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Abstract. We assess the reliability of present lattice 
calculations in SU(3) Yang-Mills theory at finite 
physical temperature. There are clear deviations 
from asymptotic scaling, but the ratios of deconfine- 
ment temperature, latent heat and string tension are 
found to remain constant under lattice changes. 

I. Introduction 

The purpose of this paper is to assess the reliability 
of present lattice calculations in finite temperature 
SU(3) gauge theory, and to indicate in particular for 
which results a dependence on lattice size is still 
evident. 

Before getting into details, let us note that the 
ultimate aim of such calculations is to provide reli- 
able predictions for the values of temperature and 
baryon density at which deconfinement and chiral 
symmetry restoration occur - predictions sufficiently 
reliable to be used as input parameters for the de- 
sign of heavy ion facilities and experiments. Present 
technical problems encountered for fermions on the 
lattice prevent us now from doing this for full QCD; 
therefore we study the pure gauge theory as a fea- 
sible test of the lattice evaluation. 

The basic quantities to be calculated for the ther- 
modynamics of SU(N) gauge theory are the energy 
density [1] e and the deconfinement order parameter 
[2, 3] ( L ) ;  we want to study their behaviour as 
function of the physical temperature T=fl  -*. On a 
lattice of size N2 x N~, the energy density is given by 
[4] 

a/T ~ = 6N N~ [g- 2 (/5~ _ tip) + c'~ (P -/5~)+ c'p (e -P~)], (1) 

1 A.v. Humboldt fellow, on leave from Hacettepe University, 
Ankara, Turkey 

with/5~ and /~  for the space-space and space-temper- 
ature plaquette averages, respectively;/5 denotes the 
corresponding average on a large symmetric lattice 
( > N  4) - it is needed to provide the correct energy 
density at zero temperature. On an anisotropic lat- 
tice, with spacings a~ and a~, we have two couplings 
[5], gZ and g~; for ~ = a~/a~ = 1, they coincide to give 
the usual g2. The constants c~,=(0g~-Zfi?~)~=l and c} 
=(~g~-2/0~)~= 1 are known [6]; for the SU(3) case, 
c'~=0.20160 and c~= -0.13194. 

If our system at high temperature shows the be- 
haviour of a non-interacting gluon gas, then its en- 
ergy density will approach the Stefan-Boltzmann lim- 
it 

e~B/T4= (X 2 - 1) ~z;/15. (2) 

On a given lattice, both high and low momenta are 
eliminated; the values of the energy density (1) 
should therefore not be compared with the con- 
tinuum form (2), but rather with the energy density 
for an ideal gas calculated on a lattice of the same 
size [7]. 

To calculate the deconfinement order parameter 
(L) ,  we start with the thermal Wilson loop at a 
spatial site x, 

/ x ( U ) - l T r  [ ~  Ux;~,~+l] , (3) 
z = l  

obtain the average L(U) over all sites x for a given 
configuration of U's and then average over succesive 
configurations. For SU(N), order implies one of the 
N physically equivalent Z N modes 

(2~ i ]  (47ri] ~zi}. 
1, exp ~ j ~ ,  exp ~ - j ~ ,  ..., exp {2(NN1) (4) 

If for any specific configuration a complex L(U) is 
obtained, then all link matrices for one fixed r-value 
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are multiplied by the appropriate factor (4) to put 
the system into the sector connected to the con- 
tinuum limit U ~  1. - The order parameter ~L) 
indicates if the system is in a state invariant under 
the global center Zu symmetry (confinement), or if 
this symmetry is spontaneously broken (deconfine- 
ment) [8]. 

Both ~ and ( L )  are now evaluated on an N~ 
x Np lattice at a given g2. Most calculations so far 
are based on the Wilson action [9] 

s(u)=~ ~ 1-NReTrVUUC~ ; (5) 
plaquettes 

however, we shall also refer to some results using an 
alternate "improved" form [10]. Given g2, the in- 
verse temperature ~=N,a can only be obtained by 
use of the asymptotic scaling relation 

24~z 2 51 In ( l lNya~),  
aAL=exp l l N g  2 121 \ 48~2 ] j  (6) 

where A L denotes the usual lattice scale. The appli- 
cability of (6) of course has to be verified in the g2 
range studied. 

The dominant feature in the thermodynamics of 
SU(N) gauge theory, as seen on a given lattice, is the 
sudden increase of e/T 4 at some coupling g2a- Since 
the order parameter ( L )  is essentially zero for smal- 
ler and non-zero for larger g-2, this increase is due 
to deconfinement. For the SU(3) system, the tran- 
sition is in fact clearly first order [11], and at the 
deconfinement point, the energy density increases by 
the latent heat of deconfinement. 

For our assessment, we shall now proceed as fol- 
lows. In Sect. II, we shall show that the critical 
coupling for deconfinement remains essentially con- 
stant as we vary the spatial lattice size N~ at fixed 
Np. The dependence of g-2 on the temporal lattice 
size N,  at fixed N~ is studied in Sect. III; we find 
there that the asymptotic scaling form (6) is not yet 
valid for the lattices presently employed. 

II. Spatial Lattice Size 

For reference [11], we show in Fig. 1 the energy 
density (1), evaluated on an 83 • 3 lattice, as function 
of 6/g 2. At 6/g~ = 5.55, we have the first order decon- 
finement transition. The behaviour of the lattice av- 
erage of the thermal Wilson loop in the deconfine- 
ment region is shown in Fig. 2, as function of the 
number of iterations, for each value of 6/g 2 both 
after an ordered and a random start. While above 
and below 6/g~ the system quickly reaches a single 
state, we observe at 6/g~ a clear two-state signal. We 

e/T 4 

6 ' -  

4 

2 

o .-, '~'~ 
5.5 

I I 
6.0 6.5 

6/g 2 

Fig. 1. Energy density e/T 4, evaluated on an 8 3 x 3  lattice, as 
function of 6/g 2 

now want to see if the value of the critical coupling 
depends on the spatial lattice size. 

To reduce numerical work, we switch to a lattice 
with only two temporal lattice sites; this enhances 
the size of the discontinuity and reduces the number 
of links. We consider N~ x 2 lattices with N~ = 6, 8, 
10, 12. The resulting lattice average /2 is shown in 
Fig. 3; we note that an increase in spatial volume by 
a factor 23 leaves the value of the critical coupling 
unaffected. We also note that the fluctuations are 
damped with increasing N~, reducing the risk of 
phase flips; below N~=6, these are so prominent 
that they effectively destroy the two-state signal. The 
value of ( L )  for the disordered state falls with incre- 
asing lattice size, as seen in Fig. 4; both the ordered 
state value of ( L )  and the latent heat Ae, shown in 
Fig. 5, are essentially N~-independent. The constancy 
of A e over the given range of N~ is also in accord 
with the constancy of the corresponding lattice re- 
sults for an ideal gluon gas. 

Before looking at the temporal lattice size depen- 
dence, let us briefly comment on the actual physical 
size of the systems so far considered. For a critical 
temperature To=200 MeV, we have a(g~)=0.5 fm on 
a lattice with N~=2; this means spatial volumes 
ranging from 27 to 216 fm 3 as N~ varies from 6 to 
12. With a 123 • lattice, with the same T~, the 
spatial volume becomes 64 fm 3, and within a ha- 
dronic volume of size 4~z(0.8 fm)3/3-2 fm 3, there 
are 54 lattice points. Thus both the size of the box 
and the mesh of the grid appear not unreasonable. 

III, Temporal Lattice Size and Scaling 

We now want to study the critical coupling as N~ is 
varied at fixed N~. In Fig. 6, we recall the results 
[11] for L from 83 x N~ lattices with Ne =2, 3 and 4; 
for N~>4 at N~=8, phase flips again destroy the 
two-state signal. In Table 1, we list the presently 
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Fig. 2. Lattice average L of the Wilson loop, in bins of 50, calcu- 
lated on an 83x3  lattice, as function of the number of 
iterations after an ordered ( x )  and a random (o) start, respective- 
ly; from [11] 
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Fig. 3. Lattice average L of the thermal Wilson loop, in bins of 
50, calculated at the critical 6/g 2 on N~ x 2 lattices, with N~ as 
shown 

< L >  

0 4  

0.3 

0.2 

0.1 

| i 
1 

o 4j I I I I 
6 8 10 12 

N ~  

Fig. 4. Order parameter ( L )  at the critical 6/g 2 for N~=2, as 
function of N~,, for the ordered ( x ) and the disordered (e) state 
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Fig. 5. Latent heat As/T, 4 calculated on N~ x 2 lattices, as function 
of N~ 

Table 1 

N e N ,  6/g~ TJA L Aec/Y~ 4 Ref. 

2 8, 10, 12 5.11 78_+1 3.60 
_+0.10 

3 8, 10 5.55 86-1-1 3.90 
_+0.20 

4 8, 10 5.70 76 4-1 3.67 
_+0.50 

5 12 5.79-5.82 68.5+1 
6 16 5.92 - 5.94 65.5 +_ 1 

11, 
this paper 
11 

11 

12 
12 

available critical coupling values, including recent 
results for Np=5 and 6 [12]. In Fig. 7 we show the 
corresponding values of TJA L as function of N,; 
they are obtained by use of the asymptotic scaling 
relation (6). Besides the just mentioned results calcu- 
lated using the Wilson action, we include the analo- 
gous values obtained [13] from an "improved" ac- 
tion; in the latter case, Ak mp .... a is scaled down to 
Awnson by the observed factor 6.3. We note that L 
there is a clear and appearently universal systematic 
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Fig. 7. Deconfinement temperature Tc/A L as function of N~, for 
the Wilson action (circles) and the Szymanzik-improved action 
(squares); in the latter case, the corresponding lattice scale was 
converted to that of the Wilson action by use of the empirical 
ratio found in [13] 

decrease of TJA L with 6/g 2, indicating that in the 
considered range of 6/g;, relation (6) is not valid. 

This could mean either that we have not yet 
reached the scaling regime, defined as the range of 
gZ where a general renormalization scheme is valid, 
or that only the asymptotic form (6) is not yet appli- 
cable [14]. To test which is the case we shall com- 
pare different physical quantities in the same g2 
range and see whether their ratios remain constant. 

In Fig. 8, we show the dimensionless ratio 
Ae/T~ of latent heat and deconfinement tempera- 
ture as function of N#. Although Tc/AL, as seen in 
Table 1 and Fig. 7, is N# dependent, the ratio is 
constant. 
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103x 4 (crosses), 83x 4 (dots); from [11] 
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Fig. 8, Latent heat Ae/T~ 4, calculated on 83x N~ lattices, as func- 
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Next  we combine  in Fig. 9 recent results for the 
string tension ~ [15, 16] with those for the deconfi- 
nement  temperature .  It is seen that  bo th  quantit ies 
exhibit the same 6/g 2 dependence  in the range con- 
sidered. Al though the asympto t i c  scaling form (6) is 
clearly violated, the dimensionless rat io  

remains independent  of the choice of lattice. This 
result is cont ra ry  to a recent claim for an increase of 
T~ with lattice size [16]. 

IV. Conclusions 

We have seen that  present  deconf inement  calcula- 
t ions are independent  of  spatial  lattice size over  a 
ra ther  large range. We  also find that  the dimension-  

less rat ios of physical  observables  Ae/Tc 4, T J l / ~  - 
are independent  of  t empora l  lattice size for the 
range of lattices studied. Physical quanti t ies measur-  
ed in terms of the lattice scale - Tc/AL, A e/A~, 

] /~ /A  L - do, however,  show a clear decrease with Np 
or, equivalently, with 6/g z. Hence  the asympto t ic  
scaling relat ion (6) is not  yet valid*. 

The  origin of  the deviat ion from asympto t ic  scal- 
ing remains unclear. The observed "phys ica l "  scal- 
ing, i.e., the lattice size independence of ratios of 
physical  quantities, suggests that  scaling in general 
may  well be satisfied, with deviat ions only if we 
insist on a one- loop per turba t ive  approach  (6). This 
is in fact further suppor ted  by the similar behav iour  
of different lattice actions in SU(2) Yang-Mil ls  theo- 
ry [14]. On the other  hand,  a more  detailed s tudy of 
the next order  yields less than  the observed devia- 
t ion [18]. 

The  region of couplings considered here is close 
to the end-point  singularity in the phase d iagram of 
a mixed fundamenta l -adjo in t  act ion [19], and this 
proximi ty  has been considered as a possible source 
for scaling violations. Such an effect could be tested 
by varying g2 for a mixed, ra ther  than  pure  Wilson 
action - approach ing  the con t inuum limit a long a 
pa th  further away from (or closer to) the end-point  
singularity. The  ment ioned  SU(2) studies [14] for 
different actions do not, however,  indicate not iceable  
differences in the corresponding coupl ing range. 

It thus seems worthwhile  to reach g2 values 
small  enough to observe  at least an approach  to 
asympto t ic  scaling, in the sense of a "levell ing-off" 

of TJA L and V ~ / A L  in Fig. 9. 
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