
3D Scene Segmentation for Autonomous Robot Grasping

Andre Ückermann, Christof Elbrechter, Robert Haschke and Helge Ritter

Abstract— We present an algorithm to segment an unstruc-
tured table top scene. Operating on the depth image of a Kinect
camera, the algorithm robustly separates objects of previously
unknown shape in cluttered scenes of stacked and partially
occluded objects. The model-free algorithm finds smooth sur-
face patches which are subsequently combined to form object
hypotheses. We evaluate the algorithm regarding its robustness
and real-time capabilities and discuss its advantages compared
to existing approaches as well as its weak spots to be addressed
in future work. We also report on an autonomous grasping
experiment with the Shadow Robot Hand which employs the
estimated shape and pose of segmented objects.

I. INTRODUCTION

Autonomous grasping of objects from a pile of unknown
objects is still a major challenge in robotics. Although grasp
planning approaches are available, they typically require
precise shape and pose information to select a grasp in an
offline optimization process [1], [2]. In order to acquire the
necessary shape and pose information, traditional approaches
typically employ a-priori knowledge about object models [1],
[3], [4], [5], which is employed for object recognition and
the subsequent planning process. However, this approach
restricts grasping to objects whose models, i.e. geometric
shape and/or visual appearance, are known.

In contrast to this work, biologically motivated approaches
exist, which can successfully grasp objects based on coarse
shape and pose information without prior planning. While
our previous work into this direction [6] is limited to simple
2D scenes, in the present paper we propose a 3D scene
segmentation approach which separates objects and provides
coarse shape and pose information suitable for grasping.
The algorithm is model free and only employs generic
smoothness constraints. The obtained object information is
too coarse for an application in classical grasp planners, but
the compliant grasping scheme tolerates those inaccuracies.

Our algorithm combines two segmentation methods, both
operating on depth images only: the identification of object
surfaces and edges based on detection of “surface normal
edges” and a partitioning of these regions into object hy-
potheses. The algorithm robustly separates objects in clut-
tered scenes as shown in Fig. 1. The main advantage in con-
trast to other methods is the capability to separate unknown,
stacked, nearby, and partially occluded objects in a model-
free manner, without prior knowledge about these objects.
Naturally, this approach is limited compared to model-based

This work was supported by the German Collaborative Research Center
“CRC 673: Alignment in Communication” and the Center of Excellence
Cognitive Interaction Technology (CITEC), both granted by the DFG.
The authors are with the Neuroinformatics Group at Bielefeld University,
Germany. {aueckerm|celbrech|rhaschke|helge}@techfak.uni-bielefeld.de

Fig. 1. Raw depth image (left), point cloud cropped to reachable task space
(middle) and resulting object segmentation (right).

approaches, especially if very complex object shapes are
to be considered. However, it provides an initial object
hypothesis in arbitrary situations, which can be refined by
active exploration and fed as input to model-based, adaptive
methods.

Many existing work aims for a simultaneous recognition
of objects and their pose. To this end, image features are
matched to a database of known objects. Various feature
extraction methods were proposed, including 3D-augmented
SIFT features [1], [7] and point-cloud features like viewpoint
feature histogram [3], depth-encoded hough voting [4], point
pair features [14], or iterative clustering-estimation [15].
Integrating RGB-stereo, time-of-flight, and thermal cameras,
also shiny and translucent objects can be segmented [17],
which is a challenging task otherwise. Although these ap-
proaches robustly recognize partially occluded objects, they
are restricted to a predefined set of models.

Other approaches, directly operating on point clouds,
better generalize to unknown objects. In [5], [16] table-top
scenarios are segmented based on an initial clustering into
horizontal supporting surfaces. Point clusters, supported by
these planes, i.e. lying above the plane and within the 2D
bounding box after projection, are considered as objects.
Subsequently [5], [16] determine hybrid models from these
clusters by fitting primitive shape models (cuboids, cylinders,
etc.) and surface meshes (modeling residual points) into these
points. It’s also possible to estimate rotational surfaces [16].
While these models can derive very detailed geometrical
models of point clusters, they fail to separate stacked objects.
A similar method, tuned towards real-time performance,
achieving 30Hz on 160×120 images, skips the modeling
step completely [8]. Model-free methods, finding smoothly
connected areas in point clouds, are presented in [9], [10].
Their region growing approach closely resembles the first
segmentation step of our method, but cannot correctly sep-
arate individual objects. The present paper fills this gap,
proposing a simple, model-free heuristics to combine found
surface patches into object hypotheses. Additionally, we
present a surface-segmentation method tuned towards real-
time performance.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications at Bielefeld University

https://core.ac.uk/display/15979311?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Point normal estimation is a basic component of many
segmentation approaches as well as in our method. Most
methods use a form of least squares, RANSAC, or PCA to
fit a plane into a set of neighboring points [5], [9], [10]. As
most methods focus on arbitrary 3D point clouds, emphasis is
on efficient selection of those points. Exploiting the intrinsic
grid structure of range images, rough normal estimations can
be computed much faster from the cross product of tangential
vectors. For example, [8] proposes a method employing
integral images. In this paper we compare these approaches
regarding accuracy and efficiency.

In the next chapter we introduce our segmentation algo-
rithm in detail. Afterwards, we evaluate the robustness and
quality of the algorithms and present a grasping experiment
using this algorithm in chapter III. At the end, we give a
short conclusion and mention possible future work.

II. 3D SCENE SEGMENTATION METHOD

Before introducing the details of the processing flow, we
outline the overall structure of the algorithm. It can be split
into two main parts: the determination of surface patches and
object edges, and a subsequent combination of those low-
level segments into high-level object segments. In contrast
to the commonly employed segmentation method provided
by the Point Cloud Library [11], which aims to fit specific
object models, the proposed approach is model-free and can
successfully handle unknown, stacked, and nearby objects.

The raw depth images, obtained from the Kinect camera,
provide low-noise depth information (cf. Fig. 1). Hence, we
decided to solely focus on depth images, ignoring color, and
thus diminishing the impeding influence of strong textures
giving rise to oversegmentation. In future we will integrate
color information to disambiguate difficult scenes.

Looking more closely at the depth image, we can identify
two situations exposing object edges: (i) discontinuous jumps
of depth values, and (ii) sudden changes of the surface
normal direction at object edges. Consequently, the core of
our algorithm is the determination of those “surface normal
edges”, which is the basis for a region growing method to
segment the image in a first step into connected surface
patches and separating edges.

The second part of the algorithm subsequently com-
bines found surface patches into object segments. Similar
to [16], we extract support planes and further separate
object blobs using Euclidean segmentation. In contrast to
these approaches, we then successively split these point sets
(usually comprising several objects) along previously found
surfaces in order to separate individual items. This novel,
model-free heuristics enables to separate objects which are
close or touching each other.

A. Partition into Surfaces and Edges

The objective of the first processing step is to segment
the depth image into regions of (smoothly curved) surfaces,
continuously enclosed by sharp object edges. To reduce
the computational effort, we restrict all calculations to the
reachable task space, which is the space reachable either

Fig. 2. Left: Three adjacent points used for normal calculation. Right:
Neighboring pixels considered for detection of normal edges. Values from
three pixels are averaged for each of eight directions.

by the human user or the robot in a cooperative table-top
scenario. To this end, we transform the depth image into
a 3D point cloud. Figure 1 shows a raw depth image and
the resulting point cloud. Cropped image regions outside the
reachable space are colored grey.

a) Determination of Surface Normals: As the basis
for computing “surface normal edges”, we first determine
surface normals for every image point. In order to reduce
noise and to smooth surfaces, a 3×3 median filter is applied
to the image. Although later processing steps of the algorithm
robustly reduce noise as well, it is computationally more
effective to apply the smoothing filter at this initial stage.

As the computation of normal edges is very robust w.r.t.
noisy normal vectors, we can simply calculate surface nor-
mals from the plane spanned by three points as known by
common 3D computer graphics. We also evaluated more
accurate, but slower, calculation methods based on PCA,
which did not provide better final segmentation results.

The three points are chosen in a distance of r = 2 in the
vicinity of the central, considered 2D image point ~p as shown
in Fig. 2. The determination of surface normals is directly
done on the raw depth image, instead of the 3D point cloud.
That is, the 2D image coordinates are augmented by the
depth value to yield valid three-dimensional vectors. This
procedure results in more distinct edges. Using the cross
product:

~n = (~b− ~a)× (~c− ~a) (1)

and subsequent normalization we easily obtain normals n̂.
b) Detection of Surface Normal Edges: A major con-

tribution of the present paper is the detection of surface
normal edges, which is based on the computation of the angle
between surface normals of adjacent image points, which can
be efficiently done employing the scalar product:

cos(6 (n̂1, n̂2)) = n̂1 · n̂2 . (2)

To obtain broad, uninterrupted edges suitable for the subse-
quently applied region growing algorithm, we look for edges
in all eight directions defined by the neighboring pixels of a
point, i.e. north (N), east (E), south (S), west (W), as well
as NE, SE, SW, NW. To reduce the influence of the noisy
normal calculation (1), along each direction we average the
three scalar products obtained between the central and three
adjacent pixels (cf. Fig. 2). For example, for the north-bound
direction, we use:

cos(θN) = 1
3

∑3
i=1 n̂x,y · n̂x,y+i (3)

Fig. 3. Result of the surface normal detection applied to the depth image of
Fig. 1 (left: angular values, right: binarized version). White surface patches
are properly enclosed by black object edges.

The minimal value of these averaged scalar products is finally
used as the outcome of the edge filter, which corresponds to
the strongest angular deviation of normal vectors:

min{cos(θN), cos(θNE), . . . , cos(θW), cos(θNW)} (4)

Note, that we do not need to calculate actual angular values
employing the costly arc cosine function, but directly can use
the results of the scalar product. While large values, close
to one, correspond to flat surfaces, smaller values indicate
increasingly sharp object edges. Finally, binarizing the ob-
tained edge image employing a threshold value θmax = 0.85
(31, 8◦), we can easily separate edges from smooth faces.
The threshold value is chosen to balance between noise and
recognition of smooth curved surfaces.

Figure 3 illustrates the results of this processing step:
Object edges are clearly visible as bold lines, while smooth
and large surfaces form homogeneous white regions. A
considerable number of false edges are detected due to noise.
However those regions are small and disjointed and thus can
be easily filtered out in subsequent processing steps. Small
or narrow objects are often represented by edges only.

c) Segmentation into Surface Patches: Finally, we ap-
ply a simple region growing algorithm to the binarized edge
image in order to associate each surface point with a unique
surface patch as shown in Fig. 4.

The novel surface patch segmentation based on normal
edges already provides a detailed segmentation of the scene
into surface patches, which will be employed for the subse-
quent object segmentation step, introduced in the following.

B. High-Level Object Segmentation

In the second processing block, we ultimately aim for a
segmentation on an object level, which means that the pre-
viously found surface patches need to be combined to form
object regions. To this end, we start with the identification
of supporting surfaces in order to separate the background
from the foreground.

d) Identification of Support Planes: The background of
table-top and other indoor scenes usually comprises large
planes, e.g. table surfaces, walls, or the floor. As these
background planes disturb the subsequent clustering of object
regions, we first try to find them and exclude all their
associated points from further consideration.

All face segments comprising more than Nbg = 2500
points are processed. A plane is fitted to each of these
segments using RANSAC [12]. Because points are only
sampled from previously found surface patches, i.e. probably

Fig. 4. Results of first segmentation into surface patches, object edges, and
background pixels (left), and second segmentation into object blobs based
on Euclidean distance (right).

a plane, only a very few RANSAC passes are required to find
a good plane model.

Subsequently, all not yet processed points (that is all points
in the first iteration) are associated to this plane segment
if their distance to the plane is smaller than δ = 12mm.
If a point was part of another segment, it will be removed
from this segment and reassigned to the plane segment and
thus separated surface patches are combined. Notice, that
RANSAC itself employs half the threshold to yield better
fitting results. If the plane normal is parallel to the z-axis of
the world coordinate frame (up to an angular threshold of
αz = 10◦), this plane segment is considered as a horizontal
supporting plane, which can be used to place objects. In all
cases, the plane segment is marked as not graspable and all
points belonging to this segment are marked as processed and
are no longer considered for further processing. This method
to identify background planes is iterated until no large face
segments are left.

After this processing step, some face or edge segments
may contain only a very few or no points at all. This can be
due to initial noise (cf. Fig. 3) or due to the reassignment to
background planes. Hence, segments comprising fewer than
Nseg = 5 points, are removed and their remaining points are
marked as processed.

e) Blob Segmentation: The next important step is the
generation of potential object candidates standing out from
the scene background. Having removed all background pixels
in the previous processing step, nearby objects form smaller
isolated point clouds in the scene. These different point
blobs can be easily separated and identified by an additional
region growing algorithm operating on the 2D depth image.
However, the coherence measure used to decide whether
a point should be included within a segment, is now the
Euclidean distance of neighboring pixels. This distance is
easily computed from the 3D position associated with each
pixel in the depth image. Adjacent points with a distance
smaller than ∆blob = 10mm are grouped within a common
object blob. This segmentation method correctly separates
objects which are sufficiently separated in 3D space or
separated by background pixels in image space as can be
seen in Fig. 4. Blobs containing fewer than Nblob = 50
pixels are considered to be not graspable and are therefore
removed. If no support plane could be found, e.g. due to
a very cluttered table, one single “object” blob remains.
This distance-based segmentation is common to most other
state-of-the-art approaches [5], [8], [16], but cannot separate
nearby objects.

Fig. 5. Assigning separating plane using bounding boxes.

f) Binary Space Partitioning: In order to further sep-
arate stacked objects and objects standing in front of each
other, we partition the detected object blobs employing the
face segments computed in the first part of the algorithm.
The central idea of this heuristic approach is that visible
surface patches are part of an object’s outer hull, such that
points belonging to this object should either lie on the one
or the other side of the associated plane. If we conversely
find enough points on both sides of the plane, we assume
two (or more) separated objects and split the blob into two
blobs for further processing. Consider for example a bottle
placed on top of a box as shown in Fig. 4. Three faces of
the box are visible and the top face will be used to split the
blob, because the associated plane separates both point sets.

As the plane fitting using RANSAC needs a sufficient
number of face points, we first consider the number of edge
pixels Pe and the number of face pixels Pf . If the ratio
Pf/Pe is smaller than kfe = 0.1 or Pf is smaller than
Nf = 30, the blob is considered as a single object with
no further subdivision taking place.

Otherwise, the largest face segment is selected and a plane
is fitted to the segment’s points. Subsequently all points
of the blob are sorted into three categories based on their
(signed) distance d to the plane: points on the plane ([−δ, δ]),
points behind ((−∞,−δ)), and points in front ((δ,∞)). If
more than Nsplit = 20 points are on both sides of the plane,
the blob is split into two parts, one comprising the points in
front and the other comprising the points behind the plane.
The threshold Nsplit is non-zero to tolerate a few outliers
not perfectly fitted by the plane.

In order to decide to which of both sub blobs the sep-
arating plane can be attributed, we consider the bounding
boxes of the plane and adjacent blob points. To this end,
we again sort all points of the original blob into three
groups (on/behind/infront plane), but this time the distance
of points to be considered is limited to 2δ. This ensures
that only a small slice of points close to the separating
plane is considered for determination of bounding boxes. The
bounding boxes (aligned to the world coordinate frame) of
all three point sets are determined by two opposite points
~psmin and ~psmax, where the superscript s=on/behind/infront
indicates the point set. Comparing the bounding boxes of
the plane to those of the “behind“ respectively the “infront“
point set, we can judge plane assignment. To this end we

TABLE I
AV. AND MAX. FRAME-TO-FRAME ANGULAR VARIATION OF NORMALS

Method Runtime average maximum
cross 3× 3 30ms/<1ms 8.16◦ 43.60◦

cross 5× 5 30ms/<1ms 4.80◦ 24.39◦

PCA 3× 3 1674ms 7.15◦ 32.00◦

PCA 5× 5 2560ms 3.83◦ 14.35◦

consider the distances:

Es = ‖~psmin − ~p
plane
min‖1 + ‖~psmax − ~pplane

max‖1 (5)

where ‖ · ‖1 denotes the L1 norm. More similar bounding
boxes will have a smaller distance value. Hence, if Ebehind

is smaller than Einfront, all plane points are assigned to the
sub blob behind the plane and vice versa. Fig. 5 illustrates
this assignment step in a 2D example. The need of the range
reduction for the determination of the minima and maxima is
obvious by the distances of the whole objects to the plane in
contrast to the distances of the reduced spaces to the plane.

The newly created blob not containing the plane is added
to the set of to-be-processed blobs, while the subdivision
of the other blob comprising the plane is continued by
looking for the second largest surface segment. This process
is iterated for each blob, until no separating face segment
can be found anymore. Then the process is repeated for all
remaining blobs.

Finally, we obtain a scene segmentation, which not only
distinguishes spatially separated objects (based on their Eu-
clidean distance), but also nearby objects based on their
planar convexity as shown in Fig. 1. Note, that all used
parameters are tuned for a sensor distance of up to 3 meters,
but can be easily adapted for other distances.

III. EVALUATION
In this section we report different evaluation results.

Firstly, we compared various methods to estimate surface
normals and to compute normal edges, both w.r.t. robust-
ness and runtime performance. To this end, we evaluated
the stability of results when observing a static scene, i.e.
input images only influenced by sensor noise. Secondly, we
describe the impact of all parameters onto the segmenta-
tion result and state their optimal value range. Thirdly, we
evaluated the overall robustness of the segmentation results.
Further we discuss weak spots of the method and report on
a grasping experiment.

A. Normal Estimation and Edge Determination

An important part of our algorithm is the robust esti-
mation of surface normals. We compared two algorithmic
approaches, the proposed cross-product calculation and a
PCA method, each using points from a 3 × 3 or 5 × 5
neighborhood. All methods calculate the normals directly
based on the median-filtered depth image, which turned out
to yield sharper normal edges in other experiments, we do
not report on in detail.

Due to sensor noise, the input images also vary when
observing a static scene. We evaluate, how these fluctuations
(of size ±1 in the filtered depth image at a range [0..2047])

cr
os

s
3
×

3
cr

os
s
5
×

5
PC

A
3
×

3

maximum 1 maximum 3 average 1 average 3

Fig. 6. Normal edges obtained for different methods and parameters.

are amplified by the algorithms to judge their robustness. To
this end, we observed a 10× 10 patch from the planar table
surface for 50 frames and determined the angular deviation
of surface normals from one frame to the next for all 100
points. Table I summarizes the results for both methods and
parameter sets, showing the average and maximal deviation
calculated over all points and frames, as well as the runtime.
The PCA methods provide only little better robustness, while
being much slower. Accordingly, we have chosen the cross-
product calculation with a neighborhood radius of r =
2. Using a GPU-based parallel implementation, we could
reduce the computation time even further, from 30 ms to
less than 1 ms.

A similar evaluation w.r.t. robustness was done for dif-
ferent methods and parameters to compute surface normal
edges. The previously proposed method employing the max-
imal angular change of normals along eight directions (eq. 4)
is compared here to an averaging method yielding smoother
edges. Again, we compare different neighborhood ranges,
considering a single or three adjacent pixels per direction
(cf. Fig. 2). The results are presented qualitatively in Fig. 6.
Obviously, the averaging methods generate smoother edge
images showing less noise. However, the maximum methods
exhibit sharper edges and thus were finally selected for
the algorithm. Variants using three adjacent pixels generate
broader edges as required for the region growing method.
Regarding noise, the cross-product-based calculation of nor-
mals with a radius of 2 achieve best results (middle row),
even better than the much slower PCA method.

We also evaluated these methods using less directions for
edge determination, e.g. only the north and the east direction.
However, this resulted in disconnected edges, whose holes
need to be closed by morphological operations, which do not
better perform.

B. Parameter Selection

The meaning and significance of most parameters of our
algorithm is obvious, and reasonable values can be found
easily. The most important paramters are explained in the
following and suitable value ranges are provided. All values
were selected by manual inspection regarding the desired
effect and the final segmentation result. The chosen param-

eters are optimized for a distance of up to 3 meters from
the sensor, which is sufficient for table-top scenarios. The
paramters can be easy adjusted for other ranges.
• θmax = 0.85 (31, 8◦) is the binarization threshold for

edge detection. Smaller values generate less noise, but
edges may become holey. θmax ∈ [0.75, 0.9]. Caused by
higher noise for higher distances, this parameter could
be increased for higher distances.

• δ = 12mm is the distance threshold for RANSAC-
based plane fitting. The more RANSAC passes, the
smaller values are possible. Values in [8, 25] are good
for 7 passes. Small values can lead to unassigned points.

• ∆blob = 10mm is the maximum distance for blob
segmentation. Values in [2, 50] are good, while smaller
value cause over-segmentation. Under-segmentation can
be fixed by the (more costly) space partitioning. For
higher distances and thus higher point distances the
paramter could be increased.

• kfe = 0.1 is the minimal ratio between face and
edge points. If the ratio gets small, most points are
edge points and a decomposition using the faces is not
applicable. kfe ∈ [0.05, 0.5].

• Nsplit = 20 is the minimal number of points on both
sides of a plane to split a blob. A decomposition into
too small parts is not desirable and could be caused by
outliers of the plane fitting. Nsplit ∈ [10, 30].

C. Runtime Performance and Overall Robustness

In this section we report on experiments to evaluate the
overall robustness of segmentation results using the given
parameter values. We consider 20 input images correspond-
ing to a steady scene. However, sensor noise and non-
deterministic elements of the algorithm may cause varying
segmentation results over time. To evaluate robustness we
again compare subsequent frames and calculate the percent-
age of image points associated to the same object region
(segment overlap), as well as the average distance of object
centroids. Furthermore we count the number of spurious
segments, i.e. additional object regions.

In order to associate corresponding segments from frame
to frame, we employ a tracking method from the Image
Component Library1, which employs the number of segment
points, the centroid, and the bounding box to correctly
identify segments. The determination of overlapping segment
regions is performed for every segment. Values obtained for
all segments and frames are averaged. Corresponding results
are summarized in table II, where individual rows correspond
to scenes of increasing complexity as shown in Fig. 7.

The first column (#seg) shows the number of expected
object segments, including the table. The second and third
columns report average and worst values for region overlap
and centroid distance resp. Finally, the next-to-last column
lists the absolute and relative number of spurious segments.

In most cases, the segmentation algorithm yields stable
regions with only little reassociation of image points between

1http://www.iclcv.org/

Fig. 7. Scenes of increasing complexity used for evaluation.

TABLE II
ROBUSTNESS OF SEGMENTATION RESULTS IN VARIOUS SCENES.

#seg
region centroid spurious segmentation

overlap [%] distance [mm] segments runtime [ms]
avg / min avg / max abs / rel[%] faces + objects

3 99.9 / 96.0 1.2 / 3.9 0 / 0 5 + 41
6 99.5 / 92.9 2.3 / 8.7 0 / 0 5 + 832

10 98.6 / 82.7 2.2 / 21.0 5 / 2.5 5 + 3183
26 99.5 / 89.2 2.4 / 11.0 0 / 0 5 + 101

frames. However, the third row – corresponding to a complex
scene with many stacked and nearby objects – reports five
spurious object regions, evoking worse results in region
overlap and centroid distance as well, usually caused by one
additional false segment. Object centroids are stable enough
for application in autonomous grasping scenarios.

The last column reports the run times of the initial
segmentation into surface patches (sec. II-A) and the sub-
sequent determination of individual objects based on binary
space partitioning (sec. II-B). As can be seen, the runtime
of the initial part is fixed – except for measuring noise.
However, the computational effort of the subsequent object
segmentation exponentially grows with the complexity of the
scene. Comparing the last two rows, it becomes apparent,
that the complexity is determined by the number of possible
split faces and not by the number of initial object blobs.
For evaluation we used a single-threaded version of the
algorithm running on a single core of a XEON 2.53 GHz
processor. The runtime of the anterior face-segmentation is
1 ms for an OpenCL implementation on a GTX 560 graphics
card including median-filtering, normal-determination, edge-
detection and binarization and additional 4 ms for the recur-
sive region-growing. The single-threaded version needs 230
ms for comparison.

D. Strong and Weak Points

The algorithm works very well with a huge number of
scenes with stacked and nearby objects and of course with
seperated objects, even in scenes with complex, non-convex
objects (e.g. plants), apart from simple table-top scenes.
Those types of scenes are shown in Fig. 8. The whole
segmentation is model-free and without previous knowledge

Fig. 8. Top: A complex scene with multiple support planes and non-
convex objects. Bottom: A scene with a complex object (plant), segmented
model-free and without previous knowledge about this object

Fig. 9. Left: The bin is separated caused by planar model applied to curved
surface. Right: Small box splitted due to wrong order of split faces.

about the objects. But there are two weak points remaining,
which are explained in the following.

Firstly, the binary space partitioning is currently restricted
to planar surface models. Although the initial segmentation
step can yield smooth curved surface patches, subsequent
separation of object blobs fits a plane into these face seg-
ments. This works well, if the faces are planar like the
surfaces of a box. Even if a curved object is in front of
another the separation works well, but not if two curved
object are directly side-by-side or if one object completely
splits another object as shown in left part of Fig. 9. This issue
can be solved by determination of curvature coefficients to
describe curved surfaces. However, note that such situations
are extremely rare in real-world scenarios.

Secondly, the order of selecting split faces (currently de-
scending by size) is of importance if no additional measures
are taken. Choosing the wrong order, may cause an object
to be decomposed into two segments as shown on the right
of Fig. 9. Here, the upper surface of the mid-size box was
chosen for splitting before its front surface, resulting in a
significant amount of pixels on both sides of the plane. In
the next version of the algorithm we solve this issue by
prohibiting already found surface patches to be split.

E. Grasping Experiment

We used the segmentation approach for autonomous grasp-
ing with the 24-DOF Shadow Robot Hand employing our
biologically inspired grasping strategy [6]. To obtain a coarse
shape model of the object – which is required to select a
grasp prototype, i.e. power, precision, or pincer grasp based
on object size, and to correctly align the hand to the object
– we fit a superquadrics model [13] to the 3D points of
the selected object blob. This model determines position and
orientation as well as the coarse size and shape of the object.
With this information, we can apply our grasping strategy.
We also evaluated a simple PCA fitting to determine object
pose and shape. However, while the PCA model is always
shifted towards the camera, the superquadrics model can
correctly account for the invisible backside of the object.
The experiment is shown in the accompanying video2 and
in Fig. 10. For the shown experiment we used a simple
pointing gesture detection which calculates a ray through
the arm of the user towards the task space. Thus, a human
user can interactively select objects in the scene which are
then grasped by the robot hand.

Fig. 10. Top: the setup of the grasping experiment and pointing in the
scene. Bottom left: arm movement to the selected object in the point cloud.
Bottom right: grasping the object.

IV. CONCLUSION AND FUTURE WORK

In this paper, we introduced a model-free segmentation
algorithm for cluttered scenes with stacked and nearby
objects which is not restricted by a given set of object
models. Surface-normal-edge-detection for surface determi-
nation using edge detection on point normals was combined
with RANSAC, Euclidean segmentation and binary space
partitioning to decompose the scene into individual objects.

2http://www.youtube.com/watch?v=xJjs-q1QCcQ

The pre-segmentation into surface patches has the strong ad-
vantage, that randomly sampled points for RANSAC, already
originate from a uniform surface, thus reducing computa-
tional effort. The algorithm can deal with stacked, nearby and
partially occluded objects as well as with complex objects
which could not be segmented by model-based approaches,
e.g. the plant in Fig. 8. This is due to the novel binary space
partitioning method to separate point cloud blobs of nearby
objects. The algorithm was evaluated concerning robustness
and quality.

To allow direct interaction with users, a segmentation of
objects from the human hand is desirable. To this end, color
histograms could be used additionally. This color information
is also applicable to the blob decompositions as an additional
factor in the binary space partitioning but involves the danger
of over segmentation in the case of highly textured objects.
The segmentation of the scene is an initial hypothesis of the
scene structure. This can be refined by active exploration. At
the moment, the second part of the algorithm is implemented
straight forward without any optimization or parallelization.
This will be done to improve runtime performance and thus
to achieve real time capabilities.

REFERENCES

[1] J. Kuehnle, A. Verl, Z. Xue, S. Ruehl, M. Zöllner, R. Dillmann, T.
Grundmann, R. Eidenberger, R. Zöllner, 6D object localization and
obstacle detection for collision-free manipulation, Proc. ICAR, 2009

[2] Z. Xue, A. Kasper, M. Zöllner, R. Dillmann, An automatic grasp
planning system for service robots, Proc. ICAR, 2009

[3] R.B. Rusu, G. Bradski, R. Thibaux, J. Hsu, Fast 3D Recognition and
Pose Using the Viewpoint Feature Histogram, Proc. IROS, 2010

[4] Sun, Xu, Bradski, Savarese, Depth-Encoded Hough Voting for Joint
Object Detection and Shape Recovery, Proc. ECCV, 2010

[5] R.B. Rusu, N. Blodow, Z.C. Marton, M. Beetz, Close-range Scene
Segmentation and Reconstruction of 3D Point Cloud Maps for Mobile
Manipulation in Domestic Environments, Proc. IROS, 2009

[6] F. Röthling, R. Haschke, J.J. Steil, H.J. Ritter, Platform Portable
Anthropomorphic Grasping with the Bielefeld 20-DOF Shadow and
9-DOF TUM Hand, Proc. IROS, 2007

[7] E.S. Kuzmič, A. Ude, Object segmentation and learning through
feature grouping and manipulation, Proc. Humanoids, 2010

[8] D. Holz, S. Holzer, R.B. Rusu, S. Behnke, Real-Time Plane Segmen-
tation using RGB-D Cameras, RoboCup Symposium, 2011

[9] T. Rabbani, F.A. van den Heuvel, G. Vosselman, Segmentation of Point
Clouds using Smoothness Constraint, Int. Archives of Photogrammetry
Remote Sensing and Spatial Information Sciences, vol. 36(5), 2006

[10] E. Castillo, H. Zhao, Point Cloud Segmentation via Constrained
Nonlinear Least Squares Surface Normal Estimates, Recent UCLA
Computational and Applied Mathematics Reports, 2009

[11] R.B. Rusu, S. Cousins, 3D is here: Point Cloud Library (PCL), IEEE
International Conference on Robotics and Automation (ICRA), 2011

[12] M.A. Fischler, R.C. Bolles, Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography, Communications of the ACM, vol. 24, issue 6, 1981

[13] A.H. Barr, Superquadrics and Angle-Preserving Transformations,
IEEE Computer Graphics and Applications, vol. 1, issue 1, 1981

[14] E. Kim, G. Medioni, 3D Object Recognition in Range Images Using
Visibility Context, Proc. IROS, 2011

[15] A. Collet, M. Martinez, S.S. Srinivasa, The MOPED framework: Ob-
ject Recognition and Pose Estimation for Manipulation, International
Journal of Robotics Research, vol. 30, issue 10, 2011

[16] Z.C. Marton, D. Pangercic, N. Blodow, J. Kleinehellefort, M. Beetz,
General 3D Modelling of Novel Objects from a Single View, Proc.
IROS, 2010

[17] Z.C. Marton, R.B. Rusu, D. Jain, U. Klang, M. Beetz, Probabilistic
Categorization of Kitchen Objects in Table Settings with Composite
Sensor, Proc. IROS, 2009

