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The functional principles of a hydrostatic skeleton were combined to obtain a 
physical model which includes geometry, number and length-tension relationships 
of the elastic elements in the body wall, internal volume and internal pressure. The 
model skeleton with pre-set internal volume assumes a certain shape and develops 
a specific internal pressure in order to minimize the potential energy stored in the 
elastic elements. This shape is calculated as equilibrium state by using finite element 
methods and optimization techniques. This model is flexible enough to accommodate 
different geometries and length-tension-relationships of the elastic elements. Pres- 
ently, the model is implemented with linear length-tension relationships and certain 
geometrical restrictions, such as uniform width over the entire animal, and rec- 
tangular cross sections; the general case is outlined. First simulations with the 
"unit-worm" yield stable solutions, i.e. stable shapes for all combinations of para- 
meters tested so far. They define the conditions for bringing all muscles to an optimal 
operating point. We detected a pressure maximum with increasing volume, assessed 
the contribution of circular muscles to bending, and determined the shapes of 
animals with different muscle activations in each body half (Chapman-matrix). We 
summarize our results by the volume rule and stabilization rule, two simple concepts 
which predict changes in shape as the result of muscle activation. 

1. Introduction 

Pneumatic constructions are pressurized systems with flexible and stress resistant 
walls (Otto, 1982). In biology they are better known as hydrostatic skeletons and 
occur in almost all groups of organisms. Additional knowledge about stability, 
energy content, and the influence of particular elastic components within the body 
wall on the shape of  the complete structure would facilitate understanding of  such 
diverse biological structures as plant cells (Dierks et al., 1986; Wainwright, 1970), 
tentacles of  hydra (Batham & Pantin, 1950), or the trunk of  an elephant (Keir & 
Smith, 1985). Such a model could also contribute tO ideas in evolutionary biology 
(Gutmann, 1988). 
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This type of construction may not always be obvious. It is present, for example, 
in arthropods where--al though adults are confined within a rigid cuticle--pneumatic 
principles are transiently important during moulting or are used in later stages to 
bend certain joints (Alexander, 1979; Barrington, 1979). Also, bones of vertebrates 
are assumed to gain additional stiffness by incorporation of pneumatic principles 
(Draenert, 1986). 

Hydrostatic skeletons with one or several muscle layers in the body wall are 
developed in Plathelminthes, Nemertinea, Nematoda,  Mollusca and Annelida (see 
Barrington, 1979, for review). 

The functional principles of the hydrostatic skeleton are well understood (e.g. 
Chapman, 1950). Basically we may think of it as an incompressible fluid enclosed 
by an elastic body wall. By contraction and relaxation of muscles lying in or inserting 
at the body wall, the internal pressure and thereby the shape of  the whole organism 
can be changed. Fully contracted muscles are thus elongated by muscles acting as 
antagonists via the internal pressure. In this way, an amazing variety of body shapes 
can be generated, which are used in digging, swimming, crawling, ventilation, 
attachment, etc. 

Still, it is difficult to understand the precise physical functioning of  a hydrostatic 
skeleton on a purely intuitive basis, since the activation of  one muscle affects, in 
principle, the length of all others in a way which depends on internal pressure, 
geometry and length-tension relationship (compare considerations of Chapman, 
1950). Direct experimental testing of these intuitions is impossible, since monitoring 
or manipulating the tension of groups of muscles requires the opening of  the body 
cavity. 

It is the purpose of  this paper to present a mathematical model for a hydrostatic 
skeleton which can be handled on a computer. We chose annelids, since their 
metameric organization and clear arrangement of muscle layers favour such an 
approach. Our first aim is to adapt this model to simulate the medical leech Hirudo 
medicinalis  (L.), which will be presented in a forthcoming paper. We chose this 
species because its body is not divided by septa and much is already known about 
its behavior, muscular organization and neuronal control (for review see Muller et 
al., 1981; Sawyer, 1986). It is, to our knowledge, the first whole body model of  a 
higher animal including all major muscles which influence the shape. By carrying 
out various simulations with this model and relating them to experimental findings, 
we hope to achieve a better understanding of  the system behavior of  this skeleton 
type. This may also complement neurophysiological investigations which describe 
muscle co-ordination during certain activities (Ort et al. 1974; Kristan et al., 1982; 
Magni & Pellegrino, 1978) and should allow predictions of  muscle co-ordination 
from kinematic studies (Kristan et al., 1974; Stern-Tomlinsen et al., 1986). In 
addition, with our approach we can study the effect of activation of each muscle 
separately, calculate energy consumption and predict internal pressure. 

In the next section we derive a physical equivalent of the system, which consists 
of  a sequence of similar segments in which longitudinal and cross sections are 
quadrilateral. The length of elastic elements situated in the edges of  the segments 
adjust in such a way that the potential energy of  the entire system is minimized 
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under the restriction of a previously chosen constant volume. The following two 
sections outline how this concept is transformed into a computer simulation by 
established numerical methods such as finite element analysis and minimization 
under constraints. Finally, some simulations are presented. 

Some aspects of  this paper were presented in a preliminary form (Wadepuhl & 
Beyn, 1987, 1988). 

2. The Physical Equivalent of a Hydrostatic Skeleton 

Our geometrical substitute of a typical annelid hydrostatic skeleton consists of a 
sequence of  similar segments (Fig. 1). Each of  these segments has six faces. The 
cross and longitudinal sections are quadrilateral. This general form includes the 
simple case of  a sequence of cubes [Fig. l(a)]  as well as the more refined shape 
shown in Fig. l(b), which has been adapted to the relaxed state of a leech. We have 
several reasons for using our geometrical simplification: 

(i) It reflects the segmental structure of many annelids. 
(ii) It is much simpler to compute deformations of quadrilateral than of, for 

example, cylindrical objects. 
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FIG. 1. Minimal length of elastic elements, arrangements  of  hexahedrals  and operating volume. (a l )  
"uni t -worm" inflated with minimal volume, i.e. that volume which is enclosed by elastic elements at its 
minimal length ( =  1 U). All muscles have the same lengths and length tension curves. Note that no 
changes in shape are possible in this condition. U = arbitrary length unit. (a2) The same skeleton as 
(a l )  but inflated by 180 arbitrary volume units ( = U3). This configuration was used in most  simulations. 
(B) Changes  in minimal length allow for adjustment  to different body shapes.  

(iii) 

(iv) 

Variation of the length of the edges allows for a high flexibility of the body 
(see Fig. 11). 
The straight edges of our segments correspond to parts of the muscular 
system which can be activated separately (cf. Stuart, 1970; Ort et aL, 1974). 
In each segment there are 4 edges representing longitudinal and 8 edges 
representing circular muscles. In the model, we call these "elastic elements". 
The 4 lateral edges from the latter group can also incorporate the effects of 
the dorsoventral muscles. So far, only the oblique muscles have not been 
directly modelled. Depending on the shape of the body, they may either 
support the longitudinal or the circular muscles and maintain the pressure 
(Mann, 1962). 
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(v) Our model can be thought of  as a finite element system using hexahedral 
elements (Norrie & de Vries, 1978, Section 9), a technique well established 
in engineering. 

Our goal is to compute equilibrium positions of  a hydrostatic skeleton. In doing 
so we neglect all interactions with the environment such as at tachment to a surface, 
hydrodynamic resistence of the medium, and gravity. The last simplification means 
that we consider only animals living in water, since their specific weight is close to 
1 (Jones, 1978). Consequently, we have not taken in account the terminal suckers 
of  the leech. 

In a system of N segments with volumes V~, i = 1 , . . . ,  N, our basic assumption 
is that the total volume stays constant 

N 

E V/ = Vtota I. (2.1) 
i=1 

The actual shape of a segment is determined by its 8 corners in the following way: 
use straight lines to connect first the corners and then corresponding points on 
opposite edges of  the surfaces. Precise formulas will be given in sections 3 and 4. 
By this geometrical specification we do not allow segmental surfaces to bulge. In 
this way, we account to a certain extent for the combined stiffness of  the epidermis 
and muscle layers. 

Our model has a total of  8 N + 4  edges. We assume these to be springs each with 
a specific length tension relationship, which may depend on the position of the edge 
within the body. More precisely, following our replacement of  the muscles by 
separate springs, we use the term force instead of tension. For a typical muscle, we 
express the force F in terms of  the length L and the activation parameter  a, which 
we normalize from 0 to 1. 

Figure 2(a) shows a linear relationship between F and L as in Hooke 's  law, 
whereas Fig. 2(b) shows a typical non-linear relationship, derived from actual data 
(Miller, 1975). Passing from the linear to the non-linear case in our simulations can 
clarify the role of  the non-linear length-tension relationship in a hydrostatic skeleton. 

In each case, F(L, 0) gives the passive tension curve and F(L, 1) the curve of  the 
isometric maxima. The quantities, which are usually obtained experimentally, are 
F(L, 1)-F(L,  0) [Fig. 2(b)]. 

The potential energy stored in a muscle of  length L and activation a is obtained 
by integrating the force 

P(L, a)= F(l, a) dl. (2.2) 
Lmin 

Here we have normalized the potential to be zero at the minimal length Lm~,, below 
which the muscle cannot contract. 

The total energy of our hydromechanical  system is 

8 N + 3  

Eto,a, = ~ P)(L), aj), (2.3) 
j = o  

where Lj is the length, a i the activation and P~ the potential function o f t h e j t h  spring. 
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FIG. 2. Force versus length for linear and non-linear elastic elements. (a) Force rises linearly with 
length of  elastic elements used in the "unit-worm'" (Hooke's  Law). The lines represent length-force 
relationships o f  the relaxed F(L, O) and activated F(L, 1 ) elastic element. The corresponding constants 
are 1 and 16, as used for the Chapman-mat r ix  (Figs 13 and 14). The intermediate line shows F(L, 1 ) -  
F(L, 0) and correlates with the active length-tension curve in (b). Force equals zero at minimal length 
( = 1 U). (b) Length-tension curves of  leech longitudinal muscles for comparison.  Curves fitted to data 
of  Miller (1975) obtained from Haemopis sanguisuga L. F(L, 0) denotes passive and F(L, 1) - F(L, O) 
active length-tension curve. F(L, 1), curve of isometric maxima. Such curves can also be incorporated 
into the model. 

The equilibrium positions of our system are defined by the minima of the total 
potential energy under the constraint of constant volume. So only energy differences 
are relevant during activation and we can a s s u m e  E to t a  I = 0  in the relaxed state, 
which corresponds to aj = 0 for all j. 

Our formulation of  an equilibrium position implies a constant hydrostatic pressure 
p throughout the body (see Section 3). Similar to kinetic gas theory, we have 

dEtotal = p d Vtotat. (2.4) 

This can be interpreted as follows: if we increase against the internal pressure the 
total volume by d Vtota~, then we have to supply the energy p d Vtota~. The energy is 
stored in the elastic elements of  the body wall. Hence, the pressure measures the 
sensitivity of the total energy due to changes in the volume. 

The essential features of  our model are summarized in Fig. 3. 

3. The Mathematical Model  in the General Case 

In order to make the model from the previous section computable, we must 
express the total volume and the total energy in terms of one and the same set of 
variables. In the general case, as shown in Fig. 4 for N = 4 segments, we use the 
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FIG. 3. Summary of essential features of the model• Biological correlates are printed in parentheses. 
For details see text. 
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FIG. 4. Skeleton composed of 4 segments, sketched to indicate variables and to demonstrate possible 
deformation of segments in the general model. For details see text. 

c o - o r d i n a t e s  o f  t h e  c o r n e r s  as  v a r i a b l e s  

Qj = (qj1,  qj2, qj3), j = 0 , . . . , 4 N + 3 .  

Le t  us  l o o k  a t  t h e  f i rs t  s e g m e n t  S w i t h  c o r n e r s  Q0,  -- - ,  Q7. As  u s u a l  in  f in i t e  e l e m e n t  

m e t h o d s  (cf. ,  N o r r i e  & d e  Vr ies ,  1978,  S e c t i o n  9) ,  w e  d e s c r i b e  t h e  s e g m e n t  as  t h e  
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image of the unit cube under some transformation T (Fig. 5). We take T to be 
tri-linear. 

T(x, y, z) = Qo(1 - x ) ( 1  - y ) ( 1  - z) + Q,(1 - x ) ( 1  - y ) z  + Q2(1 - x)y(1 - z) 

+ Q3(1 - x)yz + Qax(1 - y ) ( 1  - z) + Qsx(1 - y ) z  

+Q6xy(1-z)+QTXyZ, O<-x,y,z<-l. (3.1) 

This mapping  meets the physical requirements of  the last section because of the 
following two properties: it maps the corners of  the unit cube onto the given corners 
of  the segment, and it maps lines parallel to the co-ordinate axes onto straight lines. 
It is in fact the only mapping with these two properties. Moreover, any surface is 
uniquely determined by its 4 corners, so neighboring segments can be put together 
without penetrating each other. 

By the change of variables formula (e.g., Lung, 1968, section 14) the volume of  
S is 

fofo;o Vs(Qo, • • . ,  QT) = IJ-c(x, y, z) I dx dy dz, (3.2) 

with the Jacobian determinant 

Jr(x ,y , z )=det  ~x T ~y, ~z " (3.3) 

Using eqn (3.2) we find for the total volume of our model 

N 

V(Qo, . . . ,  Q4N+3)= ~ V, (Q4, -4 , . . . ,  Q4,+3) (3.4) 
i=1 

This functional is rather expensive to evaluate in contrast to the energy functional 
given by eqn (2.3), 

8 N + 3  

E ( Q o , . . . ,  Q4N+3)= Z Ps(L~, aj) (3.5) 
j=o 

tP 3 
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FIG. 5. Transformation of unit cube. For details see text. 
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Let [ [ denote the Euclidean length of a vector; then we obtain from Fig. 5 the 
lengths of the circular muscles as 

Lj+3 = [Qk+3 - Q~+21, 

i = 1 , . . . ,  N + I ,  j = 8 ( i - 1 ) ,  k = 4 ( i -  1), (3.6a) 

and the length of  the longitudinal muscles as 

Lj+4=IQk+a-Qk[, Li+5=lQk÷~-Qk+,l, Lj+6=IQk+6-Qk+2] 

i=l, . . . ,N, j = 8 ( i - 1 ) ,  k = 4 ( i - 1 ) .  (3.6b) 

Our mathematical description of the steady state is then the following constrained 
minimization problem, 

Minimize E(Qo,..., Q,IN+3)  

subject to V(Qo,..., Q4,,+3)= Vto,al. (3.7) 

Finally we eliminate the six degrees of freedom, caused by translation and rotation 
of the body, by requiring 

qol = qo2 = qo3 = qll = q21 = q23 =0.  (3.8) 

This fixes Qo in the origin, Q2 on the y-axis and Q~ in the yz-plane. The complete 
problem [eqns (3.7) and (3.8)] now has a total of 12N + 6 unknowns (258 if N = 21). 

Any local minimum of  eqns (3.7) and (3.8) corresponds to a stable steady state 
of the whole system, and it is easily seen that such a minimum exists under mild 
assumptions on E. However, whether these minima are unique depends on the shape 
of  the force functions in respect to the length. If this relationship is linear [as in 
Fig. 2(a)], several solutions with different degree of  stability exist, if the volume is 
above a critical value. The bifurcation behavior of  the problem is under investigation. 

At a local minimum of eqn (3.7) there exists a Lagrange multiplier p (e.g. Norrie 
& de Vries, 1978, section 7) such that 

a__EE aV 
6qdk ( Q o , . . . ,  Q,N+3)= P ~---~k ( Q o , . . . ,  Q4N+3), 

j = 0 , . . . , 4 N + 3 ;  k =  1,2,3.  (3.9) 

Comparing this with the total differentials in eqn (2.4), we see that p is exactly the 
internal pressure. Since common numerical methods for constrained minimization 
problems also provide estimates of the Lagrange multiplier (Fletcher, 1981) we get 
the internal pressure as a result of our calculation (see section 5). 
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FIG. 6. Shape of unit-worm as calculated by the general model. The volume of  180U s equals 8-57 
times minimal volume. 

To get a first impression, we show in Fig. 6 the equilibrium state of  a 21 segment 
body, in which all muscles have the same properties. 

P~(L, 0 ) = ½ ( L - 1 )  2, j = 0  . . . . .  171. 

Although this is certainly an oversimplified situation, we already see that in a relaxed 
state a body form with an increasing cross section towards the middle seems favorable 
from an energy standpoint.  

The volume was adjusted to 

VtotaJ = 180 

of  arbitrary units (U3). Increasing the prescribed volume beyond 243 U 3, the multiple 
solutions appear.  Translating the possible multiplicity of  stable solutions into biologi- 
cal terms, we must keep in mind that a certain pattern of  muscle activation can 
result in more than one body shape, depending on which was the shape to begin with. 

4. The  M o d e l  with U n i f o r m  Width  

In this section, we set up a reduced model which essentially restricts the movements 
of  the hydrostatic skeleton to one plane. More precisely, we assume that the body 
now has a uniform width in all segments and that the cross section of each segment 
is rectangular (Fig. 7). The geometrical shape of  the worm is then specified by the 
value of the width and by the longitudinal section which consists of  a sequence of 
quadrilaterals. 

This reduced model can still represent all co-ordinations requiring movements in 
the vertical and horizontal plane, since we can take Fig. 7 either as the lateral or 
the dorsal view of the body. Torsional movements  have been excluded by this 
restriction, but these probably  depend on the oblique muscles, which we have 
neglected anyway. 

FIG 7. (a) Scheme of a skeleton showing the variables used in the model of  uniform width and some 
possible deformation of  segments.  For details s e e  t e x t .  (b) Notations used in cyclic quadrilaterals. 
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As for our computations,  this simplification considerably reduces the number  of  
variables (from 258 to 65 for a 21-segment worm),  so that by a suitable implementa- 
tion, the system becomes manageable on a Personal Computer.  This increases 
flexibility and reduces cost of  computations,  which is advantageous when testing 
multiple combinations of  parameters (see section 5). We note, however, differences 
to equilibrium states calculated with the full model from section 3, which produces 
different width over the length of the skeleton, in which all muscles have equal 
properties. It may also be considered as an advantage of the simplified model that, 
up to now, no instabilities of  multiple solutions were detected. 

Instead of  co-ordinates of  corners, we now use as variables the following lengths 
[see Fig. 7(a)] 

li, i = l , . . . , N + l  (lateral) 

d ,  i = 1 . . . . .  N (dorsal) 

v~, i =  1 . . . .  , N (ventral) 

w (width). 

We collect these in the 3 N + 2 vector 

x =  (11, vl, d l , . . . ,  lN, VN, dn, IN+l, W). (4.1) 

The total energy eqn (2.3) now has the form 

N + I  

E ( x ) = 2  (N+l)Pc(w,a~,)+ ~, Pic(l,,a,c) 
i = 1  

+,=,~ [P,o(vi, a,,)+P,d(di, aid)]} (4.2) 

where the potentials and activations relate to the muscles of  each segment as follows, 

Pc, aw: each circular muscle in dorsal and ventral position, 
Pic, aic: ith circular muscle in the two lateral positions, 
Pi~, aio: ith longitudinal muscle in the two ventral positions, 
Pid, aid: ith longitudinal muscle in the two dorsal positions. 

We cannot express the volume of our model in terms of the length variables alone, 
since each quadrilateral needs an additional angle to be completely specified. 

Let A (a, b, c, d, ao) denote the formula for the area of  the quadrilateral shown 
in Fig. 7(b). I f  we introduce the vector of  angles a = ( a ~ , . . . ,  aN) from Fig. 7(a), 
we find the total volume 

N 

V(x, a) = w ~, A(li, vi, li+,, di, or,). (4.3) 
i=1  

The equilibria of  the system are then defined by 

Minimize E(x) subject to V(x, a ) =  V~otal. (4.4) 

The fact that the a ' s  do not appear  in the energy functional suggests that we can 
eliminate them from the problem. In fact under  some natural conditions, the 
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minimum in eqn (4.4) will always be attained at vectors (x, a ) ,  such that V(x, a) 
has its maximal value for fixed x but variable angles. Suppose that we have a certain 
length vector x. Then we can vary the vector a to obtain maximal volume. This 
happens at the minima of eqn (4.4) (see Appendix).  The maximal volume occurs 
exactly if all quadrilaterals have maximum area. The area of  a quadrilateral with 
given sides is maximal if it is cyclic, i.e. inscribed into a circle (see Appendix).  The 
corresponding angle is then given by 

cos (ao )=(a2+d2-c2 -b2 ) / [2 (ad+bc ) ] ,  0 < a o <  -n-. 

The area of  the cyclic quadrilateral is (Beyer, 1975, section 4) 

At(a, b, c, d ) = ] [ ( a + b + c - d ) ( a + b - c + d ) ( a - b + c + d ) ( - a + b + c + d ) ]  '/2. 
(4.5) 

Thus, our minimization problem turns into 

Minimize E(x)  subject to V(x )=  Vtotal, (4.6) 

where 

N 

V(x) = w ~. Ac(li, v,,/,+,, d~). (4.7) 
i=1 

Of course, the length vector x in eqn (4.6) must satisfy some natural additional 
restrictions, such as positivity and the condition that in each quadrilateral the sum 
of any three sides is larger than the fourth one. 

Our numerical procedure for solving eqn (4.6) was the Lagrange-Newton method, 
sometimes called the SOLVER method (Fletcher, 1981, section 12), or Wilson's 
method. It uses Newton's  method to compute (x, p) from the Lagrange equations, 

8V 
(x) = P ~ x j  (x), j = 1 , . . . ,  3 N + 2 ,  V(x) = Vto,,, (4.8) 

In principle, this method starts with a certain set of  variables, calculates the slope 
and curvature of  the energy functional and volume functional at this point, and 
proceeds along this approximation in direction of the unknown minimum. 

We took into account the special sparsity pattern of  the linear systems arising in 
each Newton step. Assuming also Hooke ' s  law for the springs, we found a total of  
approximately 200N multiplications per Newton step. Usually 3 to 6 Newton steps 
were sufficient for the results of  the next section. 

We also checked the sufficient second order condition for the local minimum of  
eqn (4.6) and found it satisfied for all simulations quoted in section 5. So we know 
that all equilibrium positions shown there are stable with respect to small perturba- 
tions. However,  as in the case of  the general model from section 3, we cannot prove 
that these equilibrium positions are unique in a global sense. 
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5. Simulations with "Unit Worm" 

This section should demonstrate how this model can be employed to study effects 
of  geometry, internal volume and activation of  groups of  muscles. The simulations 
are performed with a simplified geometry, whereby minimal length of  all muscles 
in all 21 segments equals unity. This way, general rules about hydroskeletons of 
worms can be separated from .adaptations to a particular species. "Increasing 
activation" equals "increasing the spring constant" in the following sections. 

5.1. O P E R A T I N G  POINTS OF ELASTIC ELEMENTS 

The first set of  simulations investigates the development of certain distances within 
the model due to variation of  volume. This corresponds, for example, to the extensive 
blood meals leeches are known to take (up to 9 times the initial volume, Lent, 1985). 
By this procedure the length of  a medial circular element increases faster than a 
longitudinal element in the same segment (Fig. 8; see Appendix). 
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FIG. 8. Length of  longitudinal (D) and circular element (x)  versus volume. Simulations are performed 
with unit-worm [Fig. l(a)] ,  that is, all minimal lengths and all spring constants set to unity. Model of  
uniform width with 21 segments.  

To achieve a maximum of  mobility, muscles should be midway between minimal 
and maximal length. We call this the operating point of the muscle. It would be 
advantageous if all muscles are at this point in a relaxed animal, since this point 
can then be reached without expenditure of  energy. In our present model, this 
condition reduces to the claim that with increase of volume, the longitudinal and 



C O M P U T E R  MODEL OF THE H Y D R O S K E L E T O N  391 

c i rcu la r  e l e m e n t s  s h o u l d  s t re tch  the  s a m e  a m o u n t ,  s ince  all  musc l e s  have  the  s a m e  
p rope r t i e s  a n d  n o  m a x i m u m  leng th  can  be  d e d u c e d  f rom a l i n e a r  l e n g t h - t e n s i o n  
r e l a t i onsh ip .  

I t  is o b v i o u s  by  l o o k i n g  at  Fig. 8, h o w e v e r  tha t  the  " u n i t - w o r m "  c a n n o t  fulfil this  
c r i te r ion .  The re  are th ree  ways  ou t  o f  this  d i l e m m a :  firstly, the  c i r cu la r  e l emen t s  
b e c o m e  stiffer in  the  r e l axed  state,  wh i c h  n o r m a l l y  m e a n s  tha t  they  b e c o m e  s t ronger .  
A s e c o n d  way  to b r i n g  all musc l e s  in  the  o p e r a t i n g  p o i n t  w o u l d  be  to inc rease  the  
m i n i m a l  l eng th  o f  c i r cu la r  e l emen t s .  T a b l e  1 a n d  Fig. 9 list the  changes  in  the  
p a r a m e t e r s  a n d  show tha t  b o t h  s t ra tegies  are  successful .  The  th i rd  poss ib i l i ty ,  the  
inc rease  o f  w o r k i n g  r a n g e  t o w a r d  i n c r e a s e d  m a x i m a l  l e n g t h - - w h i c h  m e a n s  tha t  
c i r cu la r  musc l e s  are m o r e  f lexible  t h a n  l o n g i t u d i n a l  m u s c l e s - - d o e s  n o t  requ i re  a 
c h a n g e  in  the  u n i t - w o r m  mode l .  It  w o u l d  ce r t a in ly  be  o f  in te res t  to m e a s u r e  wh ich  

TABLE 1 

S t r a t e g i e s  to reach o p e r a t i n g  p o i n t  

Circular elements 

Increase Increase 
Unit worm stiffness length 

Strategies (a)ll (b) (c) 

Elastic element LEt CE:~ LE CE LE CE 
Spring-constant [F/(  U - Uo)] 1 1 1 2 1 0.5 
Minimal length (Uo) 1 1 1 1 1 2 
Actual length (U) 

( l l th Segment) 1.787 2.250 2.081 2.081 2-086 4.172 
Strain [( U - Uo)/Uo] 0-787 1.25 1-081 1.081 1.086 1-086 
Pressure ( F / U  2) 0.6383 1.023 0.2562 

t Longitudinal Element 
:~ Circular Element 
II See Fig. 9. 

I,OllllllllllllllJlll  
  l i[lifilifJliilllll  

ml l l l l l l l l l l l  
FIG. 9. Two strategies to reach operating point in all muscles. (a) "'unit-worm" (see Fig. 8); width 

and length in medial segment are not equal. (b) "unit-worm" as in (a), but circular dements are stiffer. 
Now circular and longitudinal elements have equal length. (c) "unit-worm" as in (a), but minimal length 
of circular elements increased. In order to keep elasticity constant, the spring constant has to be lowered. 
Volume is increased to 720, which equals 8.57 times minimal volume as in states (a) and (b). As in state 
(b), both elements have equal strain. See also Table 1. These and the consecutive drawings of the skeleton 
are side views. 
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strategies are implemented in hydroskeletons of  annelids, with this hypothesis o f  
an optimal operating point in mind. 

5.2. E N E R G Y  A N D  P R E S S U R E  W I T H  I N C R E A S I N G  V O L U M E  

Figure 10 plots potential energy of  the skeleton versus its volume.  For large 
volumes the energy increases with power of  2/3  o f  the volume,  since length relates 
to the third root of  the volume and the energy grows with the square o f  the length. 

With increasing volume the internal pressure increases sharply at first, levels off, 
and then decays again, as is expected from the derivative o f  the energy functional 
eqn (2.4) (see also Appendix).  The shapes are similar to those shown in Figs l (a)  
and 9(a). 

5.3. B E N D I N G  B Y  A C T I V A T I O N  O F  L O N G I T U D I N A L  E L E M E N T S  

This section demonstrates the flexibility o f  a skeleton composed  of  21 segments,  
or 21 finite elements,  in technical terms. For the first time, the contribution of  the 
main muscle groups to bending can be assessed. Figure 11 shows the shapes of  the 
skeleton with activation o f  ventral longitudinal elements increased with factors 2 
and 6. Next, all circular elements are activated. For example,  an 8-fold increase 
makes the worm coil twice around its own axis and increases the angle between 2 
midbody segments from 18 ° to 35 ° (Figs 11 and 12). 

Changes in curvature are rapid at first, but decline with increasing activation, 
independent o f  the type o f  elements causing this change (Fig. 12). 

These observations can be summarized by the "volume-rule": Whenever elastic 
elements are activated, they tend to shorten, and therefore transfer, internal volume 

P r e s s u r e  a n d  e n e r g y  v e r s u s  v o l u m e  
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F]G. 10. Pressure (x, left ordinate) and energy (Fq, right ordinate) of a relaxed "unit-worm" plotted 
versus stepwise increased volume (same simulations as in Fig. 8). 
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( a )  

U 

FIG. 11. (a) Body curvature by activation of  ventral longitudinal elements with spring constants 1 
(straight), 2 (half circle) and 6 (circle). (b) The transition from skeleton forming a single circle [outer 
skeleton, same as in (a)] to a skeleton coiled twice around itself (inner skeleton) is achieved by activation 
of all circular elements (spring constant  = 8). The segments  seem to penetrate each other, due to the 
lateral view. 

Curvature of skeleton 
Sum of angles of segmental midlines versus spring constants 
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FIG. 12. Curvature plotted against  activation of  ventral longitudinal elements alone ( x ) or circular 
elements (El) in combination with a constant  activation of  ventral longitudinal elements (spring constant  = 
6). Symbols connected by double arrow denote values from identical states of  the skeleton shown in 
Figs l l (a ) ,  (b). 
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into regions where the elements are relatively relaxed. In our case, activation of 
circular elements, combined with activation of  ventral longitudinal elements, can 
only force the volume into spaces provided by elongation of  dorsal longitudinal 
elements which, in turn, coil up the worm even more. 

5.4. C H A N G E S  O F  A C T I V A T I O N  I N  H A L F  O F  T H E  S E G M E N T S  

Next, we extend the ideas of  Chapman  (1950), who predicted the shape of a 
hydroskeleton after activation of groups of muscles within one body half. We 
simulate systematically all possible configurations (Figs 13 and 14). The spring 
constants of  all activated elastic elements are set to 16. 

The results confirm the obvious prediction that activation of either circular or 
longitudinal elements decreases the diameter  or shortens that part of  the body, 
respectively. Activation of all elements to the same degree does not alter the shape. 

However,  the activation of  circular elements in one body half does not lead to 
elongation, and nor does the activation of longitudinal elements lead to broadening 
of  the activated body half, if compared to the relaxed state. Just the opposite is 
obtained by simulations. 

By comparison of all pairs which differ in the activation of one type of elements 
in one body half, a regularity emerges, which we call the "stabilization rule": 
identical muscles with the same activation are shorter, if their neighbors are activated. 
This rule holds even if the activated neighbors are not orthogonally oriented to the 
elements under  comparison (not shown). This rule can be applied if it is not in 
conflict with the volume rule; this is certainly the case if the elastic elements under 
consideration are at least as activated as all remaining elements in the skeleton. 
Therefore, none of the shapes proposed by Chapman  (1950) are obtained, partly 
because he had to keep one dimension of this model skeleton constant, which is 
contrary to the principles functioning in a hydroskeleton, and partly because of the 
effects of  the stabilization-rule. 

It should also be noted that during intermediate states of  bending enforced by 
circular elements, a shortening of  the ventral longitudinal elements is observed 
according to the stabilization rule. 

The unexpected overall shapes demonstrate again that a quantitative model 
modifies and extends our concepts of  the hydroskeleton. 

6. Discussion 

The model presented provides the first at tempt to include geometry,  energy, 
pressure and defined length-tension-relationships in a numerical model of  a hydro- 
skeleton. It calculates the shape as an equilibrium state determined by the minimal 
potential energy of the entire system under the constraint of  constant volume within 
reasonable computing time. The model is highly flexible with respect to the minimal 
length of  the elastic elements, the arrangement and number  of  the hexahedrals,  the 
length-tension relationship, and the volume. It is now possible to study the effect 
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of activation of any elastic elements in any combination. Thus the biomechanics of  
shape-generation and posture of  single cells or whole animals can be studied. 

6.1. T H E  R E S T R I C T I O N S  W I T H I N  T H E  M O D E L  

Every model must simplify reality in order to obtain new information. Constant 
volume and equal pressure in all segments are reasonable assumptions for many 
biological structures (Chapman, 1950). The simulation of  animals with pressure 
compartments, such as segments separated by strong septa in some oligochaetes, 
would require some modifications of  the model. 

Equilibrium states of the entire system are valid approximations, especially for 
slow movements, although in real worms activation of  muscles is likely to change 
before they have reached their equilibrium length. Therefore, a hydroskeleton viewed 
as a dynamic system needs higher values of  activation than the equilibrium model 
in order to achieve a certain shape. 

The main orientation of fibers (muscular or non-muscular) in many hydroskeletons 
is circular and longitudinal (Chapman, 1958). In some animals helical structures, 
like the oblique muscles in Hirudo (Stuart, 1970) or the inextensible helical fibres 
in nemertean and turbellarian worms (Clark & Cowey, 1958) are also present. They 
are, however, mainly responsible for torsional movements (Kier & Smith, 1985) or 
modulation of  pressure (Mann, 1962) and therefore can be neglected in our simula- 
tions, while their contribution to bending (Alexander, 1987) is beyond the scope of 
the present model. 

In our system, longitudinal and circular elements are connected, since activation 
of circular and longitudinal motoneurons produces segmentally restricted contrac- 
tions in the body wall (Stuart, 1970). The histological substraturri anchoring muscle 
fibres to the surrounding tissue is not yet specified. 

Worms without internal muscular systems such as septa or dorsoventral muscles 
are circular in cross section. Our choice of quadrilateral (general model), or rec- 
tangular, cross section reflects mathematical requirements, since arbitrary deforma- 
tions of a cylinder are very difficult to treat. The choice is, however, justified by the 
dorsoventral muscles found in the leech, which can account for the deviation from 
the circular cross section acquired by a pressurized tube. We expect also that 
segmental sections correspond to cyclic quadrilaterals in most cases, though it is 
impossible to give exact numbers. 

At the moment no interactions with the outside world like gravity, fixation with 
suckers, or obstacles are incorporated. Our model corresponds to an animal in 
water, since proteins have a specific weight of  1.2 (Jones, 1978) and worms should 
therefore have similar weight as water. 

We deliberately choose a linear length-tension relationship for our first simula- 
tions. In this way, the general behavior of a hydroskeleton can be tested indepen- 
dently of adaptations to a particular animal. The consequences of specializations 
may then more easily be understood. The detection of bifurcations in the general 
model, which means different shapes of the skeleton with the same set of muscle 
-activation, can help to understand the shape of  the length-tension-curve of leech 
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muscles. Studies on this problem are in progress. The Chapman-matrix serves as 
another example of the need to simplify: a different geometry or non-linear length- 
tension-relationships could interfere with the effects of  the stabilization rule. 

6.2. T H E  C O N C E P T  O F  O P E R A T I N G  P O I N T  

To our knowledge neither the relationship of the length of  longitudinal to circular 
muscles nor the operating points of the muscles have yet been determined for 
annelids. Deviations from the above presented working hypothesis then suggest 
different ecological requirements. The strategy, which employs changes in minimal 
length of circular elements works at the lowest pressure, and therefore seems most 
advantageous to bring all muscles to the operating point [Table 1, Fig. 9(b)]. 

6.3. THE PRESSURE MAXIMUM AND LAPLACE' LAW 

From Fig. 10 we see that with large volumes (>2 0 0 U  3) the pressure is inversely 
proportional to length in a first approximation. This is reminiscent of  Laplace' law 
of  drops with constant surface tension (see Thompson, 1971). The initial sharp rise 
in pressure results, on the contrary, from the increase in tension near minimal length. 

It should now be obvious that these changes in length or pressure accompanied 
with increasing volume are difficult to predict without a model, even in the simplified 
case of  a "unit-worm". 

6.4. A N O T H E R  P R E D I C T I O N  A B O U T  N E U R A L  C O - O R D I N A T I O N :  

B E N D I N G  S U P P O R T E D  BY C I R C U L A R  M U S C L E S  

Simulations of  the control of  curvature demonstrated the considerable influence 
of  tension in circular elements. A similar statement was put forward by Keir & 
Smith (1985), but was based on a different mechanism. Our explanation, the volume 
rule, should hold for many similar problems. 

In addition, semi-quantitative statements are possible. Spring constants exceeding 
10 times resting state hardly increase the curvature. However, 50% of  the maximum 
curvature is already achieved by twice the resting spring constant. If this can be 
validated for other co-ordinations, motoneurons need not produce large forces and 
should be tuned precisely for economic use of the animals energy resources. 

6.5. T H E  C H A P M A N - M A T R I X  A N D  S E A R C H I N G  P O S T U R E  

It is obvious that a regularity like the stabilization rule cannot be found by 
experimentation, since activation of  muscles cannot be controlled sufficiently in the 
intact animal. 

The foraging posture of  the leech (Sawyer, 1981) is achieved by contraction of 
the circular muscles in one half, and the longitudinal muscles in the other (co- 
ordination 1CLc -- 5, Fig. 13). It produces an animal with a wide and short posterior 
body half, which provides the base for the searching movement of  the long and 
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thin anterior body. An attempt to increase the length of  this body by co-contraction 
of the longitudinal elements should be tuned finely, since it may result in a long, 
but thick, anterior body as co-ordination 9 (=LCIC, Figs 13 and, 14). 

However, exact predictions are difficult, since we expect that the effects of the 
stabilization rule are even more drastic if the restriction of  uniform width present 
in the simplified model is no longer valid. 

We can further conclude from this matrix that a factor of 16 times minimal tension 
is certainly not enough for the leech to reach its maximal extension [Hirudo reaches 
up to 6 times minimal body length in swimming (Miller & Aidley, 1973; Lanzavecchia 
et al., 1985)]. 

Finally, we want to point out that the model skeleton returns to its original shape 
upon relaxation of formerly activated muscles, without activation of  supposed 
"antagonists" (Chapman, 1950). How fast this occurs in reality depends of course 
on the elastic forces in comparison to the viscosity of the tissue. 

The stabilization rule together with the effects of  pressure on muscle length 
discussed in Wadepuhl & Beyn (1987) render the notion of  "antagonistic" muscles 
obsolete. Instead, internal pressure is antagonistic to both groups of  muscles. 

Three different mechanisms are therefore at hand to increase muscle length within 
a hydroskeleton: (i) the activation of  the particular muscle is decreased, (ii) the 
internal pressure is increased by the action of  any other muscle, and (iii) the muscles 
around the particular muscle decrease their tone. 

These first simulations produce not only rules, simplifying the prediction of the 
outcome of muscle co-ordinations, but elucidate the geometry of worm-like creatures. 
They also demonstrate that even the simplified "unit-worm" exhibits phenomena 
not easily assessed by intuitive thinking. 

We thank Professor W. Nachtigali for encouragement throughout the project, Dr R. 
Blickhan for comments on the manuscript and M. A. Cahili for improving the English. 
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A P P E N D I X  

Elimination of Angles for t h e  M o d e l  of Uniform Width 

Let  Xmi, d e n o t e  t h e  v e c t o r  o f  m i n i m a l  l e n g t h s  a n d  a s s u m e  t h a t  o u r  s y s t e m  is 

p r e s s u r i z e d ,  i.e. V(xmln ,  a ) <  V~ota~ f o r  al l  a n g l e  v e c t o r s  a .  W e  c o n s i d e r  v e c t o r s  

> Xmin ( >  m e a n s  g r e a t e r  in  e a c h  c o m p o n e n t )  a n d  ~ a t  w h i c h  e q n  (4 .4)  h a s  i ts  

g l o b a l  m i n i m u m .  T h e n  w e  c l a i m  t h a t  

V(:~, o~) = Max  V(~, a ) .  (A1)  
ot 

I f  this  is no t  the  ease,  we find some so  ¢ k sa t i s fy ing 

Max V(~, a )  -- V(~, Oto) > V(~, &) -- Vtota I . 
a 

N o w  V(xmin, C~o) < Vtotal < V (~, C~o) impl ies  that we  find a length vector  Xo such that 
Xmi, < XO < ~ and V(xo, C~o) = Vtot,l. Us ing  the strict m o n o t o n i c i t y  o f  the energy 
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functional, we obtain E (Xo) < E (~) which contradicts our assumption that eqn (4.4) 
has its minimum at ~, ~. 

Cyclic Quadrilaterals have Maximum Area 

The area of a general quadrilateral with sides a, b, c, d and two opposite angles 
no and/30 [Fig. 7(b)] is given by (cf. Beyer, 1975, p. 190), 

¼ { ( a + b + c - d ) .  ( a + b - c + d ) .  ( a - b + c + d ) .  ( - a + b + c + d )  

- 16abcd cos 2 [½(no+/30)]}- 

For fixed values of  a, b, c and d this expression clearly becomes maximal if 
no+/30 = ~r. In this case, the quadrilateral is cyclic and we obtain the formula (4.5). 

Operating Point 

We consider a simplified system of N equal parallelepipeds each of  the length l, 
width w and height h. Then the condition for an equilibrium is 

Minimize 4 N a l ( l -  1 o ) 2 + 2 ( N +  1)[aw(w - Wo)2+ ah(h - ho) 2] 

subject to N l w h  = Vtotal. (A2) 

Here Hooke's  law was assumed for each elastic element. Introducing the extension 
factors x = l / lo ,  y = W/Wo, z = h / h o  and the constants 

ax = 4Na,12o, a r = 2 ( N +  1)aww~, az = 2 ( N +  1)ahh~, (A3) 

D : V t o t a l / ( N l o b o h o ) ,  

the problem in eqn (A2) becomes 

Minimize E ( x ,  y, z)  = a x ( x -  1)2+ ay(y  - 1)2+a~(z -  1) 2 subject to x y z  = v. (A4) 

For each v--- 1 this problem has a unqiue solution x, y, z-> 1 which by Lagrange's 
eqn [see eqn (4.8)] satisfies 

2 a ~ (  x - 1) = 2ayy (y  - 1) = 2a~z( z - 1) = pv, (A5) 

where p denotes the pressure. 
From eqn (A5) we see that the extension factors x, y, z are in reverse order to 

the factors ax, ay, az. If  as in the unit worm, we have ax = 4 N  > 2 (N + 1)= a r = az 
then we find x < y  =z,  i.e. the circular muscles stretch further than the longitudinal 
muscles. 

Equation (A5) also shows that the operating point (defined by x = y = z )  is 
obtained if ax = ay = az. By eqn (A3) this requires 

2 N  
- -  a,l~ = awW~ = ahh~. (A6) 
N + I  

Keeping at = 1, lo = 1 as in the unit worm, we see that the operating point can be 
achieved by increasing either the strength (aw, ah) o r  the minimal length (Wo, ho) 
of  the circular muscles (compare Table 1). 
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Pressure diagram 

Let us assume the opera t ing point  condi t ion  eqn (A6) and study the dependence  
o f  x, y, z and  p on the relative volume v. 

From eqns (A4) and (A5) we find 

x = y = z = v  1/3,  p ( v ) = 2 a x v - 2 / 3 ( v l / 3 - 1 ) ,  v>--l. (A7) 

The pressure has a m a x i m um  at v = 8 which cor responds  to x = y = z = 2. The energy 
curve is found  by integrating p [see eqn (2.4)], 

E ( v ) = 3ax( V ~/3 - 2 v l / 3 +  1). 

The plots o f  these funct ions (not  shown) strongly resemble the energy and pressure 
curves found  for the relaxed unit worm (Fig. 10). One  can show that the pressure 
max imum in eqn (A2) also occurs without  the assumpt ion  (A6), but  we have no 
explicit formula  for this case. 

Finally we note that the occurrence  o f  a pressure max imum certainly depends  on 
the length-tension relationship. We take, for  example,  E (x, y, z) = f(x) + f(y)  + f(z) 
in eqn (A4), where f is a potential  funct ion satisfying f(1) = 0, f(x) > 0 for  x > 1. 

Then eqn (A7) generalizes to 

p(o) = O - 2 / 3 f ' ( v  1/3) 

Using the force funct ion f ' (x )  = tan (x - 1) (which is closer to experimental  findings 
than Hooke ' s  law, see Fig. 2) an easy calculat ion shows that p (v )  is now strictly 
increasing. Hence,  in this case there is no pressure maximum.  


