
Using the Web to Reduce Data Sparseness in
Pattern-based Information Extraction

Sebastian Blohm and Philipp Cimiano??

Institute AIFB, University of Karlsruhe, Germany
{blohm,cimiano}@aifb.uni-karlsruhe.de

Abstract. Textual patterns have been used effectively to extract information
from large text collections. However they rely heavily on textual redundancy in
the sense that facts have to be mentioned in a similar manner in order to be gener-
alized to a textual pattern. Data sparseness thus becomes a problem when trying
to extract information from hardly redundant sources like corporate intranets, en-
cyclopedic works or scientific databases.
We present results on applying a weakly supervised pattern induction algorithm
to Wikipedia to extract instances of arbitrary relations. In particular, we apply dif-
ferent configurations of a basic algorithm for pattern induction on seven different
datasets. We show that the lack of redundancy leads to the need of a large amount
of training data but that integrating Web extraction into the process leads to a
significant reduction of required training data while maintaining the accuracy of
Wikipedia. In particular we show that, though the use of the Web can have similar
effects as produced by increasing the number of seeds, it leads overall to better
results. Our approach thus allows to combine advantages of two sources: The
high reliability of a closed corpus and the high redundancy of the Web.

1 Introduction

Techniques for automatic information extraction (IE) from text play a crucial role in
all scenarios in which manually scanning texts for certain information is unfeasible or
too costly. Nowadays, information extraction is thus for example applied on biochemi-
cal texts to discover unknown interactions between proteins (compare [13]) or to texts
available in corporate intranets for the purpose of knowledge management (compare
[16]). In many state-of-the-art systems, textual patterns are used to extract the relevant
information. Textual patterns are in essence regular expressions defined over different
levels of linguistic analysis. In our approach, we rely on simple regular expressions de-
fined over string tokens. As the extraction systems should be easily adaptable to any
domain and scenario, considerable research has been devoted to the automatic induc-
tion of patterns (compare [5, 14, 7]). Due to the fact that patterns are typically induced
from a specific corpus, any such approach is of course affected by the problem of data
sparseness, i.e. the problem that there will never be enough data to learn all relevant
patterns. In the computational linguistics community, it has been shown that the Web

?? Copyright Springer 2007, Proceedings of the 11th European Conference on Principles and
Practice of Knowledge Discovery in Databases (PKDD)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications at Bielefeld University

https://core.ac.uk/display/15980073?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


can in some cases be effectively used to overcome data sparseness problems (compare
[9]).

In this paper, we explore whether the Web can effectively help to overcome data
sparseness as a supplementary data source for information extraction on limited cor-
pora. In particular we build on a weakly-supervised pattern learning approach in which
patterns are derived on the basis of a few seed examples. A bootstrapping approach then
induces patterns, matches these on the corpus to extract new tuples and then alternates
this process over several iterations. Such an approach has been investigated before and
either applied only to the Web (see [3, 1]) or only to a given (local) corpus [11]. We thus
combine advantages of two sources: the high reliability of a closed corpus and the high
redundancy of the Web.

The idea is as follows: given seed examples (e.g. (Warsaw, Poland) and
(Paris, France)) of a specific relation (e.g. locatedIn) to be extracted (appearing in
the local corpus), we can consult the Web for patterns in which these examples appear.
The newly derived patterns, which in essence are a generalization of plain string occur-
rences of the tuples, can then be matched on the Web in order to extract new examples
which are taken into the next iteration as seeds. Then, we can search for patterns for
the increased set of examples (coming from the Web) in the corpus, thus effectively
leading to more patterns. Overall, we experiment with different variations of the basic
pattern induction algorithm on seven different relation datasets. Our experiments show
on the one hand that lack of redundancy can be definitely compensated by increasing
the number of seeds provided to the system. On the other hand, the usage of the Web
yields even better results and does not rely on the provision of more training data to the
system in the form of seeds.

In this paper, we use Wikipedia1 as local corpus and access the Web through the
Google API. In the next Section, we motivate the need for an approach to overcome
data sparseness both quantitatively and qualitatively by giving some examples. Then, in
Section 3 we present our bootstrapping approach to pattern induction which alternates
the usage of the (local) corpus and the Web and its implementation in our Pronto system.
Section 4 presents our experiments and results. Before concluding, we discuss some
related work in Section 5.

2 Motivation

Specialized text corpora such as company intranets or collections of scientific papers
are non-redundant by design. Yet they constitute a valuable source for information ex-
traction as they are typically more reliable and focussed than the general Web (cf. [8]
for an analysis of structure and content of corporate intranets).

In our present experiments we use Wikipedia as a non-redundant, highly reliable
and (somewhat) specialized text collection of limited size that is freely accessible to the
entire community. As a first observation, we found that Wikipedia is hardly redundant.
We computed the number of page co-occurrences of instances of four test relations
taking the Google result count estimates for searches of individual relation instances
limited to the Wikipedia site. As a result we found that most relation instances do not

1 http://en.wikipedia.org



co-occur more than 100 times (median: 15). When doing the same counts on the entire
Web, hardly any instance occurs less than 100 times, the median lies at 48000. The
effect increases when considering that page co-occurrence does not suffice for a relation
instance to be extracted. Patterns only match a limited context. In our case, we match
10 tokens around each link relating it to the document title. This reduces the number
of times, a candidate relation instance occurs in the corpus dramatically to an average
of 1.68 (derived by counting the number of times that the top 200 relation instances for
each relation occur in the index).

It is thus our goal to assess how effectively Web-based extraction can serve as back-
ground knowledge to extraction on a smaller corpus. That is, we will not use the Web
to extract additional information, but only to make up for a lack of redundancy in the
small corpus. In particular no information found on the Web goes into the result set
without being verified on the small corpus as otherwise the benefits of the smaller cor-
pus (higher quality, domain specificity, availability of further background knowledge)
would be lost. In what follows, we describe the approach in more detail.

3 Approach

Our Pronto system uses a generic pattern learning algorithm as it is typically applied on
the Web. It works analogously to many of the approaches mentioned in the introduction
implementing a similar bootstrapping-based procedure. The Pronto system has been
previously described in further detail [2]. The algorithm starts with a set of initial tuples
S′ of the relation in question – so called seeds – and loops over a procedure which starts
by acquiring occurrences of the tuples currently in S. Further, patterns are learned by
abstracting over the text occurrences of the tuples. The new patterns are then evaluated
and filtered before they are matched. From these matches, new tuples are extracted,
evaluated and filtered. The process is stopped when the termination condition DONE is
fulfilled (typically, a fixed number of iterations is set). The learning is thus inductive in
nature abstracting over individual positive examples in a bottom-up manner. Learning
essentially takes place in a generate-and-test manner.

Figure 1 describes our modification of the algorithm. It basically consists of a sub-
sequent application of the loop body on the Web and the wiki. Web matching and wiki
matching contribute to the same evolving set of tuples S but maintain separate pattern
pools Pweb and Pwiki. This separation is done to allow for different types of pattern
representation for the different corpora.

An important novelty is checking each tuple t derived from the Web using
PRESENT-IN-WIKI(t). This ensures that no knowledge that is actually not present in
Wikipedia goes into the set of results. Otherwise, the extraction procedure would not be
able to benefit from the higher quality in terms of precision that the wiki corpus can be
assumed to present.

3.1 Extraction from the Web

Given a number of seeds at the start of each of the algorithm’s iterations, occur-
rences of these seed tuples are searched on the Web. For example, given a tuple



WEB-WIKI PATTERN INDUCTION(PatternsP ′, TuplesS′)
1 S ← S′

2 Pweb ← P ′

3 while not DONE

4 do
5 Occt ← WEB-MATCH-TUPLES(S)
6 Pweb ← Pweb ∪ LEARN-PATTERNS(Occt)
7 EVALUATE-WEB-PATTERNS(Pweb)
8 Pweb ← {p ∈ Pweb | WEB-PATTERN-FILTER-CONDITION(p)}
9 Occp ← WEB-MATCH-PATTERNS(Pweb)

10 S ← S + EXTRACT-TUPLES(Occp)
11 S ← {t ∈ S | PRESENT-IN-WIKI(t)}
12 EVALUATE-WEB-TUPLES(S)
13 S ← {t ∈ S | TUPLE-FILTER-CONDITION(t)}
14 Occt ← WIKI-MATCH-TUPLES(S)
15 Pwiki ← Pwiki ∪ LEARN-PATTERNS(Occt)
16 EVALUATE-WIKI-PATTERNS(Pwiki)
17 Pwiki ← {p ∈ Pwiki | WIKI-PATTERN-FILTER-CONDITION(p)}
18 Occp ← WIKI-MATCH-PATTERNS(P )
19 S ← S + EXTRACT-TUPLES(Occp)
20 EVALUATE-WIKI-TUPLES(S)
21 S ← {t ∈ S | TUPLE-FILTER-CONDITION(t)}
Fig. 1. Combined Web and wiki pattern induction algorithm starting with initial patterns P ′ and
tuples S′ maintaining two pattern pools Pweb and Pwiki

(Stockholm, Sweden) for the locatedIn relation, the following query would be sent
to the Google Web Search API:

"Stockholm" "Sweden"

For each instance of the locatedIn relation a fixed number nummatchTuplesweb
of re-

sults is retrieved for a maximum of numtupleLimitweb
instances. These occurrences

serve as input to pattern learning if the arguments are at most maxargDist tokens
apart. For our experiments we chose maxargDist = 4, nummatchTuplesweb

= 50 and
nummatchTuplesweb

= 200.
LEARN-PATTERNS generates more abstract versions of the patterns. We take a

generate-and-test approach to learning. LEARN-PATTERNS produces a large amount
of patterns by combining (“merging”) sets of occurrences by keeping common tokens
and replacing tokens in which the patterns differ by “*” wildcards. Thus, the general-
ization is effectively calculating the least general generalization (LGG) of two patterns
as typically done in bottom-up ILP approaches (compare [10]).

To avoid too general patterns, a minimum number of non-wildcard tokens is en-
forced. To avoid too specific patterns, it is required that the merged occurrences reflect
at least two different tuples.

EVALUATE-WEB-PATTERNS(Pweb) assigns a confidence score to each pattern. The
confidence score is derived as the number of different tuples from which the pattern
has been derived through merging. This measure performs better than other strategies



as shown in [2]. Evaluation is followed by filtering applying WEB-PATTERN-FILTER-
CONDITION(p) which ensures that the top poolweb = 50 patterns are kept. Note that
the patterns are kept over iterations but that old patterns compete against newly derived
ones in each iteration.

EVALUATE-WEB-PATTERNS(Pweb) matches the filtered pattern set on the Web re-
trieving nummatchPatternsweb

results per pattern. A pattern like

“flights to ARG1 , ARG2 from ANY airport”

for the locatedIn relation would be translated into a Google-query as follows:

"flights to * * from * airport"

A subsequent more selective matching step enforces case and punctuation which
are ignored by Google. All occurrences are stored in Occp from which EXTRACT-
TUPLES(Occp) extracts the relevant relation instances by identifying what occurs
at the positions of ARG1 and ARG2. For the present experiments we chose
nummatchPatternsweb

= 200.
The above-mentioned PRESENT-IN-WIKI(t) check ensures that Web extractions for

which no corresponding link-title pair is present in the Wikipedia are eliminated. This
way, the high quality of content of Wikipedia is used to filter Web results and only those
instances are kept that could in principle have been extracted from Wikipedia. Yet, the
Web results increase the yield of the extraction process.

All parameters employed have been determined through extensive initial tests.

3.2 Extraction from Wikipedia

This section presents our approach to pattern matching for relation extraction on
Wikipedia. We describe pattern structure and index creation before going into detail
on the individual steps of the algorithm in Figure 1.

For pattern matching on Wikipedia, we make use of the encyclopedic nature of the
corpus by limiting focussing on pairs of hyperlinks and document titles. It is a common
assumption when investigating the semantics in documents like Wikipedia (e.g. [17])
that key information on the entity described on a page p lies within the set of links on
that page l(p) and in particular that it is likely that there is a salient semantic relation
between p and p′ ∈ l(p).

We therefore consider patterns consisting of the document title and a hyperlink
within its context. The context of 2 ∗ w tokens around the link is taken into account
because we assume that this context is most indicative of the the nature of the semantic
relation expressed between the entity described in the article and the one linked by the
hyperlink. In addition, a flag is set to indicate whether the first or the second argument
of the relation occurs in the title. Each token can be required to be equal to a particular
string or hold a wildcard character. For our experiments we chose w = 5.

To allow for efficient matching of patterns and tuples we created an index of all
hyperlinks within Wikipedia. To this end, we created a database table with one row
for each title/link pair featuring one column for link, title and each context token posi-
tion. The link was created from the Wiki-Syntax version of the document texts using a



database dump from December 17th 2006. The table has over 42 Million records. We
omitted another 2.3 Million entries for links lying within templates to maintain gen-
erality as templates are a special syntactic feature of Wikipedia that may not transfer
to similar corpora. Tokenization has been done based on white space. Hyperlinks are
considered one token. Punctuation characters and common sequences of punctuation
characters as well as HTML markup sequences are considered separate tokens even if
not separated by white space. HTML comments and templates were omitted.

Tuple Matching and Pattern Learning For each of at most nummatchTupleswiki
=

50 tuples, WIKI-MATCH-TUPLES(S) sends two queries to the index. One for each
possibility to map argument 1 and 2 to title and link. Like in the Web case there is a
maximum limit for matches nummatchTupleswiki

= 200 but it is hardly ever enforced
as virtually no tuple is mentioned more than three times as a link-title pair. The same
LEARN-PATTERNS(Occt) method is applied as in the Web setting. Like in the Web
setting, EVALUATE-WIKI-PATTERNS(Pwiki) takes into account the number of distinct
tuples which participated in the creation of a pattern. Finally, WIKI-PATTERN-FILTER-
CONDITION(p) retains the top poolweb = 50 patterns for matching.

Pattern Matching and Tuple Generation WIKI-MATCH-PATTERNS(P ) retrieves
from the index a random sequence of nummatchPatternswiki

= 50 matches of the
pattern by selecting those entries for which the non-wildcard context tokens of the pat-
terns are present in the correct positions. EXTRACT-TUPLES(Occp) then generates a
tuple instance for each distinct title/link pair occurring in the selected index entries.
EVALUATE-WIKI-TUPLES(S) and TUPLE-FILTER-CONDITION(t) are currently not
enabled to maximize the yield from the wiki.

The termination condition DONE is currently implemented to terminate the process-
ing after 10 iterations.

3.3 Summary

Extraction from both the Web and the wiki index follow the same basic procedure. Pa-
rameters have been adapted to the different levels of redundancy in the text collections.
In addition, the pattern structure of the patterns have been chosen is different to allow
link-title matches in the wiki and window co-occurrences for the Web. The PRESENT-
IN-WIKI(t) check ensures that the Web only facilitates extraction but does not provide
knowledge not present in the wiki.

4 Evaluation

The goal of this study is to show how information extraction from the Web can be used
to improve extraction results on a smaller corpus, i.e. how extraction on a precise, spe-
cialized corpus can benefit from a noisy but redundant source. We do so by running
our system in two configurations employing Web extraction and an additional baseline
condition. As the assumption is that Web extraction can make up for the lack of re-
dundancy which is particularly important in the beginning of the bootstrapping process,



we compare how the different configurations behave when provided with smaller and
bigger amounts of seed examples.

4.1 Datasets

For the selection of seed instances and for automatic evaluation of results, 7 data sets
consisting of the extensions of relations have been created:

– albumBy: 19852 titles of music albums and their artists generated from the
Wikipedia category “Albums by Artist”.

– bornInYear: 172696 persons and their year of birth generated from the Wikipedia
category “Births by Year”.

– currencyOf : 221 countries and their official currency according to DAML export
of the CIA World Fact Book2. Manual modifications were done to reflect the intro-
duction of the Euro as official currency in many European countries.

– headquarteredIn: 14762 names of companies and the country they are based in
generated from the Wikipedia category “Companies by Country”.

– locatedIn: 34047 names of cities and the state and federal states they are located in
generated from the Wikipedia category “Cities by Countries”. Note that a consid-
erable number of cities are contained in this data set with both their state and their
federal state.

– productOf : 2650 vehicle product names and the brand names of their makers gen-
erated from the Wikipedia category “Vehicles by Brand”.

– teamOf : 8307 soccer players and the national teams they were playing for between
1950 and 2006.3

It is important to note that also the Wikipedia collections have been compiled man-
ually by authors who assigned the documents to the respective categories and checked
by further community members. Thus, the datasets can be regarded to be of high qual-
ity. Further, due to the vast coverage of Wikipedia the extensions of the relations can be
assumed to be relatively complete.

Most of the above described datasets have been obtained from Wikipedia by auto-
matically resolving category membership with the help of the CatScan4 Tool by Daniel
Kinzler. CatScan was applied iteratively to also obtain members of sub-categories.

The data sets have been chosen to differ according to various dimensions, most
notably in size. The currencyOf dataset, for example, is relatively small and constitutes
a relation with clear boundaries. The other relations are likely not be reflected fully in
the data sets.

Small samples (size 10, 50 and 100) of the datasets were taken as input seeds. With
two exceptions5, we took the number of in-links to the Wikipedia articles mentioned in

2 http://www.daml.org/2001/12/factbook/
3 This data set is a courtesy of the SmartWeb consortium (see http://www.
smartweb-project.de/).

4 http://meta.wikimedia.org/wiki/User:Duesentrieb/CatScan
5 For cities we took the average living costs as an indicator to ensure that Athens Greece was

ranked higher than Athens, New York. (Population would have skewed the sample towards
Asian cities not prominently mentioned in the English Wikipedia.) For Albums we required
titles to be at least 10 characters in length to discourage titles like “Heart” or “Friends”



each tuple as an indicator for their significance in the corpus and selected the top n sam-
ples with respect to the harmonic mean of these counts. Initial tests showed that taking
prominent instances as seeds strongly increases the system performance over random
seeds. It can be expected that in most real scenarios prominent seeds are available as
they should be those best known to the users.

4.2 Experimental Conditions

To assess the added value of Web extraction, we compare three configurations of the
above algorithm.

Dual: Exactly as formalized in Figure 1, this condition iterates the bootstrapping per-
forming both, Web and wiki extraction in every iteration.

Web once: The processing runs like in Figure 1 but the lines 5 to 12 are executed only
in the first iteration. Thereby, the seed set is augmented once by a set of learned relation
instances. After that, processing is left to Wikipedia extraction.

Wiki only: As a baseline condition, extraction is done on Wikipedia only. Thus line 5
to 12 in Figure 1 are omitted entirely.

Figure 1 is simplified in one respect. Initial tests revealed that performing the
PRESENT-IN-WIKI(t) filter in every iteration was too strict so that bootstrapping was
quenched. We therefore decided to apply the filter in every third iteration6. A consid-
erable number of – also correct – instances were filtered out when applying the filter.
Consequently we only present results after iteration 3, 6 and 9 for comparability rea-
sons.

We performed extraction with each of the three configurations for 10 iterations
while varying the size of the seed set. Presenting the 10, 50 and 100 most prominent
relation instances as seed sets to test how the different configurations affect the system’s
ability to bootstrap the extraction process.

4.3 Evaluation Measures

In our experiments, we rely on the widely used P(recision) and R(ecall) measures to
evaluate system output. These measures compute the ratio of correctly found instances
to overall tuples extracted (precision) or all tuples to be found (recall).

As the fixed number of iterations in our experiments poses a fixed limit on the num-
ber of possible extractions we use a notion of (R)elative (R)ecall assuming maximally
extracted number of tuples by any configuration in any iteration with the given relation.
With Yr(i, m) being the Yield, i.e. number of extractions (correct and incorrect) at it-
eration i for relation r with method m and pr(i,m) the precision respectively, we can
formalize relative recall as

RRr(i,m) =
Yr(i,m) ∗ Pr(i,m)
maxi,m Yr(i,m)

6 As the filter is always applied to all tuples in S this does not lead to the presence of non-wiki
patterns in the final results. Yet, the non-wiki patterns seem to help bootstrapping before they
are eliminated.



Fig. 2. Precision, relative recall and F-measure for results derived with different configurations
and seed set sizes. Grayed columns are not very indicative as due to the low recall the results
largely consist of the seed set. The mark << is to indicate that performance is statistically sig-
nificantly worse than all other runs.

The F-measure (more precisely F1-measure) is a combination of precision and recall
by the harmonic mean.

4.4 Results

Figure 2 presents results of the extraction runs with the different configurations start-
ing with seed sets of different sizes. The figures show precision, relative recall and F-
measure after 9 iterations of the extraction algorithm. The scores are averaged over the
performance on the seven relations from our testbed. Precision for the Web-supported
configurations ranges between 0.32 and 0.55 depending on the configuration. We grayed
the precision bars for the wiki only conditions with 10 and 50 seeds as the output con-
tains largely seed tuples (95% for 10 seeds, 25% for 50 seeds) which accounts for the
precision score.

We can observe that a purely wiki-based extraction performs very bad with 10 seeds
and still far less from optimal with 50 seeds. A two-sided pairwise Student’s t-test in-
dicates in fact that the Wiki only strategy performs significantly worse than the other
Web-based configurations at a seed set size of 10 (α = 0.05) as well as for a seed set
size of 50 (α = 0.1). This clearly corroborates our claim that the integration of the Web
improves results with respect to a Wiki-only strategy at 10 and 50 seeds.

Figure 3 shows the number of correctly extracted tuples averaged over the test re-
lations after 3, 6 and 9 iterations. 50 seeds have been provided as training. In the wiki
only configuration (square markers) the system is able to quickly derive a large num-
ber of instances but shows only slow increase of knowledge after iteration 3. The other



Fig. 3. Correct yield counts after 3, 6 and 9 iterations. Triangles mark Web once results, diamonds
Dual and squares Wiki only. Strong lines indicate results with 50 seeds. Results with 10 seeds are
higher 100 are lower.

configurations show a stronger incline between the iterations 3 and 9. This confirms
the expected assumption that the low number of results when extracting solely from the
wiki is due to an early convergence of the process. It is interesting to observe that the
Web once condition slightly outperforms the Dual condition. This allows to assume that
the major benefit of integrating the Web into the process lies in the initial extension of
the seed set. Further investigation of this observation would require more iterations and
further modifications of the configuration.

Overall, we can conclude that in this setting using the Web as background knowl-
edge allows to produce more recall in hardly redundant corpora while maintaining the
precision level. Yet, a larger seed set can also compensate for the lack of redundancy.

5 Related Work

The iterative induction of textual patterns is a method widely used in large-scale infor-
mation extraction. Sergey Brin pioneered the use of Web search indices for this purpose
[3]. Recent successful systems include KnowItAll which has been extended to auto-
matic learning of patterns [7] and Espresso [11]. Espresso has been tested on the typi-
cal taxonomic is-a and part-of relations, but also the (political) succession, (chemical)
reaction and productOf relations. Precision ranges between 49% and 85% for those
relations. In a setup where it uses an algorithms similar to the one described above,
KnowItAll is able to reach around 80% when limited to the task of named entity classi-
fication.

Apart from pattern-based approaches, a variety of supervised and semi-supervised
classification algorithms has been applied to relation extraction. The methods include
kernel-based methods [18, 6] and graph-labeling techniques [4]. The advantage of such
methods is that abstraction and partial matches are inherent features of the learning
algorithm. In addition, kernels allow incorporating more complex structures like parse
trees which cannot be reflected in text patterns. However, such classifiers require testing



all possible relation instances while with text patterns extraction can be significantly
speeded up using search indices. Classification thus requires linear-time processing of
the corpus while search-patterns can lead to faster extraction.

In the present study, Wikipedia is used as a corpus. We used it to simulate an in-
tranet scenario which shares with Wikipedia the properties of being more acurate, less
spam-prone and much less redundant than the World Wide Web. Wikipedia is currently
widely used as a corpus for information extraction from text. One example is a study by
Suchanek et al. [15] who focus on high-precision ontology learning and population with
methods specifically tailored to Wikipedia. Wikipedia’s category system is exploited as-
suming typical namings and composition of categories that allow to deduce semantic
relations from category membership. In [12] information extraction from Wikipedia
text is done using hyperlinks as indicators for relations just like in the present study. As
opposed to the work presented here it relies on WordNet as a hand-crafted formal taxon-
omy and is thus limited to relations for which such sources exist. Precision of 61-69%
is achieved which is comparable to our results given the relative good extractability of
the hyponomy and holonymy relations on which the tests have been performed.

6 Conclusion

The results we present here indicate that Web-based information extraction can help
improving extraction results even if the task at hand requires extraction from a closed,
non-redundant corpus. In particular, we showed that with extraction based on 10 seed
examples and incorporating the Web as “background knowledge” better results could
be achieved than using 100 seeds solely on Wikipedia. The potential of the approach
lies in the fact that the additional information does not require formalization (like e.g.
in WordNet) nor is it limited to a particular domain.

In future studies one can improve results by including additional techniques like
part-of-speech tagging and named-entity tagging that have been omitted here to main-
tain generality of the study. In addition to the title-link pairs considered here, further
indicators of relatedness can be considered to increase coverage.

We see applications of the derived results in domains like e-Science in particular
fields in which research is focussed on some relations (e.g. protein interaction) and for
which large non-redundant text collections are available.

Acknowledgements

The authors would like to thank Egon Stemle for technical assistance with our
Wikipedia clone. This work was funded by the X-Media project (www.x-media-
project.org) sponsored by the European Commission as part of the Information So-
ciety Technologies (IST) program under EC grant number IST-FP6-026978. Thanks to
Google for giving enhanced access to their API.

References
1. E. Agichtein and L. Gravano. Snowball: extracting relations from large plain-text collections.

In Proceedings of the fifth ACM conference on Digital Libraries (DL), pages 85–94, 2000.



2. S. Blohm, P. Cimiano, and E. Stemle. Harvesting relations from the web -quantifiying the
impact of filtering functions. In Proceedings of the 22nd International Conference of the
Association for the Advancement of Artificial Intelligence (AAAI), 2007. to appear.

3. S. Brin. Extracting patterns and relations from the world wide web. In Proceedings of the
WebDB Workshop at the 6th International Conference on Extending Database Technology
(EDBT), 1998.

4. J. Chen, D. Ji, C. L. Tan, and Z. Niu. Relation extraction using label propagation based semi-
supervised learning. In Proceedings of the 21st International Conference on Computational
Linguistics (COLING) and the 44th Annual Meeting of the Association for Computational
Linguistics (ACL), pages 129–136, 2006.

5. F. Ciravegna. Adaptive information extraction from text by rule induction and generalisation.
In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pages
1251–1256, 2001.

6. A. Culotta and J. Sorensen. Dependency tree kernels for relation extraction. In Proceedings
of the 42nd Meeting of the Association for Computational Linguistics (ACL), pages 423–429,
2004.

7. D. Downey, O. Etzioni, S. Soderland, and D. Weld. Learning text patterns for web infor-
mation extraction and assessment. In Proceedings of the AAAI Workshop on Adaptive Text
Extraction and Mining, 2004.

8. R. Fagin, R. Kumar, K. S. McCurley, J. Novak, D. Sivakumar, J. A. Tomlin, and D. P.
Williamson. Searching the workplace web. In Proceedings of the 12th International Confer-
ence on World Wide Web (WWW), pages 366–375. ACM Press, 2003.

9. A. Kilgariff and G. Grefenstette, editors. Special Issue on the Web as a Corpus, volume 29
of Journal of Computational Linguistics. MIT Press, 2003.

10. S. Muggleton and C. Feng. Efficient induction of logic programs. In Proceedings of the 1st
Conference on Algorithmic Learning Theory, pages 368–381, 1990.

11. P. Pantel and M. Pennacchiotti. Espresso: Leveraging generic patterns for automatically
harvesting semantic relations. In Proceedings of the 21st International Conference on Com-
putational Linguistics (COLING) and the 44th Annual Meeting of the Association for Com-
putational Linguistics (ACL), pages 113–120, 2006.

12. M. Ruiz-Casado, E. Alfonseca, and P. Castells. Automatic extraction of semantic relation-
ships for wordnet by means of pattern learning from wikipedia. In Natural Language Pro-
cessing and Information Systems. Springer, Berlin / Heidelberg, May 2005.

13. J. Saric, L. Jensen, R. Ouzounova, I. Rojas, and P. Bork. Extraction of regulatory gene
expression networks from pubmed. In Proceedings of the Annual Meeting of the Association
for Computational Linguistics (ACL), pages 191–198, 2004.

14. S. Soderland. Learning information extraction rules for semi-structured and free text. Ma-
chine Learning, 34(1-3):233–272, 1999.

15. F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A Core of Semantic Knowledge. In
Proceedings of the 16th International Conference on World Wide Web (WWW), pages 697 –
706. ACM Press, 2007.

16. V. Uren, P. Cimiano, J. Iria, S. Handschuh, M. Vargas-Vera, E. Motta, and F. Ciravegna.
Semantic annotation for knowledge management: Requirements and a survey of the state of
the art. Journal of Web Semantics: Science, Services and Agents on the World Wide Web,
4:14–28, 2006.

17. M. Völkel, M. Krötzsch, D. Vrandecic, H. Haller, and R. Studer. Semantic wikipedia. In
Proceedings of the 15th International Conference on World Wide Web (WWW), pages 585–
594, 2006.

18. D. Zelenko, C. Aone, and A. Richardella. Kernel methods for relation extraction. Journal of
Machine Learning Research, 3:1083–1106, 2003.


