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ABSTRACT
Multiprocessors enable parallel execution of a single large
application to achieve a performance improvement. An ap-
plication is split at instruction, data or task level (based on
the granularity), such that the overhead of partitioning is
minimal. Parallelization for multiprocessors is mostly re-
stricted to a fixed granularity. Reconfiguration enables ar-
chitectural variations to allow multiple granularities of oper-
ation within a multiprocessor. This adaptability optimizes
resource utilization over a fixed organization.

Here, a unified hardware-software approach to design a
reconfigurable multiprocessor system called QuadroCore is
presented. In our holistic methodology, compiler-driven re-
configuration selects from a fixed set of modes. Each mode
relies on matching program analysis to exploit the architec-
ture efficiently. For instance, a multiprocessor may adapt to
different parallelization paradigms. The compiler can deter-
mine the best execution mode for each piece of code by ana-
lyzing the parallelism in a program. A fast, single-cycle, run-
time reconfiguration between these predetermined modes
is enabled by executing special instructions which switch
coarse-grained components like instruction decoders, ALUs
and register banks. Performance is evaluated in terms of
execution cycles and achieved clock frequency. First results
indicate suitability especially in audio and video processing
applications.

1. INTRODUCTION
Multiprocessor architectures allow executing single appli-

cations in parallel to improve the performance. For instance,
an application with a fine grained parallelism allows operat-
ing instructions in parallel. Superscalar and VLIW proces-
sors are classical examples of architectures for instruction
level parallelism. At a coarse-grained level, larger struc-
tures of an application like loops, functions, threads, or
tasks may be executed in parallel. Additionally, vector and
SIMD processors explore data level parallelism. Partition-
ing a given problem also has the overhead of communication
and synchronization. Hence, the level of granularity for par-
titioning without performance decrease identifies the most
suited type of parallelism.

Conventionally, executing applications on multiprocessors
is restricted to a single granularity predetermined by the

programming style. Task level or data level parallelism is
usually exploited manually by partitioning an application
by hand or using special programming models. Automatic
compilation often addresses parallelism at the instruction or
loop level. Here, we present the advantages of augmenting a
multiprocessor with reconfigurability to include varying de-
grees of synchronization and communication. This enables a
single, unified architecture offering task, data, and instruc-
tion level parallelism.

In our approach (called CoBRA1) the compiler alters the
architecture of the QuadroCore by choosing between a fixed
set of operating modes. These modes (called reconfigurable
architectural variants) can be enabled via reconfiguration
at run-time. Applications may benefit from switching be-
tween these variants. A prominent example is to reconfig-
ure between different parallelization paradigms like MIMD
or SIMD. Given a program that exhibits both regular and
non-regular structures, the compiler can determine the best
execution mode by analyzing the parallelism. This has a
number of benefits like improved performance, efficient re-
source utilization, reduced code size and power consump-
tion.

The usage of a manageable set of variants leads to an enor-
mous reduction in the design space, compared to fine grained
reconfiguration. The compiler then addresses this finite de-
sign space efficiently using well-known program analysis tech-
niques [1]. Furthermore, reconfiguration can be performed
with a very low effort at run-time by switching fixed, coarse-
grained components like instruction decoders, ALUs and
register banks. This is in contrast to classical research to-
wards reconfigurable architectures [2], where processors are
typically coupled with reconfigurable logic to speed-up parts
of a given application.

The rest of this paper is structured as follows: Section 2
motivates opportunities to reconfigure our multiprocessor
architecture and compares it with existing approaches. Fur-
thermore, we present the decision making for switching be-
tween the modes. The structure and concepts of both hard-
ware and compiler are outlined in Section 3. The experi-
mental evaluation and its results are discussed in Section 4.
Finally, Section 5 gives a short conclusion and discusses fu-
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ture work.

2. RECONFIGURABLE MODES IN
QUADROCORE ARCHITECTURE

Figure 1 shows, a high-level representation of our Quadro-
Core. The multiprocessor architecture comprises four RISC-
based 32-bit processors, called N-Core [3]. The N-Core
processors have a three-stage pipeline structure and a fixed
16-bit opcode length. Each processor has its own register file
and local memory and operates independently in the cluster.
Most arithmetical and logical operations provide a single-
cycle execution time and load/store instructions have a two-
cycle execution time. Sharing of data among the processors
in the cluster is provided via an external memory, accessible
over a shared wishbone bus. Access to this external mem-
ory is managed via a round robin arbitration mechanism.
This base architecture represents a typical MIMD mode of
operation.
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Figure 1: QuadroCore Architecture

Variations in parallelism, synchronization and method of
communication can be achieved by adding reconfigurable
operating modes to the architecture. These modes can be
introduced via reconfiguration between execution of differ-
ent applications or even within stages in the same applica-
tion. During the execution of a single large application this
reconfiguration scheme offers a very low overhead, since the
time to switch between these modes is optimized to a single
clock cycle. Hence, the advantage of using the most suitable
mode is achieved without making a significant impact on the
execution time and the maximum operating frequency. The
individual processors allow run-time modifications to the ar-
chitecture and support self-reconfiguration, as defined by the
compiler. Hence, an explicit requirement for a reconfigura-
tion controller, which is typical in FPGA-based designs, is
entirely avoided in this methodology. Also, the need for
separate configuration memory space is avoided, since the
configuration data is embedded well within the instruction
stream.

The following subsections describe the reconfigurable modes
with methods of synchronization, communication as well as
the reconfiguration between SIMD and MIMD.

2.1 Synchronization

Synchronization mechanisms employed in multiprocessors
differ between synchronous (lock-step) and completely asyn-
chronous operation. Often the synchronization overhead
is a constraint for the level of parallelism explored. Fine
grained parallelism necessitates frequent synchronization on
account of dependencies between processors. In the presence
of coarse grained parallelism processors could operate more
independently and only synchronize when necessary. Hence,
synchronization is chosen as a reconfigurable option which
allows switching between the asynchronous and synchronous
mode of operation with an overhead of a single clock cycle.
In the asynchronous mode of operation, barrier instructions
allow synchronization between independently operating in-
struction streams. In the synchronous mode, the instruction
streams operate in lock-step, synchronous at every instruc-
tion.

In comparison to our approach, the synchronization in [4]
is always achieved using barriers. But an application with
fine grained parallelism would imply a large overhead for
synchronization. Also, a recent commercial multiprocessor
architecture called AMBRIC [5] consists of RISC processors
(called ‘brics’) arranged in a cluster, where each individ-
ual core runs at its own clock speed. If data needs to be
exchanged, the processors are synchronized. In both these
cases [4, 5], the architecture is more suited for applications
with coarse grained parallelism due to the overhead of ex-
plicit synchronization for each data transfer. The synchro-
nous mode of operation in our architecture also allows op-
erating in a lock-step fashion. This enables exploring the
advantages of both lock-step architectures and asynchro-
nous operation interchangeably. Hence, a variable granu-
larity could be achieved depending on the mode of opera-
tion, varying between a fine grained architecture exploring
instruction level parallelism to a coarse grained architec-
ture with task level parallelism. The synchronous mode is
selected in case of many inter-processor dependencies. Oth-
erwise, infrequent synchronization using barriers is chosen.

2.2 Communication
Inter-processor data dependencies demand a mechanism

for exchanging register values. The same could be achieved
using message passing between distributed memory or a sin-
gle shared memory. Message-oriented architectures have no
common address space, but the data is distributed to the
different processors. Communication is realized by messages
which copy data objects between the local memories. Mes-
sage passing is more suited for large amount of data ex-
change but infrequent communication. As the processors
of our architecture demand fast and frequent exchange of
register values, we decided to use a shared memory for com-
munication. Such a shared memory can either be based on
external memory of the multiprocessor or a dedicated shared
register file. Since access to external memory incurs a large
overhead, a shared register file was introduced, which can
be simultaneously accessed by all the processors efficiently.
Although the access to this shared register file can be en-
abled via reconfiguration of the data communication mode,
it was set as the default mode of operation on account of
the performance improvement observed.

Considering related architectures, AMBRIC [5] offers a
point to point communication via channels, which man-
age synchronization between the processors automatically.



However, data transfer is limited to neighbouring proces-
sors. In [6], Gupta presents the integration of shared register
channels into a RISC based multiprocessor, which also pro-
vides a broadcast communication. Hence, communication
and synchronization are combined in a single method. On
the other hand, it is restricted to an asynchronous execu-
tion, because communication using channels always implies
explicit synchronization. In our architecture, a processor
can communicate with a subset of the processors using a
broadcast mechanism. Furthermore, two or more proces-
sors can be synchronized explicitly if necessary or operate
in lock-step. Silicon Hive’s processor [7] consists of multi-
ple cells with distributed register files. The interconnection
network allows data transfer between the functional units
and register files. Reconfigurability in our context implies
altering the control flow and synchronization.

2.3 SIMD / MIMD
SIMD execution is well-suited for regular program struc-

tures with data level parallelism, which can be found in
scientific or multimedia computations. Programs with non-
regular structures can be executed in a MIMD manner to ex-
ploit the inherent instruction level parallelism. In the SIMD
mode, there is only one instruction stream decoded by the
first processor, but executed on all processors with different
data in their respective register banks. Switching between
MIMD and SIMD execution becomes useful, if programs ex-
ecuted on the multiprocessor contain both regular and non-
regular structures. Instead of selecting one execution mode
statically, the compiler can identify the parts of a program
suited for MIMD or SIMD execution and switch between
the modes. The CHARISMA2 module of the CoBRA com-
piler applies well-known scheduling and vectorization tech-
niques [8] at first and finally select the best combination
of modes. The selection heuristic can be based on para-
meters like execution time, code size, or estimated energy
consumption. Currently, it aims at a fast execution time by
minimizing the effort in reconfiguration.

In the same context, Barretta et al. [9] proposed a multi-
clustered VLIW architecture, which can be switched be-
tween so-called ILP and SIMD modes. Currently, there only
exists a simulator, but neither a proper hardware implemen-
tation nor a corresponding compiler. The proposed compiler
is expected to identify pieces of code which can be executed
in SIMD mode by determining accesses to disjoint mem-
ory blocks (provided in the source code or computed auto-
matically). The CoBRA compiler uses the Superword Level
Parallelism (SLP) approach [10], which targets sequential
code in basic blocks instead of performing complex trans-
formations on loop nests. In contrast to classical vector-
ization techniques, SLP can also be exploited when vector
parallelism is scarce or loop transformations cannot be ap-
plied. The authors have shown that focusing on SLP leads
to simple and robust compiler implementations while still
achieving a good performance. Vector parallelism can be
transformed to SLP by loop unrolling. The CoBRA com-
piler unrolls loops by the number of targeted processors.

3. CONCEPTS OF HARDWARE AND COM-
PILER

2Compiler Handles Architectural Reconfiguration
Integrating SIMD MIMD Automatically

Figure 1 shows the QuadroCore architecture, where the
additional resources are highlighted in grey. This multi-
processor organization itself is scalable and reusable. How-
ever, here we confine the details of the architecture to the
co-operative operation of four processors in a cluster. A sin-
gle processor is composed of coarse grained building blocks
such as decoders, registers files, and local instruction and
data memory. The memory hierarchy allows a single cy-
cle access to the local register file, a two clock cycle access
to the shared register file, a three clock cycle access to lo-
cal memory and a six cycle overhead to the shared external
memory. Hence, a single external memory access requires
six clock cycles and extends upto fifteen clock cycles when
all the processors make a simultaneous access, on account
of the arbitration mechanism.

The instruction set architecture provides about 11% free
opcode space to allow architectural enhancements. This free
opcode space has been utilized to add instruction set exten-
sions to allow runtime modifications to the architecture and
support for co-operative operation of multiple instances of
the same processor. These instructions include operations
such as sharing of branch condition, collective branching and
reconfiguration to enable switching between the reconfig-
urable operating modes. The hardware modifications on ac-
count of introduced instruction set extensions have been op-
timized to avoid altering the maximum operating frequency
of the processor cluster.

In order to reconfigure the interconnections between the
building blocks, a layer of interconnect was introduced be-
tween decode and execute stages of all the processors in a
cluster. The interconnect network allows alterations to the
control flow via instruction streams. The control flow be-
tween processors in the cluster is steered by a special recon-
figuration instruction, which defines the operating mode of
the processor. This instruction controls the operation of the
reconfigurable interconnects. As directed by the compiler,
changes in terms of modifications to the inputs and outputs
of the interconnect layer are introduced in a single clock
cycle. The addition of this instruction and the associated
hardware does not introduce a change in the timing char-
acteristics of the entire cluster, since it is an independent
operation and does not interfere with the existing instruc-
tion set architecture.

3.1 Structure of the Compiler Backend
Figure 2 illustrates the structure of the compiler backend,

which has been derived from an existing backend for VLIW
machines [11]. In contrast to the original backend, it fea-
tures three additional phases (highlighted in grey) which are
explained here.

Processor partitioning decomposes into partitioning of data
objects and allocation of functional units, which is needed
as input for the parallelization. The data partitioning ne-
glects global data which is stored in the external memory
and therefore can be accessed by all processors. Instruc-
tions accessing local structures are assigned to the processor
whose stack contains the data. Concretely, data partition-
ing is based on an affinity graph whose nodes correspond to
the variables of a function. The affinities between variables
are modelled as edge weights and express communication
costs that will occur, if such variables are stored on differ-
ent processors. The size of variables can be represented by
node weights in order to balance the register and memory
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Figure 2: Structure of CoBRA backend

requirements. The resulting graph is partitioned using com-
mon graph partitioning techniques. Our current prototype
uses the graph partitioning tool set METIS [12], which aims
at achieving approximately equally sized partitions. Func-
tional units are allocated using the BUG algorithm by El-
lis [13]. We envision a holistic processor partitioning method
based on affinity graphs which considers both data objects
and instructions.

The parallelization phase is implemented in a separate
component called CHARISMA, whose basic idea has al-
ready been presented in Section 2.3. An important chal-
lenge affects the granularity of the code integration: The
referred scheduling and vectorization techniques operate on
quite different contexts like basic blocks, loops, or traces.
In order to simplify the first prototypical implementation,
we decided to perform fine-grained parallelization on basic
block level. If not, a schedule for a loop might correspond
to multiple schedules for the basic blocks of the loop, for in-
stance. Furthermore, additional glue code would be needed
for software-pipelined loops in order to integrate them into a
machine. In the future, we will also handle other techniques
operating on loop level or optimizing traces. Currently, we
use list scheduling for the scheduling part of the paralleliza-
tion phase and vectorization is based on an adapted version
of SLP [10] (see Section 2.3).

Immediately after scheduling, the remote data dependen-
cies between different processors are determined. This infor-
mation is used for the placement of communication code to
exchange register values, which is described in Section 3.3.2.
After register allocation and peephole optimization, a re-
scheduling is performed to produce a more compact sched-
ule. Instead of just applying local optimizations to the ex-
isting schedule, the Data Dependence Graph (DDG) is re-
constructed and scheduled again. This phase is also capable
of inserting barrier instructions within a basic block on-the-
fly.

In the following sections the proposed concepts are pre-
sented both in terms of the compiler and hardware architec-
ture.

3.2 Realization of Synchronization
Synchronization between a certain set of processors P is

realized by executing a special barrier instruction on each
processor in P . As soon as all processors in P have executed
their barrier instruction, they can continue execution. If
only a proper subset P ′ ⊂ P has reached a barrier, the
processors in P ′ must wait for the remaining processors.

CPUx CPUy

def v

def w

CPUz

use v

w (011)

v (101)

use w

Figure 3: Example of barrier synchronization for the
QuadroCore

In order to synchronize disjoint sets of processors at the
same time independently, a barrier instruction has an im-
mediate field which represents the set P as a bitmask, called
the barrier mask. This mask is matched with the corre-
sponding set of processors. Figure 3 illustrates an example.

3.2.1 Hardware Support for Synchronization
In the asynchronous mode of operation, barrier instruc-

tions allow synchronization between independently operat-
ing instruction streams. Since the task of barrier placement
is optimized by the compiler, the role of hardware archi-
tecture is to provide a very low overhead instruction exe-
cution (in terms of the clock cycles) without affecting the
system’s operating frequency. Hence, this synchronization
was achieved in a single clock cycle, where each processor
accesses a synchronization status register asynchronously.
Constant polling of an external memory address is avoided,
since the status of the barrier is always available to all the
processors simultaneously. The single cycle restriction in-
troduces a minimal variation in the system’s operating fre-
quency, discussed later in Section 4.

In the synchronous mode, the instruction streams operate
in lock-step, synchronous at every instruction. This provides
a predictable behavior to allow the compiler to schedule the
instruction so as to explore maximum degree of instruction
level parallelism. The instructions are restricted to fixed cy-
cles per instruction, explicitly retaining the execution time
for all instructions. Although the execution time of each
instruction is forced to a worst case value, there is no over-
head involved in synchronizing between instruction streams.
Here, the maximum operating frequency of the system re-
mains unaltered.

3.2.2 Placement of Barriers
Rescheduling is based on a reconstruction of the DDG

followed by a list scheduling of each basic block. How-
ever, it inserts only local barriers within basic blocks as
well as global barriers at function calls. Global barriers be-
yond basic blocks are added by a heuristic which avoids un-
intended overwriting of communication registers and takes
global memory dependences into account.

The selection heuristic was extended as follows: When list
scheduling selects a node u from the ready list, all successors
v which are executed on a processor other than u, will be
marked with the barrier mask {u, v}.

Each time an instruction with a marker is selected, a bar-
rier will be inserted before this instruction. Such barrier
synchronizes the processors denoted by the markers of the
instructions in the ready list. Obviously, the combination of
the barrier masks of all marked instructions reduced to a sin-
gle barrier synchronizing all relevant processors. Then, the
markers are removed. Consequently, a barrier between two



dependent instructions u → v is always inserted after plac-
ing u and before placing v. In order to minimize the number
of inserted barriers, marked instructions are selected with a
lower priority. Concretely, the existence of a marker is used
as a primary criterion, while the original criterion becomes
the secondary criterion. Hence, synchronization instructions
are inserted as late as possible in order to support coalescing
of multiple barriers into fewer barriers.

3.3 Realization of Communication

3.3.1 Shared Register File for Data Communication
In Figure 1, a shared register file has been introduced to

the ease the data exchange mechanism between the proces-
sors. The register bank consists of 32 registers, accessible
to all the processors via dedicated ports, at all times. Since
there are independent read and write ports for each proces-
sor, no arbitration mechanism is required for registers ac-
cess. This ensures a 2 clock cycle access time for read and
write operations, enabled via special instructions cstw and
cldw. As the external memory for data exchange takes 6 to
15 clock cycles, it is not used for communication. Further,
data dependency and read-write sequencing is managed by
the compiler. A similar mechanism is implemented to allow
sharing (or broadcasting) the condition flag of one of the
processors for co-operative branch operations.

The shared register file is only used for communication,
because its access time is longer than accessing the regis-
ters of a processor. Furthermore, the encoding of register
operands must be extended to store the additional register
numbers in order to utilize the shared registers for all in-
structions. This implies larger instructions, and hence an
increase in code size.

3.3.2 Placement of Communication Code
Figure 4 illustrates the basic principle of integrating copy

instructions into the schedule in terms of the shared register
file. In the upper left corner of the picture, an excerpt of a
DDG with three nodes is shown. Obviously, the use node
depends on the two definition nodes. The right hand data
dependence is called a local dependence, because the partic-
ipating nodes are scheduled on the same processor. The left
hand data dependence is denoted a remote dependence, be-
cause the nodes are executed by different processors. Con-
sequently, communication code is needed to transport the
value v defined by def v from processor x to y where it is
used by use v, w.

def v

use v, w

def w

CPUx CPUy

cstw v, o

cldw v, o

use v, w

def v def wCPUx CPUy

use v, w

def v def w

remote
dependence

local
dependence

v, w register values

Figure 4: Communication of register values

In order to reduce the communication effort, the CoBRA
compiler aims at handling as many remote dependences as
possible with one copy operation. For instance, a broadcast

communication is chosen automatically, if a value is used
by several processors. Furthermore, our placement strat-
egy moves communication code out of loops by determining
the most suitable position in terms of execution time. Con-
cretely, we first identify all basic blocks which are located on
all paths from a definition to its uses and then select the ba-
sic block with lowest execution frequency. Such information
may result from a profiling. Our compiler uses the nesting
depth of blocks as a static estimate. If there exists multiple
definitions for a register value, the placement strategy se-
lects a basic block which is reached by as many definitions
as possible. A performance comparison of the communica-
tion using the shared register file and the external memory
can be found in Section 4.

3.4 Realization of SIMD
Typical SIMD architectures like the well-known vector

machines or multimedia extensions to general-purpose mi-
croprocessors have special vector registers. In the Quadro-
Core, each processor has a separate register bank to store
scalar values. Clearly, such design is useful for the default
MIMD mode.

In order to minimize the changes of the existing archi-
tecture for the SIMD mode, the vector registers only exist
conceptually. Let C be the number of processors and R be
the number of registers per processor. Then, the j-th en-
try of the vector register ri is mapped to the register ri,j of
processor j, for i ∈ {0, . . . , R − 1} and j ∈ {0, . . . , C − 1},
as illustrated in Figure 5. In the following, such registers
ri,j for a certain i and all j are denoted as homonymous
registers.

v0 v1 v2 v3

RB0

ri

...

ALU0

RB1

ALU1

RB2

ALU2

RB3

ALU3

...

ri

...

...

ri

...

...

ri

...

...

DEC0 DEC1 DEC2 DEC3

add ...mul add mul

CPU0 CPU1 CPU2 CPU3

Figure 5: Functionality of SIMD mode

Consequently, a single instruction with encoded register
operand ri is executed by all processors j with different
values stored in their registers ri,j , respectively. In SIMD
mode, a processor c accesses memory data of word size w
by using c ∗ w as an offset to a base address. The following
paragraph describes the hardware support to access adja-
cent memory locations.



3.4.1 Hardware Augmentation for SIMD Mode
When multiple processors execute the same set of instruc-

tions for different data streams, the instruction fetch and in-
struction decode stage of the processors are redundant for all
the participating processors. The task of instruction fetch
and decode could be administered by a single processor.
Hence, to support a single instruction stream to be executed
on all the four processors, the decoder allows forwarding of
its control and data signals from its instruction memory to
all (or a subset of) the processors. The participating proces-
sors execute the same instruction as long as they operate in
this mode. As directed by the reconfiguration instruction,
one of the processors could switch to a master mode and al-
low forwarding of the decoded instructions. The instruction
memory and the decoding units of all the other processors
could be switched to an idle mode, to allow power savings.
Further, when used in conjunction with instructions which
allow fast access to adjacent memory locations, the overhead
involved in accessing data in external memory is nullified.
Depending on the application, one (or more) processor(s)
could operate in the ‘master’ mode. A subset of proces-
sors in a cluster could operate in SIMD or MIMD mode of
operation or in a combination of the two, simultaneously.
Although processors share the same instruction stream, the
data stream remains independent.

Fast Access to Adjacent Memory Locations The external
memory allows sharing of data streams, accessible by all
the processors via an arbitration mechanism. When multi-
ple processors access this external memory, the round robin
arbitration mechanism provides access in a sequential or-
der. This procedure adds a significant overhead to external
memory access essential for sharing streams of data. A sig-
nificant bottleneck is introduced during simultaneous access
to memory, which is inevitable in a multiprocessor organiza-
tion, especially in the SIMD mode. To circumvent this bot-
tleneck, fast access to adjacent memory locations is added
via instruction set extensions. A single transaction allows
accessing consecutive memory locations, which (could) rep-
resent consecutive locations of an array. Thus, the data
accessed is distributed (or collected) internally among the
four processors. A similar procedure is also applicable for
storing data arriving from the four individual processors via
a single write operation to external memory. These special
instructions avoid the delay involved during arbitration and
reduce the total access time from 15 clock cycles to 7 clock
cycles. Figure 1 shows the variations in the access time,
based on the hierarchy of data access.

3.4.2 Vectorization and Register Allocation
CHARISMA (see Section 3.1) utilizes the Superword Level

Parallelism (SLP) approach [10] for vectorization, which has
been characterized briefly in Section 2.3. The fundamen-
tal idea of the SLP approach is to identify adjacent mem-
ory accesses as an initial set of SIMD instructions. Fur-
ther vectorizable statements can be found by traversing the
def-use/use-def chains of the operands. According to [10],
adjacency can be determined using both alignment infor-
mation [14] and array analysis. Our adjacency module is
based on an extension of Common Subexpression Elimina-
tion (CSE), that computes all expressions which only differ
in constants of address computations. Such constants are
annotated at the intermediate nodes in order to determine

the adjacency afterwards. If a basic block contains both reg-
ular and irregular structures, the SLP algorithm produces
code consisting of both SIMD and MIMD instructions. In
order to reduce the effort in reconfiguration, our scheduler
aims at maximizing contiguous sections executed in either
SIMD or MIMD mode.

As vector registers are mapped to multiple homonymous
scalar registers in our architecture, the register allocation
has to arrange the register values accordingly: At first, the
virtual scalar registers used in SIMD mode are replaced by
virtual vector registers, which actually represent a certain
combination of those scalar registers. Then, transport in-
structions are inserted at the boundaries between SIMD and
MIMD code to arrange register values properly. Finally, the
registers are allocated using conventional techniques known
from literature [1]. We have developed a heuristic algorithm
to place transport instructions efficiently, which considers
def-use/use-def chains.

The current version of the compiler employs vectorization
for generating MIMD code only in order to avoid additional
transport instructions and SIMD registers. Hence, this so-
called pseudo SIMD mode can be regarded as a good esti-
mation of the results with the real SIMD mode.

4. EXPERIMENTS AND RESULTS
Experiments were performed using the parallelizing com-

piler on the hardware implementation of the proposed recon-
figurable multiprocessor architecture. The same was simu-
lated with a cycle accurate simulator. For exhaustive testing
the model can be mapped to our FPGA based prototyping
environment [15] for rapid evaluation of large benchmarks
on hardware. The current prototype implementation of the
CoBRA compiler performs a fine-grained parallelization on
basic block level. The following sections present hardware
estimates of area, power, clock frequency, evaluations of per-
formance improvements using the shared register file, and
finally performance comparison of the reconfigurable oper-
ating modes. For the initial evaluation we have selected
small excerpts from practical audio and video applications.
These computational blocks constitute typical transcoding
algorithms for aggregation network access nodes. All bench-
marks were evaluated in terms of cycles per instruction and
the operating frequency.

convolution: Computes the discrete convolution of a 50
element array with a 16 element array.

fft: Represents the variable access pattern of a Fast Fourier
Transformation with two arrays of 16 elements each.

mm: Multiplies two 4x4 matrices.
sharpening: Sharpening algorithm for images with dimen-

sion of 10x10 pixels.
vectormuladd: Multiply-accumulate on vectors of 10 el-

ements.

Area and Performance Estimation.Table 1 shows the
variations in terms of maximum operating frequency (the
clock period), area, total dynamic power, and mW/MHz,
comparing the original multiprocessor architecture with the
reconfigurable implementation. The architecture was syn-
thesized in UMC 130nm standard cell technology using Syn-
opsys’ design compiler. As seen from the results, the synthe-
sized architecture shows an increase of about 10% of area.



Table 1: Standard Cell Synthesis Reports -Typical

Architecture Clock Period (ns) Area (sq mm) Total Dynamic Power (mW) mW / MHz
original multiprocessor 4.74 0.77 42 0.2
reconfigurable multiprocessor 5.00 0.85 40 0.2

Table 2: Register File: Performance Reports

Benchmark With Shared Register File With External Memory Performance Improvement
convolution 12428 cycles 22328 cycles 1.79
sharpening 35602 cycles 49187 cycles 1.38

The maximum operating frequency of the system is altered
by about 5%. The reduction in the dynamic power calcula-
tions is attributed to the reduction in operating frequency
of the reconfigurable multiprocessor, as can be seen by the
fact that the mW/MHz ratio stays constant for both archi-
tectures.

Advantages of Shared Register File.The shared regis-
ter file is used for communication by default as a consistent
performance improvement was observed, although a recon-
figuration could enable access to external memory (see Sec-
tion 3.3.1). For all the benchmarks mentioned above, a per-
formance improvement was observed and Table 2 shows two
sample test cases, with the execution time in terms of clock
cycles.

Reconfigurable Modes.In the current prototype, the com-
piler selects between asynchronous, synchronous or SIMD
modes for each basic block or just uses a single processor.
Runtime mode change is enabled via a single cycle reconfig-
uration. We restrict our comparisons to a single processor
and a cluster of four processors, although evaluations of the
architecture with two, three of four processors may be per-
formed.

In Table 3, ASYNC represents the asynchronous mode,
SYNC is the synchronous mode and SIMD is the SIMD
mode. A combination of one or more modes is achieved
via reconfiguration, as suggested by the compiler. It has to
be noted that no single mode of operation is a true winner
for all the applications. This further emphasizes the point
that a fixed hardware architecture may not be suitable for
application, even within the same application domain.

The results imply that the performance improvements de-
pend on the type of the application and the corresponding
mode of operation. For convolution, mm and fft the Co-
BRA compiler achieves a significant improvement in perfor-
mance by partitioning the algorithm into four processors.
Parallelizing fft yields a speed-up of 10, because the well-
balanced register need avoids much spill code in contrast to
a single processor. Even when multiple processors access the
external memory with a significant overhead, a performance
increase can be observed compared to a single processor.
However, in case of vectormuladd it may be seen that an
increase in the number of processors does not have a positive
effect on the performance (as in the case of synchronous and
asynchronous mode). These results demonstrate that using
the selected reconfigurable modes in our multiprocessor is
beneficial, since the architecture allows switching between
these modes and the compiler selects the optimal implemen-

tation for each piece of code.

5. CONCLUSION AND FUTURE WORK
The holistic evaluation of the reconfigurable multiproces-

sor shows that at the cost of about 10% increase in area and
about 5% decrease in the maximum frequency of operation,
a maximum performance increase of about 10 times in terms
of cycles of operation can be achieved. The initial evalua-
tions are complete both in terms of the reconfigurable hard-
ware architecture and the associated retargetable compiler.
According to the evaluations, a fixed multiprocessor organi-
zation may not be efficient for all applications. As observed
from the examined subset of audio and video processing
computational building blocks, alterations in terms of oper-
ating modes are required. Larger applications usually com-
bine multiple blocks, where reconfiguring between modes
is profitable. A typical example could be an aggregation
network access node (like DSL Access Multiplexers) where
multimedia data is transcoded to suit the customer’s equip-
ment.

Beyond evaluating larger benchmarks, we aim at dynam-
ically adapting the number of active processors in different
sections of a program to optimize the energy consumption.
Furthermore, we plan to evaluate a reconfiguration of the
register banks at run-time, which has been proposed in [16].
In the QuadroCore, this technique is expected to further
accelerate inter-processor communication. Processors with
high register needs may borrow registers from a neighbour-
ing processor by reconfiguring their respective input inter-
connects.
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