
Deep Learning in the Wild

Thilo Stadelmann1, Mohammadreza Amirian1,2, Ismail Arabaci3, Marek Arnold1,3,
Gilbert François Duivesteijn4, Ismail Elezi1,5, Melanie Geiger1,6, Stefan Lörwald7,

Benjamin Bruno Meier3, Katharina Rombach1, and Lukas Tuggener1,8

1 ZHAW Datalab & School of Engineering, Winterthur, Switzerland
2 Institute of Neural Information Processing, Ulm University, Germany

3 ARGUS DATA INSIGHTS Schweiz AG, Zürich, Switzerland
4 Deep Impact AG, Winterthur, Switzerland

5 DAIS, Ca’ Foscari University of Venice, Venezia Mestre, Italy
6 Institut d’Informatique, Université de Neuchâtel, Switzerland

7 PricewaterhouseCoopers AG, Zürich, Switzerland
8 IDSIA Dalle Molle Institute for Artificial Intelligence, Manno, Switzerland

Abstract. Deep learning with neural networks is applied by an increasing num-
ber of people outside of classic research environments, due to the vast success
of the methodology on a wide range of machine perception tasks. While this
interest is fueled by beautiful success stories, practical work in deep learning on
novel tasks without existing baselines remains challenging. This paper explores
the specific challenges arising in the realm of real world tasks, based on case
studies from research & development in conjunction with industry, and extracts
lessons learned from them. It thus fills a gap between the publication of latest al-
gorithmic and methodical developments, and the usually omitted nitty-gritty of
how to make them work. Specifically, we give insight into deep learning projects
on face matching, print media monitoring, industrial quality control, music
scanning, strategy game playing, and automated machine learning, thereby
providing best practices for deep learning in practice.

Keywords: data availability · deployment · loss & reward shaping · real world tasks

1 Introduction

Measured for example by the interest and participation of industry at the annual NIPS
conference1, it is save to say that deep learning [49] has successfully transitioned
from pure research to application [32]. Major research challenges still exist, e.g. in
the areas of model interpretability [39] and robustness [1], or general understanding
[53] and stability [67,25] of the learning process, to name a few. Yet, and in addition,
another challenge is quickly becoming relevant: in the light of more than 180 deep
learning publications per day in the last year2, the growing number of deep learning
engineers as well as prospective researchers in the field need to get educated on best
practices and what works and what doesn’t “in the wild”. This information is usually
underrepresented in publications of a field that is very competitive and thus striving

1 See https://medium.com/syncedreview/a-statistical-tour-of-nips-2017-438201fb6c8a.
2 Google scholar counts > 68,000 articles for the year 2017 as of June 11, 2018.

https://medium.com/syncedreview/a-statistical-tour-of-nips-2017-438201fb6c8a


2 Stadelmann et al.

above all for novelty and benchmark-beating results [38]. Adding to this fact, with a
notable exception [20], the field lacks authoritative and detailed textbooks by leading
representatives. Learners are thus left with preprints [37,57], cookbooks [44], code3

and older gems [29,28,58] to find much needed practical advice.
In this paper, we contribute to closing this gap between cutting edge research and

application in the wild by presenting case-based best practices. Based on a number of
successful industry-academic research & development collaborations, we report what
specifically enabled success in each case alongside open challenges. The presented
findinds (a) come from real-world and business case-backed use cases beyond purely
academic competitions; (b) go deliberately beyond what is usually reported in our
research papers in terms of tips & tricks, thus complementing them by the stories
behind the scenes; (c) include also what didn’t work despite contrary intuition; and
(d) have been selected to be transferable as lessons learned to other use cases and
application domains. The inteded effect is twofold: more successful applications, and
increased applied reasearch in the areas of the remaining challenges.

We organize the main part of this paper by case studies to tell the story behind
each undertaking. Per case, we briefly introduce the application as well as the specific
(research) challenge behind it; sketch the solution (referring details to elsewhere, as
the final model architecture etc. is not the focus of this work); highlight what mea-
sures beyond textbook knowledge and published results where necessary to arrive
at the solution; and show, wherever possible, examples of the arising difficulties to
exemplify the challenges. Section 2 introduces a face matching application and the
amount of surrounding models needed to make it practically applicable. Likewise,
Section 3 describes the additional amount of work to deploy a state-of-the-art ma-
chine learning system into the wider IT system landscape of an automated print
media monitoring application. Section 4 discusses interpretability and class imbal-
ance issues when applying deep learning for images-based industrial quality control.
In Section 5, measures to cope with the instability of the training process of a complex
model architecture for large-scale optical music recognition are presented, and the
class imbalance problem has a second appearance. Section 6 reports on practical ways
for deep reinforcement learning in complex strategy game play with huge action and
state spaces in non-stationary environments. Finally, Section 7 presents first results
on comparing practical automated machine learning systems with the scientific state
of the art, hinting at the use of simple baseline experiments. Section 8 summarizes
the lessons learned and gives an outlook on future work on deep learning in practice.

2 Face matching

Designing, training and testing deep learning models for application in face recogni-
tion comes with all the well known challenges like choosing the architecture, setting
hyperparameters, creating a representative training/dev/test dataset, preventing bias
or overfitting of the trained model, and more. Anyway, very good results have been
reported in the literature [42,50,9]. Although the challenges in lab conditions are not

3 See e.g. https://modelzoo.co/.

https://modelzoo.co/


Deep Learning in the Wild 3

Fig. 1: Schematic representation of a face matching application with ID detection,
anti-spoofing and image quality assessment. For any pair of input images (selfie and
ID document), the output is the match probability and type of ID document, if no
anomaly or attack has been detected. Note that all boxes contain at least one or several
deep learning (DL) models with many different (convolutional) architectures.

to be taken lightly, a new set of difficulties emerges when deploying these models in a
real product. Specifically, during development, it is known what to expect as input
in the controlled environment. When the models are integrated in a product that is
used “in the wild”, however, all kinds of input can reach the system, making it hard to
maintain a consistent and reliable prediction. In this section, we report on approaches
to deal with related challenges in developing an actual face-ID verification product.

Although the core functionality of such a product is to quantify the match between
a person’s face and the photo on the given ID, more functionality is needed to make
the system perform its task well, most of it hidden from the user. Thus, in addition
to the actual face matching module, the final system contains at least the following
machine learnable modules (see Figure 1):

Image orientation detection When a user takes a photo of the ID on a flat surface
using a mobile phone, in many cases the image orientation is random. A deep
learning method is applied to predict the orientation angle, used to rotate the
image in the correct orientation.

Image quality assessment consists of an ensemble of analytical functions and deep
learning models to test if the photo quality is sufficient for a reliable match. It also
guides the user to improve the picture taking process in case of bad quality.

User action prediction uses deep learning to predict the action performed by the
user to guide the system’s workflow, e.g. making a selfie, presenting an ID or if the
user is doing something wrong during the sequence.

Anti-Spoofing is an essential module that uses various methods to detect if a person
is showing his “real” face or tries to fool the system with a photo, video or mask. It
consists of an ensemble of deep learning models.

For a commercial face-ID product, the anti-spoofing module is both most crucial
for success, and technically most challenging; thus, the following discussion will focus



4 Stadelmann et al.

Fig. 2: Samples from the CASIA dataset [66], where photo 1, 2, and 3 on the left hand
side show a real face, photo 4 shows a replay attack from a digital screen, and photos
5 and 6 show replay attacks from print.

on anti-spoofing in practice. Face matching and recognition systems are vulnerable
to spoofing attacks made by non-real faces, because they are not per se able to detect
whether or not a face is “live” or “not-live”, given only a single image as input in
the worst case. If control over this input is out of the system’s reach e.g. for product
management reasons, it is then easy to fool the face matching system by showing a
photo of a face from screen or print on paper, a video or even a mask. To guard against
such spoofing, a secure system needs to be able to do live-ness detection. We’d like to
highlight the methods we use for this task, in order to show the additional complexity
of applying face recognition in a production environment over lab conditions.

One of the key features of spoofed images is that they usually can be detected
because of degraded image quality: when taking a photo of a photo, the quality
deteriorates. However, with high quality cameras in modern mobile phones, looking
at image quality only is not sufficient in the real world. How then can a spoof detector
be designed that approves a real face from a low quality grainy underexposed photo
taken by an old 640×480 web cam, and rejects a replay attack using a photo from a
retina display in front of a 4K video camera (compare Figure 2)?

Most of the many spoofing detection methods proposed in the literature use hand
crafted features, followed by shallow learning techniques, e.g. SVM [18,34,30]. These
techniques mainly focus on texture differences between real and spoofed images,
differences in color space [7], Fourier spectra [30], or optical flow maps [6]. In more
recent work, deep learning methods have been introduced [3,64,63,31]. Most methods
have in common that they attempt to be a one-size-fits-all solution, classifying all
incoming cases with one method. This might be facilitated by the available datasets: to
develop and evaluate anti-spoofing tools, amongst others CASIA [66], MSU-USSA [43],
and the Replay Attack Database [12] exist. Although these datasets are challenging,
they turn out to be too easy compared to the input in a production environment.

The main differences between real cases and training examples from these bench-
mark databases are that the latter ones have been created with a low variety of hard-
ware devices and only use few different locations and light conditions. Moreover,
the quality of images throughout the training sets is quite consistent, which does
not reflect real input. In contrast, the images that the system receives “in the wild”
have the most wide range of possible used hardware and environmental conditions,
making the anticipation of new cases difficult. Designing a single system that can
classify all such cases with high accuracy seems therefore unrealistic.

We thus create an ensemble of experts, forming a final verdict from 3 independent
predictions: the first method consists of 2 patch-based CNNs, one for low resolution
images, the other one for high resolution images. They operate on fixed-size tiles



Deep Learning in the Wild 5

(a) (b) (c)

Fig. 3: Good (a) and bad (b) segmentations (blue lines denote crop marks) for realistic
pages, depending on the freedom in the layout. Image (c) shows a non-article page
that is excluded from automatic segmentation.

from the unscaled input image using a sliding window. This technique proves to
be effective for low and high quality input. The second method uses over 20 image
quality measures as features combined with a classifier. This method is still very
effective when the input quality is low. The third method uses a RNN with LSTM
cells to conduct a joint prediction over multiple frames (if available). It is effective
in discriminating micro movements of a real face against (simple) translations and
rotations of a fake face, e.g. from a photo on paper or screen. All methods return a
real vs. fake probability. The outputs of all 3 methods are fed as input features to the
final decision tree classifier. This ensemble of deep learning models is experimentally
determined to be much more accurate than using any known method individually.

Note that as attackers are inventive and come up with new ways to fool the system
quickly, it is important to update the models with new data quickly and regularly.

3 Print media monitoring

Content-based print media monitoring serves the task of delivering cropped digital
articles from printed newspapers to customers based on their pre-formulated infor-
mation need (e.g., articles about their own coverage in the media). For this form of
article-based information retrieval, it is necessary to segment tens of thousands of
newspaper pages into articles daily. We successfully developed neural network-based
models to learn how to segment pages into their constituting articles and described
their details elsewhere [57,35] (see example results in Figure 3a-b). In this section, we
present challenges faced and learnings gained from integrating a respective model
into a production environment with strict performance and reliability requirements.

Exclusion of non-article pages A common problem in print segmentation are special
pages that contain content that doesn’t represent articles in the common sense, for
example classified ads, reader’s letters, TV program, share prices, or sports results



6 Stadelmann et al.

OCR Output as XML File System MongoDB

Proxy

FCNN-based 

article 

segmentation

RabbitMQ

Lectorate 

UI

Message as JSON

HTTP Reques t/

Response

Segmentation Result 

Document

Special 

Pages 

Classifier

Newspaper Page 

as Image

Fig. 4: Architecture of the overall pipeline: the actual model is encapsulated in the
“FCNN-based article segmentation” block. Several other systems are required to war-
rant full functionality: (a) the Proxy is responsible to control data input and output
from the segmentation model; (b) RabbitMQ controls the workflow as a message
broker; (c) MongoDB stores all segmentation results and metrics; (d) the Lectorate UI
visualizes results for human assessment and is used to create training data.

(see Figure 3c). Segmentation rules for such pages can be complicated, subjective,
and provide little value for general use cases. We thus utilize a random forest-based
classifier on handcrafted features to detect such content and avoid feeding respective
pages to the general segmentation system to save compute time.

Model management One advantage of an existing manual segmentation pipeline is
the abundance of high quality, labeled training data being produced daily. To utilize
this constant flow of data, we have started implementing an online learning system
[52] where results of the automatic segmentation can be corrected within the regular
workflow of the segmentation process and fed back to the system as training data.

After training, an important business decision is the final configuration of a model,
e.g. determining a good threshold for cuts to weigh between precision and recall, or
the decision on how many different models should be used for the production system.
We determined experimentally that it is more effective to train different models for
different publishers: the same publisher often uses a similar layout even for different
newspapers and magazines, while differences between publishers are considerable.
To simplify the management of these different models, they are decoupled from the
code. This is helpful for rapid development and experimentation.

Technological integration For smooth development and operation of the neural
network application we have chosen to use a containerized microservices architec-
ture [14] utilizing Docker [62] and RabbitMQ [26]. This decoupled architecture (see
Figure 4) brings several benefits especially for machine learning applications: (a) a
separation of concerns between research, ops and engineering tasks; (b) decoupling
of models/data from code, allowing for rapid experimentation and high flexibility



Deep Learning in the Wild 7

Fig. 5: Balloon catheter images taken under different optical conditions, exposing (left
to right) high reflections, low defect visibility, strong artifacts, and a good setup.

when deploying the individual components of the system. This is further improved
by a modern devops pipeline consisting of continuous integration (CI), continuous
deployment (CD), and automated testing; (c) infrastructure flexibility, as the entire
pipeline can be deployed to an on-premise data center or in the cloud with little effort.
Furthermore, the use of Nvidia-docker [62] allows to utilize GPU-computing easily on
any infrastructure; (d) precise controlling and monitoring of every component in the
system is made easy by data streams that enable the injection and extraction of data
such as streaming event arguments, log files, and metrics at any stage of the pipeline;
and (e) easy scaling of the various components to fit different use cases (e.g. training,
testing, experimenting, production). Every scenario requires a certain configuration
of the system for optimal performance and resource utilization.

4 Visual quality control

Manual inspection of medical products for in-body use like balloon catheters is
time-consuming, tiring and thus error-prone. A semi-automatic solution with high
precision is thus sought. In this section, we present a case study of deep learning for
visual quality control of industrial products. While this seems to be a standard use
case for a CNN-based approach, the task differs in several interesting respects from
standard image classification settings:

Data collection and labeling are one the most critical issues in most practical appli-
cations. Detectable defects in our case appear as small anomalies on the surface of
transparent balloon catheters, such as scratches, inclusions or bubbles. Recognizing
such defects on a thin, transparent and reflecting plastic surface is visually challenging
even for expert operators that sometimes refer to a microscope to manually identify
the defects. Thus, approx. 50% of a 2-year project duration was used on finding and
verifying the optimal optical settings for image acquisition. Figure 5 depicts the results
of different optical configurations for such photo shootings. Finally, operators have to
be trained to produce consistent labels usable for a machine learning system. In our
experience, the labeling quality rises if all involved parties have a basic understanding
of the methods. This helps considerably to avoid errors like e.g. only to label a defect
on the first image of a series of shots while rotating a balloon: while this is perfectly
reasonable from a human perspective (once spotted, the human easily tracks the
defect while the balloon moves), it is a no-go for the episodic application of a CNN.

Network and training design for practical applications experiences challenges such
as class imbalance, small data regimes, and use case-specific learning targets apart
from standard classification settings, making non-standard loss functions neces-
sary (see also Section 5). For instance, in the current application, we are looking for



8 Stadelmann et al.

Image Feature response Image Feature response

Negative

Positive

Fig. 6: Visualizing VGG19 feature responses: the first row contains two negative ex-
amples (healthy patient) and the second row positives (containing anomalies). All
depicted samples are correctly classified.

relatively small defects on technical images. Therefore, architectures proposed for
large-scale natural image classification such as AlexNet [27], GoogLeNet [59], ResNet
[24] and modern variants are not necessarily successful, and respective architec-
tures have to be adapted to learn the relevant task. Potential solutions for the class
imbalance problem are for example:

– Down-sampling the majority class
– Up-sampling the minority class via image augmentation [13]
– Using pre-trained networks and applying transfer learning [41]
– Increasing the weight of the minority class in the optimization loss [8]
– Generating synthetic data for the minority class using SMOTE [11] or GANs [21]

Selecting a suitable data augmentation approach according for the task is a necessity
for its success. For instance, in the present case, axial scratches are more important
than radial ones, as they can lead to a tearing of the balloon and its subsequent
potentially lethal remaining in a patient’s body. Thus, using 90° rotation for data
augmentation could be fatal. Information like this is only gained in close collaboration
with domain experts.

Interpretability of models received considerable attention recently, spurring hopes
both of users for transparent decisions, and of experts for “debugging” the learning
process. The latter might lead for instance to improved learning from few labeled
examples through semantic understanding of the middle layers and intermediate
representations in a network. Figure 6 illustrates some human-interpretable repre-
sentations of the inner workings of a CNN on the recently published MUsculoskeletal
RAdiographs (MURA) dataset [45] that we use here as a proxy for the balloon dataset.
We used guided-backpropagation [56] and a standard VGG19 network [55] to visualize
the feature responses, i.e. the part of the X-ray image on which the network focuses
for its decision on “defect” (e.g., broken bone, foreign object) or “ok” (natural and
healthy body part). It can be seen that the network mostly decides based on joints
and detected defects, strengthening trust in its usefulness. We described elsewhere
[2] that this visualization can be extended to an automatic defense against adversarial



Deep Learning in the Wild 9

Original Adversarial Original Adversarial

Image

Feature response

Local spatial entropy

Predicted class Positive Negative Positive Negative

Fig. 7: Input, feature response and local spatial entropy for clean and adversarial
images, respectively. We used VGG19 to estimate predictions and the Fast Gradient
Sign Attack (FGSM) method [21] to compute the adversarial perturbation.

attacks [21] on deployed neural networks by thresholding the local spatial entropy
[10] of the feature response. As Figure 7 depicts, the focus of a model under attack
widens considerably, suggesting that it “doesn’t know where to look” anymore.

5 Music scanning

Optical music recognition (OMR) [46] is the process of translating an image of a page
of sheet music into a machine-readable structured format like MusicXML. Existing
products exhibit a symbol recognition error rate that is an order of magnitude too
high for automatic transcription under professional standards, but don’t leverage
deep learning computer vision capabilities yet. In this section, we therefore report
on the implementation of a deep learning approach to detect and classify all musical
symbols on a full page of written music in one go, and integrate our model into the
open source system Audiveris4 for the semantic reconstruction of the music. This
enables products like digital music stands based on active sheets, as most of todays
music is stored in image-based PDF files or on paper.

We highlight four typical issues when applying deep learning techniques to practi-
cal OMR: (a) the absence of a comprehensive dataset; (b) the extreme class imbalance
present in written music with respect to symbols; (c) the issues of state-of-the-art
object detectors with music notation (many tiny and compound symbols on large
images); and (d) the transfer from synthetic data to real world examples.

Synthesizing training data The notorious data hunger of deep learning has lead to a
strong dependence of results on large, well annotated datasets, such as ImageNet [48]

4 See http://audiveris.org.

http://audiveris.org


10 Stadelmann et al.

Fig. 8: Symbol classes in DeepScores with their relative frequencies (red) in the dataset.

or PASCAL VOC [16]. For music object recognition, no such dataset has been readily
available. Since labeling data by hand is no feasible option, we put a one-year effort in
synthesizing realistic (i.e., semantically and syntactically correct music notation) data
and the corresponding labeling from renderings of publicly available MusicXML files
and recently open sourced the resulting DeepScores dataset [60].

Dealing with imbalanced data While typical academic training datasets are nicely
balanced [48,16], this is rarely the case in datasets sourced from real world tasks.
Music notation (and therefore DeepScores) shows an extreme class imbalance (see
Figure 8). For example, the most common class (note head black) contains more than
55% of the symbols in the entire dataset, and the top 10 classes contain more than
85% of the symbols. At the other extreme, there is a class which is present only once
in the entire dataset, making its detection by pattern recognition methods nearly
impossible (a “black swan” is no pattern). However, symbols that are rare are often of
high importance in the specific pieces of music where they appear, so simply ignoring
the rare symbols in the training data is not an option. A common way to address such
imbalance is the use of a weighted loss function, as described in Section 4.

This is not enough in our case: first, the imbalance is so extreme that naively
reweighing loss components leads to numerical instability; second, the signal of these
rare symbols is so sparse that it will get lost in the noise of the stochastic gradient
descent method [61], as many symbols will only be present in a tiny fraction of the
mini batches. Our current answer to this problem is data synthesis [37], using a three-
fold approach to synthesize image patches with rare symbols (cp. Figure 8): (a) we



Deep Learning in the Wild 11

Fig. 9: Schematic of the Deep Watershed Detector model with three distinct output
heads. N and M are the height and width of the input image, #classes denotes the
number of symbols and #energy_levels is a hyperparameter of the system.

locate rare symbols which are present at least 300 times in the dataset, and crop the
parts containing those symbols including their local context (other symbols, staff
lines etc.); (b) for rarer symbols, we locate a semantically similar but more common
symbol in the dataset (based on some expert-devised notion of symbol similarity),
replace this common symbol with the rare symbol and add the resulting page to the
dataset. This way, synthesized sheets still have semantic sense, and the network can
learn from syntactically correct context symbols. We then crop patches around the
rare symbols similar to the previous approach; (c) for rare symbols without similar
common symbols, we automatically “compose” music containing those symbols.

Then, during training, we augment each input page in a mini batch with 12 ran-
domly selected synthesized crops of rare symbols (of size 130×80 pixels) by putting
them in the margins at the top of the page. This way, that the neural network (on
expectation) does not need to wait for more than 10 iterations to see every class which
is present in the dataset. Preliminary results show improvement, though more inves-
tigation is needed: overfitting on extreme rare symbols is still likely, and questions
remain regarding how to integrate the concept of patches (in the margins) with the
idea of a full page classifier that considers all context.

Enabling & stabilizing training We initially used state-of-the-art object detection
models like Faster R-CNN [47] to attempt detection and classification of musical
symbols on DeepScores. These algorithms are designed to work well on the prevalent
datasets that are characterized by containing low-resolution images with a few big
objects. In contrast, DeepScores consists of high resolution musical sheets containing
hundreds of very small objects, amounting to a very different problem [60]. This
disconnect lead to very poor out-of-the-box performance of said systems.

Region proposal-based systems scale badly with the number of objects present
on a given image, by design. Hence, we designed the Deep Watershed Detector as
an entirely new object detection system based on the deep watershed transform [4]



12 Stadelmann et al.

Fig. 10: Top: part of a synthesized image from DeepScores; middle: the same part,
printed on old paper and photographed using a cell phone; bottom: the same im-
age, automatically retrofitted (based on the dark green lines) to the original image
coordinates for ground truth matching (ground truth overlayed in neon green boxes).

and described it in detail elsewhere [61]. It detects raw musical symbols (e.g., not a
compound note, but note head, stem and flag individually) in their context with a
full sheet music page as input. As depicted in Figure 9, the underlying neural network
architecture has three output heads on the last layer, each pertaining to a separate
(pixel wise) task: (a) predicting the underlying symbol’s class; (b) predicting the energy
level (i.e., the degree of belonging of a given pixel location to an object center, also
called "objectness"); and (c) predicting the bounding box of the object.

Initially, the training was unstable, and we observed that the network did not learn
well if it was directly trained on the combined weighted loss. Therefore, we now train
the network on each of the three tasks separately. We further observed that while the
network gets trained on the bounding box prediction and classification, the energy
level predictions get worse. To avoid this, the network is fine-tuned only for the energy
level loss after being trained on all three tasks. Finally, the network is retrained on the
combined task (the sum of all three losses, normalized by their respective running
means) for a few thousand iterations, giving excellent results on common symbols.

Generalizing to real-world data The basic assumption in machine learning for train-
ing and test data to stem from the same distribution is often violated in field appli-
cations. In the present case, domain adaptation is crucial: our training set consists
of synthetic sheets created by LilyPond scripts [60], while the final product will work
on scans or photographs of printed sheet music. These test pictures can have a wide
variety of impairments, such as bad printer quality, torn or stained paper etc. While
some work has been published on the topic of domain transfer [19], the results are
non-satisfactory. The core idea to address this problem here is transfer learning [65]:
the neural network shall learn the core task of the full complexity of music notation
from the synthetic dataset (symbols in context due to full page input), and use a much
smaller dataset to adapt to the real world distributions of lighting, printing and defect.



Deep Learning in the Wild 13

We construct this post-training dataset by carefully choosing several hundred
representative musical sheets, printing them with different types of printers on dif-
ferent types of paper, and finally scanning or photographing them. We then use the
BFMatcher function from OpenCV to align these images with the original musical
sheets to use all the ground truth annotation of the original musical sheet for the real-
world images (see Figure 10). This way, we get annotated real-looking images “for free”
that have much closer statistics to real-world images than images from DeepScores.
With careful tuning of the hyperparameters (especially the regularization coefficient),
we get promising - but not perfect - results during the inference stage.

6 Game playing

In this case study, deep reinforcement learning (DRL) is applied to an agent in a
multi-player business simulation video game with steadily increasing complexity,
comparable to StarCraft or SimCity. The agent is expected to compete with human
players in this environment, i.e. to continuously adapt its strategy to challenge evolv-
ing opponents. Thus, the agent is required to mimic somewhat general intelligent
behavior by transferring knowledge to an increasingly complex environment and
adapting its behavior and strategies in a non-stationary, multi-agent environment
with large action and state spaces. DRL is a general paradigm, theoretically able to
learn any complex task in (almost) any environment. In this section, we share our
experiences with applying DRL to the above described competitive environment.
Specifically, the performance of a value-based algorithm using Deep Q-Networks
(DQN) [36] is compared to a policy gradient method called PPO [51].

Dealing with competitive environments In recent years, astounding results have
been achieved by applying DRL in gaming environments. Examples are Atari games
[36] and AlphaGo [54], where agents learn human or superhuman performance purely
from scratch. In both examples, the environments are either stationary or, if an evolv-
ing opponent is present, it did not act simultaneously in the environment; instead,
actions were taken in turns. In our environment, multiple evolving players act si-
multaneously, making changes to the environment that can not be explained solely
based on changes in the agent’s own policy. Thus, the environment is perceived as
non-stationary from the agent’s perspective, resulting in stability issues in RL [33].
Another source of complexity in our setting is a huge action and state space (see
below). In our experiments, we observed that DQN got problems learning successful
control policies as soon as the environment became more complex in this respect,
even without non-stationarity induced by opponents. On the other hand, PPO’s per-
formance is generally less sensitive to increasing state and action spaces. The impact
of non-stationarity to these algorithms is subject of ongoing work.

Reward shaping An obvious rewarding choice is the current score of the game (or its
gain). Yet, in the given environment, scoring and thus any reward based on it is sparse,
since it is dependent on a long sequence of correct actions on the operational, tactical
and strategic level. As any rollout of the agent without scoring is not contributing to
any gain in knowledge, the learning curve is flat initially. To avoid this initial phase of



14 Stadelmann et al.

Fig. 11: Heuristic encoding of actions to prevent combinatorial explosion.

no information gain, intermediate rewards are given to individual actions, leading to
faster learning progress in both DQN and PPO.

Additionally, it is not sufficient for the agent to find a control policy eventually,
but it is crucial to find a good policy quickly, as training times are anyhow very
long. Usually, comparable agents for learning complex behaviors in competitive
environments are trained using self-play [5], i.e., the agents are always trained with
“equally good” competitors to be able to succeed eventually. In our setting, self play
is not a straightforward first option, for several reasons: first, to jump-start learning,
it is easier in our setting to play without an opponent first and only learn the art of
competition later when a stable ability to act is reached; second, different from other
settings, our agents should be entertaining to human opponents, not necessarily
winning. It is thus not desirable to learn completely new strategies that are successful
yet frustrating to human opponents. Therefore, we will investigate self-play only after
stable initializations from (scripted) human opponents on different levels.

Complex state and action spaces Taking the screen frame (i.e., pixels) as input to
the control policy is not applicable in our case. First, the policy’s input needs to be
independent of rendering and thus of hardware, game settings, game version etc.
Furthermore, a current frame does not satisfy the Markov property, since attributes
like “I own item x” are not necessarily visible in it. Instead, some attributes need to
be concluded from past experiences. Thus, the state space needs to be encoded into
sufficient features, a task we approach with manual pre-engineering.

Next, a post-engineering approach helps in decreasing the learning time in case of
DQN by removing unnecessary actions from consideration as follows: in principal, RL
algorithms explore any theoretically possible state-action pair in the environment, i.e.,
any mathematically possible decision in the Markov Decision Process (MDP). In our
environment, the available actions are dependent on the currently available in-game
resources of the player, i.e., on the current state. Thus, exploring currently impossible
regions in the action space is not efficient and is thus prevented by a post-engineered
decision logic built to block these actions from being selected. This reduces the size of
the action space per time stamp considerably. These rules where crucial in producing
first satisfying learning results in our environment using DQN in a stationary setting of
the game. However, when training the agent with PPO, hand-engineered rules where
not necessary for proper learning.



Deep Learning in the Wild 15

The major problem however is the huge action and state space, as it leads to ever
longer training times and thus long development cycles. It results from the fact that
one single action in our environment might consist of a sequence of sub-decisions.
Think e.g. of an action called “attack” in the game of StarCraft, answering the question
of WHAT to do (see Figure 11). It is incompletely defined as long as it does not state
WHICH opponent is to be attack using WHICH unit. In other words, each action itself
requires a number of different decisions, chosen from different subcategories. To avoid
the combinatorial explosion of all possible completely defined actions, we perform
another post-processing on the resource management: WHICH unit to choose on
WHICH type of enemy, for example, is hard-coded into heuristic rules.

This case study is work in progress, but what becomes evident already is that
the combination of the complexity of the task (i.e., acting simultaneously on the
operational, tactical and strategic level with exponentially increasing time horizons,
as well as a huge state and action space) and the non-stationary environment prevent
successful end-to-end learning as in “Pong from pixels”5. Rather, it takes manual pre-
and post-engineering to arrive at a first agent that learns, and it does so better with
policy-based rather than DQN-based algorithms. A next step will explore an explicitly
hierarchical learner to cope with the combinatorial explosion of the action space on
the three time scales (operational/tactical/strategic) without using hard-coded rules,
but instead factorizing the action space into subcategories.

7 Automated machine learning

One of the challenging tasks in applying machine learning successfully is to select a
suitable algorithm and set of hyperparameters for a given dataset. Recent research in
automated machine learning [17,40] and respective academic challenges [22] accu-
rately aimed at finding a solution to this problem for sets of practically relevant use
cases. The respective Combined Algorithm Selection and Hyperparameter (CASH)
optimization problem is defined as finding the best algorithm A∗ and set of hyperpa-
rameters λ∗ with respect to an arbitrary cross-validation loss L as follows:

A∗,λ∗ = argmin
A∈A ,λ∈ΛA

1

K

K∑
i=1

L (Aλ,D (i )
tr ai n ,D (i )

val i d )

where A is a set of algorithms, ΛA the set of hyperparameters per algorithm A
(together they form the hypothesis space), K is the number of cross validation folds
and D are datasets. In this section, we compare two methods from the scientific state-
of-the-art (one uses Bayesian optimization, the other genetic programming) with a
commercial automated machine learning prototype based on random search.

Scientific state-of-the-art Auto-sklearn [17] is the most successful automated ma-
chine learning framework in past competitions [23]. The algorithm starts with extract-
ing meta-features from the given dataset and finds models which perform well on
similar datasets (according to the meta-features) in a fixed pool of stored successful

5 Compare http://karpathy.github.io/2016/05/31/rl/.

http://karpathy.github.io/2016/05/31/rl/


16 Stadelmann et al.

Auto-Sklearn TPOT DSM
Dataset Task Metric Validation Test Validation Test Validation Test

Cadata Regression Coefficient Of Determination 0.7913 0.7801 0.8245 0.8017 0.7078 0.7119
Christine Binary Classification Balanced Accuracy Score 0.7380 0.7405 0.7435 0.7454 0.7362 0.7146
Digits Multiclass Classification Balanced Accuracy Score 0.9560 0.9556 0.9500 0.9458 0.8900 0.8751
Fabert Multiclass Classification Accuracy Score 0.7245 0.7193 0.7172 0.7006 0.7112 0.6942
Helena Multiclass Classification Balanced Accuracy Score 0.3404 0.3434 0.2654 0.2667 0.2085 0.2103
Jasmine Binary Classification Balanced Accuracy Score 0.7987 0.8348 0.8188 0.8281 0.8020 0.8371
Madeline Binary Classification Balanced Accuracy Score 0.8917 0.8769 0.8885 0.8620 0.7707 0.7686
Philippine Binary Classification Balanced Accuracy Score 0.7787 0.7486 0.7839 0.7646 0.7581 0.7406
Sylvine Binary Classification Balanced Accuracy Score 0.9414 0.9454 0.9512 0.9493 0.9414 0.9233
Volkert Multiclass Classification Accuracy Score 0.7174 0.7101 0.6429 0.6327 0.5220 0.5153

Average Performance 0.7678 0.7654 0.7586 0.7497 0.7048 0.6991

Table 1: Comparison of different automated machine learning algorithms.

machine learning endeavors. Auto-sklearn then performs meta-learning by initializ-
ing a set of model candidates with the model and hyperparameter choices of k nearest
neighbors in dataset space; subsequently, it optimizes their hyperparameters and
feature preprocessing pipeline using Bayesian optimization. Finally, an ensemble of
the optimized models is build using a greedy search. On the other side, Tree-based
Pipeline Optimization Tool (TPOT) [40] is toolbox based on genetic programming. The
algorithm starts with random initial configurations including feature preprocessing,
feature selection and a supervised classifier. At every step, the top 20% best models
are retained and randomly modified to generate offspring. The offspring competes
with the parent, and winning models proceed to the next iteration of the algorithm.

Commercial prototype The Data Science Machine (DSM) is currently used inhouse
for data science projects by a business partner. It uses random sampling of the solution
space for optimization. Machine learning algorithms in this system are leveraged
from Microsoft Azure, scikit-learn and can be user-enhanced. DSM can be deployed
in the cloud, on-premise, as well as standalone. The pipeline of DSM includes data
preparation, feature reduction, automatic model optimization, evaluation and final
ensemble creation. The question is: can it prevail against much more sophisticated
systems even at this early stage of development?

Evaluation is performed using the protocol of the AutoML challenge [22] for compa-
rability, confined to a subset of ten datasets that is processable for the current DSM
prototype (i.e., non-sparse, non-big). It spans the tasks of regression, binary and multi-
class classification. For applicability, we constrain the time budget of the searches
by the required time for DSM to train 100 models using random algorithm selection.
A performance comparison is given in Table 1, suggesting that Bayesian optimiza-
tion and genetic programming are superior to random search. However, random
parameter search lead to reasonably good models and useful results as well (also in
commercial practice). This suggests room for improvement in actual meta-learning.

8 Conclusions

Does deep learning work in the wild, in business and industry? In the light of the
presented case studies, a better questions is: what does it take to make it work?
Apparently, the challenges are different compared to academic competitions: instead



Deep Learning in the Wild 17

of a given task and known (but still arbitrarily challenging) environment, given by data
and evaluation metric, real-world applications are characterized by (a) data quality
and quantity issues; and (b) unprecedented (thus: unclear) learning targets. This
reflects the different nature of the problems: competitions provide a controlled but
unexplored environment to facilitate the discovery of new methods; real-world tasks
on the other hand build on the knowledge of a zoo of methods (network architectures,
training methods) to solve a specific, yet still unspecified (in formal terms) task,
thereby enhancing the method zoo in return in case of success. The following lessons
learned can be drawn from our six case studies (section numbers given in parentheses
refer to respective details):

Data acquisition usually needs much more time than expected (4), yet is the basis for
all subsequent success (5). Class imbalance and covariate shift are usual (2,4,5).

Understanding of what has been learned and how decisions emerge help both the
user and the developer of neural networks to build trust and improve quality (4,5).
Operators and business owners need a basic understanding of used methods to
produce usable ground truth and provide relevant subject matter expertise (4).

Deployment should include online learning (3) and might involve the buildup of up
to dozens of other machine learning models (2, 3) to flank the original core part.

Loss/reward shaping is usually necessary to enable learning of very complex target
functions in the first place (5,6). This includes encoding expert knowledge man-
ually into the model architecture or training setup (4, 6), and handling special
cases separately (3) using some automatic pre-classification.

Simple baselines do a good job in determining the feasibility as well as the potential
of the task at hand when final datasets or novel methods are not yet seen (4, 7).
Increasing the complexity of methods and (toy-)tasks in small increments helps
monitoring progress, which is important to effectively debug failure cases (6).

Specialized models for identifiable sub-problems increase the accuracy in produc-
tion systems over all-in-one solutions (2,3), and ensembles of experts help where
no single method reaches adequate performance (2).

Best practices are straightforward to extract on the general level (“plan enough
resources for data acquisition”), yet quickly get very specific when broken down to
technicalities (“prefer policy-based RL given that . . . ”). An overarching scheme seems
to be that the challenges in real-world tasks need similar amounts of creativity and
knowledge to get solved as fundamental research tasks, suggesting they need similar
development methodologies on top of proper engineering and business planning.

We identified specific areas for future applied research: (a) anti-spoofing for face
verification; (b) the class imbalance problem in OMR; and (c) the slow learning and
poor performance of RL agents in non-stationary environments with large action
and state spaces. The latter is partially addressed by new challenges like Dota 26,
Pommerman or VizDoom7, but for example doesn’t address hierarchical actions.
Generally, future work should include (d) making deep learning more sample efficient
to cope with smaller training sets (e.g. by one-shot learning, data or label generation

6 See e.g. https://blog.openai.com/dota-2/.
7 See https://www.pommerman.com/competitions and http://vizdoom.cs.put.edu.pl.

https://blog.openai.com/dota-2/
https://www.pommerman.com/competitions
http://vizdoom.cs.put.edu.pl


18 Stadelmann et al.

[15], or architecture learning); (e) finding suitable architectures and loss designs to
cope with the complexity of real-world tasks; and (f) improving the stability of training
and robustness of predictions along with (d) the interpretability of neural nets.

Acknowledgements We are grateful for the invitation by the ANNPR chairs and the
support of our business partners in Innosuisse grants 17719.1 “PANOPTES”, 17963.1
“DeepScore”, 25256.1 “Libra”, 25335.1 “FarmAI”, 25948.1 “Ada” and 26025.1 “QualitAI”.

References

1. Akhtar, N., Mian, A.: Threat of adversarial attacks on deep learning in computer vision: A
survey. arXiv preprint arXiv:1801.00553 (2018)

2. Amirian, M., Schwenker, F., Stadelmann, T.: Trace and detect adversarial attacks on CNNs
using feature response maps. In: ANNPR (2018)

3. Atoum, Y., Liu, Y., Jourabloo, A., Liu, X.: Face anti-spoofing using patch and depth-based
CNNs. In: IEEE Int. Joint Conference on Biometrics (IJCB) (2017)

4. Bai, M., Urtasun, R.: Deep watershed transform for instance segmentation. In: CVPR (2017)
5. Bansal, T., Pachocki, J., Sidor, S., Sutskever, I., Mordatch, I.: Emergent complexity via multi-

agent competition. arXiv preprint arXiv:1710.03748 (2017)
6. Bao, W., Li, H., Li, N., Jiang, W.: A liveness detection method for face recognition based on

optical flow field. Int. Conference on Image Analysis and Signal Processing (2009)
7. Boulkenafet, Z., Komulainen, J., Hadid, A.: Face anti-spoofing based on color texture

analysis. In: Int. Conference on Image Processing (ICIP) (2015)
8. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem

in convolutional neural networks. arXiv preprint arXiv:1710.05381 (2017)
9. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: A dataset for recognising

faces across pose and age. arXiv preprint arXiv:1710.08092 (2017)
10. Chanwimaluang, T., Fan, G.: An efficient blood vessel detection algorithm for retinal images

using local entropy thresholding. Int. Symposium on Circuits and Systems (ISCAS) 5 (2003)
11. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-

sampling technique. Journal of artificial intelligence research 16, 321–357 (2002)
12. Chingovska, I., Anjos, A., Marcel, S.: On the effectiveness of local binary patterns in face

anti-spoofing. In: BIOSIG (2012)
13. Ciresan, D.C., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image

classification. In: CVPR (2012)
14. Dragoni, N., Lanese, I., Larsen, S.T., Mazzara, M., Mustafin, R., Safina, L.: Microservices:

How to make your application scale. In: International Andrei Ershov Memorial Conference
on Perspectives of System Informatics. Springer (2017)

15. Elezi, I., Torcinovich, A., Vascon, S., Pelillo, M.: Transductive label augmentation for im-
proved deep network learning. In: ICPR (2018)

16. Everingham, M., Gool, L.J.V., Williams, C.K.I., Winn, J.M., Zisserman, A.: The PASCAL visual
object classes (VOC) challenge. Int. Journal of Computer Vision 88(2), 303–338 (2010)

17. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Efficient and
robust automated machine learning. In: NIPS (2015)

18. Galbally, J., Marcel, S., Fiérrez, J.: Image quality assessment for fake biometric detection:
Application to iris, fingerprint, and face recognition. IEEE Trans. Image Processing 23(2),
710–724 (2014)

19. Gebru, T., Hoffman, J., Fei-Fei, L.: Fine-grained recognition in the wild: A multi-task domain
adaptation approach. In: ICCV (2017)



Deep Learning in the Wild 19

20. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)
21. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples.

ICLR (2015)
22. Guyon, I., Bennett, K., Cawley, G., Escalante, H.J., Escalera, S., Ho, T.K., Macià, N., Ray, B.,

Saeed, M., Statnikov, A., Viegas, E.: Design of the 2015 ChaLearn AutoML challenge. In:
IJCNN (2015)

23. Guyon, I., Chaabane, I., Escalante, H.J., Escalera, S., Jajetic, D., Lloyd, J.R., Macía, N., Ray, B.,
Romaszko, L., Sebag, M., Statnikov, A., Treguer, S., Viegas, E.: A brief review of the ChaLearn
AutoML challenge. In: AutoML workshop@ICML (2016)

24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR
(2016)

25. Irpan, A.: Deep reinforcement learning doesn’t work yet. Online (Feb. 14): https://www.
alexirpan.com/2018/02/14/rl-hard.html (2018)

26. John, V., Liu, X.: A survey of distributed message broker queues. arXiv preprint
arXiv:1704.00411 (2017)

27. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: NIPS (2012)

28. Larochelle, H., Bengio, Y., Louradour, J., Lamblin, P.: Exploring strategies for training deep
neural networks. JMLR (1), 1–40 (1 2009)

29. LeCun, Y., Bottou, L., Orr, G.B., Müller, K.R.: Efficient backprop. In: Orr, G.B., Müller, K.R.
(eds.) Neural networks: Tricks of the trade, pp. 9–50. Springer, Berlin, Heidelberg (1998)

30. Li, J., Wang, Y., Tan, T., Jain, A.K.: Live face detection based on the analysis of Fourier spectra.
Biometric Technology for Human Identification (2004)

31. Li, L., Feng, X., Boulkenafet, Z., Xia, Z., Li, M., Hadid, A.: An original face anti-spoofing ap-
proach using partial convolutional neural network. In: Int. Conference on Image Processing
Theory, Tools and Applications (IPTA) (2016)

32. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep neural network
architectures and their applications. Neurocomputing 234, 11 – 26 (2017)

33. Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O.P., Mordatch, I.: Multi-agent actor-critic for
mixed cooperative-competitive environments. In: NIPS (2017)

34. Määttä, J., Hadid, A., Pietikäinen, M.: Face spoofing detection from single images using
micro-texture analysis. In: Int. Joint Conference on Biometrics (IJCB) (2011)

35. Meier, B., Stadelmann, T., Stampfli, J., Arnold, M., Cieliebak, M.: Fully convolutional neural
networks for newspaper article segmentation. In: ICDAR (2017)

36. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.:
Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)

37. Ng, A.: Machine Learning Yearning - Technical Strategy for AI Engineers in the Era of Deep
Learning (2018), [to appear]

38. Olah, C., Carter, S.: Research debt. Distill (2017)
39. Olah, C., Satyanarayan, A., Johnson, I., Carter, S., Schubert, L., Ye, K., Mordvintsev, A.: The

building blocks of interpretability. Distill (2018)
40. Olson, R.S., Urbanowicz, R.J., Andrews, P.C., Lavender, N.A., Kidd, L.C., Moore, J.H.: Au-

tomating biomedical data science through tree-based pipeline optimization. In: European
Conference on the Applications of Evolutionary Computation (EvoApplications) (2016)

41. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowledge and Data Engi-
neering 22(10), 1345–1359 (2010)

42. Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: BMVC (2015)
43. Patel, K., Han, H., Jain, A.K.: Secure face unlock: Spoof detection on smartphones. IEEE

Trans. Information Forensics and Security 11(10), 2268–2283 (2016)
44. Perez, C.E.: The Deep Learning AI Playbook - Strategy for Disruptive Artificial Intelligence

(2017)

https://www.alexirpan.com/2018/02/14/rl-hard.html
https://www.alexirpan.com/2018/02/14/rl-hard.html


20 Stadelmann et al.

45. Rajpurkar, P., Irvin, J., Bagul, A., Ding, D., Duan, T., Mehta, H., Yang, B., Zhu, K., Laird,
D., Ball, R.L., et al.: MURA dataset: Towards radiologist-level abnormality detection in
musculoskeletal radiographs. arXiv preprint arXiv:1712.06957 (2017)

46. Rebelo, A., Fujinaga, I., Paszkiewicz, F., Marçal, A.R.S., Guedes, C., Cardoso, J.S.: Optical
music recognition: state-of-the-art and open issues. Int. Journal of Multimedia Information
Retrieval 1(3), 173–190 (2012)

47. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection
with region proposal networks. In: NIPS (2015)

48. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large Scale Visual Recognition
Challenge. Int. Journal of Computer Vision 115(3), 211–252 (2015)

49. Schmidhuber, J.: Deep learning in neural networks: An overview. Neural networks 61,
85–117 (2015)

50. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: A unified embedding for face recognition
and clustering. In: CVPR (2015)

51. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347 (2017)

52. Shalev-Shwartz, S.: Online learning and online convex optimization. Foundations and
Trends in Machine Learning 4(2), 107–194 (2012)

53. Shwartz-Ziv, R., Tishby, N.: Opening the black box of deep neural networks via information.
arXiv preprint arXiv:1703.00810 (2017)

54. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser,
J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of Go with
deep neural networks and tree search. nature 529(7587), 484–489 (2016)

55. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. ICLR (2015)

56. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: The all
convolutional net. arXiv preprint arXiv:1412.6806 (2014)

57. Stadelmann, T., Tolkachev, V., Sick, B., Stampfli, J., Dürr, O.: Beyond ImageNet - deep learn-
ing in industrial practice. In: Braschler, M., Stadelmann, T., Stockinger, K. (eds.) Applied
Data Science - Lessons Learned for the Data-Driven Business. Springer (2018), [to appear]

58. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and
momentum in deep learning. In: ICML (2013)

59. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
Rabinovich, A., et al.: Going deeper with convolutions. CVPR (2015)

60. Tuggener, L., Elezi, I., Schmidhuber, J., Pelillo, M., Stadelmann, T.: DeepScores - a dataset
for segmentation, detection and classification of tiny objects. In: ICPR (2018)

61. Tuggener, L., Elezi, I., Schmidhuber, J., Stadelmann, T.: Deep watershed detector for music
object recognition. In: ISMIR (2018)

62. Xu, P., Shi, S., Chu, X.: Performance evaluation of deep learning tools in Docker containers.
arXiv preprint arXiv:1711.03386 (2017)

63. Xu, Z., Li, S., Deng, W.: Learning temporal features using LSTM-CNN architecture for face
anti-spoofing. In: ACPR (2015)

64. Yang, J., Lei, Z., Li, S.Z.: Learn convolutional neural network for face anti-spoofing. arXiv
preprint arXiv:1408.5601 (2014)

65. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural
networks? In: NIPS (2014)

66. Zhang, Z., Yan, J., Liu, S., Lei, Z., Yi, D., Li, S.Z.: A face antispoofing database with diverse
attacks. In: Int. Conference on Biometrics (ICB) (2012)

67. Zheng, S., Song, Y., Leung, T., Goodfellow, I.: Improving the robustness of deep neural
networks via stability training. In: CVPR (2016)


	Deep Learning in the Wild

