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Abstract

Today, search for dashcam video evidences is conducted
manually and its procedure does not guarantee privacy. In
this paper, we motivate, design, and implement ViewMap,
an automated public service system that enables sharing
of private dashcam videos under anonymity. ViewMap
takes a profile-based approach where each video is repre-
sented in a compact form called a view profile (VP), and
the anonymized VPs are treated as entities for search, ver-
ification, and reward instead of their owners. ViewMap
exploits the line-of-sight (LOS) properties of dedicated
short-range communications (DSRC) such that each ve-
hicle makes VP links with nearby ones that share the
same sight while driving. ViewMap uses such LOS-based
VP links to build a map of visibility around a given inci-
dent, and identifies VPs whose videos are worth review-
ing. Original videos are never transmitted unless they are
verified to be taken near the incident and anonymously
solicited. ViewMap offers untraceable rewards for the
provision of videos whose owners remain anonymous.
We demonstrate the feasibility of ViewMap via field ex-
periments on real roads using our DSRC testbeds and
trace-driven simulations.

1 Introduction

A dashcam is an onboard camera that continuously
records the view around a vehicle (Fig. 1). People in-
stall dashcams in their vehicles because irrefutable video
evidence can be obtained in the event of an accident.
Dashcams are becoming popular in many parts of Asia
and Europe. For example, the rate of dashcam adoption
has exceeded 60% in South Korea [1]. Other countries
with high adoption rates include Russia and China. In
these nations, the use of dashcams has now become an
integral part of the driving experience of individuals.

Dashcams, as a side benefit, have tremendous potential
to act as silent witnesses to others’ accidents. Authorities
such as police want to exploit the potential of dashcams
because their videos, if collected, can greatly assist in the
accumulation of evidence, providing a complete picture
of what happened in incidents. For example, the police
appeal for public to send in dashcam video evidences of
certain traffic accidents [2, 3].
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Figure 1: Dashcam installation on the windshield [4].
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However, the current practice of volunteer-based col-
lection limits participation of the general public due to the
following reasons. First, people are reluctant to share their
videos in fear of revealing their location history. Users
want strong anonymity. Second, people are not interested
in things that do not specifically concern them. Users
want some form of compensation for provision of their
videos. Third, people do not like to be annoyed by man-
ual procedures, e.g., checking a wanted list, searching
through their own videos, and sending in the matched
videos all by themselves. Users want automation for
hassle-free participation.

In this work, we aim to build a system that fulfills the
key requirements above. There are, however, three chal-
lenges on the way. First, the authenticity of videos must
be validated under users’ anonymity. Verification of lo-
cations and times of videos should not rely on existing
infrastructure such as 3G/4G networks where user identi-
ties may be exposed. Second, verifiable reward must be
given without tracking users. The difficulty lies in making
the reward double-spending proof while not linking it to
users’ videos. Third, irrelevant videos must be automati-
cally rejected without human review. Under anonymity,
attackers may simply upload an overwhelming number of
fake videos, making it impractical to manually examine
all by human eyes.

In this paper, we present ViewMap, a public service
system (run by authorities) that addresses the challenges
of dashcam sharing. To preserve user privacy, ViewMap
takes a profile-based approach where each video is rep-
resented in a compact form called a view profile (VP),
and the anonymized VPs are treated as entities for search,
verification, and reward instead of their owners. Each
VP makes verifiable links with nearby vehicles’ VPs that
share the same sight via line-of-sight (LOS) properties
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of DSRC radios. This VP linkage process also incorpo-
rates inter-vehicle path obfuscation for protection against
tracking. The system accumulates anonymized VPs (from
normal users) and trusted VPs (from authorities, e.g., po-
lice cars), and uses such LOS-based VP links to build
a map of visibility on a given incident in the form of a
mesh-like structure called a viewmap. Its key strengths
are that: (i) trusted VPs do not need to be near the incident
location; (ii) the system can pinpoint VPs whose original
videos are worth reviewing, and reject, if any, fake VPs
cheating locations and/or times via the unique linkage
structure; and (iii) it leads minimal communication over-
head because original videos are never transmitted unless
verified taken near the incident. Users upload videos only
when anonymously solicited by the system for further
human checking. The system rewards users with virtual
cash that is made untraceable based on blind signatures.

We demonstrate the feasibility of ViewMap via field ex-
periments on real roads with our DSRC testbeds and trace-
driven simulations. Our evaluations show that ViewMap
provides: (i) users with strong location privacy (tracking
success ratio < 0.1%); and (ii) the system with high-
accuracy verification (> 95%) in face of an extremely
large number of fake VPs cheating locations and times.

Besides the privacy of users sharing videos, there ex-
ists an additional privacy concern specific to dashcam
video sharing. Video contents may threaten the privacy
of others visible in the videos. We do not completely
handle this, but provide some defense for video privacy.
Specifically, we have implemented the realtime license
plate blurring, which is integrated into ViewMap-enabled
dashcams. However, other sensitive objects can still be
captured (e.g., pedestrians walking into the view). This
video privacy is not fully addressed in this work, and
merits separate research.

In summary, we make the following contributions:

1. New application: We introduce a new application
that enables sharing of dashcam videos. It poses
unique challenges: combination of location privacy,
location authentication, anonymous rewarding, and
video privacy at the same time.

2. Comprehensive solution package: We present a
solution suite that finds, verifies, and rewards pri-
vate, location-dependent dashcam video evidence
by leveraging DSRC-based inter-vehicle communi-
cations without resorting to existing infrastructure
where user identities may be exposed.

3. Prototype and evaluation: We build a full-fledged
prototype and conduct real road experiments using
ViewMap-enabled dashcams with DSRC radios. It
validates that LOS-based VP links are strongly as-
sociated with the shared “view” of videos in reality.
Our evaluations show that ViewMap achieves strong
privacy protection and high verification accuracy.

2 Background

Dashboard camera. Dashcams, installed on the wind-
shield of a vehicle, continuously record in segments for
a unit-time (1-min default) and store them via on-board
SD memory cards. Once the memory is full, the oldest
segment will be deleted and recorded over. For example,
with 64 GB cards, videos can be kept for 2-3 weeks with
1-2 hours daily driving. Dashcams feature a built-in GPS
system that provides vehicle speed and location. Some
dashcams have an advanced feature of a dedicated park-
ing mode, where videos can be recorded when the motion
detector is triggered, even if a vehicle is turned off.

Dashcam video sharing. The most prevalent way to
obtain dashcam video evidences today is public announce-
ment, and users voluntarily hand in their videos. Some or-
ganizations adopt a more arranged approach where dash-
cam users have themselves registered for a pool of vol-
unteers. For example, the police in South Korea operate
such a system called shadow cops [5], but the number
of the registered users is only a very small proportion
of dashcam users in the country, less than 0.01% as of
2016. Recent studies [6, 7] report that privacy concerns
and monetary motives are two major factors behind the
sharing of dashcam videos for urban surveillance.

3 Motivation

3.1 Use Cases

Analyzing traffic accidents. = When investigating a
traffic accident, dashcam videos recorded by nearby ve-
hicles are often valuable. While an accident vehicle may
have its own video, it only offers one partial view and
does not guarantee conclusive evidence. Nearby vehicles,
on the other hand, have wider views each with different
angle on the accident. However, the major impediment,
besides lack of systematic search, is that people are re-
luctant to share videos due to privacy concerns and the
associated hassle without compensation.

Investigating crimes.  Dashcams can assist crime in-
vestigations and also have great potential for crime pre-
vention. While CCTV cameras are installed in public
places [8], there exist a countless number of blind spots.
Dashcams are ideal complements to CCTVs since per-
vasive deployment—cars are everywhere—is possible.
However, the difficulty here is that users are not often
aware whether they have such video evidences. This is
because criminal evidences are not as noticeable as traffic
accidents. Thus, the current practice of volunteer-based
collection has more serious limitation in this context.

3.2 Threat Model

User privacy. Users face privacy risks when providing
personal, location and time-sensitive information. The
system may wish to track users via such collected location
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samples. Time-series analysis on location samples, even
if anonymized, could accumulate path information (i.e.,
following the footsteps) and eventually identify users lo-
cation history [9, 10]. Such location tracking can further
reveal users’ very private information if the system can
connect specific individuals to specific locations [11]. For
example, an anonymous user at a hospital or other private
location can be eventually identified if the user’s path is
tracked from his/her home (as a resident of a particular ad-
dress). Besides, users face risk of revealing their identities
and past locations when rewarded for their videos.

System security. On the other hand, if anonymity is
provided, the system can becomes a target for various at-
tacks. Dishonest users may claim rewards for fake videos
cheating locations and/or times, or they may even fabri-
cate video evidence. Human review may help identify and
reject such videos. However, a manual review not only
takes time, but also requires trained manpower. Anony-
mous attackers may launch denial-of-service attacks by
simply uploading an overwhelming number of fake or
dummy videos. Given limited resources of manpower, a
manual review of all such videos would be impractical.

4 ViewMap Framework

We first highlight the key features of ViewMap (Fig. 2).

Visual anonymization.  Vehicles perform license plate
blurring on their video stream while recording. Only such
content anonymized videos are used in ViewMap, and
hereafter referred to simply as “videos”.

Profile-based anonymity. Each video (1-min default)
is represented by its view profile, VP, that summarizes
(i) time/location trajectory, (ii) video fingerprint, and (iii)
fingerprints of videos taken by neighbor vehicles that
share the same sight (via DSRC radios). We call such
association between two neighbor VPs a viewlink (see
Fig. 2). Vehicles anonymously upload their past VPs to
the system whenever possible (e.g., WiFi or in-vehicle
Internet access). These anonymized, self-contained VPs
are stored in the VP database and collectively used for
search and reward instead of their owners.

Location tracking protection.  Vehicles also upload
guard VPs, which are indistinguishable from actual VPs,
to the system for protection against tracking. These guard
VPs are created not for actual videos, but for plausible tra-
jectories among neighbor vehicles such that their actual
paths become indeterminable from the system’s view-
point. This is to guarantee location privacy in the VP
database. Guard VPs are used only for path obfuscation,
and vehicles delete them in their storage after submission.

Automated collection of video evidences. When
video evidence is required, the system retrieves relevant
anonymous VPs (from normal users) and trusted VPs
(from authorities, e.g., police cars; not necessarily near

ViewMap System

Incident
investigation

Viewmap Construction

pe

- Retrieve VPs around a given incident
- Build a viewmap using viewlink info.

VP Verification

- Evaluate trust scores and identify VPs
whose videos are worth reviewing

>
Video Solicitation & Rewarding
- Post IDs of the verified VPs in the system

View Profile \

Database

- Storage of anonymous VPs

- Privacy-protected dataset

- Location privacy is preserved
via guard VPs that obfuscate
vehicles’ trajectories.

K— Reward anonymous owner of the video —/
N AN AN
Untraceable Sqlicited Uploading
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\
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I
1T
VP Generation
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- Time/loc info.
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neighboring in space and time

Guard VPs
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Figure 2: ViewMap framework.

the site), and builds viewmap(s) of a given incident us-
ing viewlinks among those VPs. The system exploits
viewmap’s unique structure to exclude, if any, fake VPs.!
The verification criteria is: (i) ‘trust scores’ of the member
VPs evaluated using trusted VPs as ‘trust seeds’ and (ii)
their topological positions in the viewmap. The system
solicits videos of the legitimate VPs (verified taken near
the incident) by posting their VP identifiers,? without pub-
licizing location/time of the investigation. Users upload
anonymously the matched videos, if any. The videos are
first validated against the system-owned VPs, and then
reviewed by human investigators.

Untraceable reward.  To reward users for provision
of videos, their VP identifiers are likewise posted in the
system. The users anonymously prove their ownership,
and earn the virtual cash that is made untraceable via
blind signatures. The authenticity of the virtual cash is
self-verifiable, but never linked to users’ VPs or videos.

5 Design of ViewMap
5.1 Protecting Location Privacy

5.1.1 Decoupling Users and Videos

Video recording. ViewMap-enabled dashcams are
time-synched via GPS and continuously start recording
new videos every minute on the minute. This is to facili-
tate the construction of viewmaps, each of which corre-

'We consider VPs (regardless of actual or guard VPs) that were
created by users at their physical positions via the proper VP generation
(Section 5.1) as legitimate; otherwise as fake.

2Both actual and guard VPs legitimately created near the incident
may be on the requested video list, but the actual VPs only trigger video
uploading. The guard VPs have already been deleted in users’ storage.
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sponds to a single unit-time (1-min) during an incident
period. The recording procedure also performs license
plate blurring in real time (detailed in Section 6.2) for
video privacy (Fig. 3). The realtime plate blurring is
chosen for two reasons: (i) post processing of videos, if
allowed, opens the door for posterior fabrication of video
evidence; and (ii) realtime visual anonymization can also
alleviate visual privacy concerns? for the use of dashcams.

Video fingerprinting. Each vehicle, when completing
1-min recording of current video u, generates its unique
view profile, VP, that contains (i) time/location trajectory,
(ii) fingerprints of u, and (iii) a summary (by a Bloom fil-
ter) of fingerprints of others’ videos neighboring in space
and time (via DSRC radios). To exchange fingerprints in
the transient vehicular environment, each vehicle periodi-
cally (e.g., every second) produces and broadcasts a hash
and associated information of its currently recording (for
i secs: 1 <i<60) video u; we refer to such a cumulative
fingerprint of u as view digest, VD, (see Fig. 4). These
VDs are exchanged between neighbors as below.

Broadcasting VDs.  Every second, each vehicle A pro-
duces and broadcasts a view digest, VD, of its video u
currently being recorded for i secs using DSRC radio:

A5 Ty Ly, Fops Ly, Ru H(Ty L | Ho 1),

where T,,, L,,, and F,, are time, location, and byte-size
of video u at i second, respectively. L,, is the initial
location of u used for guard VP generation (Section 5.1.2).
R, is VP identifier of u. H,_, is the hash of previous
VD, ,, and u!~! is a newly recorded content from (i —
1) to i seconds (see Fig. 4. Note: H,, = R,). This
cascaded hash operation facilitates the constant-time VD
generation regardless of total file size. Note that original
video u (within hash H) is not revealed in VD,,, and is
later provided to the system only after VP, is verified and
anonymously solicited. The value R, is further derived as
R, = H(Q,), where Q, is file u’s secret number chosen
by A and is later used for untraceable rewarding.

Accepting neighbor VDs. Each vehicle A also re-
ceives VD,; broadcasted from nearby vehicle B:

B— s T Lags By Ly, Ry, H (T [ Ly | Fog | Hyy |V§_1)'

where T, Ly;, and Fy; are time, location, and byte-size
of video x at j sec, respectively. A first validates VD,
by checking whether 7;; and Ly; are in acceptable ranges:
Tx/. within the current 1-sec interval; ij inside a radius
of DSRC radios. If yes, A treats VD;, ;asa valid one. A
temporarily stores at most two valid VDs per neighbor:
the first and the last received VDs with same R value.

3Recording using a dashcam is strongly discouraged in some coun-
tries such as Austria and Switzerland due to visual privacy concerns.

(b) Dashcam video 2.

Figure 3: Videos recorded by our ViewMap-enabled
dashcams that perform license plate blurring in real time.

(a) Dashcam video 1.

. Time Loc. FileSize Spc. VP_ID Hash S =
j -2
(i- 1) sec. : T“m L“m BuH LU1 R, H(Tu,,1| LuH| Bu,,,| ,_mzl UIM) ‘
= I—‘I“m
______ 1
¥ 2
ith sec.: ’ Ty | Ly | By | Ly, | Ru |H(Ty 1L, B, | Hy I u') ‘
='H“_
i
[Note: H, = R,] - 1

Figure 4: Example VDs of currently recording video u.
A series of (sixty) VDs constitute a single (1-min) VP,,.

Generating actual VPs.  Upon complete recording
of current 1-min video u, each vehicle A generates its
view profile VP,. A first inserts the neighbor VDs (at
most two VDs—the first and the last received VDs—per
neighbor) into Bloom filter bit-array N,. This reflects the
neighbor VPs’ cumulative fingerprints in part and their
contact interval. A compiles its VDs (all VD,,;: 1 <i < 60)
and Bloom filter bit-array N, into VP,, which will be
anonymously uploaded to the system as described below.

5.1.2 Protection against Location Tracking

A collection of VPs, albeit each as anonymized location
data, are subject to tracking. The system may follow a
user’s path by linking a series of VPs adjacent in space
and time. For example in Fig.5a, the system tracking
anonymous vehicle A can connect VP, and VP, using
time-series location information. To obfuscate tracking,
vehicles also generate and upload guard VPs as below.

Creating guard VPs.  Each vehicle A generates guard
VP(s) along with actual VP, at the end of 1-min record-
ing (e.g., time=tq) in Fig.5a). More specifically, among
its m neighbor VPs, A randomly picks [o X m] neigh-
bor VPs (0 < o < 1) and creates guard VPs for them
(We use o = 0.1, which is discussed in Section 6). For
each chosen neighbor VP,, A creates a guard VP (VP; in
Fig. 5b) whose trajectory starting at VP,’s initial loca-
tion Ly, (logged in its VDs) and ending at its own VP,’s
last position. There are readily available on/offline tools
that instantly return a driving route between two points
on a road map. In this work, we make vehicles to use
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(a) Actual VPs’ trajectories. (b) Guard VPs’s trajectories.

Figure 5: Protection against location tracking.

Google Directions API [12] for this purpose. In an effort
to make guard VPs indistinguishable from actual VPs, we
arrange their VDs variably spaced (within the predefined
margin) along the given routes. Guard VPs are not for
actual videos and thus, their hash fields are filled with
random values. A makes neighborship between guard and
actual VPs by inserting their VDs into each other’s Bloom
filter bit-arrays. A now clears all temporary memories,
and resumes a new round of VP generation for the next
recording video.

Cooperative privacy. Creating guard VPs for one an-
other realizes continuously divergent paths from the view-
point of observers, obfuscating the system’s tracking of
a vehicle’s trajectory. Unlike the previous schemes like
Mix-zones [13], this approach does not strictly require
space-time intersections of vehicles’ paths. Instead, vehi-
cles can create path confusion any time, any place within
DSRC range (up to 400 m). Note that they only need
to be within DSRC range for a time to be considered as
neighbors, not necessarily for the whole 1-min period.

Uploading VPs.  Vehicles, whenever connected to the
network (e.g., WiFi or in-vehicle Internet access), upload
their actual and guard VPs anonymously to the system.
We use Tor [14] for this purpose. More specifically, we
make users constantly change sessions with the system,
preventing the system from distinguishing among users
by session ids. The submitted VPs are stored in the VP
database of the system. Vehicles keep their actual VPs
but delete guard VPs in their storage after submission.

5.2 Collecting Video Evidences

5.2.1 Viewmap Construction

In search of video evidences of an incident, the system
builds a series of viewmaps each corresponding to a single
unit-time (e.g., 1 min) during the incident period. We here
describe the construction of a single viewmap at certain
I-min time interval at ¢, which is built only with VPs
(actual and guard VPs)* whose times are ¢.

4From the system’s perspective, actual and guard VPs are indistin-
guishable, thus treated equally. We hereafter refer to both as “VP”.

o Trusted VP
® Legitimate VP
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Investigation site:
VPs to be verified

AN AN A

i AVAS S PV o
S VA

ASTEL T 4‘ ]

<>
(e.g.) 3 Km (e.g.) 200m

Figure 6: Illustration of a viewmap.
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Figure 7: An example viewmap with fake VPs.

We first select the trusted VP, closest to the investi-
gation site /, where VP; is a special VP from authorities
such as police cars. The geographical coverage® of the
viewmap spans an area C that encompasses / and VP;
(Fig. 6). Then, all the VPs whose claimed locations are
inside area C (anytime during incident time 7) become
members of the viewmap. For each member VP,, we
find its neighbor candidates VP, such that any of their
time-aligned locations Ly, and Ly, are within the radius of
DSRC radios. We then validate the mutual neighborship
between VP, and VP, via membership queries (Bloom
filter) using their element VDs on N, and N,. If none of
the element VDs (of either VPs) passes the Bloom filter
test, they are not mutual neighbor VPs. In this way, we
build a viewmap by creating edges between ‘two-way’
neighbor VPs. We refer to such an edge as a viewlink,
which signifies that two VPs are line-of-sight neighbors
that share the same sight at some point in their times.

5.2.2 ViewProfile Verification

Given a constructed viewmap, there are certain VPs
whose claimed locations (anytime during incident period)
fall within an investigation site. The goal is to identify
legitimate VPs among them. We consider VPs that join
in a viewmap via the proper VP generation (as in Section
5.1) as legitimate; otherwise as fake.

Insights. A viewmap appears single-layered (Fig. 6)
when all members are legitimate VPs. On the other hand,
a viewmap with fake VPs results in multi-layered struc-
ture (Fig. 7), with only one layer containing a trust VP.
This is because the validation of two-way linkage pre-
vents attackers from creating arbitrary edges with other
users’ legitimate VPs without actual VD exchange. Thus,

5The coverage area of a viewmap is normally much larger than the
size of the investigation site since trusted VPs (i.e., police cars) were
not always very close to the site.
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Algorithm 1 Verify_VPs(viewmap G)

Let M be the transition matrix on G
Let d be the trust distribution vector by the trusted VP
Let P be the trustRank-score vector, initially P = d
Let 6 be a damping factor
/I compute TrustRank scores
while not converged do

P=6-M-P+(1-9)-d
end while
/I determine the legitimacy of VPs
Let X be the all VPs within investigation site of G
Mark the highest scored VP u € X as ‘LEGITIMATE’
Let W(C X) be VPs reachable from u only via X
for each VP i € W do

Mark i as ‘LEGITIMATE’
end for

attackers can only inject fake VPs by linking them with
their own legitimate VPs, if any. This is a very restric-
tive condition for attackers unless they happened to be
actually in the vicinity of the incident. Moreover, the loca-
tion proximity checking between neighbor VPs precludes
long-distance edges and thus, forces attackers to create
their own chain of fake VPs in order to place some of
them in the target site.

Evaluating trust scores.  To exploit the linkage struc-
ture of viewmaps, we adopt the TrustRank® algorithm
tailored for our viewmap. In our case, a trusted VP (as a
trust seed) has an initial probability (called trust scores)
of 1, and distributes its score to neighbor VPs divided
equally among all adjacent ‘undirected’ edges (unlike out-
bound links in the web model). Iterations of this process
propagate the trust scores over all the VPs in a viewmap
via its linkage structure. As shown in Algorithm 1, for a
given viewmap G, trust scores P of all VPs are calculated
via iterations of the following matrix operation:

P=5M-P+(1-5)d,

where M is the transition matrix representing VP linkage
of G, d is the trust score distribution vector with an entry
for trust VP only to 1, and § is a damping factor empiri-
cally set to 0.8. The trust scores of all member VPs are
obtained upon convergence of P.

Given a trusted VP z and an investigation site X, the
VPs in X of 7’s layer are strongly likely to have higher
trust scores than VPs in X of other layers. This is because
the flow of trust scores has more chance of using edges
within the base layer of z than using cross-layer edges
(analyzed in Section 6). Accordingly, we identify the
highest trust scored VP u in X as legitimate. All the VPs
in X reachable from u strictly via VPs in X are determined
legitimate as well.

The TrustRank algorithm [15] outputs a probability distribution
of likelihood that a person randomly clicking on links, starting from a
certain ‘seed’ page, will arrive at any particular page.

5.2.3 Solicitation of Videos

Once VPs near a given incident is identified, the sys-
tem solicits the videos. Owners are unknown and thus,
they are requested via VP identifiers. More specifically,
legitimate VP,’s identifier R, is marked as ‘request for
video’ and posted in the system. Users check the list of
solicited videos when accessing the system, and upload
anonymously, if any, the matched video u along with its
VP,. The video is first validated via cascading hash oper-
ations against the system-owned VP, and then reviewed
by human investigators.

5.3 Rewarding Anonymous Users

After human review, the system offers untraceable virtual
cash to reward users for provision of videos based on their
contributions. The system S posts VP identifier R, (of
reviewed video u#) marked as ‘request for reward’, and
corresponding user A obtains from S the virtual cash that
is made untraceable using blind signatures [16] as follows:
(i) A provides secret number Q,, of video u (R, = H(Qy))
to prove its ownership, (ii) A makes a blinded message
B(H(m,),r,) using a blinding secret r,, (iii) S signs the
message with its private key K not knowing the ‘blinded’
content m,,, and (iv) A unblinds the signed message using
blinding secret r,,. This unblinded signature-message pair
({H(m,)} K5 ,m,,) results in virtual cash. When A presents
it for payment, anyone can verify (i) its authenticity via
S’ signature and (ii) its freshness via double-spending
checking on m,, but fails to link A with his/her video u.
Even the system cannot derive the link between A’s virtual
cash and video u’s blinded message without the blinding
secret r,, (only known to A). A more detailed description
of the above procedure is provided in the Appendix.

6 Analysis of ViewMap
6.1 Overhead of ViewMap

Communication. The VP generation involves inter-
vehicle communication to exchange up-to-the-second
VDs via DSRC broadcast. The format of a VD message
includes time and location information (8 bytes each), file
size (8 bytes), VP identifier (16 bytes), and a cascaded
hash value (16 bytes). Excluding PHY- and MAC-layer
headers, the length of our VD message is thus only 72
bytes—even can be piggybacked into a DSRC beacon
whose size is as large as nearly 300 bytes [17]. Vehicles
also communicate with the system, where original videos
are never transmitted unless specifically solicited. Instead,
VPs are only transmitted, whose sizes are negligibly small
compared with those of videos as shown below.

Storage. Given a 1-min dashcam video, its VP consists
of 60 VDs and one Bloom filter bit-array (256 bytes in
our context). Each video also has its secret number of 8
bytes for untraceable rewarding. Thus, the total storage
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Platform Blur time | I/O time | Frame rate
Rasp. Pi 3 (1.2 GHz) 50.19 ms 49.32 ms 10 fps
iMac 2008 (2.4 GHz) 10.72ms | 41.78 ms 18 fps
iMac 2014 (4.0 GHz) 10.18 ms 20.44 ms 30 fps
Table 1: Frame rates of realtime license plate blurring.
----- »¢--- Normal hash (worst case) é

4 || =B Normal hash (avg. case)
—s— Cascading (worst case)
---@--+ Cascading (avg. case)

Hashing time (sec)
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Figure 8: Hash generation times.

overhead incurred by a single VP is (60 x 72 bytes + 256
bytes + 8 bytes) = 4584 bytes. Given that the average
size of 1-min video is 50 Mbytes, the storage overhead is
less than 0.01% of original videos.

Computation. Two key operations that require com-
putation are: car plate blurring (discussed shortly) and
VD generation. To broadcast a new VD on time, a hash of
the currently recording video should be produced within
one second. Our test (Fig. 8), with Raspberry Pi (1.2
GHz CPU) as a dashcam for a 50-Mbyte 1-min video,
shows that normal hashing times increase with recording
time, and miss the deadline before 20 second of the video,
reaching to 4.32 second at the end. On the other hand, our
cascaded hashing results in constant-time hash generation
with the worst-case of 0.13 second.

6.2 The Privacy of ViewMap
6.2.1 Visual Anonymity

Realtime license plate blurring. We have imple-
mented the realtime license plate blurring using OpenCV
[18] on Raspberry Pi as a ViewMap-enabled dashcam.
The key task of license plate blurring is to localize plates
in an image, a procedural part of popular car plate recog-
nition algorithms [19, 20], whose realtime versions have
been implemented for various mobile platforms such as
i0S [21] and Android [22]. The license plate blurring
procedure is as follows: (i) take the realtime video frame
from camera module (I/O time), (ii) localize regions that
contain license plates in the image via various parameters
(e.g., area, aspect ratio)’ and blur those areas (Blur time),
(iii) write the plate blurred frame to the video file (I/O
time). Our implementation on Raspberry Pi (1.2 GHz
CPU) results in realtime processing with a frame rate of
10 fps (frame per second). Table 1 shows the time taken
in each step when running our plate blurring implemen-
tation on Raspberry Pi as well as other platforms. We
point out that the current prototype leaves more room for

7We use parameters tailored for South Korean license plates.
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Figure 9: Volume of VP creation.

improvement, such as image processing using GPUs and
multi-threading for blur and I/O operations. Still, our
resulting videos at 10 fps, albeit frame rates not as high
as normal movies (24-30 fps), are practically usable for
the purpose of dashcams or video surveillance systems.

6.2.2 Location Privacy

The system can become a tracker using collected location
traces in the VP database. We analyze the degree of
privacy protection in the VP dataset against tracking.

Guard VPs against tracking. In order to create path
confusion, each vehicle, among its m neighbor VPs, ran-
domly selects [o x m] neighbor VPs (0 < a < 1) and
generates guard VPs for them. Having a larger value of o
creates higher degree of path confusion, but incurs exces-
sively high volume of VPs in a dense environment (Fig.
9). Our design choice is to keep o small, but enough to
preserve a high degree of privacy. The intuition behind
is that driving time usually spans at least several minutes
(10-min driving reported in [23]) so we exploit time factor
ttohave B = [1—{1—(1—a)"}"]" below 0.01, where
P, is the probability that there is any vehicle not covered
by others’ guard VP until time ¢. In this work, we use
o = 0.1, which makes P, below 0.01 with 5-min driving.

Tracking process.  The tracker’s process can be for-
malized through target tracking algorithms [24, 25]. In
our VP-based traces, the tracker’s prediction only hap-
pens at the end of the currently tracking VP to link to
the next VP. We assume a strong adversary with perfect
knowledge of the initial position of target vehicle u such
that p(u,0) = 1, where p(i,) denotes the attacker’s belief
(probability) that location sample I(i,#) of time ¢ belongs
to the vehicle currently tracked. At each VP start-time ¢,
predicted position /,(¢) of target u is given based on the
last sample /(j, — 1) of the previous VP. We derive the
tracker’s belief p(i,t) of target u in I(i,¢) within possible
distance from /,(¢) based on [23], which follows a proba-
bility model of distance deviation from the prediction and
this model ensures }; p(i,#) = 1 for any time 7.

Location entropy. To measure the degree of privacy
under tracking, we use location entropy, defined as H; =
Y p(i,t)log p(i,t), a quantitative measure of the tracker’s
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Figure 11: Tracking success ratio.

uncertainty [11, 23]. Here, H; measures the uncertainty
of correctly tracking a vehicle over time ¢. Lower values
of H; indicate more certainty or lower privacy.

Tracking success ratio.  To give more intuitive privacy
results, we also assess a tracking success ratio S;, that mea-
sures the chance that the tracker’s belief, when tracking
target u over time ¢, is indeed true. Thus, S; is equivalent
to p(u,t) of actual target u, since ¥; p(i,#) = 1 at any time
t. Note S; is unknown to the tracker, who becomes unsure
which [(i,#) belongs to target u over time.

Privacy experiments. = We collect a dataset of VPs
created from 50-200 vehicles® traveling in the area of
4x4km? using ns-3 simulator. Fig 10 shows the average
entropy over time. We also plot the entropy without guard
VPs in the lowest density case (n = 50) as reference. Be-
fore ten minutes of driving, vehicles reach three bits of
location entropy in the sparse case of n = 50. In other
words, the tracker of a certain vehicle may suspect 8 dif-
ferent locations,’ but without knowing the exact location.
Fig 11 plots the average tracking success ratio over time.
We see that, in the sparse case of n = 50, the tracking suc-
cess ratio decreases to 0.2 before ten minutes and further
drops below 0.1 before fifteen minutes. In the case with-
out guard VPs, on the other hand, the tracking success
ratio still remains above 0.9 even after twenty minutes.
This result shows: (i) the privacy risk from anonymous lo-
cation data in its raw form; and (ii) the privacy protection
via guard VPs in the VP database.

8We present large-scale evaluations later in Section 8.
9X bits of entropy corresponds roughly to 2¥ equally likely locations.

6.3 The Security of ViewMap
6.3.1 Attacks with a Large Number of Fake VPs

Attackers may submit fake VPs simply cheating locations
and times. Such VPs are immediately excluded from a
viewmap G unless linked to any legitimate ‘member’ VPs
of G. Attackers must have physically positioned them-
selves in space and time on G to obtain legitimate VPs of
G. This is a highly restrictive condition for attackers as
they cannot predict the future investigation on G.

Let us nonetheless consider the case of attackers with
such legitimate VPs on G. Under anonymity, the attackers
can easily generate and inject a large number of fake VPs
now all disguised as members of G. We further assume
that the attackers share their fake VPs to increase their
trust scores. To examine how ViewMap performs on such
attacks, we provide our analysis on trust scores and our
experiment results below.

Upper bounds of trust scores. Let Dy (v) be the the
set of VPs that are reachable from VP v by following at
least L links. Similarly, we refer to the set of VPs that
are distant from all VPs in a given group G by at least L
links as Dz (G) (i.e., DL(G) = NyegD(v)). By adopting
Theorems 1 and 2 in [26], we obtain the upper bound for
the sum of trust scores over Dy, (G) as follows.

Lemma 1. Given a set T of trusted VPs, the sum of the
trust scores over all VPs in D (T) is at most o-. That is,
Yoep B < ol where P, is the trust score of v.

Due to the above lemma, a VP not closer to a given
trusted VP than L links cannot have a trust score greater
than a”. It implies that a trust score decreases by at most
the ratio & to the minimum distance to a given trusted VP.

We next provide the upper bound of the sum of trusted
scores over all fake VPs in the following lemma.

Lemma 2. Let A and Fy denote a set of attackers and
the set of fake VPs, generated by attackers in A to try a
colluding attack, respectively. The sum of trust scores
over Fy is upper bounded as

o O,NF,
Y R < Z' JALAIPY )
veFy -« vEA |OV|

where O, represents the neighbors of v.

The proof is given in the Appendix.

The above lemma suggests that attackers may achieve
high trust scores for fake VPs if attackers obtain high trust
scores for their legitimate VPs. Considering Lemma 1,
attackers can increase the chance of success in attacks if
they position their legitimate VPs close to a given trusted
VP. Furthermore, it shows that attackers will connect as
many links to fake VPs as possible to increase the term
‘Ovoﬂ in Inequation (1). Thus, the best strategy for an

O]
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Figure 12: Verification result 1.

attacker is to connect every fake VP with its legitimate VP
directly (while not practically possible in our viewmap),
and the intuition leads us to the following corollary.

Corollary 1. Assuming that attackers in collusion gener-
ate and inject n fake VPs, the upper bound of trust score of

a fake VP positioned at the investigate site of a viewmap
‘0‘ mFA‘ P,.
o =7

Ls n] OCZVG

The above corollary suggests that injecting a large num-
ber of fake VPs is somewhat counterintuitively disadvan-
tageous to attackers since their trust scores are distributed
over all fake VPs—the more fake VPs, the lower their
trust scores. Nevertheless, attackers have to create many
fake VPs to spread them over a wide area so that some can
reach the investigation site (publicly unknown), which in
turn decreases the chances of their success in attacks.

Verification experiments. We run experiments on syn-
thetic geometric graphs, as viewmaps with 1000 legiti-
mate VPs. We use 5 — 15% “human” colluding attackers
injecting fake VPs that outnumber legitimate VPs up by
500% (i.e., 5000 fake VPs). Fig. 12 shows the results
where accuracy indicates the cases that we correctly iden-
tify legitimate VPs during 1000 runs of each test. We
see that, only the attackers whose legitimate VPs are very
close to the trusted VP have the chance, albeit slight, of
successful attacks (Lemma 2) while injecting many fake
VPs rather decreases their chances (Corollary 1). In the
experiments, accuracy is nearly 99% except the case of
attackers in vicinity of the trusted VP (83% at worst). We
however argue that such a case is rare since attackers can-
not predict the future, e.g., location/time of an incident.
We also consider another type of attacks where attackers
prepare a lot of dummy videos beforehand and use them
to obtain many legitimate VPs for a single viewmap. Fig.
13 shows that, under such a condition, accuracy is still
high above 95%. This is because the trust scores of at-
tackers are upperbounded by their topological positions
within viewmap’s linkage structure (out of their control)
rather than their quantity.

6.3.2 False Linkage Attacks

ViewMap uses Bloom filters to validate VP linkage due
to its compact size. One key problem with Bloom filters
is false positives, leading to false linkage. ViewMap

Num of Iegmmate VPs that each attacker has

Figure 13: Verification result 2.
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requires a low false linkage rate to prevent incorrect
links. Given our two-way neighborship checking, the
probability of false linkage is calculated as follows:

= (1 —[1- %]M() * where m is a bit-array size, n
and k are the number of neighbor VPs and the number
of hash functions, respectively. Fig. 14 shows the false
linkage rate using an optimal number of hash functions
k = (m/n)In2. Considering the maximum possible num-
ber of vehicles encountered in 1 minute, we choose to
use m=2048 bits for our implementation. This has a false
linkage rate of 0.1% with 300 neighbor VPs.

Attackers may fabricate their VPs’ (Bloom filter) bit-
arrays with all 1, claiming that they are neighbors of all
other VPs. However, the validation of locations/times
between VPs as well as the two-way neighbor checking
prevent such attacks. Attackers may also try to poison
neighbor VPs’ (Bloom filter) bit-arrays to all 1, by send-
ing out extremely many dummy VDs each associated with
different VP while driving. Such a poisoning attack can
be mitigated by limiting the number of neighbor VPs at
each vehicle.!”

7 Experiments on Real Roads

7.1 Measurement Framework

Our field measurement aims to provide answers to the
following questions:
e Does our VP linkage reflect a line-of-sight (LOS)
characteristic in reality?
e What are the implications of such LOS properties on
(two-way) linked VPs and their videos?

Testbed implementation. Our DSRC testbed consists
of on-board units (deployed in a rear window), Raspberry
Pis with camera module (as dashcams), and Galaxy S5
phone (as a bridging device) as depicted in Fig. 18. We
make Raspberry Pis as ViewMap-enabled dashcams to
generate VDs of currently recording videos, which con-
nects (via a Ethernet cable) to the DSRC OBU for VD
broadcast, also connects (via Bluetooth) to the Galaxy
phone installed with a Tor client [27] to anonymously
upload its past VPs to our server.

10We set the maximum number of neighbor VPs accepted at each
vehicle as 250 (neighbor vehicles) at this moment.
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Figure 18: Pictures of our in-vehicle setup.

Experiment settings. We conduct our experiments for
three weeks in the metropolitan area of Seoul, Korea. We
run experiments using two vehicles equipped with our
ViewMap-enabled DSRC testbeds under various environ-
ments: university campus, downtown, residential area,
and highways. Each vehicle, continuously recording the
real view using a Raspberry Pi’s camera (with realtime
processing of car plate blurring), sends out VD broadcast
messages every second. The transmission power is set to
14 dBm as recommended in [17]. In our experiments, we
make vehicles only upload to our server their actual VPs
in order to facilitate analyzing the relationship between
linked VPs and their videos.

7.2 Measurement Results
7.2.1 Clear Manifestation of Line-of-Sight Links

Fig. 15 shows the measurement result of VP linkage ratio
(VLR) on various environments. In the figure, VLRs of
the open road environment are consistently very high (>
99%), indicating that the range of VP linkage extends up
to 400m if no obstacle is on the way. Whereas, we see
that VLRs vary and decrease with distance in the other
scenarios. During the experiments, we observe that such
unlinkage occurs mostly when the vehicles are blocked by
buildings, or sometimes blocked by heavy vehicle traffic.

To inspect other factors that may affect VP linkage, we
analyze the reception of VDs at both vehicles. Fig. 16
shows a scatter plot of average PDR vs. RSSI obtained
from this experiment. It is generally true that higher RSSI
results in better PDRs. However, when RSSI values fall in
arange of -100 dBm to -80 dBm, we observe the fluctuat-
ing PDRs,'! making it a less likely impacting factor to VP
linkage. We also run experiments with different vehicle
speed to see whether vehicle mobility such as Doppler
effect affects VP linkage (Fig. 17). We see that, in each
highway scenario, VLRs are insensitive to velocity for

''This observation conforms to the previous results reported in [17].
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Figure 17: Impact of traffic volume.
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Figure 16: RSSI vs. PDR.
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[ Scenario [ Condition | VPlinkage [ On Video |
Open road LOS 100% 100%
Building 1 NLOS 0% 0%

Intersection 1 LOS 100% 93%
Intersection 2 NLOS 9% 0%
Overpass 1 LOS 84% 77%
Overpass 2 NLOS 0% 0%
Traffic LOS/NLOS 61% 52%
Vehicle array NLOS 13% 0%
Pedestrians LOS 100% 100%
Tunnels NLOS 0% 0%
Building 2 LOS/NLOS 39% 18%
Double-deck bridge NLOS 0% 0%
House LOS/NLOS 56% 51%
Parking structure NLOS 3% 0%

Table 2: Summary of our measurement results.

any given separation distance. We rather observe that traf-
fic density on the road affects VP linkage. In our highway
experiments, we obtain high(/low) VLRs when the traffic
volume is heavy(/light). This result suggests that blockage
by heavy vehicle traffic is also likely a impacting factor.

From this set of experiments, we observe that distance,
RSSI, and vehicle mobility have little impact on VLRs,
rather line-of-sight condition appears a dominating factor
to VP linkage.

7.2.2 Strong Correlation between Linked VPs and
Contents of Their Videos

To further examine our observation, we conduct a set of
semi-controlled experiments. We carefully select various
locations where two vehicles are situated in line-of-sight
(LOS) or non line-of-sight (NLOS) or mixed conditions.
We measure VLRs to analyze how such conditions affect
VP linkage. Table 2 presents the measurement summary
from those various scenarios (Pictures of some of our
senarios are given in Fig. 19). As shown in the table, our
measurements demonstrate that obstacles, especially arti-
ficial structures (e.g., buildings and bridges) in vehicular
environments cause significant impact on VP linkage.
Given LOS-based VP linkage, we investigate the rela-
tionship between linked VPs and their videos. We review
the videos taken by the vehicles in the experiments, and
discover that, either vehicle appears on the other’s video
only when two VPs (of two vehicles) are linked. The re-
sults are reported in Table 2, where ‘On Video’ indicates
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the case that either video of two time-aligned VPs cap-
tured the other vehicle at least for a moment. We see clear
dependency between VP linkage and video contents.

To further validate our analysis, we quantify the degree
of association between two events, i.e., linkage between
two VPs and visibility on their videos, using the Pearson
correlation coefficient [28] as a function of the separation
distances across all the data collected from the experi-
ments. The result is shown in Fig. 20, and exhibits a
strong degree of association. The correlation varies from
0.7 to 0.9, indicating that VP linkage is indeed associated
with the shared “view”. This also suggests that when a
vehicle involved in a traffic accident has its own VP, then
videos of the neighbor VPs that are linked to VP highly
likely captured the accident.

8 Evaluation

To evaluate ViewMap in a large-scale environment, we
run simulations using traffic traces.

Simulation setting. We use the network simulator 7s-
3 [29] based on traffic traces of 1000 vehicles obtained
from SUMO [30]. We extract a street map (8x8km?)
of the city of Seoul via OpenStreetMap [31]. Output of
each simulation is a collection of VPs (each for 1-min).
Given those VPs, we construct viewmaps, each of which
corresponds to a single 1-min during simulation time.

Simulation results.  We first examine the features of
such traffic-derived viewmaps. To give a feel for how

:\ . “’1_ RN 2 > R
(a) Vehicle speed: 50km/h (b) Vehicle speed: 70km/h
Figure 21: Viewmaps from traffic traces.

they actually look, Fig. 21 depicts viewmaps!? built from
VPs of our simulations where all vehicles move at an
average speed of 50km/h (Fig. 21a) and an average speed
of 70km/h (Fig. 21b), respectively. Fig. 22c¢ shows the
average contact interval between vehicles. We see that
contact intervals are not very short in general. This result
suggests that vehicles have sufficient time to establish VP
links with nearby vehicles as long as they are in line-of-
sight condition. Fig. 22f quantifies the viewmaps. We see
the some VPs, albeit a few (<3%), are isolated from the
viewmaps. We point out that building a viewmap does
not require every VP in the area to join. We rather expect
that such a case is normal when ViewMap is deployed.
We assess the privacy of the collected VP dataset
against tracking as in Section 6. We here present the
results of the mix speed scenario as the other cases show
similar trends. Fig. 22a shows the average entropy over
time. Before ten minutes of driving, vehicles reach eight
bits of location entropy, implying that the tracker of a
certain vehicle may suspect 256 different locations not
knowing exactly where to locate it. Fig. 22b plots the av-
erage tracking success ratio over time. It decreases to 0.1
before three minutes and further drops nearly 0.01 before
ten minutes. Whereas, it still remains above 0.9 even after
twenty minutes without guard VPs. This conforms to the
privacy results in a sparser environment given in Section
6 and demonstrates privacy protection in the VP database.
To evaluate the verification performance of the traffic-
derived viewmaps, we create fake VPs in the same way
as described in Section 6. The results are averaged over
1000 runs of each test set. Fig. 22d plots the verification
accuracy in face of fake VPs that outnumber the legiti-
mate ones in the viewmaps. The results confirm the high
accuracy—100% in most cases and 82% at worst in the
special case of attackers in vicinity of the trusted VP. This
is consistent with our analysis in Section 6. We again
note that such a case is rare and is a highly restrictive
condition for attackers as they cannot predict the future
investigation. We also plot the verification accuracy under
concentration attacks in Fig. 22e, where each attacker, in
a given viewmap, possess as many as 125 legitimate but
dummy VPs and create a large number of fake VPs. The
result shows that accuracy is still high above 95%. As

12The shape of the viewmap reflects the actual road network of a
certain area of Seoul that we use for simulations.
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Figure 22: Simulation results from different scenarios.

explained, the trust scores of attackers are upperbounded
by their topological positions within viewmap’s linkage
structure (out of their control) rather than their quantity.

9 Related Work

Dashcam video sharing has received little attention so far
in the research communities. Recent survey studies [6, 7]
find that people with greater privacy concerns have lower
reciprocal altruism and justice motive, but have higher
monetary motive. These findings have significant impli-
cations on the design of dashcam video sharing systems,
and ViewMap takes them as design elements.

There have been many proposals on location privacy
in a mobile environment, and they focus on hiding users’
true positions in the context of location-based services
(LBS). k-anonymity [32] hides a user’s location by us-
ing a large region that encloses a group of k users in
space, instead of a single GPS coordinate. This how-
ever decreases spatial accuracy. CliqueCloak [33] uses a
smaller region but waits for k different users in the same
region. This delay compromises temporal accuracy. Mix-
zones [13] makes users’ paths indistinguishable if they
coincide in space and time. However, such space-time
intersections are not common, especially with frequent
and high-accuracy location reports as in our ViewMap.
Path confusion [23] resolves the mix-zones’ space-time
problem by incorporating a delay in revealing users’ loca-
tions. This delay also compromises temporal accuracy in
location data. CacheCloak [11] eliminates such delay via
users’ predicted location reports. Their goal is to hide user
identities, but users’ claimed positions are not verified.

Existing location verification techniques aim to localize
users’ positions or to determine the legitimacy of users’

location claims. They perform location verification in
various ways, from using ultrasound communication [34],
to multilateration via infrastructure such as base stations
[35, 36] or sensor nodes [37], to directional antenna [38].
Because their objective is to verify users’ locations, users
are more authenticated rather than anonymized—Iocation
privacy is not guaranteed.

10 Conclusion

This paper introduces ViewMap, an automated public
service system that enables sharing of dashcam videos
while preserving user privacy. The key insight is: (i) to
leverage line-of-sight properties of DSRC to link between
videos, in their compact form of view profiles (VPs), that
share the same sight while driving; and (ii) to exploit
inter-vehicle communications to create path confusion for
protection against tracking. We use such LOS-based VP
links to build a viewmap around a given incident, and
identify videos that are worth reviewing. We demonstrate
the feasibility of ViewMap via real road experiments. Our
evaluation of ViewMap shows high degree of user privacy
(tracking success ratio < 0.1%) and high verification accu-
racy (> 95%). In a broader scope, our solution explores to
share private, location-dependent data without resorting
to existing infrastructure such as 3G/4G networks where
user identities may be exposed.
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A Detailed Description of Untraceable Re-
warding

The system S posts VP identifier R, (of reviewed video u)
marked as ‘request for reward’, and corresponding user
A obtains the virtual cash that is made untraceable using
blind signatures via an anonymous channel as follows:

A—S: VP, 0,

S—A: n

S—A: {B(H( ) )}K oo AB(H (), 7q) b
where Q, is a secret number for video u (R, = H(Qy))

chosen by A when generating VP,. Upon valida-
tion of VP, and Q, against u, the system notifies A
of the amount of virtual cash (in a predefined mon-
etary unit), n, for video u. Then, A generates n
pairs of random messages and their blinding secrets
(ml ey, ..., (m2, "), and sends the system S their blinded
version B(H( Dy, rY), .., B(H(m?),r") where B(-) is the
blinding operation. The system S returns the messages
signed with its private key K without knowing their
‘blinded’ contents. Then, A unblinds each of the signed
messages as follows:
U(B(H(m). )} ) = (Hmi)
where U () is the unblinding operation that requires the
blinding secret r/, (only known to A). This unblinded
signature-message pair ({H ()} Kg,mfl) results in one
unit of virtual cash. When A presents it for payment,
anyone can verify (i) its authenticity via S* signature
and (ii) its freshness via double-spending checking on
m’u but fails to associate A with his/her video u. Even
the system S cannot derive the link between A’s virtual
cash ({H(mi)} Ks ,m) and video u’s blinded message

B(H(m),r!) w1th0ut the blinding secret r,, hence un-

traceable.

B Proof of Lemma 2

Proof. Suppose that v is a fake VP in F4. Then, the static
trust score in for v must be zero because v is clearly not
legitimate. By the recursive definition of TrustRank for
an individual VP v, we obtain

@)

MGO‘

Let E4 be a subset of F4 in which each VP is directly
linked by an attacker in A. With an exception for the VPs
in E4, summing Equation (2) for all fake VPs in Fy is
i gb;  repeatedly |0, | times for every
u € F4. Note that for v € E4, Equation (2) is shown as

P P
P = aZuEOvﬂFA Oiu + aZuEOVF‘\A ou . Thus, we get
‘ M‘ ‘ ul

yr-aY ¥

VvEF, veF, uc0, |0“|

a(Ln LI OEE )
veEFy vEE, ucA |0 | veEAucEy |OV|
<ay Rray [ 20El,

vEFy VEA |0 ‘

Since O, N E, is identical to O, N F4 with v € A, it is
simple to draw the upper bound of },cf, P, presented in
Inequation (1). O]
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