
Anisimova BMC Evolutionary Biology  (2015) 15:76 
DOI 10.1186/s12862-015-0352-y

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZHAW digitalcollection
REVIEW Open Access
Darwin and Fisher meet at biotech: on the
potential of computational molecular
evolution in industry
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Abstract

Background: Today computational molecular evolution is a vibrant research field that benefits from the availability
of large and complex new generation sequencing data – ranging from full genomes and proteomes to microbiomes,
metabolomes and epigenomes. The grounds for this progress were established long before the discovery of the DNA
structure. Specifically, Darwin’s theory of evolution by means of natural selection not only remains relevant today, but
also provides a solid basis for computational research with a variety of applications. But a long-term progress in biology
was ensured by the mathematical sciences, as exemplified by Sir R. Fisher in early 20th century. Now this is true
more than ever: The data size and its complexity require biologists to work in close collaboration with experts in
computational sciences, modeling and statistics.

Results: Natural selection drives function conservation and adaptation to emerging pathogens or new environments;
selection plays key role in immune and resistance systems. Here I focus on computational methods for evaluating
selection in molecular sequences, and argue that they have a high potential for applications. Pharma and biotech
industries can successfully use this potential, and should take the initiative to enhance their research and development
with state of the art bioinformatics approaches.

Conclusions: This review provides a quick guide to the current computational approaches that apply the evolutionary
principles of natural selection to real life problems – from drug target validation, vaccine design and protein
engineering to applications in agriculture, ecology and conservation.

Keywords: Molecular evolution, Applied bioinformatics, Modeling, Selection, Adaptation, Conservation, Drug target,
Resistance, Immune response
Introduction
For over a century computational scientists have been
working side by side with empirical scientists, suppor-
ting key developments in molecular and evolutionary
biology. Despite this, today close interdisciplinary colla-
boration can be still somewhat elusive, with different
communities of scientists speaking “different languages”.
Yet, it is well worth adapting the research process and
communication in order to include a wider range of spe-
cialists, particularly in industries.
Correspondence: maria.anisimova@zhaw.ch
1Institute of Applied Simulations, School of Life Sciences and Facility
Management, Zürich University of Applied Sciences, Einsiedlerstrasse 31a,
Wädenswil 8820, Switzerland
2Department of Computer Science, ETH, Zurich, Switzerland
Full list of author information is available at the end of the article

© 2015 Anisimova; licensee BioMed Central. T
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
A historical perspective shows that progress in life
sciences relies on solid backing from statisticians, ma-
thematicians, computational scientists, and theoreticians
in general. Remarkable in this context is the contribu-
tion by R. A. Fisher – one of the first bioinformaticians,
who developed the statistical theory for experimental
design and hypothesis testing, together with many now
widely used techniques (eg, the analysis of variance, the
method of maximum likelihood, etc.), originally to address
the needs of agricultural research at the Rothamsted
Experimental Station, Together with S. Wright and J. B. S.
Haldane, Fisher has established the field of population
genetics, and contributed to the neo-Darwinian evolution-
ary synthesis, which reconciled Mendelian genetics with
Darwin’s evolutionary theory at the level of hereditary mo-
lecular information. In the 60s the founders of molecular
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evolution E. Zuckerkandl and L. Pauling used quantitative
comparisons to show that molecular changes in a protein
accumulate at a uniform rate [1]. This concept, known as
“molecular clock”, enabled the theoretical work by J. Crow
and M. Kimura, who modeled genetic drift and selection
as realizations of similar processes. The molecular clock
served as basis for Kimura’s neutral theory of molecular
evolution, whereby selection had no significant influence
on shaping genomes with most genetic changes being se-
lectively neutral [2]. The neutral theory greatly contri-
buted to the development of the field as it provided a
simple null hypothesis with testable predictions. Since
then, numerous statistical tests have been developed and
remain highly relevant to detecting selection in genomic
data, as emphasized later in this review.
More recently, the availability of high-throughput mo-

lecular data served to advance statistical and computa-
tional methods for genomics, allowing for a variety of
applications – from medical genetics and pharmacology
to biotechnology, agriculture and ecology. The size and
the complexity of molecular data underline the crucial
role of theoreticians and computational scientists for the
success of biological data exploration . Molecular data
size and complexity have surpassed the so-called “Excel
barrier”, so that companies analyzing genomics data can
no longer rely on old practices. Indeed, pharma and
biotechnology companies see an increasing demand for
computational scientists with strong skills in mathemat-
ical modeling, machine learning, data mining, complex
optimization and data representation (e.g., [3]).

Review
The importance of selection studies at the genomic level
The field of computational genomics has been growing
steadily, attracting more research funding for both aca-
demic and applied research in biotech and pharma com-
panies. Here I focus on the potential of computational
methods to study how genomic changes occur over time
and their impact on phenotype or genetic fitness [4-6].
While Darwin has described how selection may act on a
phenotype, he had no knowledge of hereditary me-
chanisms, and would have been pleased to see how far
we have come today in our understanding of selective
mechanisms in molecular sequences. Current computa-
tional methods can detect genomic regions under selec-
tion and help to describe the biological mechanisms
generating the observed molecular patterns. Considering
this, computational methods provide effective means of
narrowing down the space of plausible candidates or
hypotheses for further testing. A diversity of biological
mechanisms may cause genetic mutations with various
fitness effects, leading to a variety of ways natural se-
lection can manifest itself. The central role of selection
on molecular sequences has been demonstrated in the
adaptation to new environments, the host-pathogen
“arms” race, the emergence of competition, the evolution
of complexity, and in the morphological and behavioral
evolution, for example see Figure 1 of [7]. Natural selec-
tion may act on the protein, on the DNA sequence, and
even on whole genomic features. Negative or purifying
selection conserves the sequence (or other molecular
features), while positive selection acts in a diversifying or
a directional manner favoring specific changes. Positive
selection typically affects molecular regions involved in
genetic conflict, and often acts in an episodic manner
(i.e., for a limited time). Selection scans became an indis-
pensible component of genomic studies (e.g., [8,9]), since
they help to understand the biological constraints and to
identify mutational hotspots due to adaptive processes.
Studies of selective constraints in genomes of popula-

tions and species can have a variety of applications (see
Table 1 for examples). Identification of deleterious muta-
tions (e.g., mutations causing disease) may aid the deve-
lopment of gene therapies and personalized treatments.
Detecting hotspots of diversifying pressure in antigenic
sites, epitopes and pathogenic receptors can be used in
drug and vaccine design. Phylogenetic methods are in-
creasingly used in immunology and cancer genomics.
The analysis of selective pressures and disease transmis-
sion rates using host and pathogen samples provides im-
portant clues for epidemiology, helping to understand
the disease dynamics and to develop predictive strategies
for disease control. This applies equally to animal and
plant hosts as well as their pathogens, thus having appli-
cations also in the domain of agricultural research such
as developing molecular-based strategies for increasing
crop resistance to pathogens. Similarly, evolutionary
studies may provide insights to the genetic basis for
stress tolerance and yields of animal and plant products.
Other applications of molecular evolution and selection
analyses may include biodiversity, conservation, sus-
tainable development, bioremediation, bioengineering
and nutrition. Below I briefly draw attention to some
successful approaches for studying the evolutionary dy-
namics in molecular sequences, illustrated by examples.

Computational approaches to study evolution and
selection in molecular sequences
Evaluating selective pressures on molecular sequences
relies on the comparative evolutionary approach, and
therefore requires at least two homologous sequences
[10]. Simple studies of sequence conservation already go
towards this objective – they allow to pinpoint functio-
nally important parts of a sequence, based on our under-
standing of how natural selection acts on molecular
sequences. In practice, studies of sequence homology
and conservation have been fundamental to the dis-
covery in genomics. In pharma industry, alignment and



Figure 1 Feedback loop between experimental and computational stages of research and development. Applications of genomics and omics in
industry originate from continuous collaborations between theoreticians, computational and experimental scientists in a feedback loop: Computational
predictions provide ground for setting up new experiments and generate new data with new levels of complexity. These data are again analyzed by
computational scientists to refine the predictions and to generate new hypotheses for further experimental validation. In absence of a priori
biological hypotheses, exploratory learning approaches can be used to generate new hypotheses or to guide the parametrization choices for
new statistical models.
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similarity searches are routinely used together with
template-based structure prediction in structure-based
drug design (integrated in purpose-built software).
For protein-coding genes, codon models of substitu-

tion provide means to expand inferences from simple se-
quence conservation to more sophisticated modeling of
codon substitution through time driven by selection and
mutation [11-17]. In such models selection is modeled
explicitly, allowing for variation of selection pressure
across sequence sites and over time. The power of the
approach depends on the number and the range of
sequences analyzed [18]. For large samples from well-
designed experiments, it is possible to accurately predict
the positions and the time episodes where selection has
operated [19-22]. Other tests for selection are not spe-
cific to coding sequences (for review see [7]). Sub-
stitution models in general can be used to detect shifts
in evolutionary rates or sequence composition [23-25],



Table 1 Selected examples of applications of molecular evolution and selection studies

Application type Description Citation Computational approach

Control of HIV infection Protein function study of HIV restriction
properties in TRIM5α

[40] Codon model tests for selection

Model species selection for
pharmaceutical discovery

Assessment of pharmacological target
homology

[42] Phylogenetic analyses of gene families

HIV vaccine development Assessment of phylogenetic diversity in
viral proteins and antibodies;
identification of conserved epitopes

[50,53] Phylogenetic analyses and codon model
tests for selection

Flu epidemics prediction; vaccine
strain selection

Modeling of antigenic dynamics of flu
over time

[54] Phylogenetic diffusion model of
antigenic evolution

Prediction of HIV progression Monitoring the synonymous substitution
rates in viral protein samples from HIV-
positive patients over time

[67] “Relaxed-clock” modeling of codon
evolution

Evaluating epidemics dynamics and
the effect of public health
interventions

Estimating the rates of transmission,
recovery, sampling, and the effective
reproductive number

[81-83] Birth-death phylogenetic models

Flu epidemics prediction; vaccine
strain selection

Modeling adaptive epitope changes and
deleterious mutations outside the
epitopes in flu from one year to the
next

[93] Molecular evolution modeling over viral
genealogies

Crop resistance Identifying the resistant variants of the
Pi-ta gene in rice that is used to control
rice blast disease

[96] Analyses of genetic diversity and
evolution

Mapping disease associations;
complex disease biology;
development personalized medicine

Genome studies identifying sites of
genomic diversification, associations
with diseases, estimating fitness of
mutations

[73,74] Evolutionary analyses of genomic
constraints, genome-wide association
studies

*Disease biology; identification of
vaccine targets

Population genomics of the sexually
transmitted bacteria Chlamydia
trachomatis

[97] Genome-wide evolutionary analyses of
conservation by codon models and
population genetics approaches

*Disease biology Adaptation in the cavity causing bacteria
Streptococcus mutans

[98] Genome-wide evolutionary analyses of
conservation and demography

*Conservation and biodiversity;
climate change

Evaluating hybridization of blue whale
subspecies in southern hemisphere

[99] Population genetics analyses

*Impact of climate change Evaluating the interplay between global
climate change, genetic diversity and
species interactions and community
structure

[100] Evaluation of intraspecific genetic
diversity by population genetics
approaches

*Highlighted in the 2013 editorial “Highlights in applied evolutionary biology” in the peer-reviewed journal “Evolutionary Applications”.
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which are potentially due to adaptive processes. Neutrality
tests based on summary statistics allow inferences of se-
lection if no other demographic factors can be invoked to
explain the observed data [26,27]. Besides these methods,
selection can be detected using Poisson random-field
models [28-30], and tests based on linkage disequilibrium,
haplotype structure and population differentiation [31-36].
The basic idea behind all tests for selection is to com-

pare the molecular patterns observed in genomic sequen-
ces to what could be expected by chance. Significant
deviations point to interesting candidate regions, sites
or time episodes, and provide excellent hypotheses for
further experimental and statistical testing. Different me-
thods use different statistics to make their inferences
about selection. Ideally, the null expectation and alterna-
tive scenarios can be described by a statistical model. This
enables a proper statistical treatment during parameter
estimation, evaluation of uncertainty, hypothesis testing
and model selection. Model-based approaches, while
desirable, should make sure to use models that account
for key biological factors and that are sufficiently robust
against violations of key assumptions. It is important to be
aware, that biological mechanisms that are not included in
the model may have a significant impact on the objective
of inference. If it is not possible to include a certain
biological factor (e.g., population size) in a model, its
influence on the parameter of interest (e.g., selection pres-
sure on the protein) can be investigated using separate
carefully designed tests.
In this respect, Markov models of character substitu-

tion have been particularly successful at inferring selec-
tion at individual sites and lineages. Among widely used
methods are likelihood ratio tests of codon substitution
models, which detect selection on the protein sequence
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using the comparison of nonsynonymous (amino-acid
altering) and synonymous (amino-acid preserving) sub-
stitution rates (for review see [37]). If a test is significant,
Bayesian prediction is used to identify the selected posi-
tions or lineages affected by selection. The pharma-
ceutical giant GlaxoSmithKline (GSK) acknowledged the
applied value of these methods by an award to the
principal investigator Prof Ziheng Yang (UCL, UK). The
relevance of selection analyses with codon models for
downstream applications can be demonstrated on a se-
lection of case studies. A classic example is the human
major histocompatibility complex molecules of class I
(glycoproteins mediating cellular immunity against intra-
cellular pathogens), where all residues under diversifying
selection pressure were found clustered in the antigen rec-
ognition site [38,39]. In another example, selection ana-
lyses identified a sequence region of 13 amino acids with
many positive-selected sites in TRIM5α, involved in cellu-
lar antiviral defense [40]. Functional studies of chimeric
TRIM5α genes showed that the detected region was re-
sponsible for the difference in function between the rhesus
monkey linage where TRIM5α restricts HIV-1 and the hu-
man TRIM5α that has only weak restriction.
More generally, the numerous genome-wide scans in

mammals agree that genes affected by positive diversifying
selection are largely responsible for sensory perception, im-
munity and defense functions [41]. Consequently, pharma
and biotech companies should make a greater use of com-
putational approaches to detect genes and biochemical
pathways subject to differential adaptive evolution in
human and other lineages used as experimental model
organisms, for example as it has been done by R & D of
GSK [42,43]. Such studies can be extremely valuable, for
example when selecting drug targets. Particularly, evo-
lutionary analyses can pinpoint evolutionary differences
between model organisms used for drug target selection.
Such differences can be responsible for unpredicted dis-
parities in response to medical treatment, as it has been
highlighted by the tragic effects of TGN1412 treatment
during human drug trials in 2006 [44]. Selection analyses
are also important for research in agriculture or conserva-
tion, since in plant genomes positive selection affects most
notably disease resistance genes [45,46], defense enzymes
such as chitinases [47] and genes responsible for stress tol-
erance [48]. Consequently evolutionary studies help to de-
tect proteins, binding sites and their interactions relevant
for host-pathogen coevolution. For example, diversifying
selection drives the evolution of several exposed residues
in leucine-rich repeats (LRRs) of the bacterial type III
effectors (that attack plant defense system) from the
phytopathogenic R. Solancearum infecting >200 of plant
varieties including agriculturally important crops [49].
Similarly, studies of phylogenetic diversity and selection in
viral strains and antibody sequences are contributing to
the new HIV vaccine development strategy, whereby anti-
bodies are designed to bind to conserved epitopes of se-
lected viral targets [50-53]. Moreover, molecular evolution
modeling approaches can greatly enhance the modeling of
antigenic dynamics of pathogens over time (e.g., [54]).
In protein coding sequences selection may also act on

the DNA, whereby synonymous codon changes may
affect protein’s stability, expression, structure and func-
tion [55,56]. Translational selection manifests itself as
the overall codon bias in a gene to match the abun-
dances of cognate tRNA. Remarkably, this property can
be successfully used in biotechnology, for example to
dramatically increase transgene expression by synthe-
sizing sequences with optimal synonymous codons [57].
Optimal codon usage may be approximated by codon
usage bias – using bioinformatics methods [58]. Besides
this, more subtle selective mechanisms may act on cer-
tain codon positions; affecting splicing, mRNA stability,
gene regulation protein abundance, folding and function
(e.g., [59-63]). In human genes this may lead to disease
(such as cancers and diabetes) or may be responsible for
differences in individual responses to drug treatment
(e.g., [64]). Haplotypes with synonymous changes may
have increased fitness and will be consequently increase
in frequency in a population. Therefore, the knowledge
of these specific synonymous polymorphisms may be
important to explain differential treatment effects in
population and contribute to the development of per-
sonalized medicines [65]. Molecular evolution methods
are powerful enough to detect such interesting candidate
cases: Recent study of synonymous rates detected many
disease related genes, particularly associated with various
cancers, as well as many metabolizing enzymes and
transporters, which affect the disposition, safety and effi-
cacy of small molecule drugs in pharmacogenetics [66].
This shows that computational molecular evolution stu-
dies have real power to predict genes and codon positions
where a replacement of synonymous codons changes pro-
tein fitness. Such predictions promise to be valuable for
applications in protein engineering. Indeed, some biotech
companies such as DAPCEL are already using the know-
ledge of interesting synonymous positions for enhanced
protein production. Compared to laborious and time-
consuming trial-and error experiments, computational
prediction offers a fast way of obtaining candidate genes
and positions for experimental validation. Furthermore,
monitoring of the synonymous rates may be also infor-
mative for diagnostics purposes, as has been shown in
evolutionary studies of serial viral samples from HIV-
positive patients [67].
Species evolution is however a result of complex popu-

lation dynamics, making population scale studies of gene-
tic diversity a powerful complement to codon-based
selection analyses. Successful population level techniques
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include tests of neutrality [26], Poisson random-field
models (e.g., [68,69]) combined with demographic mo-
deling and genome-wide association studies [70]. These
methods apply to full genome sequences helping to iden-
tify also non-coding genomic regions of functional rele-
vance and those associated with certain population traits.
For medical genetics, uncovering the relevance of genomic
variation in populations helps to pinpoint the disease
variants and use this information in the development
of personalized medicines and treatments. Determining
fitness of specific mutations is now possible using macro-
evolutionary inferences and population genetics approa-
ches [71-73], which can be successfully combined with
genome-wide association studies [74]. These inferences
could be combined with applications in a clinical con-
text [75].
However, many traits are shaped by multiple loci so that

the effects of any single mutation can be observed only
through their epistatic effects [76,77]. Consequently, com-
putational approaches recently extended single loci infer-
ences to detecting epistatic effects of mutations through
the identification of polygenic selection, i.e., whereby
selection affects whole gene clusters whose protein pro-
ducts interconnected in the biological pathways that they
share. Such analyses found that polygenic selection often
affects pathways involved in immune response and adap-
tation to pathogens [78], which is also consistent with re-
sults from single loci studies.
Another approach for detecting selective signatures is

based on detecting shifts in evolutionary substitution rates
over time, for example based on covarion or Markov mo-
dulated models [16,79]. Such methods may be used to
detect functional shifts in proteins of interest, providing
evolutionary information that aids structural and func-
tional protein prediction. Therefore such analyses can be
helpful for many pharma and biotech applications that use
structural modeling to design proteins and peptides
for therapeutic or other biotechnology applications (e.g.,
[80]). Alternatively, changing diversification rates can
provide evidence for changing environments, emerging
pathogens and shed light on epidemiological dynamics.
Diversification bursts or exponential growth, for example,
may represent the emergence of particularly virulent
strains resulting in epidemics. Such selective signatures
can be characterized by phylogenies or genealogies rela-
ting the molecular sequences in a viral sample based on
the birth-death models of stochastic branching processes
[81]. This approach allows to evaluate the effects of public
health interventions by estimating the rates of trans-
mission, recovery, and sampling, and consequently, the ef-
fective reproductive number. For epidemiology-related
problems, these techniques become particularly powerful
when combined with classical epidemiologic models SIR
or SIS [82,83]. Evolutionary methods can be useful also
for the analyses of somatic hypermutation in antibody se-
quences during antibody maturation, or for monitoring
somatic mutations in cancerous tissues [84-87]. Indeed,
applications of phylogenetic methods to cancer and im-
munology research are now attracting more attention and
funding (e.g., [88,89]).
Selection may also operate on whole genomic features,

such as indels, gene order, gene copy numbers, transpos-
able elements, miRNAs, post-translational modifications,
etc. To detect selective signatures of conservation or
adaptation, the observed genomic patterns are compared
with a neutral expectation, i.e., patterns that can arise by
chance alone. For example, phylogenetic patterns pro-
duced by tandem repeats in eukaryotic proteins can be
used to identify interesting candidate genes that might
be under diversifying pressures [90]. In plants a similar
analysis strongly pointed to lineages where diversification
(in terms of unit number and their order conservation)
occurs in LRRs that are found in abundance in plant re-
sistance genes [91]. Such analyses allow for example to
pinpoint the relevant genes and lineages where selection
on tandem repeat units is due to adaptation to emerging
pathogens or to changing environmental conditions. This
opens the door to applications such as synthetically intro-
ducing identified gene variants into plant genomes to
produce crops with improved resistance or better stress
tolerance properties. Indeed, crop protection agencies and
companies (e.g., Syngenta, Rothamsted Research) have
started using evolutionary analyses to elucidate the origins
of resistance to pathogens [92].
Even when selection study is not the goal of the ana-

lyses, modeling its influence on genomic data is of utmost
importance. Failing to do so may lead to biased and in-
accurate inferences that could misguide follow-up experi-
mental studies. However, modeling selection enhances the
predictive power of methods that are used to study adap-
tive or antagonistic processes. A nice example is the re-
cent predictive fitness model for influenza, which couples
the fitness values and frequencies of strains with molecu-
lar evolution modeling on an influenza stain genealogy for
haemaglutinin gene [93]. This approach uses observed
viral samples taken from year to year to predict evolution-
ary flu dynamics in the coming year, which is practically
relevant for selecting vaccine strains for the new flu
season.

Conclusions
The last decades have seen the development of accurate
and powerful computational methods for evaluating evo-
lution and selection in molecular data. Both industry
and basic research should discover and exploit the full
potential of these methods, as they provide efficient
means to generate viable biological hypotheses, inclu-
ding interesting candidates cases for further experimental
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testing. Examples above included such successful applica-
tions. Genomics and omics data provides immense oppor-
tunities for applications in industry. While pharma and
biotech giants are generally aware of this, employing their
own bioinformaticians, smaller companies often do not
know of current possibilities provided by the state-of the
art computational methods and the volumes of newly
generated data. But even bioinformatics teams in phar-
maceutical giants usually have no sufficient capacity to de-
velop suitable techniques for the analysis of their data, as
they focus on more imminent results for their company.
The development of robust statistical methodology de-
mands substantial time doing basic research. Further, even
for method developers it is hard to keep pace with all the
relevant advances in the field. For this reason, industry
should actively engage with researchers in academia –
starting with networking and discussions of company’s
needs and the potentially useful academic results, gra-
dually bringing this into productive industry-academia
collaborations.
Finally, productive collaborations require efficient com-

munication between theoreticians, computational and ex-
perimental scientists, with a continued feedback loop built
into the research process (Figure 1). While research in
biology is traditionally hypothesis-driven, current volumes
of new complex data also require exploratory learning
approaches. Therefore today, machine learning, pattern
recognition and data mining approaches became essential
in the exploration of big data. Such techniques can help
with the choice of suitable model parameterizations [94].
Computational predictions can be used to formulate new
biological hypotheses. To validate these hypotheses, new
experiments should be set up in order to generate
new data, possibly with new levels of complexity. These
data can be analyzed again by computational scientists, in
order to refine the initial predictions and to refine or
generate new hypotheses for further experimental va-
lidation, re-starting the loop (Figure 1). While it is easy to
generate genomic data today, greater thought must be
invested into the experimental design, in order to make
the statistical inferences more accurate and informative.
This requires solid expertise in statistics.
To conclude, that pharma and biotech companies

should actively seize upon the potential of computa-
tional molecular evolution approaches in their transla-
tional research. As shown above, this can include drug
target identification and validation, animal model selec-
tion, preclinical safety assessment, vaccine design, epi-
demics control and drug repositioning. Such techniques
are promising to become mainstream, strengthening the
current position of translational research in industry.
The translational value of computational molecular evo-
lution is not limited to health and pharma industry, but
also include a variety of other exciting applications –
protein engineering, agriculture, environmental risk as-
sessment, ecology, biodiversity and conservation. Again,
this cannot be done without strong interdisciplinary part-
nerships. Bioinformatics has now become a vibrant and
highly interdisciplinary area of research and the outlook
for its future and its applications is very optimistic –
“Bioinformatics alive and kicking” [95].
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