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ABSTRACT
Over the past years, Semantic Web and Linked Data tech-
nologies have reached the backend of a considerable number
of applications. Consequently, large amounts of RDF data
are constantly being made available across the planet. While
experts can easily gather information from this wealth of
data by using the W3C standard query language SPARQL,
most lay users lack the expertise necessary to proficiently
interact with these applications. Consequently, non-expert
users usually have to rely on forms, query builders, ques-
tion answering or keyword search tools to access RDF data.
However, these tools have so far been unable to explicate
the queries they generate to lay users, making it difficult for
these users to i) assess the correctness of the query generated
out of their input, and ii) to adapt their queries or iii) to
choose in an informed manner between possible interpreta-
tions of their input. This paper addresses this drawback by
presenting SPARQL2NL, a generic approach that allows ver-
balizing SPARQL queries, i.e., converting them into natural
language. Our framework can be integrated into applica-
tions where lay users are required to understand SPARQL
or to generate SPARQL queries in a direct (forms, query
builders) or an indirect (keyword search, question answer-
ing) manner. We evaluate our approach on the DBpedia
question set provided by QALD-2 within a survey setting
with both SPARQL experts and lay users. The results of
the 115 filled surveys show that SPARQL2NL can generate
complete and easily understandable natural language descrip-
tions. In addition, our results suggest that even SPARQL
experts can process the natural language representation of
SPARQL queries computed by our approach more efficiently
than the corresponding SPARQL queries. Moreover, non-
experts are enabled to reliably understand the content of
SPARQL queries.
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1. INTRODUCTION
An ever-growing number of applications rely on RDF data
as well as on the W3C standard SPARQL for querying this
data. While SPARQL has proven to be a powerful tool in
the hands of experienced users, it remains difficult to fathom
for lay users. To address this drawback, approaches such
as question answering [28], keyword search [25] and search
by example [18] have been developed with the aim of hiding
SPARQL and RDF from the user. Still, these approaches
internally construct SPARQL queries to address their data
backend, without providing lay users with a possibility to
check whether the retrieved answers indeed correspond to
the intended information need. Consider for example the
natural language question What is the birth date of Li Ling?,
for which TBSL [28] returns more than 50 possible inter-
pretations, including the birth date of the pole vaulter Li
Ling and the age of the sinologist Li Ling. Since each of
the interpretations is realized as a SPARQL query, a lay
user cannot pinpoint the set of results that correspond to
the person he is actually interested in, nor can he easily
detect the source of possible errors. Similar problems occur
in keyword-based systems. For example, the keywords Jenny
Runacre husbands leads to SINA [25] generating queries for
the husbands of Jenny Runacre as well as for the role of
Jenny Runacre in the movie “The Husbands”. We address
this drawback by presenting SPARQL2NL1, a novel approach
that can verbalize SPARQL queries and therewith bridge
the gap between the query language understood by semantic
data backends, i.e. SPARQL, and that of the end users,
i.e. natural language. Our approach is tailored towards
SPARQL constructs typically used in keyword search and
question answering, and it consists of four main steps: a
preprocessing step which normalizes the query and extracts
type information for the occurring variables, a processing

1http://aksw.org/projects/SPARQL2NL - an open source
implementation is available at https://github.com/AKSW/
SPARQL2NL
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step during which a generic representation of the query is
constructed, a postprocessing step which applies reduction
and replacement rules in order to improve the legibility of the
verbalization, and a realization step which generates the final
natural language representation of the query. As exemplary
use cases, we integrated SPARQL2NL into the user interface
for the question answering system TBSL2 as well as into
the BioASQ annotation tool3. A demo of SPARQL2NL is
available at http://sparql2nl.aksw.org/demo.

The rest of this paper is structured as follows: After intro-
ducing the notation we employ in this paper, we give an
overview of each of the four steps underlying SPARQL2NL.
We then evaluate our approach with respect to the adequacy
and fluency [5] of the natural language representations it
generates. After a brief review of related work, we conclude
with some final remarks. Throughout the rest of the paper,
we use the following query shown in Listing 1 as main exam-
ple4. This query retrieves persons that are writers or surfers
and were born later than 1950.

1 SELECT DISTINCT ?person ?label
2 WHERE { ?person rdf:type dbo:Person.
3 { ?person dbo:occupation res:Writer. }
4 UNION
5 { ?person dbo:occupation res:Surfing. }
6 ?person dbo:birthDate ?date.
7 FILTER (?date > "1950"^^xsd:date) .
8 OPTIONAL {? person rdfs:label ?label
9 FILTER ( lang(?label) = "en" ) } }

Listing 1: Running example.

2. PRELIMINARIES AND NOTATION
The goal of our approach is to generate a complete and cor-
rect natural language representation of an arbitrary SPARQL
query, where completeness means in this context that we
aim to represent all information that is necessary for the
user to understand the content of the query. In terms of
the standard model of natural language generation proposed
by Reiter & Dale [24], our preprocessor and processor steps
mainly play the role of the document planner, in particular
carrying out the task of document structuring, while the
postprocessor step corresponds to the micro-planner, with
focus on aggregation operations and the lexicalization of re-
ferring expressions. In the following, we give a short overview
of the notation used throughout this paper to describe our
approach. We begin by giving a brief overview of the most
important concepts underlying SPARQL queries. Thereafter,
we present our approach to formalizing natural language
sentences.

2.1 SPARQL queries and their realization
According to the SPARQL grammar,5 a SPARQL SELECT

query can be regarded as consisting of three parts:

2A demo can be found at http://autosparql-tbsl.
dl-learner.org.
3The tool can be accessed at http://at.bioasq.org
4The following prefixes are used:
dbo: <http://dbpedia.org/ontology/>
res: <http://dbpedia.org/resource/>
rdfs: <http://www.w3.org/2000/01/rdf-schema#>
rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
5See http://www.w3.org/TR/sparql11-query/.

1. a body section B, which describes all data that has to
be retrieved,

2. an optional section O, which describes the data items
that can be retrieved by the query if they exist, and

3. a modifier section M, which describes all solution se-
quences, modifiers and aggregates that are to be applied
to the result of the previous two sections of the query.

Let Var be the set of all variables that can be used in a
SPARQL query. In addition, let R be the set of all resources,
P the set of all properties and L the set of all literals contained
in the target knowledge base of the SPARQL queries at hand.
We call x ∈ Var ∪R∪P ∪L an atom. The basic components
of the body of a SPARQL query are triple patterns (s, p, o) ∈
(Var ∪R)× (Var ∪ P )× (Var ∪R ∪ L). Let W be the set
of all words in the dictionary of our target language. We
define the realization function ρ : Var ∪R ∪ P ∪ L→ W ∗ as
the function which maps each atom to a word or sequence of
words from the dictionary. Formally, the goal of this paper
is to devise the extension of ρ to all SPARQL constructs.
This extension maps all atoms x to their realization ρ(x) and
defines how these atomic realizations are to be combined.
We denote the extension of ρ by the same label ρ for the sake
of simplicity. We adopt a rule-based approach to achieve
this goal, where the rules extending ρ to all valid SPARQL
constructs are expressed in a conjunctive manner. This means
that for premises P1, . . . , Pn and consequences K1, . . . ,Km

we write P1 ∧ . . . ∧ Pn ⇒ K1 ∧ . . . ∧Km. The premises and
consequences are explicated by using an extension of the
Stanford dependencies6. We rely especially on the constructs
explained in Table 1. For example, a possessive dependency
between two phrase elements e1 and e2 is represented as
poss(e1, e2). For the sake of simplicity, we slightly deviate
from the Stanford vocabulary by not treating the copula
to be as an auxiliary, but denoting it as BE. Moreover, we
extend the vocabulary by the constructs conj and disj

which denote the conjunction resp. disjunction of two phrase
elements. In addition, we sometimes reduce the construct
subj(y,x) ∧ dobj(y,z) to the triple (x,y,z) ∈W 3.

3. PREPROCESSING
The goal of the preprocessing step is to normalize the query
while extracting central information on projection variables.
This is carried out in two steps: type extraction and normal-
ization.

3.1 Type extraction
Let Q be the input query and C the set of all possible
classes from the ontology of the knowledge base to be queried,
extended by the classes Resource, Property and Value. The
aim of type extraction is to assign a combination of types
to each projection variable of the query. To this end, we
process the query by finding all graph patterns ?x rdf:type

C for each projection variable ?x (with C ∈ C). If none of
the statements is part of a UNION statement, we assign the
conjunction of all C to ?x. Otherwise we assign to ?x the
disjunction of all C that are such that the UNION statements
which contain ?x rdf:type C contain no other statements.

6For a complete description of the vocabulary, see http://
nlp.stanford.edu/software/dependencies_manual.pdf.



Dependency Explanation

amod Represents the adjectival modifier depen-
dency. For example amod(ROSE,WHITE)

stands for white rose.

cc Stands for the relation between a conjunct
and a given conjunction (in most cases
and or or). For example in the sentence
John eats an apple and a pear, cc(PEAR,AND)
holds. We mainly use this construct to spec-
ify reduction and replacement rules.

conj∗ Used to build the conjunction
of two phrase elements, e.g.
conj(subj(EAT,JOHN),subj(DRINK,MARY))

stands for John eats and Mary drinks. conj

is not to be confused with the logical
conjunction ∧, which we use to state
that two dependencies hold in the same
sentence. For example subj(EAT,JOHN) ∧
dobj(EAT,FISH) is to be read as John eats
fish.

disj∗ Used to build the disjunction of two phrase
elements, similarly to conj.

dobj Dependency between a verb and its direct
object, for example dobj(EAT,APPLE) ex-
presses to eat an/the apple.

nn The noun compound modifier is used to
modify a head noun by the means of an-
other noun. For instance nn(FARMER,JOHN)

stands for farmer John.

poss Expresses a possessive dependency be-
tween two lexical items, for example
poss(JOHN,DOG) express John’s dog.

prep_X Stands for the preposition X, where X can
be any preposition, such as via, of, in and
between.

prepc_X Clausal modifier, used to modify verb
or noun phrases by a clause intro-
duced by some preposition X, e.g.
prepc_suchthat(PEOPLE,c) represents
people such that c, where c is some clause,
e.g. their year of birth is 1950.

root Marks the root of a sentence, e.g.
the verb. For example ROOT(EAT) ∧
subj(EAT,JOHN) means John eats. The root
of the sentence will not always be stated
explicitly in our formalization.

subj Relation between subject and verb, for ex-
ample subj(BE,JOHN) expresses John is.

Table 1: Dependencies used by SPARQL2NL. The
dependencies which are part of our extension of the
Stanford dependencies are marked with an asterisk.

Consequently, in Example 1, the type dbo:Person is assigned
to the variable ?person.

When no explicit type information for a projection variable
?x is found, we try to detect implicit type information by
mapping ?x to Resource if ?x is always the subject or the
object of an object property, to Property if ?x is always
a property, and to Value in all other cases. Thus, ?label
is assigned the type Value, as it occurs as the object of a
datatype property. Finally, all explicit information that was
used to compute type information is deleted from the input
query Q. Overall, this preprocessing step alters Example 1
by removing the triple ?person rdf:type dbo:Person and
storing it as type information for the variable ?person. In
addition, the variable ?label is assigned the type Value.

3.2 Normalization
One SPARQL feature that often leads to queries that are
difficult to understand is the nesting of UNION statements.
To ensure that we generate easily legible natural language
representations of SPARQL queries, we normalize the input
queries further by transforming any nesting of disjunctions
(i.e. UNION statements) into a disjunctive normal form (DNF).
We chose to use DNFs because they allow us to make explicit
use of conjunctions binding stronger than disjunctions in
English. An obvious drawback of this normalization approach
is that it can lead to an exponential growth of the number of
terms in a query. Yet, this drawback seems to be of minute
relevance for practical applications. For example, no query
in the benchmark was verbalized in more than 2s.

4. PROCESSING
The goal of the subsequent processing step is to generate
a list of dependency trees for an input query. To achieve
this goal (and in accordance with formalization introduced
in 2.1), the query is subdivided into the three segments body
(B), optional (O) and modifier (M), each of which is assigned
its own sentence tree. Since ASK queries only possess a
subset of these features, they can also be processed by our
approach. Therefore, in the following, we only describe how
the representation of each of these segments is generated for
SELECT queries. As each of these representations relies on
the same processors for processing triple patterns, we begin
by presenting the processing of simple graph patterns.

4.1 Processing triple patterns
The realization of a triple pattern s p o depends mostly on
the verbalization of the predicate p. If p can be realized as a
noun phrase, then a possessive clause can be used to express
the semantics of s p o, as shown in 1. For example, if p is
a relational noun like author, then the verbalization is ?x’s
author is ?y. In case p’s realization is a verb, then the triple
can be verbalized as given in 2. For example, if p is the verb
write, then the verbalization is ?x writes ?y.

1. ρ(s p o) ⇒ poss(ρ(p),ρ(s))∧
subj(BE,ρ(p))∧ dobj(BE,ρ(o))

2. ρ(s p o) ⇒ subj(ρ(p),ρ(s))∧ dobj(ρ(p),ρ(o))

In cases where p is a variable or where our approach fails
to recognize the type of the predicate, we rely on the more



generic approach in 3 as a fallback, where REL is short for to
relate. This representation amounts to s is related to o via p.

3. ρ(s p o) ⇒ subj(REL,ρ(s))∧ dobj(REL,ρ(o))∧
prep_via(REL,ρ(p))

In our running example, verbalizing ?person dbo:birthDate

?date would thus lead to ?person’s birth date is ?date, as
birth date is a noun.

4.2 Generating the body section
The main effort during the processing step is concerned with
representing the body of the query, i.e. the content of the
WHERE clause. Our approach begins by transforming the type
information retrieved by the preprocessing step described
in 3.1 above (either an atomic type y, or a conjunction y ∧ z
or disjunction y∨z) into a coordinated phrase element CPET ,
relying on the following rules:

4. ρ(?x rdf:type y) ⇒ nn(ρ(y),?x)

5. ρ(y∧ z) ⇒ conj(ρ(y),ρ(z))

6. ρ(y∨ z) ⇒ disj(ρ(y),ρ(z))

For Example 1, nn(dbo:Person,?person) is generated. DIS-
TINCT is considered an adjective while COUNT is mapped to a
noun phrase:

7. ρ(DISTINCT X) ⇒ amod(ρ(X),DISTINCT)
(i.e., distinct X)

8. ρ(COUNT X) ⇒ prep_of(NUMBER,ρ(X))
(i.e., number of X)

The processing then continues by converting the content of
the WHERE clause into a second coordinated phrase element
CPEW . Within this clause, only group graph patterns GP
(i.e., combinations of conjunctions, UNIONs and FILTERs) can
be used. The following set of rules deal with conjunctions
and disjunctions:

9. ρ(GP1,GP2) ⇒ conj(ρ(GP1),ρ(GP2))

10. ρ(UNION(GP1,GP2)) ⇒ disj(ρ(GP1),ρ(GP2))

Processing FILTER is more intricate due to the large number
of operators and functions that can be used in this construct.
Therefore, FILTER leads to a more significant number of rules.
In general, most operators OP that can be used in a filter can
be expressed by a verbal clause ρ(OP). Binary operators can
be translated by the following rule:

11. ρ(OP(x,y)) ⇒ subj(ρ(OP),x) ∧ dobj(ρ(OP),y)

Functional filters (i.e., filters of the form f(x)=y) can be
translated into equivalent operators f(x,y) and verbalized
as above. The body section B is finally generated by joining
CPET and CPEW as follows:

12. ρ(B) ⇒ subj(RETRIEVE,QUERY)∧
dobj(RETRIEVE,ρ(CPET ))∧
prepc_suchthat(ρ(CPET ),ρ(CPEW ))

This leads to query verbalizations of the general form This
query retrieves. . . such that. . . , e.g. This query retrieves distinct
values ?x such that ?x is Abraham Lincoln’s death date.

4.3 Processing the optional section
The SPARQL constructs that can be used in the OPTIONAL

section of the query are a subset of the constructs that can be
used in the query body. For constructing the representation
O of the optional section of the query (if such a section exists)
we therefore reuse the same set of rules as those used to
generate the body B.

4.4 Processing solution modifiers and aggre-
gates

Solution modifiers alter the order in which the results of
the SPARQL query are presented to the user. They include
ORDER BY, LIMIT and OFFSET constructs. Translating ORDER

BY OG(?x) (where OG is either the empty string, ASC or DESC)
follows the rule given in 13, e.g. yielding The results are in
descending order.

13. ρ(ORDER BY OG(?x)) ⇒ subj(BE,RESULTS)∧
prep_in(BE,ORDER)∧
amod(ORDER,ρ(OG))

If no ordering is specified, we assume OG=ASC according to
the SPARQL specification. For LIMIT and OFFSET, we use
the generic rule in 14, e.g. yielding The query returns results
between number 2 and 5.

14. ρ(OFFSET n LIMIT m) ⇒ subj(RETURN,QUERY)∧
dobj(RETURN,RESULTS)∧
prep_between(RESULTS,

conj(ρ(n+1),ρ(n+m)))

The sections of this rule are altered depending on whether
LIMIT is used without OFFSET and in case the difference
between the argument of LIMIT and OFFSET is 1, e.g. in order
not to construct The query returns results between number
1 and 1 but rather The query returns the first result. The
aggregation constructs are dealt with in a similar fashion.

After the processing step, our Example 1 would be verbalized
as follows:

15. This query retrieves distinct people ?person such that
?person’s occupation is Surfing or ?person’s occupation
is Writer, ?person’s birth date is ?date and ?date is later
than 1950. Additionally, it retrieves distinct values ?string
such that ?person’s label is ?string and ?string is in English
if such exist.

5. POSTPROCESSING
Although the natural language output of the verbalization
step just described is a correct description of the content



of the SPARQL query, it often sounds very artificial. The
general goal of the subsequent postprocessing step is thus to
transform the generated description such that it sounds more
natural. To this end, we focus on two types of transformation
rules (cf. [3]): aggregation and referencing. Aggregation
serves to remove redundancies and collapse information that
is too verbose otherwise, for example:

?place is Shakespeare’s birth place or ?place is Shake-
speare’s death place.

⇒ ?place is Shakespeare’s birth or death place.

Referencing aims at achieving a natural verbalization of noun
phrases, in particular avoiding variables wherever possible.
For example:

This query retrieves values ?height such that ?height is
Claudia Schiffer’s height.

⇒ This query retrieves Claudia Schiffer’s height.

The input to the postprocessor is the output of the preceding
processing step described in Section 4 above, i.e., a set of vari-
ables with types (the select clause) and a list of dependency
trees describing these variables. In the following, we describe
the transformation rules we employ in more detail. The order
in which they are applied is: clustering and ordering (5.1),
aggregation (5.3), grouping (5.2), referencing (5.4).

5.1 Clustering and ordering rules
The very first aggregation step serves to cluster and order
the input sentences. To this end, the variables occurring in
the query are ordered with respect to the number of their
occurrences, distinguishing projection variables, i.e. vari-
ables that occur in the SELECT clause, from all others, and
assigning them those input sentences that mention them. In
case the most frequent variable is the object of the sentence,
the sentence is passivized (presupposed the verb is not an
auxiliary or copulative verb such as is or has), in order to
maximize the effect of aggregation later on. If, for example,
the variable is ?river, then a sentence Brooklyn Bridge crosses
?river is transformed into its passive counterpart ?river is
crossed by Brooklyn Bridge. We process the input trees in
descending order with respect to the frequency of the vari-
ables they contain, starting with the projection variables and
only after that turning to other variables. As an example,
consider the following query retrieving the youngest player
in the Premier League:

1 SELECT DISTINCT ?person WHERE {
2 ?person dbo:team ?sportsTeam .
3 ?sportsTeam dbo:league res:Premier_League .
4 ?person dbo:birthDate ?date .
5 }
6 ORDER BY DESC(?date) OFFSET 0 LIMIT 1

The only projection variable is ?person (two occurrences),
other variables are ?sportsTeam and ?date (one occurrence
each). The three triple patterns are verbalized as given in
16a–16c. Clustering and ordering now first takes all sentences
containing the primary variable, i.e. 16a and 16b, which are

ordered such that copulative sentences (such as ?person is
a person) come before other sentences, and then takes all
sentences containing the remaining variable ?sportsTeam in
16c (the only occurrence of ?date is already settled with 16b),
resulting in a sequence of sentences as in 17.

16. (a) ?person’s team is ?sportsTeam.

(b) ?person’s birth date is ?date.

(c) ?sportsTeam’s league is Premier League.

17. ?person’s team is ?sportsTeam, ?person’s birth date is
?date, and ?sportsTeam’s league is Premier League.

5.2 Grouping
Grouping is described by Dalianis & Hovy [3] as a process
“collecting clauses with common elements and then collapsing
the common elements”. The common elements are usually
subject noun phrases and verb phrases (verbs together with
object noun phrases), leading to subject grouping and object
grouping. In order to maximize the grouping effects, we ad-
ditionally collapse common prefixes and suffixes of sentences,
irrespective of whether they are full subject noun phrases or
complete verb phrases. In the following we use X1, X2, . . . as
variables for the root nodes of the input sentences and Y as
variable for the root node of the output sentence. Further-
more, we abbreviate a subject subj(Xi, si) as si, an object
dobj(Xi, oi) as oi, and a verb root(ROOTi, vi) as vi.

Object grouping collapses the subjects of two sentences if
the realizations of the verbs and objects of the sentences are
the same, where the coord ∈ {and, or} is the coordination
combining the input sentences X1 and X2, and coord ∈
{conj, disj} is the corresponding coordination combining
the subjects.

18. ρ(o1) = ρ(o2) ∧ ρ(v1) = ρ(v2) ∧ cc(v1, coord)
⇒ root(Y, PLURAL(v1)) ∧ subj(v1, coord(s1, s2))∧

dobj(v1, o1)

For example, the sentences in 19 share their verb and object,
thus they can be collapsed into a single sentence. Note that
to this end the singular auxiliary was needs to be transformed
into its plural form were. In case the subjects themselves
share common elements, the subjects are collapsed as well,
as in 20.

19. Benjamin Franklin was born in Boston and Leonard Nimoy
was born in Boston. ⇒ Benjamin Franklin and Leonard
Nimoy were born in Boston.

20. Abraham Lincoln’s birth place is Washington or Abra-
ham Lincoln’s death place is Washington. ⇒ Abraham
Lincoln’s birth place or death place is Washington.

In addition, we remove repetitions that arise when triple
pattern verbalizations lead to the same natural language
representation. Due to space restrictions, we leave out a
presentation of subject grouping, as it works analogously.

A further aggregation rule that removes redundant mentions
of variables collapses more generally common suffixes and



prefixes, i.e. sentences of form subj1 verb1 dobj1 with sen-
tences of form subj2 verb2 dobj2 in case dobj1 is the same
as subj2 (and if its is a variable, does not occur anywhere
else) and either verb1 or verb2 is a form of to be. An example
is given in 22.

21. (a) ρ(o1) = ρ(s2) ∧ ρ(v1) = BE

⇒ subj(Y, s1) ∧ dobj(Y, o2) ∧ root(Y, v2)

(b) ρ(o1) = ρ(s2) ∧ ρ(v2) = BE

⇒ subj(Y, s1) ∧ dobj(Y, o2) ∧ root(Y, v1)

If o1/s2 is not a variable occurring anywhere else.

22. ?w’s year is ?x. ?x is greater than or equal to 2007.
⇒ ?w’s year is greater than or equal to 2007.

5.3 Aggregating filters and optional informa-
tion

The verbalization of filters can be quite verbose, although
they often express a simple constraint on a value. Postpro-
cessing thus attaches filter information to the expression they
constrain. For example a filter like in 23 is verbalized and
then collapsed as in 24.

23. ?person rdfs:label ?name.

FILTER(regex(?name,’Michelle’))

24. ?person’s label is ?name. ?name matches ”Michelle”.
⇒ ?person has the label ?name matching ”Michelle”.
⇒ ?person has a label matching ”Michelle”.
(if ?name does not occur anywhere else)

For every sentence, the filter linearizations are checked whether
they contain either the subject or object of the sentence, and
if they do, they are attached to the it either using a gerund
or a relative clause, depending on the filter. A filter construct
that is particularly difficult to handle are !BOUND filters as
in 25. Postprocessing transforms statements of form X does
not exist into the negation of some statement containing X,
either negating the verb phrase, as in 26, or by adding the
quantifier no, as in This query asks whether there is no entity
such that. . . .

25. res:Frank_Herbert dbo:deathDate ?date . FILTER

(!BOUND(?date))

26. This query asks whether Frank Herbert’s death date is
?date and ?date does not exist. ⇒ This query asks
whether Frank Herbert’s death date does not exist.

An extensive and careful treatment of all kinds of BOUND

filters in SELECT and ASK queries is subject of future work.

Information about the label of a variable and its type (if it
is not already part of the SELECT clause) may be part of the
filters and is verbalized by the processing step for example as
in 27a. In order to collapse these information into something
less verbose, the postprocessor collects such sentences based
on simple string matching and transforms them into a single
sentence as in 27b. In case only the label information is
expressed, the result is as in 27c; in case the variable is

part of the SELECT clause, the type and label information is
attached there, as in 27d.

27. (a) ?uri is of type film. ?uri has label ?string. ?string is
in English.

(b) ?uri is a film with the English label ?string

(c) ?uri has the English label ?string

(d) This query retrieves films ?uri and their English label
?string such that. . .

Content in OPTIONAL statements is expressed as an additional
sentence of the form Additionally, it retrieves V such that O if
such exists, for some selected entities V and triple patterns
O. Postprocessing integrates the information in O into the
main body of the natural language description, marking the
statements with the modal may, e.g. transforming 27c above
into ?uri may have the English label ?string.

5.4 Referencing
Referencing refers to the process of deciding how to verbalize
each occurrence of an entity (e.g., as a singular or plural noun
phrase or a pronoun). The ultimate aim of the postprocessing
step is to collapse and substitute all variable occurrences such
that the final output does not contain any variables at all.
This goal is achieved for almost all sentences, but proves hard
in the case of very complex queries with lots of variables.
An easy case is the following: If the input sentence with
root X is of the form This query retrieves o such that B, the
body B contains a copula statement Y whose subject (resp.
object) has the same realization as o, and o does not occur
anywhere else, then it is safe to collapse the input sentence
into This query retrieves x such that B′, where x ist the object
(resp. subject) of Y , and B′ is B without Y . An example is
the following, where the keyword distinct is dropped, as this
seems more natural, especially for laymen, although it could
be argued that it should be kept for experts:

28. This query retrieves distinct entities ?string such that
Angela Merkel’s birth name is ?string. ⇒ This query
retrieves Angela Merkel’s birth name.

In case the verb of the body statement is not a copula, as in
the following example, the information is added to the input
sentence in form of a relative clause:

29. This query retrieves entities such that ?river is crossed by
Brooklyn Bridge. ⇒ This query retrieves entities that are
crossed by Brooklyn Bridge.

In addition, the postprocessing step replaces all occurrences
of a projection variable, i.e. a variable which occurs in the
SELECT clause, by pronouns if this is the only projection vari-
able, e.g. transforming 30 into 31. In case of more variables,
this would lead to ambiguities. Also, the first occurrence of
remaining non-projecting variables, i.e. those variables which
do not occur in the SELECT clause, are replaced by an indefi-
nite (choosing their type as description, if given, e.g. some
mountain, or entity otherwise), and all further occurences are
replaced by a definite, e.g. further transforming 31 into 32.



30. This query retrieves distinct entities ?uri such that ?uri is
?x’s b-side and ?x’s musical artist is Ramones.

31. This query retrieves distinct entities such that they are
?x’s b-side and ?x’s musical artist is Ramones.

32. This query retrieves distinct entities such that they are
some entity’s b-side and this entity’s musical artist is
Ramones.

The output of the postprocessor for Example 1 is the follow-
ing:

33. This query retrieves distinct people and their English label
(if it exists) such that their birth date is later than 1950
and their occupation is Writer or Surfing.

Full-fledged referencing still remains a challenging task, es-
pecially if a query contains a range of different entities with
several occurrences, also because it requires some knowledge
about whether it is semantically singular or plural, in order
to choose the correct description, e.g. the members of Prodigy
(plural) and the father of Queen Elizabeth II (singular), or to
decide whether to use the concept name label or name, and
whether the entity is animated or not, in order to correctly
choose the correct pronoun in the singular case (he/she or
it).

6. REALIZATION
The realization of atoms must be able to deal with resources,
classes, properties and literals.

6.1 Classes and resources
In general, the realization of classes and resources is carried
out as follows: Given a URI u we ask for the English label of
u using a SPARQL query.7 If such a label does not exist, we
use either the fragment of u (the string after #) if it exists,
else the string after the last occurrence of /. Finally this
natural language representation is realized as a noun phrase,
and in the case of classes is also pluralized. In our running
example, dbo:Person is realized as people (its label).

6.2 Properties
The realization of properties relies on the insight that most
property labels are either nouns or verbs. While the mapping
of a particular property p can be unambiguous, some property
labels are not as easy to categorize. For examples, the label
crosses can either be the plural form of the noun cross or
the third person singular present form of the verb to cross.
In order to automatically determine which realization to
use, we relied on the insight that the first and last word
of a property label are often the key to determining the
type of the property: properties whose label begins with
a verb (resp. noun or gerund) are most to be realized as
verbs (resp. nouns). We devised a set of rules to capture
this behavior, which we omit due to space restrictions. In
some cases (such as crosses) none of the rules applied. In

7Note that it could be any property which returns a natural
language representation of the given URI, see [6].

these cases, we compare the probability of P (p|noun) and
P (p|verb) by measuring

P (p|X) =

∑
t∈synset(p|X)

log2(f(t))∑
t′∈synset(p)

log2(f(t′))
, (1)

where synset(p) is the set of all synsets of p, synset(p|X)
is the set of all synsets of p that are of the syntactic class
X ∈ {noun, verb} and f(t) is the frequency of use of p in the
sense of the synset t according to WordNet. For

P (p|verb)

P (p|noun)
≥ θ, (2)

we choose to realize p as a noun; else we realized it as a verb.
For θ = 1, for example, dbo:crosses is realized as a verb.

6.3 Literals
The realization of literals is carried out by differentiating
between plain and typed literals. For plain literals we simply
use the lexical form, i.e. omit language tags if they exist.
For example, "Albert Einstein"@en is realized as Albert
Einstein. For typed literals we further differentiate between
built-in and user-defined datatypes. For the former we also
use the lexical form, e.g. "123"^^xsd:int ⇒ 123. The
latter were processed by using the literal value together
with the (pluralized) natural language representation of the
datatype URI, similarly to the case of classes and resources.
Thus, we realize "123"^^<http://dbpedia.org/datatype/

squareKilometre> as 123 square kilometres.

7. EXPERIMENTS AND EVALUATION RE-
SULTS

We evaluated SPARQL2NL with respect to i) the realiza-
tion of atomic graph patterns, ii) the verbalization of whole
SPARQL queries, and iii) other approaches, all using the
QALD-2 benchmark8 as basis.

7.1 Realization of atomic graph patterns
Given that the choice for the realization of atomic graph
patterns depends on whether the predicate is classified as
being a noun phrase or a verb phrase, we measured the
accuracy (i.e., the percentage of right classifications) of our
approach by realizing all properties occurring in the QALD-
2 benchmark. As baseline, we used a simple classifier that
classifies every property as a noun. We preferred this classifier
over one that classifies every property as a verb, simply
because it has a higher accuracy than both the verb classifier
and a random classifier. The evaluation was carried out
manually by two annotators who assessed the rdfs:label of
every property in the QALD-2 benchmark regarding whether
it is a noun or a verb. All mismatches were resolved by the
same annotators. Note that in rare cases, some properties
from the property namespace are used ambiguously within
DBpedia. For example, property:design is used to mean
designed as, designed in and even designed by. In these cases
the annotators evaluated whether our realization mapped
the intention of the query as specified in the benchmark.

We evaluated our approach with θ = 1 and θ = 2 by using
the accuracy measure, which states the percentage of cases

8http://www.sc.cit-ec.uni-bielefeld.de/qald-2



Dataset Namespace Frequency #Verbs #Nouns
Accuracy in %

θ = 1 θ = 2 Baseline

DBpedia-test property 40 8 25 87.50 90.00 75.00
ontology 97 7 48 91.75 94.85 86.60
Other 99 2 1 98.99 98.99 32.32
Overall 236 17 74 94.07 95.76 61.86

DBpedia-train property 41 1 26 100.00 100.00 80.25
ontology 81 5 43 95.06 100.00 85.37
Other 135 3 2 98.51 98.51 42.96
Overall 257 9 71 97.67 99.22 61.48

Table 2: Accuracy of realization of atomic graph patterns. Namespace stands for the namespace of the
properties used in a SPARQL query. Frequency denotes the number of times that a property from a
given namespace was used, for example property (which stands for http://dbpedia.org/property) or ontology

(http://dbpedia.org/ontology). #Verbs (resp. #Nouns) is the number of properties that were classified as
verbs (resp. nouns).

in which the correct classification was achieved across the
queries in the benchmark. The results are shown in Table 2.
We clearly outperform the baseline in all cases. Especially,
setting θ = 2 achieves an overall accuracy of 99.22% and
a perfect score on the property from DBpedia namespace
contained in the training dataset of QALD-2. Experiments
with other values of θ did not lead to better results.

7.2 SPARQL2NL survey
In our second series of experiments, we evaluated the whole
SPARQL2NL pipeline, in order to clarify the following two
questions:

1. Are the SPARQL2NL verbalizations correct, and are
they easy to understand?

2. Do the verbalizations help users that are not familiar
with SPARQL, i.e. can they use the verbalizations
efficiently and effectively?

7.2.1 Experimental setup
We performed a user study in order to evaluate our verbaliza-
tions of SPARQL queries, using the 200 DBpedia queries pro-
vided by the QALD-2 benchmark, all of which our approach
was able to translate into natural language. We ran a two-
phase survey9: In the first phase, users were stripped from
any communication devices, required to focus on the task at
hand and complete the survey swiftly. In the second phase,
we ran uncontrolled experiments with users from Semantic
Web and NLP mailing lists as well as smaller non-research
communities. The survey consists of three different tasks
with 10 randomly selected queries each. At the start of the
survey users can indicate whether or not they are SPARQL
experts. If not, only Task 3 was presented, otherwise they
were asked to complete all three tasks.

Task 1 (only for experts):. In this task, the survey partic-
ipant is presented a SPARQL query and its SPARQL2NL
verbalization, and is asked to judge the verbalization regard-
ing fluency and adequacy, following the machine translation
standard presented in [5]. Adequacy captures how well the

9The survey interface can be accessed at http://sparql2nl.
aksw.org/eval.

verbalization captures the meaning of the SPARQL query,
according to the following six ratings: (6) Perfect. (5) Mostly
correct, maybe some expressions don’t match the concepts
very well. (4) Close, but some information is missing or
incorrect. (3) There is significant information missing or
incorrect. (2) NL description and SPARQL query are only
loosely connected. (1) NL description and SPARQL query
are in no conceivable way related. Fluency, on the other
hand, captures how good the natural language description is
in terms of comprehensibility and readability, according to
the following six ratings: (6) Perfectly clear and natural. (5)
Sounds a bit artificial, but is clearly comprehensible. (May
contain minor grammatical flaws.) (4) Sounds very artificial,
but is understandable. (May contain significant grammatical
flaws.) (3) Barely comprehensible, but can be understood
with some effort. (2) Only a loose and incomplete under-
standing of the meaning can be obtained. (1) Completely
not understandable at all.

Task 2 (only for experts):. In this task, the participant is
presented a SPARQL query as well as five different possible
answers (variable bindings). From these answers, those which
would actually be returned by the query had to be selected.
To this end, for each answer a set of triples was offered as
explanation, which should be used to judge whether the
answer is correct. These triples were generated as follows:
We first executed the SPARQL query and randomly selected
up to five results from the query answer. For each correct
answer, we replaced the return variable (?uri in the case of
the QALD-2 SELECT queries) by the URI of the answer, and
replaced all other URIs occurring in the query by variables, in
order to retrieve all triples relevant for answering the query10.
For each incorrect answer, we first generalised the SPARQL
query by removing a triple pattern, or by replacing a URI by
a variable. This procedure is repeated until the query returns
results not returned by the original query. This ensures that
the incorrect answers are similar to the correct answers in
the sense that they are results of a similar SPARQL queries.
The formal details of the procedure follow [18].

10This simple technique does not cover all cases, but we
refrain from a full explanation, since it is not necessary to
understand the survey.
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Figure 1: Adequacy and fluency results in survey

Task 3 (experts and non-experts):. This task is similar
to Task 2, with the difference that the natural language
verbalizations of the SPARQL query and a verbalization
of the triples were presented, instead of the query and the
triples themselves. We also ensured that the queries used
were different from those used in Task 2, in order to avoid
training effects on particular questions.

7.2.2 Results
The first survey phase was carried out by 10 members of the
AKSW and CITEC research groups. As these participants
were monitored by one of the authors, we used it for time
measurements on the three different tasks. The maximum
(minimum) time required was 17 (7) minutes, 13 (6) minutes
and 12 (4) minutes for Tasks 1, 2 and 3, respectively. We
then ran a public survey, that was announced on Semantic
Web and NLP mailing lists as well as to other non-research
communities, collecting 115 participants, of which 39 stated
they were experts in SPARQL. We used our initial time mea-
surements to filter out those survey participants in the public
evaluation who are unlikely to have thoroughly executed the
survey or who were likely distracted while executing it. To
this end, we decided to admit a time window of 5-18 minutes
for Task 1 and 3-15 minutes for Tasks 2 and 3.11 Although
this cannot eliminate all side effects, it reduces the effect of
outliers, e.g. people leaving the computer for a long period
of time.

The results of the first task showed the fluency of the natural
language descriptions to be 4.56± 1.29, where in expressions
of the form x± y, x denotes the average value and y denotes
the standard deviation. The majority of natural language
descriptions were understandable, where 94.1% of the cases
achieved a rating of 3 or higher. The adequacy of the ver-
balizations was judged to be 5.31± 1.08, which we consider
a positive result. 62% of all verbalizations were judged to
be perfectly adequate. Details for the results of Task 1 are
depicted in Figure 1.

For Tasks 2 and 3, our main goal was to directly compare
the results of users dealing with SPARQL queries against the
results of users dealing with natural language descriptions.
Here we consider the time required to answer a question as
an indicator for efficiency, and the error rate of a user as an
indicator for effectiveness. Regarding efficiency, participants
required 11.68± 6.46 minutes to complete Task 2. Applying
the time window mentioned above, the required time drops
to 9.89± 3.48. For Task 3 we obtained execution times of
10.28 ± 7.03 without filtering, and 8.37 ± 2.63 with time

11Task 2 and 3 require the same limits in order to avoid a
bias when doing cross comparisons between Task 2 and 3.
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Figure 2: Time and error rate analysis

filtering. In general, execution times were in line with what
we expected after the first evaluation phase, i.e. most par-
ticipants swiftly completed the survey. Using a paired t-test
with 95% confidence interval, the difference between the time
required for Tasks 2 and 3 is statistically significant. Hence,
we conclude that the natural language descriptions generated
by our approach can be more efficiently read and understood.
Note that even the SPARQL experts were faster when being
presented the natural language description, with 8.22± 3.34
minutes without time window filter and 7.79±2.83 with time
window filter. We therefore conclude that the SPARQL2NL
translations can be processed efficiently by both experts and
non-experts.

Finally we also compared the error rates of participants in
Tasks 2 and 3, i.e. the number of incorrect answers per ques-
tions, see Figure 2. The error rate in Task 2, i.e. when
displaying SPARQL queries and RDF triples, was 0.18±0.61,
in contrast to 0.39 ± 0.84 in Task 3, i.e. when displaying
natural language descriptions. If we consider only experts
in Task 3, i.e. the group of people who did both Task 2 (dis-
playing SPARQL and RDF) and Task 3 (displaying natural
language), the error rate was 0.28± 0.78. This is a negative
result for SPARQL2NL as it appears that non-expert partic-
ipants made more errors than expert participants; although
the overall rate still seems reasonably low. Upon a deeper
investigation of this issue, it turned out that almost all er-
rors occurred with two specific queries, both due to bugs in
the implementation of SPARQL2NL: one query translation
used a passive form incorrectly, and the other one lacked the
keyword also indicating that two criteria had to be satisfied.

We fixed these issues in an updated version of SPARQL2NL
and ran an internal evaluation again using the new verbaliza-
tions. 13 participants from the AKSW and CITEC research
groups, excluding the authors, took part in this validation
phase. It turned out that the error rate for the natural lan-
guage expressions in that case is only slightly higher (+0.05)
compared to the SPARQL expressions for SPARQL experts.
Both error rates were lower than in the public evaluation
with 0.12 ± 0.35 and 0.07 ± 0.25 for the natural language
and SPARQL part, respectively. The improvements based
on the evaluation also led to improved fluency (increased
by 0.51 to 5.05± 1.01) and adequacy (increased by 0.29 to
5.60± 0.85) results. These results strengthen the conclusions
made above with respect to the fluency and adequacy of our
verbalizations.

7.3 Comparison with other approaches
To the best of our knowledge, SPARTIQULATION [7] is the
only other approach that verbalizes SPARQL queries. It relies
on detecting a main entity, which is used to subdivide the
query graph into subgraphs, that are ordered and matched
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Figure 3: Average adequacy and fluency results
for comparison of SPARQL2NL and SPARTIQULA-
TION

with pre-defined message types.

We compared SPARQL2NL with SPARTIQULATION on
a random sample of 20 queries retrieved from the QALD-2
benchmark within a blind survey: We asked two SPARQL
experts to evaluate the adequacy and fluency of the verbaliza-
tions achieved by the two approaches. The experts were not
involved in the development of any of the two tools and were
not aware of which tool produces which verbalization. Of
the 20 queries, SPARTIQULATION could only verbalize 17
while SPARQL2NL was able to verbalize all queries. This dif-
ference is due to SPARTIQULATION being currently limited
to SELECT queries and not covering some important SPARQL
features such as UNION and GROUP BY constructs, features
which we can deal with as shown above. The results of our
comparison show that in average there is a difference of 0.24
resp. 0.27 with respect to adequacy resp. fluency between
the two approaches (5.24 resp. 4.41 in adequacy resp. fluency
for SPARQL2NL versus 5.0 resp. 4.15 for SPARTIQULA-
TION) when only taking SPARQL queries into consideration
queries that SPARTIQULATION was able to process. Note
that even in this setting, SPARQL2NL outperforms SPAR-
TIQULATION. When considering all queries in our sample,
counting the adequacy and fluency for a query that could
not be translated as 1, our approach clearly outperforms
SPARTIQULATION, as shown in Figure 3. Most of the
verbalizations of SPARQL2NL are scored with 6 or 5 with
respect to adequacy by the experts, while a larger amount of
verbalizations from SPARTIQULATION are scored with 1–4.
Moreover, our verbalizations are most frequently assigned flu-
ency scores between 4 and 5. Overall, SPARQL2NL achieved
an average adequacy resp. fluency of 5.15 resp. 4.38 while
SPARTIQULATION achieved 4.40 resp. 3.68.

8. RELATED WORK
Although there is a substantial amount of work on trans-
lating natural language into database elements or queries
(see, e.g., [23]) or even SPARQL [25, 28], the other direction,
i.e. verbalizing databases and queries, has started to receive
attention only recently [15]. Most of the papers related to
this work have been on ontology and RDF verbalization or
on reusing such data for the purpose of verbalization. [1] for
example combines linguistic and domain-specific ontologies
to generate natural-language representations of portions of
ontologies required by users. One of the results of this work is
that even graphical representations of ontologies are of little
help for lay users. This result is the premise for the work by
Wilcock [29], who presents a more generic approach for the
purpose of verbalizing OWL and DAML+OIL. [14] present
an approach for generating paraphrases of the content of

OWL ontologies that combines natural-language patterns for
expressing the structure of property labels and a verbaliza-
tion approach for OWL class expression. Works such as [16,
13, 27] use controlled fragments of natural language such as
English and Baltic languages to generate textual representa-
tion of OWL ontologies. Other works on verbalizing OWL
ontologies include [2, 4, 8] and [10].

In addition to the work on OWL, research on textual de-
scriptions of RDF triples is also gaining momentum. For
example, [22] elaborates on an approach for transforming
RDF into Polish. The authors of [20] argue for relying on the
Linked Data Web being created by using to reverse engineer
structured data into natural language. The same authors
show in [26] how this approach can be used for generating
text out of RDF. In newer work, [19] generated natural lan-
guage out of RDF by relying on the BOA framework [12,
11] with the aim of computing the trustworthiness of RDF
triples by using the Web as background knowledge. Other
approaches and concepts for verbalizing RDF include [21]
and [30]. Moreover, approaches to verbalizing first-order
logics [9] are currently being devised.

An approach for translating database queries into natural
language text has been provided by, e.g., Koutrika et al.
[17], focusing on SQL queries but noting that the same need
arises for SPARQL queries. A noteworthy approach is that
presented in [15], where the authors apply graph algorithms
to an efficient partition and realization of SQL queries. The
only work we are aware of that verbalizes SPARQL queries
is the aforementioned recent approach by Ell et al. [7].

9. CONCLUSION
In this paper, we presented SPARQL2NL, an approach for
verbalizing SPARQL queries. It produces both a direct, lit-
eral verbalization of the content of the query and a more
natural, aggregated version of the same content. We pre-
sented the key steps of our approach and evaluated it with a
user survey. Our evaluation showed that the verbalizations
generated by our approach are both complete and easily
understandable. In addition, our approach allows users not
familiar with SPARQL to understand the content of SPARQL
queries and also accelerates the understanding of queries by
SPARQL experts. Still, our evaluation showed that the leg-
ibility of our approach is worse when the queries get more
complex. In future work, we will thus improve upon our
referencing algorithm so as to further increase the fluency
of our approach. Moreover, we will devise a consistency
checking algorithm to improve upon the correctness of the
natural language generated by our approach. Finally, we
will integrate paraphrasing approaches into our system to
augment the variety of the formulations used by our system
and thus improve the quality of the interaction with the
end users. SPARQL2NL represents the first step towards
semantic applications that enable lay users to understand the
behavior of the applications without any need for technical
knowledge. We hope that it will facilitate the acceptance of
Semantic Web technologies across domains of application.
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[25] Saeedeh Shekarpour, Sören Auer, Axel-Cyrille Ngonga
Ngomo, Daniel Gerber, Sebastian Hellmann, and Claus
Stadler. Keyword-driven sparql query generation
leveraging background knowledge. In ACM/IEEE WI,
2011.

[26] Xiantang Sun and Chris Mellish. An experiment on
”free generation” from single rdf triples. In Proceedings
of the Eleventh European Workshop on Natural
Language Generation, ENLG ’07, pages 105–108,
Stroudsburg, PA, USA, 2007. Association for
Computational Linguistics.

[27] Allan Third, Sandra Williams, and Richard Power. Owl
to english: a tool for generating organised
easily-navigated hypertexts from ontologies. In ISWC
Poster and Demo Track, 2011.

[28] Christina Unger, Lorenz Bühmann, Jens Lehmann,
Axel-Cyrille Ngonga Ngomo, Daniel Gerber, and
Philipp Cimiano. Template-based question answering
over RDF data. In Proceedings of WWW, 2012.

[29] Graham Wilcock. Talking OWLs: Towards an Ontology
Verbalizer. In Human Language Technology for the
Semantic Web and Web Services, Workshop at ISWC
2003, pages 109–112, 2003.

[30] Graham Wilcock and Kristiina Jokinen. Generating
Responses and Explanations from RDF/XML and
DAML+OIL, 2003.


