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Abstract. Using radial basis function networks for function approxima-
tion tasks suffers from unavailable knowledge about an adequate network
size. In this work, a measuring technique is proposed which can control the
model complexity and is based on the correlation coefficient between two
basis functions. Simulation results show good performance and, therefore,
this technique can be integrated in the RBF training procedure.

1 Introduction

Radial basis functions (RBF) are used for different purposes in science, e.g. classi-
fication or function approximation [1]. However, a difficult choice is to determine
the number of functions used for superposition, and, therefore, several methods
try to improve the model complexity considering the number of basis functions
[2] or the input dimension [3]. The network size has to compromise the approx-
imation quality, which usually improves as the network grows, and the training
effort, which increases with the network size. Moreover, too complex models can
show insufficient generalization properties requiring small networks [1]. Further-
more, in terms of hardware or software realization smaller networks occupy less
area due to reduced memory needs. Hence, controlling the network size is one
major task during training.

In this work, a method is presented which can control the model complexity
of RBF networks. RBFs originate from a surface reconstruction where regu-
larization theory is applied to solve this ill-posed problem. Thus, the network
output can be described by a transfer function [4]

fm(�x) =
m∑

i=1

αi exp
(−‖�x − �ci‖2

2σ2
i

)
(1)

where each individual Gaussian function obtains an output weight αi, a variance
σ2

i and a center �ci, and at all m Gaussian functions are used for superposition.
Besides the Gaussian function, other types of functions can be used with respect
to the regularization parameter[4].

The remainder is organized as follows. In Section 2 the similarity measure
is introduced, which is able to quantify the model complexity. Section 3 shows
simulation results of the proposed method followed by conclusions in Section 4.
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2 Equivalence measurement

Determining the equivalence between two different functions can help to improve
the model complexity if functions obtaining nearly identical outputs are replaced
by a new transfer function. Therefore, the amount of neurons in the network is
decreased which also reduces the amount of free parameters offering a positive
impact on the training algorithm. A reduced optimization space speeds up the
convergence and lowers the computational costs of the optimization technique,
e.g. gradient descent [1].

Moreover, the approximation quality can benefit from controlling the model
complexity. If too many basis functions are utilized in the network non-available
information can be extracted of the training data, which leads to an overfitted
approximation scheme. This results into low generalization qualities of the neural
network [1]. Consequently, the trade-off between approximation quality and
network size have to be optimized.

Determining the similarity between two functions can help to decrease the
model complexity. In communication theory, similarity is specified by the cross-
correlation between two functions, where the cross-correlation is defined as [5]

ρij =
E {gi(�x) · gj(�x)}√

E {g2
i (�x)} · E {

g2
j (�x)

} (2)

where gi(�x) denotes the corresponding function and E the expected value.
Therefore, the cross-correlation of (2) between two Gaussian functions can

be evaluated as

ρij =
sign (αi) sign (αj)

√
2σiσj e

− ‖�ci−�cj‖2

2(σ2
i
+σ2

j
)

√
σ2

i + σ2
j

(3)

where sign(·) denotes the sign function. Hence, (3) can be used to determine the
similarity between two Gaussian functions and in the case of high correlation,
both functions can be replaced by a new basis function. The parameters of the
inserted function have to be determined which can be accomplished by an addi-
tional training step or by geometrical representations. The additional training
will decrease the efficiency because this step has to be performed after a new
function is inserted. Skipping this retraining will exclude too many functions
from the optimization process because they have no initialized parameters and
will lead to unnecessary large networks.

Determining the parameters of the inserted Gaussian function from geomet-
rical representations does not require an additional training step, and this initial
configuration can be used in the next optimization step. The new parameters of
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Fig. 1: Determination of the center and the variance of the new Gaussian func-
tion in the case of a two-dimensional input vector

the inserted Gaussian function can be determined as

α̂ =
αi + αj

2
(4)

�̂c =
1

αiσn
i + αjσn

j

(
αiσ

n
i �ci + αjσ

n
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)
(5)

σ̂2 =
(

σi + σj

2
+

min (‖�m − �ci‖, ‖�m − �cj‖)
2

)2

(6)

where n denotes the input dimension of the network (dim (�x) = n).
The new output weight is the mean of the original weights, whereas the new

center of the inserted Gaussian function can be extracted from the geometric
centroid of the volume occupied by the original basis functions. Further, the
width of the inserted function in (6) is determined by geometrical representations
shown in Figure 1.

The variance of the Gaussian function can be expressed as a circle1 with
radius σ and center c, where the Gaussian function has the same output value
because of its radial symmetry. If two basis functions obtain a high correlation
coefficient, both circles overlap by a significant amount as in Figure 1. The new
center can be found on the connection of the old centers whereas the new radius
is a mixture of the mean of the old radii and the half of the minimum distance
from one old center to its new one. As can be concluded from Fig. 1, for a high
correlation the inserted Gaussian function covers nearly an identical area as the
original two basis functions.

Therefore, the model simplification can be performed as follows. First, the
correlation coefficient of all basis functions is determined and two Gaussian func-
tions, which have the highest correlation, are replaced by a new function. The
new function is initialized by the parameters of (4)–(6). These steps are repeated
until the maximal correlation of (3) falls below a defined threshold.

Moreover, besides controlling the model complexity the correlation coeffi-
cient can further be used to identify overfitted models. In the extreme case,

1In in a higher dimensional case the variance can be referred to a hypersphere.
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each Gaussian function represents only one test point and, therefore, the corre-
lation between all functions tends to zero. Hence, the median of all correlation
coefficients tends also to zero and can be further used as an indicator for over-
fitted models.

3 Simulation results

To show the practicability of the proposed method simulations are performed
using popular test functions. For training the networks, a learning set is gen-
erated based on 1000 equally distributed samples drawn from the domain of
each function. The network size2 is set to 50 Gaussian functions and the initial
configuration of the networks is determined by NETLAB. Then, the network
size is minimized by applying the method of Section 2. As stopping criteria the
threshold of correlation is set to the median of the distances between all original
Gaussian functions. To evaluate the results an equally sized RBF network as
reference is trained by NETLAB again.

Table 1 shows the results of the proposed method where the mean of 50
runs is presented. As approximation quality, the normalized mean squared error
is determined by a test set consisting of 5000 data points and the resulting
network sizes3 are denoted by m. Due to the used NETLAB algorithm large
output weights occur in the RBF network. In this case, the calculation of the
new center according to (5) is not sufficient because large output weights can
force the new center to lie outside the domain. This effect only occurs if the
output weights have different signs and, therefore, two slightly different methods
are performed. As can be seen from Fig. 1 and Eq. (3), the output weights are
not necessary to determine the similarity since the center and the variance are
already sufficient. Thus, for the first method only the activations of the neurons
(setting α = 1 for all neurons) are considered whereas for a second variant only
positive correlation coefficients and, therefore, Gaussian functions with equally
signed output weights are examined. To determine the output weights of the
first method after minimizing the network size, an additional training is used.
Here, all output weights are determined by solving the linear equality system,
which arises from the activation and the target network output. To solve this
system the least squares method is used utilizing the pseudo inverse.

Because only Gaussian functions obtaining positive correlation coefficients
are considered in this variant II, at all less basis functions can be removed which
results into larger networks sizes. Approximately, the original method produces
half-sized networks. Both methods show similar approximation properties such
as the reference network and compromising the accuracy and network size trade-
off. Although slight increases in the nmse can be observed, still good approxi-
mation properties can be guaranteed with a significantly reduced network size.

2The complexity of the networks is intentionally chosen as too high in order to apply
the proposed method. Smaller network sizes are sufficient to achieve similar approximation
properties.

3m is the mean of 50 runs.

184

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.



Table 1: Approximation properties of the original trained network and of a
reduced network size determined by the similarity between Gaussian functions

nmse RBF network

function NETLAB reference similarity m

Rechenberg 1, 06 · 10−9 1, 17 · 10−8 4, 33 · 10−9 18,68
(variant II) 8, 65 · 10−10 3, 00 · 10−5 1, 48 · 10−5 9,12
Rosenbrock 5, 60 · 10−10 8, 87 · 10−6 3, 00 · 10−7 18,00
(variant II) 1, 27 · 10−10 0,0017 0,0007 8,88
(x1 + x2)2 8, 45 · 10−10 1, 90 · 10−7 1, 17 · 10−7 18,98

(variant II) 1, 87 · 10−9 0,0009 0,0003 9,56
Schwefel 0,0007 0,0015 0,0013 18,48

(variant II) 0,0008 0,0024 0,0026 8,82
Griewank 0,0069 0,0561 0,0535 18,70

(variant II) 0,0075 0,2551 0,2881 8,88
Schaffer 0,2285 0,2567 0,2565 17,96

(variant II) 0,2450 0,3052 0,3074 8,80

The results of variant II can be further improved if the same training as for the
first technique is used after minimizing the network size.

Fig. 2 shows the overfitting properties with respect to the similarity of Gaus-
sian functions. Here, the RBF network is forced to overfit the training data by
choosing small variances approximating the test functions with the same net-
work size (m = 50). After training, the median of the similarity between all
Gaussian functions is determined whereas the overfitting property is evaluated
by the quotient of the mse of the test data set to the mse of the learning data set.
Therefore, large quotients represent an overfitted model. As can be concluded
from Fig. 2, the similarity of Gaussian functions can be used to determine the
model complexity with respect to overfitting properties. Here, the overfitting
decreases as the median of the similarity increases for all test cases.

4 Conclusion

In this work, a method to control the model complexity of RBF networks is pre-
sented which is based on a similarity measure determined by the correlation of
two Gaussian functions. This technique allows reducing the network size signifi-
cantly with only slight degradation in the approximation qualities. Furthermore,
the similarity measurement is able to qualify the model complexity with respect
to overfitting capabilities and, therefore, this technique can be further considered
as an additional objective in a multiobjective optimization process to balance
network size, approximation quality and robustness of RBF networks [6].

To apply this technique knowledge about the internal parameters of each
Gaussian function has to be provided in order to determine the correlation be-
tween two functions. Albeit, it is favorable to have no knowledge about the
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Fig. 2: Dependency between overfitting properties and the similarity of Gaussian
functions

internal structure, the activation of each neuron is not sufficient to determine
the similarity between two functions. Due to the radial symmetry of a Gaussian
function, two activation responses are identical if two inputs have the same im-
pact, which means this method is unable to identify differences between basis
functions, which are reflected by the origin.

Nonetheless, the effectiveness of the proposed technique primarily depends
on the defined threshold of the correlation, which is desired to be chosen au-
tomatically. As used in the simulations, the median of the distance between
all original centers provides a good choice for this threshold. However, further
investigations on the relationship between this threshold, the network size and
the approximation quality respectively have to be performed.
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