brought to you by \fbox CORE

ase anary internal combustion engine with butanol

> Jesús Casanova¹, Natalia Fonseca², Celia López¹ y Daniel Agudo¹ ¹ Dept. of Energy Engineering, ETSII, e-mail: jesus.casanova@upm.es ² Dept. of Energy and Fuels, ETSIME, e-mail: natalia.fonseca@upm.es

> > **HYPOTHESIS**

OBJECTIVES

- To study the behaviour of pure n-butanol as a fuel in a spark ignition engine
- To compare combustion analysis results in a variable compression ratio CFR research engine fuelled with butanol and other fuels as ethanol and commercial gasoline.
- To analyse the knocking behaviour of n-butanol in the CFR engine

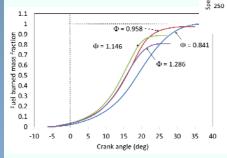
Butanol properties

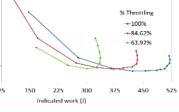
Property	Gasoline	Ethanol	Butan
Carbon number	C4-C12	C2	C4
(RON*MON)/2	97	100	89
Density (kg/dm ³)	0.736	0.790	0.810
L. heating value (kJ/kg)	43.0	26.8	33.0
Stoiquiom. A/F ratio	14.7	9.0	11.2
Boiling Temp. (°C)	24-215	78	118
Latent heat vap. (kJ/kg)	380-500	904	716
Laminar flame speed (cm/s)	51	63.6	58.5
Solubility in water (ml/100ml)	<0.1	Fully	7.7

Single cylinder research engine:

- Variable compression ratio
- Electronic injection

RESULTS:


"Hook" curves.


and fuel consumption

- Cylinder pressure sensor
- Labview data acquisition
- Mathlab data processing

850 ÷ 750 % Throttling 650

Indicated thermodynamic work calculated from cylinder pressure

Combustion analysis

Fuel burned mass fraction computed from cylinder pressure analysis

Fuel	Ign. timing	W _i (J)	Energy (J)	pmi (kPa)	g/kWh	η_i
Gasoline	10 deg	502	1492	821	253.5	0.337
Ethanol	15 deg	496	1433	810	388.5	0.3495
Butanol	10 deg	505	1474	825	313.9	0.343

550

150

ne] 350

CONCLUSIONS

- n.-butanol is a suitable fuel for spark ignition engines
- Less heating value than gasoline increase absolute fuel consumption but increase
- But reduce indicated thermal efficiency ⇒ less specific fuel consumption.

METHODOLOGY

wastes by cost - effective techniques.

ignition internal combustion engines.

"Hook" curves to asses n-butanol behaviour as spark ignited fuel

n-butanol is expected to be a suitable substitute of the ethanol as a biofuel for spark

n-butanol has demonstrated different physical and chemical properties than iso-butanol,

being both future biofuels candidates if it could be obtained from waste agro - food

- Combustion and Heat Release analysis based on cylinder pressure data recording was commanded by an external time base with angle encoder of 1800 pulses / revolution.
- Cold start only possible re-fuelling with gasoline
- Self-ignition analysis based on ignition timing for heavy knocking, based on cylinder pressure oscillations analysis along with knocking noise.

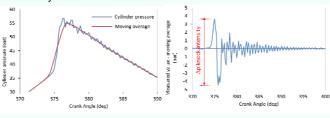
Heat Release Analysis

Based on 1º law of thermodynamics for the gas inside the cylinder.

$$\frac{\Delta Q_{L}}{\Delta \alpha} - p \frac{\Delta V}{\Delta \alpha} + \dot{m}_{f} \cdot h_{f} = \frac{\Delta U}{\Delta \alpha}$$

 $\frac{\Delta Q_n}{\Delta \alpha} = \frac{\Delta Q_f}{\Delta \alpha} - \frac{\Delta Q_p}{\Delta \alpha} = p \frac{\Delta V}{\Delta \alpha} + \frac{\Delta U}{\Delta \alpha}$ The net heat release rate (ΔQ_n) is:

Assuming ideal gas (Heywood, 1988), the heat released by the fuel is:


$$\frac{\Delta Q_{f}}{\Delta \alpha} = \frac{\Delta Q_{n}}{\Delta \alpha} + \frac{\Delta Q_{p}}{\Delta \alpha} = (1 + \frac{C_{v}}{R})p\frac{\Delta V}{\Delta \alpha} + \frac{C_{v}}{R} \cdot V \cdot \frac{\Delta p}{\Delta \alpha} + \frac{\Delta Q_{p}}{\Delta \alpha}$$

And the mass burning rate can be calculated

RESULTS:

Knocking combustion behaviour

Fuel burned mass fraction computed from cylinder pressure analysis

Pressure oscillation when knocking. Knock intensity definition.

Ignition angle to obtain 2 bar Δp knocking level

Fuel	O. N.	r = 7	r = 8	r = 9	r = 10
Gasoline	87 - 90	9	4	0	0
Ethanol	100	21	13	7	4
Butanol	86 -89	7	3	0	0

- Knocking behaviour is similar to gasoline
- But is worse than ethanol
- Lower volatility than gasoline and ethanol \Rightarrow cold start assistance

Acknowledgments. This research work is a preliminary part of the R&D Project "Sustainable Production of Next Generation Biofuels from Waste Streams" WASTE2FUELS supported by H2020 programme (call LCE11-2015), code EH160525B079

REFERENCES

- Honig, V., Kotek, M. and Mařík, J. "Use of butanol as a fuel for internal combustion engines". Agronomy Research, vol. 12 (2), pp. 333–340, 2014. Chao Jin, et al. "Progress in the production and application of n-butanol as a biofuel" Renewable and Sustainable Energy Reviews, vol. 15 (8), pp. 4080-4106, 2011. Beeckmann, J., Röhl, O. and Peters, N. "Numerical and experimental investigation of laminar burning Velocities of iso-octane, ethanol and n-butanol" SAE Technical Paper 2009-01-2784.
 S. Szwaja, S and Naber, J.D. "Combustion of n-butanol in a spark-ignition IC engine", Fuel, vol. 89 (7), pp. 1573-1582, 2010.
- S. Szwaja, S and Naber, J.D. "Combustion of n-butanol in a spark-ignition IC engine", Fuel, vol. 89 (7), pp. 1573-1582, 2010.
 Weber, B. W. and Sung, C. J. "Comparative autoignition trends in butanol isomers at elevated pressure", Energy Fuels, vol. 27 (3), pp. 1688–1698, 2013

10° Congreso Nacional Ingeniería Termodinámica Lleida. 28 al 30 de Junio de 2017