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Abstract

In this paper, we present an approach which, given a
knowledge base and an appropriate text corpus, automat-
ically induces patterns which can be used to query the
knowledge base. We do not only consider simple questions
but text problems consisting of several sentences. Answers
to complex text problems are determined by an inference
process which computes the answer on the basis of the back-
ground knowledge in the knowledge base (KB) as well as
the textual description of the problem. The question formu-
lated in natural language thus needs to be translated into
appropriate KB structures and queries. Our approach to
translating the natural language question uses an underly-
ing corpus and the knowledge base to derive meaningful
and relevant patterns which can then be used to process the
questions and capture their meaning with respect to the un-
derlying knowledge base. We apply our approach to Ad-
vanced Placement (AP) questions in three areas: physics,
chemistry and biology. We report results of a first evalua-
tion of the translation procedure for the three domains.

1 Introduction

During the lifetime of Aristotle (384 - 322 BC), it was
possible for a person to be acquainted with most of the sci-
entific knowledge available at the time, even across mul-
tiple disciplines. Aristotle himself was for example adept
in physics, poetry, biology, zoology, logic, rhetoric, poli-
tics, government and ethics. Nowadays, given the tremen-
dous amount of knowledge available in every scientific dis-
cipline, it is typically unfeasible to have deeper knowledge
in more than a few areas. Thus, it would be really desir-
able to have an electronic assistant to answer all our sci-
entific questions. Creating such a ‘Digital Aristotle’ is the
aim of the HALO project1. Its goal is to develop an intelli-

1http://www.projecthalo.com/

gent information system containing important knowledge of
different disciplines and able to answer people’s questions
about chemistry, physics, biology and other scientific dis-
ciplines. Key problems to be solved towards creating such
an intelligent system are, on the one hand, to capture all the
relevant knowledge, and, on the other, to develop a question
answering system capable of exploiting this knowledge to
answer users’ questions. In this paper we deal with the sec-
ond problem and present a corpus-based pattern induction
approach which generates patterns in order to translate text
problems formulated in natural language into appropriate
assertions and queries with respect to the knowledge base.
The approach is unique in several ways. On the one hand, it
is not restricted to processing simple questions consisting of
merely one sentence, but is able to process complex textual
problems consisting of a short text describing the relevant
background - typically consisting of a few sentences, and a
specific question. Thus, it is crucial to capture the meaning
of the whole textual description as it needs to be taken into
account as background knowledge to provide the actual an-
swer to the question. Such textual problems are found in
the Advanced Placement (AP) test, which is a standardized
US-wide test for high school students to obtain some credit
for the introductory courses in college.
On the other hand, the approach does not need any man-
ual customization as the patterns are learned automatically.
The approach exploits an underlying knowledge base and a
corresponding corpus to generate patterns which can then
be used to query the knowledge base. Such an approach
has the advantage that it requires no manual effort to cus-
tomize the system to a specific knowledge base. Further,
such an approach is expected to be reasonably robust as
it does not need to understand the meaning of the textual
question, but only find a relevant pattern for each sentence,
which is a much easier task. Of course, such an automatic
approach precludes that all relevant patterns are found. One
aim of the research presented in this paper has been to de-
termine to which extent the relevant patterns can be found
on the basis of an automatic pattern induction approach.
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Figure 1. Overview of the approach

We provide an evaluation with respect to AP questions for
physics, chemistry and biology. The corresponding knowl-
edge bases have been engineered by domain experts with-
out any background in knowledge representation in a first
controlled experiment. These knowledge bases have an in-
termediary character as those used for the final evaluation
of the HALO system will be engineered just in time. It
is important to emphasize that such a setting creates espe-
cially severe conditions for any knowledge-based question
answering system as there is actually no time to customize
the system to the final knowledge base used. The approach
developed thus has to meet the requirement of being ap-
plicable ’on the fly’ to any knowledge base without manual
support in customization. Our approach has been developed
having this target in mind and in fact only requires a corre-
sponding text corpus but no manual tuning.
The paper is structured as follows: in Section 2, we present
our approach to pattern induction and query translation as
well as the evaluation on AP questions from physics, chem-
istry and biology in Section 3. Finally, we discuss some
related work in Section 4 and conclude in Section 5.

2 Pattern-based approach

The task of our approach is to process the textual descrip-
tion of the problem in question and translate it into corre-
sponding assertions and queries formulated with respect to
the knowledge base. The question is then actually answered
by the underlying inference engine, the OntoBroker system
in our case [6].

The pattern-based approach to query translation consists
of two modes: the pattern induction mode and the question
answering mode. In the pattern induction mode, patterns
expressing certain relations in the knowledge base are
generated on the basis of an underlying corpus. These
patterns are then scored and form the input to the question

answering component. The question answering component
is responsible for, given a certain input sentence of the
question, selecting the best matching patterns with highest
score, presenting them to a user to choose the right pattern.
Figure 1 shows an overview of the workflow. As an exam-
ple of an AP question for physics, which will be discussed
as an illustrating example throughout the remainder of the
paper, consider the following:

You drive with a car along a straight road with a
constant velocity of 60km/h for 30 minutes and afterwards
you walk with 4km/h another 30 minutes in the same
direction to the next gasoline station because your car runs
out of gasoline. Calculate the average velocity.

Obviously, such a question is quite complex to pro-
cess. Instead of processing these AP questions in their full
complexity, we impose certain restrictions on the questions
which will be discussed later in Section 3. In what follows,
we describe in more detail the pattern induction and ques-
tion answering modes.

2.1 Pattern Induction Mode

The patterns that our approach induces are essentially
predicate-argument (P/A) structures for verbs and nouns.
These patterns also specify the corresponding attributes in
the knowledge base and how the arguments of the P/A struc-
ture map to these. Basically, these patterns thus realize a
syntax-semantics interface. In order to produce appropriate
patterns, the following steps are applied:

1. derive partial frames from the knowledge base which cor-
respond to information units as used in natural language,

2. parse the corpus (with MiniPar [11])
3. extract predicate-argument (P/A) structures for verbs and

nouns,
4. find appropriate P/A structures from the corpus which

correspond to partial frames derived above,
5. test and score all the possible mappings between argu-

ments of the P/A structure and the attributes in the partial
frame, and

6. select the highest scoring mapping.
7. Finally, store the top 5 scoring patterns for each partial

frame for use in the question answering mode.

The aim of the pattern induction algorithm is thus to as-
sign up to 5 relevant patterns to each partial frame such that
the corresponding pattern can be spotted in the text prob-
lems in question answering mode and thus mapped to the
appropriate partial frames in the knowledge base.

Hereby, frames are defined in an object-oriented fashion,
i.e. they are a set of relevant attributes for a certain object.
Take for example the object motion. A motion has typically
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a start point and end point, a duration, a speed, an accel-
eration, etc. as attributes. The corresponding frame would
look as follows (in F-Logic [6] syntax):

motion[start_point => location;
end_point => location;
moving_object => object
start_time => time;
end_time => time;
speed => speed;
duration => time_interval;
acceleration => acceleration

].

Typically, in natural language sentences, the information
packaging unit does not correspond to the complete frames
as represented in knowledge bases, i.e. the attributes of a
frame are very rarely expressed all at once within one sen-
tence. Therefore, as partial frames we consider combina-
tions of up to three attributes for each frame. Thus, if a
frame has n attributes and we want to consider all partial
frames up to a length of k, we need to consider

(
n
k

)
com-

binations for each frame. In our approach, we restrict our-
selves to partial frames consisting of 1, 2 or 3 attributes, re-
spectively. Hereby, partial frames of size 1 will be mapped
to noun phrases, while partial frames of sizes 2 and 3 will be
mapped to verb phrases consisting of a transitive verb, verbs
with prepositional complements, etc. The noun phrase con-
structions we consider are the following: NPc has NPattr

of X and NPattr of NPc is X. Both expressions are used
to specify the value (X) of the attribute attr of the entity
c. Hereby, the heads of the NP’s are expected to match the
name of the label of the concept and attribute, respectively.
After all the partial frames have been generated for a certain
frame, the corpus is consulted to find possible realizations
of these. The underlying corpus is parsed using the depen-
dency parser MiniPar [11], developed by Dekang Lin. From
the output of the parser, we extract verbs together with their
subcategorized arguments as well as the above structures for
noun phrases. This is a fairly standard procedure and thus
not described here in more detail. Consider the following
examples sentence: The car moves with 60km/h for 30 min-
utes. After processing MiniPar’s output, the following verb-
argument structure is generated (where words are already
lemmatized): move(subj: car, with: velocity(60km/h), for:
time(30min.)2

Now let us consider a partial frame of length 3 for mo-
tion:

motion[ moving_object => object;
speed => speed;
duration => time_interval

].

2In order to recognize temporal expressions, velocities, etc. we have
implemented a set of regular expressions for this purpose.

In what follows, we will refer to the type of the frame
as frame type, i.e. motion for the partial frame above.
For a partial frame pf, pf.type will thus denote the frame
type (motion in the above example frame), pfattr.name
will denote the name of attribute attr, while pfattr.type
will denote the type of each attribute, e.g. object for mov-
ing object, time interval for duration, etc.

Assuming that most frame types/labels will be actually
nouns, which is actually the case for the knowledge bases
we have considered, we resort to WordNet [7] to find the
corresponding verbal form, i.e. move for motion in our ex-
ample. However, in general we can not expect to always
find P/A structures in the corpus exactly for the verbal form
derived from the frame label. Therefore, we first of all split
the concept label into tokens, removing closed-class words
such as articles, determiners or prepositions, and find the
corresponding verb form in WordNet for each token, adding
it to a set S with score 3. To this set S, the following words
are added with the indicated scores:

1. direct synonyms from WordNet for each verb (with the
same score as the original word),

2. hyponyms in WordNet for each verb with a score of 1,
whereby the score is updated accordingly in case the hy-
ponym is already in the set,

3. hypernyms with score 1 only if they are not already in the
set, and

4. so called DMS-synonyms which were manually intro-
duced by the domain experts modeling the knowledge
bases with score 1, whereby as in the case of the hy-
ponyms the score is updated accordingly if the word is
already in the set.

The above scores are then normalized to the interval
[0,1]. The above procedure for adding synonyms is clearly
biased towards finding specializations rather than general-
izations. In fact, when adding hypernyms we adopt a con-
servative strategy, adding the hypernym only if it was not
already there. The idea is to avoid that hypernyms get too
high scores.

As an example, consider the frame with the type ‘motion
of a falling object’, which is tokenized into motion, falling
and object. After looking up the corresponding verbs in
WordNet we start with the set S:

{(move, 3.0), (fall, 3.0), (objectify, 3.0)}
Then we add the synonym travel of move:

{(move, 3.0), (travel, 3.0), (fall, 3.0), (objectify, 3.0)}
as well as the hyponyms fall and fly of move:

{(move, 3.0), (travel, 3.0), (fall, 4.0), (objectify, 3.0),
(fly, 1.0)}

Then, move and travel as well as modify are added as
hypernyms of fall and objectify, respectively:

{(move, 3.0), (travel, 3.0), (fall, 4.0), (objectify, 3.0),
(fly, 1.0), (modify, 1.0)}
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Finally, the DMS-synoym fall is added:
{(move, 3.0), (travel, 3.0), (fall, 5.0), (objectify, 3.0),
(fly, 1.0), (modify, 1.0)}

After sorting and normalizing, we get the result:
{(fall, 1.0), (move, 0.6), (travel, 0.6), (objectify, 0.6),
(fly, 0.2), (modify, 0.2)}

This example clearly illustrates that the above procedure
is biased towards specialization. In fact, our aim is to as-
sociate very specific verbs such as fall with a given partial
frame instead of resorting to more general verbs such as
move. The reason for this is that when the verb fall is used
in a question, we would like the patterns corresponding to a
motion of a falling object to score high, while we would like
to avoid that such patterns score high for the more general
verb move.

Further, we would then search for all predicate-argument
structures for the verbal form of the frame object name and
the synonyms derived with the procedure described above,
for instance finding the above predicate-argument structure
for move.

Now, given a partial frame and a matching predicate-
argument structure, we need to determine the highest-
scoring mapping between attributes of the partial frame and
arguments of the predicate-argument structure. Here, we
consider all mapping possibilities. Let pf be a partial frame
with n arguments and pa be a matching predicate-argument
structure with k arguments. Let the set M contain mappings
of positions in pf to positions in pa. The cardinality of M is
then n!

(n−k)! and thus contains all possibilities of injectively
mapping arguments in pf to arguments in pa.

The procedure in Algorithm 1 then selects the best scor-
ing match. It loops over all pairs of positions mapped to
each other, calculating the score for each mapping and re-
turning the mapping m ∈ M yielding the maximum score.
The score is calculated by multiplying the argument scores
for each argument pair, whereby the argument scores are
computed by calculating the average Levenshtein distance
[10] between the name of the attribute (pfarg.name) as
well as the type of the attribute (pfarg.type) on the one hand
and each word occurring in the corpus at the corresponding
argument position of the P/A structure on the other hand,
i.e. for all w ∈ paarg . Hereby, the Levenshtein similarity
LDsyn(a, b) is calculated by tokenizing a and determining
the maximum of the following formula which takes into ac-
count synonyms of the tokens of a as specified by WordNet,
i.e. LDsyn(a, b) := maxs∈firstSynset(t),t∈tokens(a)1 −

LD(s,b)
max(s.length,b.length) where LD(a, b) is the standard Lev-
enshtein distance between a and b. The tokenization (and
removal of stopwords) of a is necessary as it can be a com-
plex type such as time interval. ”Time”, ”interval” and their
synonyms in the first WordNet sense are thus considered
separately when calculating the Levenshtein distance, fi-

Algorithm 1 Algorithm for selecting the most relevant pat-
tern for a partial frame
getBestMapping(Partial Frame pf, P/A Structure pa, Mappings M)
{

bestMapping := nil;
bestScore := 0;
foreach m in M
{

score = 1;
foreach pair (pfattr, paarg)
{

argScore = 0;
foreach w ∈ paarg

{
argScore = argScore +
LDsyn(pfattr.name,w)+LDsyn(pfattr.type,w)

2}
score = score * argScore

|paarg|
}
if (score > bestScore)
{

bestScore = score;
bestMapping = m;

}
}

return (bestMapping,bestScore)
}

nally returning the maximum of the above formula. The
Levenshtein distance is used here simply to ensure robust-
ness with respect to spelling variants or even misspellings
in the corpus.

Overall, the score of a pattern is the product of
the value of the verb in the synonym set S as well as
the score as calculated by Algorithm 1. For our mo-
tion example, assuming that the best selected mapping is
{(moving object, subj), (speed, with), (duration, for)},
we would have found an appropriate pattern which would
map our example sentence into the following KB assertion:

motion[ moving_object -> car1;
speed -> ‘‘60’’(km/h);
duration -> ‘‘20’’(min.)

]

where car1 is a constant introduced for an existentially
quantified car, i.e. its skolem function. The top 5 best scor-
ing patterns for each partial frame are then stored in an
XML representation and can then be loaded into the pat-
tern base of the question answering component, which is
described below.

2.2 Question Answering Mode

The question answering component takes as input an AP
question and tries to find the most appropriate pattern for
each sentence. The input sentence is also parsed using
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Algorithm 2 Algorithm calculating the match between a
given pattern given a P/A structure found in the input sen-
tence.
calculateMatch(P/A Structure input, P/A Structure pattern)
{
score = 0;
forall arg ∈ args(input)

if (arg ∈ args(pattern))
score = score + LDsyn(pattern.arg.type,input.arg.word)

return score/|args(input)|
}

MiniPar and corresponding predicate-argument structures
are extracted. Then, a pattern which matches the predicate-
argument structure is searched in the pattern base using Al-
gorithm 2 to find and score the best matching pattern.

In general, the procedure applied in question answering
mode consists of the following steps:

1. The user enters the textual problem, which typically con-
sists of several sentences and a final question.

2. The sentences are parsed with MiniPar (as in step 2 in
Section 2.1).

3. The P/A structure in the input sentence is determined.
4. On the basis of the P/A structure, relevant patterns are

found.
5. Patterns are presented to the user, who selects an appro-

priate frame type and specific pattern, thus also specify-
ing the partial frame to which the input is mapped.

6. The attribute slots in the partial frame are filled on the
basis of the input sentence, i.e. the partial frame is in-
stantiated.

7. An F-Logic query is computed on the basis of the instan-
tiated frame.

8. The F-Logic query is sent to the OntoBroker system.

Thus, the degree of match needs to be calculated for
each P/A input structure and each pattern in the pattern
base. The patterns can also be seen essentially as P/A struc-
tures with the exception that they also specify the mapping
to the knowledge base and thus the argument positions are
typed. The corresponding algorithm to determine the de-
gree of match between two P/A structures is given in Alg.
2. The algorithm basically loops over the arguments of the
input P/A structure, checking whether the pattern P/A has
also the argument in question, calculating the Levenshtein
similarity LDsyn between the word occurring at the argu-
ment position in the input P/A structure (input.arg.word)
and the type of the argument in the pattern P/A structure
(pattern.arg.type). Synonyms of pattern.arg.type are hereby
considered in the calculation of the Levenshtein similarity.

In general, the question answering component will find
all matching patterns and rank them according to their
matching score as computed by Algorithm 1. The system
can then either be applied in automatic fashion, selecting

the top scoring pattern automatically or in a semi-automatic
mode by presenting the ranked list of patterns to a user,
grouped by frame types. This is important as several pat-
terns for different frame types can be found for a given in-
put sentence. For example, considering the sentence The
car moves with 6km/h for 30 minutes., ‘moves’ can in prin-
ciple refer to a trajectory motion, an acceleration motion, a
motion of a falling object etc. The type of motion can not
be determined in many cases just from the input question.
In our system, the user is thus first asked to select a rele-
vant frame type from a list. Once he has selected the type
of frame, he then gets presented a ranked list of patterns
together with the attributes they map to and can select one
pattern from a second list. The system has been evaluated
in this interactive mode. The evaluation is described in the
following section.

3 Evaluation

The evaluation of the system presented was conducted
with respect to three different knowledge base modeled in
the context of the HALO project. However, we do not report
results from the end-to-end evaluation as we are not con-
cerned with the query answering itself, but present a more
direct evaluation of our pattern-generation approach. Ob-
viously, due to the large amount of patterns generated, it is
not feasible to evaluate each pattern by hand. Therefore, we
decided to evaluate the approach in terms of the times that
an appropriate pattern was found for an input sentence. In
order to evaluate our ranking, we also report the average po-
sition of the pattern selected by the user in the ranked list.
Overall, the approach described in the section above was
developed by using a selected number of sentences from
the three domains: physics, chemistry and biology. It was
validated with unseen examples entered into the system by
our evaluators in a slightly restricted English syntax.

3.1 Experimental Settings

The knowledge bases used in our experiments were mod-
eled for three areas: physics, chemistry and biology on the
basis of the text books [9], [3] and [2], respectively. Table 1
gives some statistics for the corpora derived from the text-
books, such as the total number of sentences, the number of
sentences for which a parse tree was produced as well as the
number of P/A structures extracted for verb phrases (VP)
and noun phrases (NP). In particular, we observe that P/A
structures were only extracted for between 21.66% - 30% of
the sentences. Table 2 gives some figures about the under-
lying KBs, giving the number of frames, average number of
attributes per frame as well as the average number of inverse
relations per frame. In fact, though we have not mentioned
this in the description of the approach in Section 2 in order

5



physics chemistry biology
Sentences 14,706 24,650 73,893
Parsed sentences 11,357 19,588 49,395

(77.23%) (79.5%) (66.85%)
P-A structures 4,416 6,619 16,004

(30%) (26.86%) (21.66%)
VP-structures 4,179 6,270 15,101
NP-structures 237 349 903

Avg. Occ. per P/A 2.37 2.82 3.01

Table 1. Corpus statistics

physics chemistry biology
Frames 29 72 252
Avg. Attributes per Frame 7.72 9.74 25.70
Avg. Inv. Rel. / Frame 1.97 4.46 24.76
Partial Frames 6,540 19,530 1,071,828

Table 2. KB statistics

to simplify the presentation, we also consider inverse rela-
tions, that is, attributes of some other frame pointing to the
frame in question, as attributes of the latter for the purposes
of the pattern induction process. For example, the vehicle
involved in a motion is actually expressed via an inverse
relation in the physics knowledge base as follows:

vehicle[hasMotion -> motion]

and does not actually form part of the motion frame.
Therefore, it is crucial to also consider this inverse relations
in the pattern induction process. This is illustrated for exam-
ple by our running example involving the verb move, which
takes as subject the vehicle, which is modeled through an
inverse relation in the knowledge base.

For the experiments reported in this paper, we simpli-
fied the problem by imposing certain restrictions on the lan-
guage used to describe the textual problem, thus creating
certain controlled settings. In particular, we specifically
asked the test subjects taking part in the evaluation to use
the following sentence types: i) “The X of Y is Z.”, ii) “Y
has a X of Z.” as well as iii) arbitrary grammatical and full
sentences consisting of one main verb. The last condition
implies in particular that no relative clauses or other sub-
ordinated clauses were allowed. Further, the use of paren-
thesis (e.g. for specifying quantities as in ‘A car (5km/h)
drives from A to B.’) was disallowed. Finally, we explicitly
required the specification of a subject. Obviously, these re-
strictions simplify the problem substantially. It is important
to mention that still under these more controlled settings
the problem is far from trivial and highly challenging. Our
example at the beginning of Section 2 was for example re-
formulated by one of the test persons as follows:

A car moves with a constant velocity of 60 km/h. The mo-
tion has a duration of 30 minutes. I move with 4 km/h. The
motion has a duration of 30 minutes. What is the average

physics chemistry biology
Patterns 31,429 30,617 170,129
Avg. Score 0.09 0.04 0.06
Occurrences per Patterns 1.50 1.64 2.34

Table 3. Pattern Statistics

velocity of the motion?

physics chemistry biology
AP text problems 11 15 8
Sentences 48 37 38
Correctly processed sentences 29 10 1
Percentage correctly processed 60.41% 27.02% 2.63%

Average position in raking
Average pos. of selected pattern 1.24 1.2 1.00

Problems
P/A not recognized (sentences) 2 2 6
no pattern found (sentences) 0 4 7
no frame type selected by user 7 17 24
no pattern selected by user 10 4 0

Table 4. Results of the evaluation

3.2 Results

Table 3 gives the number of patterns generated for each
of the knowledge bases as well as the average score of each
pattern. Due to the fact that for the biology domain the
number of partial frames was so high, only partial frames
with up to 2 attributes were considered.

Note that the average score of the patterns is quite low,
which is due to the fact that we multiply scores which are
lower than 1, i.e. the score for the mapping as calculated by
Algorithm 1 as well as the value of the corresponding syn-
onym. Table 4 shows the results of the evaluation. It shows
the number of AP text problems considered as well as the
total number of sentences for all the problems. It also shows
the total number of correctly processed sentences, i.e. those
sentences for which our test persons could find a relevant
pattern leading to an appropriate instantiation of the corre-
sponding partial frame. For the physics KB, 60,41% of the
sentences are processed correctly, while for the chemistry
and biology domain the results are worse with 27,02% and
2,63%, respectively. Further, the table also shows the av-
erage position in the ranking list of the frame and pattern
selected by the user. In general, the ranking of the patterns
seems reasonable for all domains, as the pattern selected
was at position 1 on average. The table also shows a more
detailed analysis of the involved problems. There are sev-
eral problems affecting the approach:

• the parser does not produce any output,

• no P/A is recognized in the parser output,
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• no corresponding pattern is in the pattern base,

• the pattern is in the library but is not found, or

• the argument mapping for the patterns is not appropri-
ate.

When having a look at the figures in Table 1, we observe
that the percentage of parsed sentences (66.85%-77.23%)
and P/A structures extracted (21.66%-30%) does not vary
substantially enough to explain the high differences in the
results of our approach for the different domains. So the
reason why our approach performs much worse for the
chemistry and biology domains is either that no appropri-
ate patterns are found for the partial frames, the argument
mapping is not appropriate or the patterns are in the library
but simply not found at query time. In essence, all these
cases boil down to lexical mismatches, i.e. cases in which
the labels used in the knowledge base and words in the cor-
pus substantially differ. It is certainly also possible (though
not very likely) that the language used by our test persons in
the questions and the one of the corpus differ substantially
for the biology and chemistry domains. This issue will def-
initely require more investigation. Further, it would also be
important to quantitatively analyze how many of the fail-
ures to find an appropriate pattern are in fact due to i) parse
errors, ii) P/A structure extraction errors, or iii) deficiencies
in our pattern induction algorithm.

3.3 Discussion

The results of the physics knowledge base are certainly
quite satisfactory, while the results for the chemistry and bi-
ology knowledge bases are disappointing. For the chemistry
and biology knowledge bases, appropriate patterns were ac-
tually not found in many cases. However, there were also
problematic cases in the physics domain. Consider for ex-
ample the following sentences for which the system failed
to find an appropriate pattern:

• A metallic ball has a weight of 0.1 kg (in this case there
is no attribute weight in the KB but only an attribute
mass which is not found due to the fact that there is no
relation between mass and weight in WordNet)

• The initial time of a motion is 8 hours. (in this case
no pattern is found because the attribute initial time is
incorrectly typed as length)

• An airplane moves in horizontal direction with a con-
stant velocity of 50km/h. (in this case no pattern is
derived as no directions are modeled in the knowledge
base)

In the biology and chemistry domains, the main problem
was that the verbs and nouns used in the corpus do not cor-
respond to the names of the frames and attributes modeled
in the knowledge bases. Even WordNet does not help much
here, because it does not contain rich biological or chemical
terminology. In the physics domain this was not such a big
problem due to the fact that more common terminology is
used. We thus conclude that much richer lexical resources
are needed for the chemistry and biology domains. In gen-
eral, our indirect evaluation has also limits as it does not
allow to conclude what the main problems are. The sheer
size of partial frames in the biology domain is for sure also
making the selection of appropriate patterns difficult. Fur-
ther investigation on other domains is certainly needed to
clarify the strengths and limits of our approach.

4 Related Work

There has been certainly a lot of work on natural lan-
guage interfaces to knowledge or databases in the 70s and
80s. For an overview of these older systems, the interested
reader is referred to the overviews in [5] and [1]. Due to
space limitations we will in fact only discuss more recent
systems in this section.

Thompson et al. [14] present a system in which con-
trol strategies for a corresponding parser are automatically
derived from training data relying on techniques from in-
ductive logic programming (ILP). The system is evaluated
on two domains (jobs and geography), and achieves very
decent accuracy levels between 25 - 70% for the geography
domain and between 80 - 90% accuracy for the job domain,
depending on the amount of training data used.

The PRECISE system [13] has focused on the reliability
of NLIs and presented a system which is formally proved to
be 100% precise, given an appropriate domain-specific lex-
icon. In fact, PRECISE requires no additional customiza-
tion nor domain-specific knowledge other than an appro-
priate lexicon. The precision of PRECISE of almost 100%
on real data is certainly impressive. However, the domains
on which PRECISE has been evaluated (job postings, ge-
ography) are probably less challenging than the scientific
domains we have considered.

The recently presented AquaLog system [12] essen-
tially transforms the natural language question into a triple-
representation and then relies on similarity computations to
map the triples to appropriate relations defined in the on-
tology. Some basic support for disambiguation is provided
in this way. As our approach, AquaLog does not require
any manual tuning of the system to a specific domain. As
AquaLog is also based on syntactic similarity metrics, we
assume that it would have similar problems as our system
in case the KB and user vocabulary differ substantially.

The approach in the QUETAL system [8] implements
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the mapping from a question to a query via three inter-
mediary stages: i) construction of a Robust Minimal Re-
cursion Semantics (RMRS) representation, ii) mapping to
FrameNet types and roles as well as iii) construction of
so-called proto-queries. The approach implements a hy-
brid technique to interleave shallow and deep processing.
An evaluation of the system shows that it achieves similar
precision rates as our system, i.e. 74.1%. Customization
is achieved through hand-written rewriting rules transform-
ing FrameNet-like structures to domain-specific structures
as provided by the domain ontology.

A similar corpus-based approach to deriving linguistic
patterns as presented in this paper was developed in the con-
text of the ORAKEL system (compare [4]). However, the
approach was not evaluated with users, but only for its abil-
ity to find appropriate linguistic patterns for different com-
mon sense knowledge bases about wines, beers, university
organization etc.

5 Conclusion

We have presented a pattern-based approach to translat-
ing complex textual problems into appropriate KB asser-
tions and queries needed to answer the question as an infer-
ence process. The crucial step in our approach is a pattern
induction component which, given a knowledge base and
a corresponding corpus, induces patterns which are basi-
cally predicate-argument structures specifying how the ar-
guments map to frames specified in the knowledge base. In
fact, the patterns thus realize the syntax-semantics interface
as once an appropriate pattern is found in question answer-
ing mode, the appropriate KB structures can be instanti-
ated. We have evaluated our approach with three knowledge
bases in three domains: physics, chemistry and biology.
While our approach performs well on the physics domain, it
yields much worse results on the chemistry and biology do-
mains. According to our conclusions, this is mainly due to
lexical mismatches between the way information is mod-
eled in the knowledge base and expressed in the corpus,
which prevents our pattern induction component from find-
ing appropriate patterns. In general, our work differs from
other related work in that it tackles highly challenging and
complex domains such as physics, chemistry and biology.
An important problem which we have not yet addressed and
thus remains for future work is the treatment of discourse
phenomena, in particular the resolution of (anaphoric or
bridging) references. The resolution of such references is
nevertheless crucial in order to capture the content of the
textual problem correctly. Such an approach to reference
resolution will indeed need to be implemented before our
approach can be evaluated end-to-end, i.e. from the input
text problem to the final answer.
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