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Abstract. In this paper we introduce a variation on the multidimen-
sional segment tree, formed by unifying different interpretations of the
dimensionalities of the data structure. We give some new definitions to
previously well-defined concepts that arise naturally in this variation,
and we show some properties concerning the relationships between the
nodes, and the regions those nodes represent. We think these properties
will enable the data to be utilized in new situations, beyond those pre-
viously studied. As an example, we show that the data structure can be
used to solve the Rectangle Intersection Problem in a more straightfor-
ward and natural way than had be done in the past.

Keywords: segment tree, multidimensional, rectangle intersection prob-
lem, quad tree

1 Introduction

The Segment Tree is a classic data structure from computational geometry which
was introduced by Bentley in 1977 [1]. It is used to store a set of line segments,
and it can be queried at a point so as to efficiently return a list of all line segments
which contain the query point.

The data structure has numerous applications. For example, in its early days
it was used to efficiently list all pairs of intersecting rectangles from a list of
rectangles in the plane [2], to report the list of all rectilinear line segments in the
plane which intersect a query line segment [9], and to report the perimeter of a
set of rectangles in the plane [12]. More recently the segment tree has become
popular for use in pattern recognition and image processing [7].

Vaishnavi described one of the first higher dimensional segment trees in 1982
[8]. Introducing his self-described “segment tree of of segment trees”, he attached
an “inner segment tree”, representing one dimension, to every node of an “outer
segment tree”, representing the other dimension, and used this for the purpose
of storing rectangles in the plane. A point query would then return a list of
all rectangles containing the point. The recursive nature of this data structure
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2 The Unified Segment Tree

meant that it could be generalized to arbitrary dimensions. This has been the
standard model for high dimensional segment trees ever since.

Here we describe a variation on the higher dimensional segment tree which
we feel represents a more useful way to store the data. The new data structure
is formed by merging the segment trees which could be formed by different
choices for the dimensions of the inner and outer segment trees. Our purpose
in introducing this variation is not to show that it is faster for a particular
application, but to show that the data structure has some interesting properties,
and therefore the data can be used in some new situations.

In the following sections, we will define the data structure, and show a use-
ful way to visualize it. We introduce several new definitions as they apply to
this variation of data structure. We further show some interesting properties
concerning the relationships between the nodes, and the regions those nodes
represent.

Finally, we demonstrate that the data structure can be used to solve the
previously studied “Rectangle Intersection Problem”. Existing methods to solve
this problem have either involved using range trees, storing d-dimensional rect-
angles as 2d-dimensional points, or sweep planes, processing a lower dimensional
problem across the sweep. We think that our new data structure represents
a more natural way to store this data, and the algorithms involved are more
straightforward.

2 Definitions and Properties

Here we introduce a number of definitions, as they apply to Unified Segment
tree, including a definition of the data structure itself.

A description of the original segment tree is included in the Appendix, for
the convenience of the reader. Please note that many properties of segment trees
are given therein, and these properties are referred to throughout this paper.

2.1 The Unified Segment Tree

We begin with a description of a two dimensional segment tree, given by Vaish-
navi in 1982. He describes this data structure, which stores rectangles in the
plane, as a “segment tree of segment trees” [8]. It begins with a single one-
dimensional segment tree, which is called the “outer segment tree”, and which
represents divisions of the plane along one of the two axes. Attached to every
node of this outer segment tree, is an “inner segment tree”, which represents
further divisions along the other axis.

Here we note that the choice of axis for the outer segment tree could have
been either the x-axis or the y-axis. Although this choice may be arbitrary, it
has a great effect on the organization of the data structure. Therefore, let us
give different names to the different data structures resulting from this choice.

Definition 1. (xy-segment tree) Define the xy-segment tree to be the two
dimensional segment tree whose outer segment tree divides the plane along the
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x-axis, and whose inner segment trees further divide these regions along the y-
axis.

Definition 2. (yx-segment tree) Define the yx-segment tree to be the two
dimensional segment tree whose outer segment tree divides the plane along the
y-axis, and whose inner segment trees further divide these regions along the x-
axis.

The leaves created in a segment tree by the insertion of a segment correspond
to the sections of a canonical subdivision of the segment. One leaf is created for
each component of the subdivision. Here we show that the same leaves are created
regardless of whether an empty xy-segment tree or an empty yx-segment tree is
used.

Theorem 1. The same rectangle inserted into an empty xy-segment tree and
into an empty yx-segment tree will create an equivalent set of leaves in the two
trees.

Proof. A rectangle inserted into an xy-segment tree is first divided along the
x-axis, and then each subregion is further subdivided along the y-axis. In the
yx-segment tree, the rectangle is first divided along the y-axis, and then each
subregion is further subdivided along the x-axis. The same subregions are created
from the rectangle, regardless of the order in which the two axes are chosen, so
therefore an equivalent set of leaves is created in the two trees.

If several rectangles are stored in a segment tree, each is stored independent
of the other rectangles. So this leads to the following corollary.

Corollary 1. The same set rectangles inserted into an xy-segment tree and into
a yx-segment tree will create an equivalent set of leaves in the two trees.

Now we can define the unified tree in two dimensions based on these two
structures.

Definition 3. (Unified Segment Tree – 2 dimensions) Define the unified
segment tree storing a set of rectangles in the plane to be the data structure
created by the following procedure:

1. Create both the xy-segment tree and the yx-segment tree containing the set
of rectangles.

2. Merge the root of every inner segment tree with the node of the outer segment
tree to which it is attached, so that they are considered to be one node.

3. Merge any two nodes in the xy-segment tree and the yx-segment tree which
represent the same region of the plane, so that they are considered to be one
node.

4. Add all possible ancestors to any node which is missing any of its available
ancestors. (Ancestors in this data structure are defined later.)
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We note several features of the new data structure which are not normally
associated with segment trees.

– A node may have a two parents, one from the xy-segment tree and one from
the yx-segment tree

– A node may have four children. These could have been created when the
root of an inner segment tree was merged with a node of the outer segment
tree, or there could be two nodes each from the xy-segment tree and from
the yx-segment tree.

– The new data structure is technically no longer a tree, as it may contain
cycles.

2.2 Parents, Children, Ancestors, Descendants

In order to accommodate the features of the new data structure, we must create
some new definitions of previously well-defined concepts such as parent and child.

Definition 4. (x-child) Define an x-child of a node to be either of the two
nodes which represent the regions created when the original node’s representative
region is divided in half along the x-axis.

Note, there is both an left x-child, and right x-child.

Definition 5. (x-parent) Define the x-parent of a node to be the node for
whom the original node is an x-child.

Definition 6. (x-ancestor) Define an x-ancestor to be any node which can
be reached by following a series of x-parent relationships.

Definition 7. (x-descendant) Define an x-descendant to be any node which
can be reached by following a series of x-child relationships.

Analogous definitions exist for y-child, y-parent, y-ancestor, and y-descendant.
In addition to x-ancestors and x-descendants, we define additional nodes to be
simply ancestors and descendants.

Definition 8. (Ancestor) Define an ancestor to be any node which can be
reached by following a series of x-parent and/or y-parent relationships.

Definition 9. (Descendant) Define an descendant to be any node which can
be reached by following a series of x-child and/or y-child relationships.

Note that all nodes can have an x-parent, a y-parent, two x-children, and two
y-children, except for extremal nodes. Therefore, the node structure must include
additional pointers to accommodate for this. As with the original segment tree,
each node keeps a list of the segments whose canonical representation includes
the node.

Some additional properties can be seen from these definitions

– The x-parent of the y-parent of a node is the same node as the y-parent of
its x-parent.

– The x-child of the y-child of a node may be the same node as the y-child of
its x-child, but only if the corresponding choices for left and right children
are made.
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3 Visualization

We find it useful to visualize the unified segment tree as a diamond, where the
root of the data structure is at the top of the diamond. We divide the diamond
into units, such that all nodes representing a rectangle of the same shape are
located in the same unit.

The two x-children of any node appear together in the same unit below and
to the left of their x-parent. The two y-children of any node appear together in
the same unit below and to the right of their y-parent. Thus, each horizontal
row of the diamond has double the number of nodes per unit, as the row above
it. See Figure 1.

y−child

y−parentx−parent

x−child

1

2 2

444

8

16 16 16

3232

64

888

shorter

taller wider

narrower

(a) (b)

root root

Fig. 1. (a) A diamond-shaped visualization of parent child relationships, and the
number of nodes in each unit of the diamond. (b) The rectangles which are represented
by the nodes in each unit of the diamond.

It is possible to see the xy-segment tree and the yx-segment tree embedded
in the diamond representation of the unified segment tree. See Figure 2.

Using this visualization, the ancestors of a node appear in the diamond
shaped region above the node. The descendants appear in the diamond shaped
region below the node. See Figure 3. The number of ancestors can be bounded
as follows.

Theorem 2. A node has at most one ancestor per unit of the diamond.

Proof. Assume there are two ancestors of a node within the same unit. These
two nodes must represent rectangles of the same shape, because they are within
the same unit. The representative rectangles must contain a common point, since
the nodes have a common descendant. The representative rectangles must not
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Fig. 2. (a) The xy-segment tree embedded into the unified segment tree. (b) The
yx-segment tree embedded into the unified segment tree.

partially overlap, by Property 5 of Segment Trees (see Appendix). Therefore,
the rectangles, and the nodes representing them, must be the same.
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Fig. 3. (a) The location of the ancestors and descendants of a node within the diamond.
(b) The location of x-ancestors, y-ancestors, x-descendants, and y-descendants within
the diamond.

We think it is interesting that the nodes taken from the central vertical
column of the diamond form a quad tree. See Figure 4 for a depiction of an
embedding this, as well of a k-D tree.
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Fig. 4. (a) A k-D tree embedded in the unified segment tree. (b) A quad tree embedded
in the unified segment tree.

4 Relationships between Nodes

Here we look at some interesting relationships between the nodes of a unified
segment tree

Theorem 3. A node is an descendant of another node, if and only if it repre-
sents a rectangle that falls entirely within that represented by the ancestor node.

Proof. First, consider two nodes in the segment tree, one of which is a descen-
dant of the other. The rectangle represented by the descendant was formed by
successively subdividing the rectangle represented by the ancestor. Therefore,
the rectangle represented by a descendant falls entirely within the rectangle
represented by any of its ancestors.

Next, consider two rectangles represented by two different nodes of the tree,
such that one rectangle falls entirely within the other. Follow the x-parents of
the node representing the smaller rectangle, until a node is found which has the
same size in the x direction as the larger rectangle. This must have the same
x-coordinates as the larger rectangle, otherwise Property 5 would be violated.
From there, follow y-parents until a node is found which has the same size in the
y direction. This node must have the same y-coordinates as the larger rectangle,
for the same reason. Therefore it must be the node which represents the larger
rectangle, and the node representing the smaller rectangle must be a descendant
of the node representing the larger rectangle.

Theorem 4. An x-ancestor of a node is a y-ancestor of another node, if and
only if the representative rectangles of the two descendants completely cross over
each other, one in the x direction, and the other in the y direction.

Proof. Consider two nodes, such that an x-ancestor of one is a y-ancestor of the
other. The rectangle represented by the common ancestor of the two nodes can
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be formed by expanding one of the original two rectangles in the x direction,
or by expanding the other in the y direction. Therefore, the rectangle of the
ancestor must be completely spanned in y direction by the first rectangle, and
completely spanned in the x direction by the other. Therefore the two rectangles
must completely cross each other.

Next, consider two nodes which represent rectangles that completely cross
over each other. The smallest rectangle enclosing both original rectangles can be
found by expanding one rectangle in the x-direction or by expanding the other
rectangle in the y-direction. Therefore, the enclosing rectangle is represented by
an x-ancestor of one of the original nodes, and a y-ancestor of the other node.

Theorem 5. Two rectangles which are represented by nodes in a unified segment
tree may only intersect in one of two ways. Either one rectangle can be completely
inside of the other, or the two rectangles can completely cross over each other,
one in the x direction, and the other in the y direction.

Proof. By enumerating the possible rectangle intersections, we can see that all
other intersections would violate Property 5. See Figures 5 and 6 for a visual
depiction of the possible and impossible intersections.

Fig. 5. Possible intersections between rectangles represented by nodes in a unified
segment tree.

Fig. 6. Impossible intersections between rectangles represented by nodes in a unified
segment tree.
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5 Analysis

Here we analyze the performance of the unified segment tree. We show bounds
on the size of the data structure after n rectangles have been inserted. Also we
show bounds on the running time of the standard segment tree operations.

Theorem 6. After the insertion of n rectangles into a unified segment tree, the
deepest x-descendant of the root and the deepest y-descendant of the root have a
maximum depth of O(log n).

Proof. Recall that the unified segment tree was created from an xy-segment
tree, and a yx-segment tree. The outer segment trees of these two trees exactly
comprise the x-descendants and the y-descendants of the root. By Property 1,
these two trees can have a maximum height of O(log n).

Corollary 2. Any node in a unified segment tree can have a maximum of O(log n)
x-ancestors and a maximum of O(log n) y-ancestors.

Theorem 7. Any node in a two dimensional unified segment tree can have a
maximum of O(log2n) ancestors.

Proof. A node can have a maximum of O(log n) x-ancestors, and each of these
nodes can have a maximum of O(log n) y-ancestors. All ancestors can be reached
along one of these routes.

Theorem 8. The canonical representation of a rectangle in a two dimensional
segment tree is comprised of a maximum of O(log2 n) subrectangles.

Proof. Any rectangle is decomposed into a maximum of O(log n) regions in the x
direction by Property 2 of Segment Trees (see Appendix). Each of these regions
is further subdivided into a maximum of O(log n) subregions in the y direction.

Theorem 9. All nodes representing the canonical subregions of a rectangle have
a maximum of O(log2 n) ancestors in a two dimensional unified segment tree.

Proof. The limit on the number of the ancestors of the canonical representation
exists because there can be no more than 16 ancestors of a given shape. Consider
that there are 17 ancestors of a particular shape in the tree. By Property 5, these
shapes cannot overlap in their x-coordinates, or their y-coordinates, unless the
coordinates are the same. Since there are 17 distinct sets of x and y-coordinates,
there must be at least 5 distinct pairs of x-coordinates, or 5 distinct pairs of
y-coordinates. Assume, without loss of generality that there are 5 distinct pairs
of x-coordinates. Consider the node representing the middle of these 5 pairs of
coordinates. The x-parent of the node representing this rectangle must be located
entirely within the original rectangle. Therefore there is no reason to include the
middle rectangle, or any of its descendants in the canonical representation.

Corollary 3. Insertion of a rectangle into a two dimensional segment tree re-
quires O(log2 n) time.
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Corollary 4. A two dimensional unified segment tree requires O(n log2 n) space
to store n rectangles.

Theorem 10. A point query of a two dimensional unified segment tree returns
the list of enclosing rectangles in O(log2 n + k) time where k is the number of
rectangles reported.

Proof. A point is represented in a unified segment tree at the deepest node. All
enclosing rectangles are represented by O(log2 n) ancestors of this node. Thus it
is sufficient to report all rectangles stored in all ancestors.

6 Higher Dimensions

Most every aspect of the two dimensional unified segment tree can be generalized
into higher dimensions in a straightforward way. Here we mention a few of the
differences.

– Nodes may have d parents and 2d children.
– A node may have up to O(logd n) ancestors.
– Insertion requires O(logd n) time.
– Query requires O(logd n+ k) time.
– The data structure occupies O(n logd n) space.

We note that the space and the running time of the operations could be sped
up by a logarithmic factor, through the use of fractional cascading. However, our
objective here is to demonstrate that this data structure is a more natural repre-
sentation of the data, rather than to achieve the maximum speedup. Therefore,
we do not investigate the use of fractional cascading here.

7 The Rectangle Intersection Problem

The rectangle intersection problem is a classic problem dating back to the early
days of computational geometry. The problem has been studied by many authors,
and numerous variations have been inspired [5,6].

Although multiple definitions have been given for the name “rectangle inter-
section problem”, we use the following definition. Store a set of n axis-parallel
rectangles in such a way, that a rectangle query will efficiently report a list of
all rectangles from the set which intersect the query rectangle.

Edelsbrunner and Maurer gave one of the first general purpose algorithms
solving this problem in 1981 [4]. Their method involves storing the rectangles in
a combination of segment trees and range trees, and these are queried to detect
four kinds of intersections between rectangles. In higher dimensions, they sweep
across the problem, solving a lower dimensional problems during the sweep, and
thereby giving an overall solution that is recursive by dimension.

Edelsbrunner demonstrated two further methods to solve the problem in
1983 [3]. The first of these involves Storing the d-dimensional rectangle in a
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2d-dimensional range tree, and performing an appropriate range query. For the
second, a data structure called the “rectangle tree” is developed, and this is
queried similarly to the range tree.

Here we show yet another way to solve this problem using an augmented ver-
sion of our unified segment tree. Our method does not claim a speedup over the
previous methods. However, we feel the unified segment tree uses a more natural
representation of the data than the range tree or rectangle tree. Additionally,
given the machinery that we have already developed in this paper, the algorithm
is quite straightforward.

7.1 Augmenting the Unified Segment Tree

For the purpose of solving the rectangle intersection problem, we augment the
unified segment tree with the following additional data:

– A list of rectangles stored in all descendants of the node.
– A list of rectangles stored in all x-descendants of the node.
– A list of rectangles stored in all y-descendants of the node.

Thus a node of a two dimensional augmented segment tree contains the
following information.

struct NODE {

struct NODE * xparent, yparent;

struct NODE * leftxchild, rightxchild;

struct NODE * leftychild, rightychild;

Segment storedHere[];

Segment storedInDescendants[];

Segment storedInXDescendants[];

Segment storedInYDescendants[];

}

When a segment is inserted, its identifier must be inserted into all canonical
nodes, and all ancestors of the canonical nodes, in the appropriate lists. In two
dimensions, this does not affect the asymptotic running time of the insert opera-
tion. However, in d dimensions, there can exist 2d separate lists, so an alternate
method of storage may be desirable if d is large.

7.2 Rectangle Query Algorithm

A rectangle query operation returns a list of all rectangles which intersect the
given query rectangle. Our algorithm for rectangle query first divides the query
rectangle into its canonical regions. It then performs a query on each rectangle
individually, reporting the union of the rectangles found.

Note that the same rectangle might be found in multiple places, so care must
be taken to avoid reporting duplicates, if that is undesirable. If duplicates are
reported it may also adversely affect the running time.
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Recall from Theorem 5 that rectangles can only intersect if one is completely
inside the other, or if they completely cross over each other, one in the x direction,
and the other in the y direction. Therefore, it is sufficient to report the rectangles
described in Theorems 3 and 4.

This gives us the following very straightforward algorithm:

1. Report all rectangles stored in ancestors of the node.
2. Report all rectangles stored in the descendant list of the node.
3. Report all rectangles stored in the x-descendant list of a y-ancestor of the

node.
4. Report all rectangles stored in the y-descendant list of an x-ancestor of the

node.

This information is available in the ancestors of the canonical nodes of the query
rectangles. So only O(log2 n) nodes need to be accessed. Again care must be
taken to avoid reporting duplicates.

Acknowledgments. The author is grateful to Stefan Langerman and John
Iacono for their helpful discussions.
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Appendix: The Segment Tree

We include a short description of the segment tree data structure, originally
described by Bentley in 1977 [1].

A segment tree is a a balanced binary tree which stores a set of line segments.
The data structure supports point queries, which return the list of all segments
containing the query point.

Each node of the tree represents a contiguous section of the line, may be
bounded or unbounded, and may be open or closed. The root of the tree rep-
resents the entire available line. The two children of any node represent two
mutually exclusive subsections of the line, and the union of these two subsec-
tions is equivalent to the section represented by the parent.

The points where the line may be divided are normally drawn from the
endpoints of the segments stored. Thus, the entire set of segments is assumed
to be known before the tree is built, although methods have been developed to
make the segment tree dynamic [10,11].

Before a segment is inserted, it must first be divided into the unique set
of mutually exclusive subsegments, whose union is equivalent to the original
segment, and which have representative nodes in the tree. This set is called the
“canonical representation” of the segment. An identifier for the original segment
is then stored at every node which represents one of the subsegments.

Segment trees have many well known properties. Here we show a proof of the
some properties which we will use later in the paper. These apply to a segment
tree which is designed to hold n segments.

Property 1. The height of a segment tree is at most O(log n).

Proof. The segment tree is well-balanced, and therefore its height can be optimal.

Property 2. The canonical representation of a segment has, at most, O(log n)
segments.

Proof. The limit on the number of segments in the canonical representation
exists because there can be no more than 2 segments at a given depth of the
segment tree. Consider that there are 3 segments at a particular depth in the
tree. The parent of the middle segment must be located entirely within the
original segment. Therefore there is no reason to include the middle segment in
the canonical representation.

Property 3. The ancestors of the canonical representation of a segment are com-
prised of, at most, O(log n) nodes.

Proof. The limit on the number of the ancestors of the canonical representation
exists because there can be no more than 4 ancestors at a given depth. Consider
that there are 5 ancestors at a particular depth in the tree. The parent of the
middle segment must be located entirely within the original segment. Therefore
there is no reason to include the middle segment, or any of its descendants in
the canonical representation.
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Property 4. O(log n) time is required for insertion and query in a segment tree.

Proof. The only nodes processed during an insertion or query are the ancestors
of the canonical set. So the running time follows directly from Property 3.

Property 5. The line segments represented by any two nodes in a segment tree
are either mutually exclusive, or one is contained in the other.

Proof. Consider any two nodes in a segment tree. Either one of these nodes is
an descendant of the other, or neither is a descendant of the other.

If one node is a descendant of the other, then the line segment represented
by the descendant node is defined by repeatedly subdividing the line segment
represented by the ancestor. Thus the descendant line segment is contained in
the ancestor line segment.

If there is no descendant relationship between the two nodes, then they must
have a deepest common ancestor, which is neither of the two nodes. One of the
two nodes must be in the left subtree of the deepest common ancestor, and one
must be in the right subtree. The line segments represented by the left and right
children of this node are be mutually exclusive, so the line segments represented
by one node from each subtree must be mutually exclusive.

In particular, we note that if two nodes, Na and Nb, in the segment tree
represent segments [mina,maxa] and [minb,maxb], then it cannot be the case
that mina < minb < maxa < maxb.
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