batches with and without moni-
toring the applications. The results are depicted in
Figure 12. As we can see, the overhead is negligible.

Also we want to evaluate how much time it takes
to train the model and to calculate the optimal con-
figuration for an application. We train the model
with the traces we got from Grid5000 in our local
computer. The specifications for the CPU are 2,5
GHz Intel Core i7 of 4 cores and for the memory
is 16GB of DDR3 RAM. The overhead of training
the model depends on the number of data points, as
shown in Figure 13. For the complete training set of
55139 the latency is 877 seconds. For the overhead
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Figure 12: Overhead introduced by monitoring and storing
the traces versus non-monitoring. As we can see the

latency is minimum
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Table 2: Different applications used. File size denotes the three different sizes used for that application. Group by doesn’t
read any file but creates all the data directly in memory with 100 partitions

Application Dataset Split File Size Type of App
ShortestPath

Test

20GB,11GB,8GB Graph Processing
Connected Component
Logistic Regression

18GB,10GB,5GB
Machine LearningSupport Vector Machine

Spark PCA Example
Grep Text Processing
SVDPlusPlus

Train

20GB,11GB,8GB Graph Processing
Page Rank
Triangle Count
Strongly Connected Component
Linear Regression

18GB,10GB,5GB

Machine LearningkMeans
Decision Tree
Tokenizer

Text ProcessingSort
WordCount
RDDRelation SparkSQL
GroupBy 100 tasks Shuffle

of the predictions, we take all the data points in
the test set for each application and predict their
execution times. As we can see in Figure 14, the
overhead is negligible, with a maximum latency of
0.551 seconds for the LogisticRegression App that
has 10206 points in the test set. Note that this pro-
cess is run on a laptop but it can be run on a node
of the cluster with less load and more computation
power, like the master node. We must also consider
that we trained the model with sklearn, but there
are distributed implementations of boosted regres-
sion trees in MLlib8 for Spark that can speed up the
process. We leave as future work when and how the
model should be trained.

5.2. Accuracy of predicted times

Now we evaluate the accuracy of the predicted
durations. As we mentioned earlier, we built the
training and the test set by splitting the benchmark
in two different groups. First, we start by evaluat-
ing the duration predictions for different stages. To
do that, we take all the data points for a stage, we
feed them to the model and we average the pre-
dictions for each configuration. The results can be
seen in Figure 15. For some stages, the predictions
are really precise, like the stage 0 of Shortest Path

8http://spark.apache.org/mllib/ (last accessed Jan 2017)
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Figure 13: Duration of training the model depending on
the number of data points. For the whole dataset of 85664

points the duration is 1536 seconds.
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Figure 14: Latency in the predictions for different
applications. The latency is always less than 1 second with

a maximum of 0.519 for a Logistic Regression App

with 8GB. Some others, like the Stage 1 of Support
Vector Machine for 10GB, do not follow the ex-
act same trend as the real duration but effectively
detect the minimum. We show here some of the
longest running stages across applications, since op-
timizing their performance will have a greater im-
pact on the overall execution. Remember that our
final objective is not to predict the exact run time
but rather to know which configurations will affect
negatively or positively the performance of an ap-
plication.

5.3. Accuracy of parallelism recommendations for
an application

Now that we have seen the predictions for sep-
arate stages, we are going to evaluate the method
for a complete application. The objective is to com-
pare our recommendations with a default configu-
ration that a user will normally use and with the
best improvement the application can get. We also
want to evaluate how the predictions evolve with
time, as we add more data points to our database
of executions. To achieve that, we are going to as-
sume a scenario where the user launches a set of
applications recurrently with different file sizes. If
the application has not been launched before, the
recommendation will be the default one. After that

first execution, the system will have monitored met-
rics for that application. We can start recommend-
ing configurations and the user will always choose
to launch the workload with that configuration. In
the scenario, for the non-graph applications in the
test set, the user executes each one with 5GB, 10GB
and 18GB consecutively. For the graph applications
we do the same with their 20GB, 8GB and 11GB
sizes. In this case, we invert the order, since none
of the 20GB executions finished correctly because
of out of memory errors and we use them to get
the metrics instead. The results of these executions
can be seen in Figures 16 and 17. Note how we
separate the figures for graphs and non-graph ap-
plications. The reason is that with one gigabyte
for spark.executor.memory, the graph workloads
always crashed, so we do not include this default
execution. Best shows the lowest possible latency
that we could get for that application. Predicted is
the configuration proposed by our model. Default
is the runtime for a 1g/1core configuration. Worst
is the highest run time amongst the executions that
finished successfully. We do not show here any ap-
plication that did not complete successfully. For
some applications the recommendations achieve the
maximum efficiency like Grep with 10GB, Logistic
Regression with 18GB or SVM with 18GB. For ex-
ample in Grep 10GB the maximum improvement
is of 11%. This means 11% of savings in energy
and resource utilization, which may be significant
when these applications are executed recurrently.
These recommendations can also help the user to
avoid really inefficient configurations, like the one
in Grep 10GB. For graph executions, the benefits
are more obvious. Since the initial default execu-
tion always crashed, the first recommendation by
the system was drawn out of the neighbours proce-
dure explained early. The latency for this first rec-
ommendation is not optimal, but we have to keep
in mind that this is a conservative approach to get
a first complete run and a series of traces for the
application. After getting this information and ap-
plying the boosted model, we can get an improve-
ment up to 50% for the case of connected compo-
nent with 11GB. We also want to prove that the
model can converge to a better solution with ev-
ery new execution it monitors. Note that we are
not talking about retraining the model, but about
using additional monitored executions to improve
the accuracy. As an example, we keep executing
the shortest path application first with 11GB and
then with 8GB until the model converges to an op-
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Figure 15: Predictions for stages of different apps with the highest duration and so highest impact inside their applications.
For Shortest Path the predictions are pretty accurate. For SVM and Logistic Regression the trend of the predicted values

follows the real ones.

timal solution. The evolution can be seen in Figure
18. For the 11GB execution, the first point is the
duration for the neighbours approach. After that,
the execution recommended with the boosted re-
gression model fails, but the model goes back to
an optimal prediction in the next iteration. In the
8GB case, it goes down again from the conserva-
tive first recommendation to a nearly optimal one.
This is an added value of the model. The system
can become more intelligent with every new execu-
tion and will help the user to make better decisions
about parallelism settings.

Finally, we include in Figure 19 the time that
it takes to find an optimal configuration for each
application. For the boosted decision trees ap-
proach, the average overhead is 0.3 seconds and it
increases slightly for those applications that have
more stages, like logistic regression. We consider
this negligible, since a 0.3 seconds delay will not be
noticeable by the user. The kNeighbours approach
is faster, but it is only applied to those applications
that crash with the default execution of 1g/1core.

5.4. Interpretability of the model

Another advantage of decision trees is that they
are interpretable. That means that we can evaluate
the impact of certain features on the outcome vari-
able (duration in our case). One of the possible ap-
plications is to explain how the number of tasks per
node affects a given workload. This information can
be valuable when the user wants to manually choose
a configuration. For example, in Figure 20 we see
the partial dependence of three applications. Short-
est Paths is a graph processing application and, as

we saw earlier, it benefits from a low number of
tasks per node. KMeans sweet spot seems to be
around a default 10-12 tasks per node. For PCA,
the points between 0 and 5 correspond to stages
with only one or few tasks, something very common
in machine learning implementations. Again every-
thing from 8 to 15 is a good configuration while
more than that, it is counterproductive. Also note
how the partial dependence shows us the degree to
which parallelism affects that workload. For exam-
ple in Shortest Paths it ranges from 2000 to -4000
while in kMeans it goes from 100 to -100. Indeed,
as we saw in the experiments of the motivation sec-
tion, the benefit of parallelism is more obvious on
graph applications than in kMeans. This feature of
a decision tree proves to be useful and can help the
user to understand how different parameters affect
their workloads.

6. Related Work

There are several areas of research that are re-
lated to our work:

Using historical data to predict the out-
come of an application: Several lines of research
try to optimize different aspects of applications. In
[20], the authors present the Active Harmony tun-
ing system. It was born from the necessity to auto-
matically tune scientific workflows and e-commerce
applications. The challenge lies on choosing an op-
timal parametrization from a large search space. To
narrow this space, it considers only the parameters
that affect performance the most. In contrast, we
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do not need to narrow the parameter space, be-
cause we evaluate the performance of a configura-
tion through the machine learning module, which
has a negligible overhead. Another different ap-
proach in [21] is to use a benchmark of HPC work-
loads from different domains to create a reference
database of execution profiles. These profiles are
called kernels. The paper presents a framework
with the reference kernel implementations, their ex-
ecution profiles and a performance model already
trained that can predict their execution time with
other problem sizes and processor. Our solution
does not need this reference database already built
and it dynamically creates the model with every
new execution that comes in. There is work that
considers the characteristics of the input data as
an input to the learning model. In [22], the authors
sample from the data a series of characteristics (e.g
number of numerical and categorical attributes of
the dataset) that constitute the variables of a lin-
ear regression model that predicts the run time of a
C4.5 algorithm. However, they do not consider how
we can speed up applications or any configuration
parameters. Multilayer neural networks were used

in [23] to predict execution times on the parallel ap-
plication SMG2000. It explains a typical machine
learning process where data from different execu-
tions is gathered into a training and a test set. A
problem of neural networks though is that they are
not interpretable. This does not suit our objective
of assisting the user when using big data platforms.

Optimizing and predicting performance of
Hadoop: When Hadoop was the main tool for big
data analytics, a series of publications focused on
optimizing its default settings. Starfish [24] is an
auto-tuning system for MapReduce that optimizes
the parametrization through a cost based model.
However, this model introduces a profiling overhead
and is rigid, meaning that if the underlying infras-
tructure changes, so should the model. A machine
learning approach can adapt itself by training on
new data. The authors in [25] propose a method
to predict the runtime of Jaql queries. It trains
two models for each query type: one to predict the
processing speed of the query and a second one to
predict the output cardinality. A query is consid-
ered similar to another one if they have the same
jaql functions. With these two models we can esti-
mate the execution time. This is a really restrictive
model, especially to new incoming queries that does
not have any other similar observations. Our model
does not need any features of a specific domain like
jaql but relies instead on more general Spark and
machine metrics. It can also be applied to any new
incoming observations. ALOJA-ML [26] uses ma-
chine learning techniques to tune the performance
of Hadoop and discover knowledge inside a repos-
itory of around 16.000 workload executions. This
allows the authors to evaluate the impact of vari-
ables like hardware configurations, parameters and
cloud providers. However, Spark works in a dif-
ferent way compared to Hadoop, specially because
of its in-memory computing capabilities. In [27],
the authors also study how to configure a MapRe-
duce job in addition to calculating the number of
virtual machines and its size needed to run that
application. It does so by clustering applications
that show a similar CPU, memory and disk usage
rate. For each cluster, it builds a SVM regression
model. In contrast, our approach does not need to
cluster similar applications together but generalizes
depending on the features of the workload. MROn-
line [28] provides an online tuning system that is
based on statistics of the job and a gray-box smart
hill climbing algorithm. The tuning is made at task
level. This system is oriented to MapReduce and
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tasks, while with many tasks 7 is a good configuration

needs tasks test runs to converge into the optimal
solution. Cheng et al. [29] use genetic algorithms
to configure MapReduce tasks in each node, taking
into account cluster heterogeneity. The parameters
are changed, depending on how well a parameter
value works in a machine. However, it does not
work well for short jobs, since it needs time to con-
verge into a good solution.

Optimizing and predicting performance of
Spark: Spark is a relatively new technology and
its popularity is on the rise. Tuning up its perfor-
mance is an important concern of the community
and yet there is not much related work. In [30],
the authors present, to the best of our knowledge,
the only Apache Spark prediction model. Again
sampling the application with a smaller data size
is used to get statistics about the duration of the
tasks and plugged into a formula that gives an esti-
mation of the total run time for a different file size.
However, it does not considers tuning any parame-
ters and their effect on duration. MEMTune [31] is
able to determine the memory of Spark’s executors
by changing dynamically the size of both the JVM
and the RDD cache. It also prefetchs data that is
going to be used in future stages and evicts data
blocks that are not going to be used. However, the
method is an iterative process that takes some time
to achieve the best result and it does not work well
with small jobs. It does not learn from previous
executions either. In [32], the authors perform sev-
eral runs of a benchmark and iterate through the
different parameters of Spark to determine which
ones are of most importance. With the experience
acquired from these executions, they build a block
diagram through a trial and error approach of dif-

ferent parameters. The obvious drawback is that
we have to execute the application several times and
follow the process every time the input size changes.
Tuning garbage collection has also been considered
in [33]. The authors analyse in depth the logs of
JVM usage and come to the conclusion that G1GC
implementation improves execution times. Finally,
in [34], a new model for shuffling data across nodes
is proposed. The old model of creating a file in each
map tasks for each reduce task was too expensive
in terms of IO. Their solution is to make the map
tasks running in the same core write to the same
set of files for each reduce task.

Task contention: One of the objectives of our
model is to detect task contention and act accord-
ingly, by increasing or decreasing the number of
tasks. This topic has also been explored in [35].
Bubble up proposes a methodology to evaluate the
pressure that a given workload generates in the sys-
tem and the pressure that this same workload can
tolerate. With this characterization, better colo-
cation of tasks can be achieved. Nonetheless, this
requires using the stress benchmark in all the new
applications that we launch. Paragon [36] takes
into account both heterogeneity of machines and
contention between tasks when scheduling. By us-
ing SVD, it can calculate performance scores of a
task executed in a given machine configuration and
co-located with another workload. Same as in pre-
vious references, it needs benchmarking each time
a different workload comes in. Moreover, we are
not trying to create a scheduler, but to assist the
user in using big data platforms. In [37], the au-
thors propose another scheduler that is based on
the assumption that resource demands of the differ-
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ent stages can be known in advance. By consider-
ing the maximum amount of resources an executor
will use, Prophet can schedule JVM’s on different
machines to avoid over-allocation or fragmentation
of resources. This results in a better utilization of
the cluster and less interference between applica-
tions. This work assumes again that the user al-
ready knows the parallelism settings for the appli-
cation and tries to optimize from there. Our work
helps the user to choose a right configuration before
sending it to the cluster manager and also gives an
interpretation of this decision.

7. Conclusions and Future Work

The results of this paper show that it is possible
to accurately predict the execution time of a big
data-based application with different file sizes and
parallelism settings using the right models. This is
a first step in a longer path towards a much higher
control of big data analytics processes. It is nec-
essary to reduce complexity and allow centralized
management of environments with multiple tech-
nologies. To achieve this, the next generation of
big data infrastructure solutions need to be vendor-
agnostic and user friendly. In addition, processes,
monitoring and incident response must be increas-
ingly automated to boost speed and eliminate hu-
man error, thereby increasing system uptime.

Regarding our research plans, we aim at apply-
ing these concepts to an heterogeneous environment
with different machine specifications. This could
be done by modeling at task-level, instead of stage-
level. We also want to consider choosing these par-
allelism settings when there are already other ap-
plications running in the cluster and modeling their
interference. We also plan to focus on mitigating
issues related to data skew, where some executors
receive more shuffled data than others, causing out-
of-memory errors if the JVM is not sized correctly.
As the IT arena expands and large workloads execu-
tion pave the way for it, it is important to develop
concrete methods to reduce the resource wastage
and optimize utilization at every stage of execution.

All in all, both industry and academy need to
continue collaborating to create solutions that make
it possible to manage the lifecycle of applications,
data and services. In particular, new solutions
will be necessary that simplify management of big
data technologies and generate reliable and efficient
root cause analysis mechanisms to understand the

health of big data systems and to optimize its per-
formance.
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Table A.3: In this table we summarize the different features we used as input for the machine learning models. The monitor
system column refers to the system that gathered the metric, namely Gmone, Slim or None, the latter meaning that this

metric was derived from other ones.

Feature/Metric Description Monitor System Feature Group
BytesReadDisk Number of bytes read from Disk Slim Application
BytesWrittenDisk Number of bytes written to disk Slim Application
ExecutorDeserializeTime Time that the stage spends deserialising the tasks in the executor Slim Application
JVMGCTime Time that the stage spends doing Garbage Collection Slim Application
MemoryBytesSpilled Memory bytes used before spilling to disk Slim Application
DiskBytesSpilled Disk bytes used to spill to disk Slim Application
ShuffleBytesRead Number of inputs Bytes Read from shuffle Slim Application
ShuffleBytesWritten Number of output bytes written for shuffling Slim Application
ShuffleReadTime Time to read all the shuffle input Slim Application
ShuffleWriteTime Time to write all the shuffle output Slim Application
TaskCountsFailed Number of tasks that failed for that stage Slim Application
TaskCountsNum Total number of tasks that need to run for that stage Slim Parallelism
TasksThatRunned Total number of tasks that finished successfully None(Derived) Application
totalTaskDuration Total duration of the tasks in the stage Slim Application
spark.executor.bytes Number of memory bytes allocated to the executor Slim Parallelism
spark.executor.cores Number of cores allocated to the executors.

Equivalent to the number of tasks running inside the executors
Slim Parallelism

tasksPerNode Number of tasks slots per node None (Derived) Parallelism
tasksPerCluster Number of tasks slots in the whole cluster None (Derived) Parallelism
memoryPerTask Bytes of memory for each task. Is calculated

by dividing spark.executor.bytes/spark.executor.cores
None (Derived) Parallelism

nWaves Number of waves of tasks needed to complete the stage None (Derived) Parallelism
cpu wait % of cpu on wait GMone System
cpu usr % of cpu on usage GMone System
cpu idl % of cpu that is idle GMone System
paging in number of bytes paged in GMone System
paging out number of bytes paged out GMone System
io total read number of IO read operations GMone System
io total write number of IO write operations GMone System
sys contswitch Number of system context switchs GMone System
sys interrupts Number of system interrupts GMone System
Disk Percentage of tasks that read their data from Disk None (Derived) Application
Hadoop Percentage of tasks that read their data from HDFS None (Derived) Application
Memory Percentage of tasks that read their data from Memory None (Derived) Application
Network Percentage of tasks that read their data through the Network None (Derived) Application

Appendix A. Table with the variables and metrics used for machine learning
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Table B.4: Here we provide a notation table for the different terms we have used through the paper. We also include the
section in which the term was first mentioned

Notation Description Mentioned in Section
fsize File size of the input file

Section 4.1.1. Parallelism features

bhdfs Size of the block in HDFS
minyarn Minimum size of a container request
memspark Size of the memory to be used by executors
corspark Number of tasks that will run inside each executor
memnode This sets the amount of memory

that YARN has available in each node

overyarn The amount of available off-heap memory
Nnodes The total number of nodes
Sizeexec The total size of an executor in Spark
Nexec The number of executors in each node
slotsnode The number of task slots per node
slotscluster The number of task slots per cluster
Ntasks Number of tasks needed to process the data
Nwaves Number of waves of tasks needed to process the data
Vs Data persistence vector for one stage
Nmemory Number of tasks that read from memory

Section 4.1.2. Application features
Ndisk Number of tasks that read from disk
Nhdfs Number of tasks that read from HDFS
Nnetwork Number of tasks that read from network
Xapp The vector with the features at application level for one stage

Section 4.2. Building the dataset

Xsystem The vector with the features at system level for one stage
Xparallelism The vector with the features at parallelism level for one stage
Xparallelismref

The parallelism vector under which the other metrics were collected
Xparallelismrun

The new parallelism conditions under which the stage will be run
Yduration The duration of the stage
listofconfs The list of configurations which we will iterate through,

in order to find an optimal one
Section 4.3. Using the model

Appendix B. Notation table with the terms used in the text
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