
Synthesizing cognition in neuromorphic
electronic systems
Emre Neftcia,1, Jonathan Binasa, Ueli Rutishauserb, Elisabetta Chiccaa,c, Giacomo Indiveria, and Rodney J. Douglasa

aInstitute of Neuroinformatics, University of Zurich and Eidgenössiche Technische Hochschule Zurich, 8057 Zurich, Switzerland; bDepartment of Neural
Systems, Max Planck Institute for Brain Research, 33615 Frankfurt am Main, Germany; and cDepartment of Neural Systems, Cognitive Interaction Center of
Excellence, University of Bielefeld, 60438 Bielefeld, Germany

Edited* by Terrence J. Sejnowski, Salk Institute for Biological Studies, La Jolla, CA, and approved June 10, 2013 (received for review July 20, 2012)

The quest to implement intelligent processing in electronic neuro-
morphic systems lacks methods for achieving reliable behavioral
dynamics on substrates of inherently imprecise and noisy neurons.
Here we report a solution to this problem that involves first map-
ping an unreliable hardware layer of spiking silicon neurons into an
abstract computational layer composed of generic reliable subnet-
works of model neurons and then composing the target behavioral
dynamics as a “soft state machine” running on these reliable sub-
nets. In the first step, the neural networks of the abstract layer are
realizedon thehardware substrate bymapping theneuron circuit bias
voltages to the model parameters. This mapping is obtained by an
automatic method in which the electronic circuit biases are cali-
brated against the model parameters by a series of population
activitymeasurements. The abstract computational layer is formed
by configuring neural networks as generic soft winner-take-all
subnetworks that provide reliable processing by virtue of their
active gain, signal restoration, and multistability. The necessary
states and transitions of the desired high-level behavior are then
easily embedded in the computational layer by introducing only
sparse connections between some neurons of the various subnets.
We demonstrate this synthesis method for a neuromorphic sensory
agent that performs real-time context-dependent classification of
motion patterns observed by a silicon retina.

decision making | sensorimotor | working memory |
analog very large-scale integration | artificial neural systems

Unlike digital simulations, in which the dynamics of neuronal
models are encoded and calculated on general purpose digital

hardware, “neuromorphic” emulations express the dynamics of the
neural systems directly on an analogous physical substrate (1).
Digital simulations have the advantage that they can be exactly and
reliably programmed using numerical operations of very high pre-
cision. However, they suffer the disadvantage that they are cast on
abstract binary electronic circuits whose operation is entirely di-
vorced from the physical processes being simulated. Consequently,
such simulations do not readily advance our understanding of how
biological neural systems are able to attain their extraordinary
physical performance, using only large numbers of apparently un-
reliable, slow, and imprecise neural components, a problem first
recognized by von Neumann more than a half century ago (2).
Furthermore, the reliability of digital systems comes at high cost of
the circuit complexity necessary for the orchestration of commu-
nication and processing, an overhead that declares itself also in the
costs of system construction and power dissipation (3).
The alternative, neuromorphic, approach to information pro-

cessing strives to capture in complementary metal-oxide semi-
conductor (CMOS) very large-scale integration (VLSI) electronic
technology the more distributed, asynchronous, and limited pre-
cision nature of biological intelligent systems (1, 4).

†,‡
Research in

this domain is now quickly accelerating (5–7), spurred on by
radical changes in the design of computing architectures to
favor highly distributed processing, as well as the economic
promise of emulating the efficient intelligence of biological
brains. So far, research emphasis has been on developing large-

scale neural-like electronic systems (6–8). However, the concepts
and methods for installing the dynamics necessary to express
cognitive behaviors on these substrates are relatively poorly
developed, mainly because the deep question of how biological
brains install cognition on their neural networks remains open. It is
to this behavioral configuration problem that our paper makes its
contribution. We describe here an architecture and method for
embedding simple cognitive behaviors in a real-time neuromorphic
CMOS VLSI system. We refer to this behaving system as a neu-
romorphic “agent” because it is an autonomous entity that observes
and acts on its environment through sensors and effectors, and its
behavior is coherently directed toward achieving an abstract goal.
The hallmark of cognitive behavior is the ability of an agent to

select an action based not only on specific external stimuli, but also
on their context (9). Animals can learn such state-dependent sen-
sorimotor mappings with formidable efficiency (10, 11). The likely
reason for this ability is that evolution has learned how to construct
modular brain circuits (12) that can be easily assembled to provide
a useful spectrum of behaviors through learning on relatively few
dimensions (13). Unfortunately, as engineers we do not have the
benefit of rapid evolution in very large search spaces, and so we
must instead combine insights from biology together with engi-
neering principles to invent neuromorphic circuit modules that

Significance

Neuromorphic emulations express the dynamics of neural sys-
tems in analogous electronic circuits, offering a distributed, low-
power technology for constructing intelligent systems. How-
ever, neuromorphic circuits are inherently imprecise and noisy,
and there has been no systematic method for configuring reli-
able behavioral dynamics on these substrates. We describe such
a method, which is able to install simple cognitive behavior on
the neuromorphic substrate. Our approach casts light on the
general question of how the neuronal circuits of the brain, and
also future neuromorphic technologies, could implement cog-
nitive behavior in a principled manner.

Author contributions: E.N., J.B., U.R., E.C., G.I., and R.J.D. designed research; E.N. and J.B.
performed research; E.N. and J.B. contributed new reagents/analytic tools; E.N. and J.B.
analyzed data; and E.N., J.B., U.R., E.C., G.I., and R.J.D. wrote the paper.

The authors declare no conflict of interest.

*This Direct Submission article had a prearranged editor.

Data deposition: The experimental data can be found under http://ncs.ethz.ch/projects/
vlsi-wta-networks/synthesizing-cognition-in-neuromorphic-vlsi-systems-experimental-data/
view. Simulations scripts can be found under http://ncs.ethz.ch/projects/vlsi-wta-networks/
synthesizing-cognition-in-neuromorphic-vlsi-systems-scripts/view. This website is provided by
Eidgenössiche Technische Hochschule (ETH) Zurich and maintained by the Neuromorphic
Cognitive Systems (NCS) group at the institute of Neuroinformatics, University of Zurich
and ETH Zurich.
1To whom correspondence should be addressed. E-mail: emre@ini.phys.ethz.ch.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1212083110/-/DCSupplemental.

†Telluride neuromorphic cognition engineering workshop. http://ine-web.org/workshops/
workshops-overview, 1994–2012.

‡The Capo Caccia workshops toward cognitive neuromorphic engineering. https://
capocaccia.ethz.ch/capo/wiki/2012, 2007–2012.

www.pnas.org/cgi/doi/10.1073/pnas.1212083110 PNAS Early Edition | 1 of 9

EN
G
IN
EE

RI
N
G

N
EU

RO
SC

IE
N
CE

PN
A
S
PL

U
S

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Publications at Bielefeld University

https://core.ac.uk/display/15979309?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ncs.ethz.ch/projects/vlsi-wta-networks/synthesizing-cognition-in-neuromorphic-vlsi-systems-experimental-data/view
http://ncs.ethz.ch/projects/vlsi-wta-networks/synthesizing-cognition-in-neuromorphic-vlsi-systems-experimental-data/view
http://ncs.ethz.ch/projects/vlsi-wta-networks/synthesizing-cognition-in-neuromorphic-vlsi-systems-experimental-data/view
http://ncs.ethz.ch/projects/vlsi-wta-networks/synthesizing-cognition-in-neuromorphic-vlsi-systems-scripts/view
http://ncs.ethz.ch/projects/vlsi-wta-networks/synthesizing-cognition-in-neuromorphic-vlsi-systems-scripts/view
mailto:emre@ini.phys.ethz.ch
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1212083110/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1212083110/-/DCSupplemental
http://ine-web.org/workshops/workshops-overview
http://ine-web.org/workshops/workshops-overview
https://capocaccia.ethz.ch/capo/wiki/2012
https://capocaccia.ethz.ch/capo/wiki/2012
www.pnas.org/cgi/doi/10.1073/pnas.1212083110

approximate biological performance. For this task we require
synthesis methods analogous to the very successful software ap-
proach used to program computational processes in general pur-
pose digital computers. However, rather than programming logical
operations onto a digital substrate, as done by software compilers,
the neuromorphic approach must configure behavioral dynamics
onto electronic neural networks. Ideally such a method should
provide a means of forward programming the general form of be-
havioral tasks to be achieved, while allowing the neuronal circuits to
optimize their performance through learning and adaptation.

Our method for synthesizing cognitive tasks in neuromorphic
systems recognizes three conceptual levels of processing: the high-
level behavioral model, an intermediate abstract computational
layer composed of populations of neurons configured as soft
winner-take-all (sWTA) networks (14), and an underlying level of
analog–digital neuronal hardware (Fig. 1). We cast the behavioral
task as a state machine (9). This behavioral model is then con-
figured on the computational layer by the introduction of relatively
sparse connections that connect some neurons of the sWTA mod-
ules. Some of these connections are chosen such that the network
gives rise to attractors that encode processing states in the form of
persistent activity (15), and some additional connections provide
transitions between the attractor states conditionally on external
input (16). The recurrent connections in the sWTA amplify the
signal at each neuron and restore it to an analog memory stored in
the network connectivity (17) (Fig. S1). Their gain and signal res-
toration properties enable sWTA networks to be stably combined to
solve a wide range of state-dependent computation tasks (18).
There remains the technical problem of mapping ideal sWTA

neuronal network models onto the underlying neuromorphic
hardware. The adjustable hardware parameters used for control-
ling the behavior of the VLSI circuits are currents and voltages that
do not have a one-to-one correspondence with the parameter types
and values used in the computational model.We solve this problem
by an automatic method that involves using a mean-field ap-
proach to measuring the steady-state firing rate response of the
VLSI neurons, deriving the average neural intracellular current
that generated this activity, and then fitting the parameters of
the CMOS transistor model to provide the estimated neuronal
current–discharge relation. In this way the method generates the
necessary mappings between the parameters of the sWTA net-
work models and their electronic counterparts (19).
We demonstrate our overall approach by configuring a multi-

chip system as an agent able to solve a context-dependent task that
is comparable in complexity to the tasks used to probe cognition in
behavioral studies in awake behaving primates (9).

Results
Themultichip agent is composed of fivemultineuron chips (20, 21)
and a silicon retina (22). The sensor and chips communicate by
action-potential–like address events (23). The specific cognitive
task that the agent is required to solve is shown in Fig. 2: A neu-
romorphic agent observes a complex visual scene presented on
a computer screen. The scene consists of independently moving
horizontal and vertical bars. The agent is required to respond
differently to these bars according to which of the contexts is in
force. The current context is determined by a cue that is shown
only transiently and so must be remembered. In the first context
the agent must produce response A when it observes a horizontal
bar entering the right half of the screen; and in the second context
it must produce response B when it observes a vertical bar entering
the left half of the screen.
The overall task can be described as a finite state machine

(FSM) (9), as shown in Fig. 3. A FSM is an abstract machine that
can be in only one of its Nq possible states, but is able to transition
between states when it receives an appropriate external input
symbol drawn from a predefined alphabet of Ns elements. The
FSM state diagram describes the machine as a directed graph
whose nodes represent machine states and whose edges indicate
the possible transitions between them. The edges are labeled by
input symbols that govern the appropriate transition. True FSMs
can be efficiently implemented in digital systems that can rely on
restored logic and digital encodings. However, the implementa-
tion of an analogous machine using neurons requires a different
approach in which populations of neurons are first configured as
sWTA networks, and then some neurons of these networks are
interconnected to embed the necessary states and transition rules
(16). Unlike conventional FSMs implemented with bistable digital

Fig. 1. Synthesis of a target FSM in neuromorphic VLSI neural networks. (A)
State diagram of the high-level behavioral model. Circles represent states
and arrows indicate the transitions between them, conditional on input
symbol X. In this example state machine, the active state flips between S1
and S2 in response to X and outputs either the response A or the response B,
depending on the previous state. (B) The computational substrate composed
of three sWTA networks: two “state-holding” networks (vertical and hori-
zontal rectangles) and a third transition network (central square). The
shaded circles in each sWTA represent populations of spiking neurons that
are in competition through a population of inhibitory neurons (not dis-
played). The state-holding sWTA networks are coupled population-wise
(γ-labeled arrow, red with red, blue with blue, etc.) to implement working
memory. Solid arrows indicate stereotypic couplings, and the dashed arrows
indicate couplings that are specific to the FSM (in this case the one shown in
A). The gain and threshold in the transition sWTA are configured such that
each population becomes active only if both of its inputs are presented to-
gether. The sWTA competition ensures that only a single population in the
network is active at any time. An additional output sWTA network is con-
nected to the transition network to represent the output symbols. To pro-
gram a different state machine, only the dashed arrows need to be
modified. (C) The multineuron chips used in the neuromorphic setup feature
a network of low-power I&F neurons with dynamic synapses. The chips are
configured to provide the hardware neural substrate that supports the
computational architecture consisting of sWTA shown in B. Each population
of an sWTA network is represented in hardware by a small population of
recurrently coupled spiking neurons ðN ¼ 16Þ, which compete against other
populations via an inhibitory population.

2 of 9 | www.pnas.org/cgi/doi/10.1073/pnas.1212083110 Neftci et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1212083110/-/DCSupplemental/pnas.201212083SI.pdf?targetid=nameddest=SF1
www.pnas.org/cgi/doi/10.1073/pnas.1212083110

circuits, these neuronal state machines combine analog and digital
processing qualities, and so we distinguish them as soft state
machines (SSMs). Our goal is not to compete in terms of efficiency
with traditional digital systems at the level of the FSM function-
ality. Rather we present a configuration method that can auto-
matically map ideally specified FSMs into their analogous SSMs

composed of silicon neurons, with the perspective of incorporating
state-dependent behavior in a large neuromorphic system dis-
tributed across multiple chips.

Implementing a Simple Two-State FSM as a SSM. Fig. 1 illustrates, for
example, how a simple two-state FSM is mapped into an SSM
composed of three coupled sWTA networks. Two sparsely con-
nected sWTA networks (horizontal and vertical rectangles in Fig.
1B) provide Nq distinct populations, each able to reliably maintain
persistent activity. However, these populations compete with one
another via their underlying sWTAdynamics so that only one of the
states is expressed (Materials and Methods). A third “transition”
sWTA network (Fig. 1B, Center, shaded square) integrates external
inputs and state activities to decide the triggering of state tran-
sitions. Each population in the transition sWTA network responds
to the presentation of exactly one symbol and one state, and the
network’s winner-take-all functionality permits only one population
to be active at any time. The connections between the transition
populations and the target state populations are set according to
the required FSM state diagram. The SSM input symbols are
encoded in an external source of address events, generated on
a desktop PC or by another neuromorphic chip. The SSM can
produce an output symbol after an input symbol is presented. This
is achieved by connecting appropriate transition populations to
particular populations in a fourth sWTA that encodes output
symbols. The winning population of this output sWTA encodes the
current output symbol, which we accept as reporting the agent’s
responses in the task. In principle, these outputs could be used to
drive an explicit motor output such as a robotic arm, or laser
pointer, that could physically indicate the agent’s response.
The final step of the configuration method is to map the abstract

SSM architecture onto the hardware neurons of the VLSI chips by

Fig. 2. Context-dependent visual task. Two visual objects, a horizontal and
a vertical bar, aremoving on a screen and bouncing off its borders. A visual cue
flashing at 30 Hz on the upper right corner of the screen for 2 s (red) indicates
that the subject must attend to the horizontal bar (indicated by a circle) and
report with output A if it enters the right half of the screen. If the initial cue
appears on the upper left corner (blue), then the task is inverted: The subject
must attend to the vertical bar and report B if the attended bar enters the left
half of the screen. The experimental stimuli were presented as black bars
against a light background (colors here are used only for the sake of clarity).
The agent must respond as soon as the screen midline is judged to be crossed:
this fuzzy condition results in different response latencies.

Fig. 3. Real-time neuromorphic agent able to perform the context-dependent visual task. Two moving oriented bars are shown to an event-based 128× 128
“silicon retina” (22). The silicon retina output events are preprocessed in software to detect orientation and routed accordingly to one of two possible feature
maps, implemented as 32× 32 sheets of VLSI I&F neurons. The events produced by the feature maps are retinotopically mapped to a selective attention chip
(SAC), which selects the most salient region of the visual field by activating a spiking neuron at that position (black circle in the Saliency map box). The input–
output space of the SAC is divided into five distinct functional regions: left (L), right (R), border (X), and cues (C1, C2). The events from each of these regions
are routed to the appropriate transition neurons of the SSM. To focus on the desired target, the system must attend to one of the two bars. This is achieved by
modulating the attentional layer with a state-dependent top–down attentional feedback from the SSM. In the neural architecture, this is implemented by
inhibiting the features corresponding to the bar that should not be attended to (Materials and Methods). Transitions that do not change the state are
omitted in the “State-Dependent Behavior” diagram, to avoid clutter. The snapshots shown in the “Pre-processing” and “Selective Attention” diagrams
represent experimental data, measured during the experiment of Fig. 4, in the period when the state B0 was active. An additional sWTA network (not
displayed) is stimulated by the transition populations to suppress noise and to produce output A or B.

Neftci et al. PNAS Early Edition | 3 of 9

EN
G
IN
EE

RI
N
G

N
EU

RO
SC

IE
N
CE

PN
A
S
PL

U
S

adjusting the neuron circuit bias voltages and by setting the event
routing tables that implement the connectivity between the three
sWTA networks (Materials and Methods). The bias voltages de-
termine the operation of the physical neurons on specific neuro-
morphic chips and are set only once (independently of the particular
SSM that is implemented). The routing tables must be written for
each different machine.

Implementing an Agent Able to Perform a Context-Dependent Visual
Task. We implemented our chosen cognitive task (Fig. 3, Lower,
“State-Dependent Behavior”) in a neuromorphic system, using
the principles outlined in the simple example above. In this task
the agent observes a visual scene presented on a computer dis-
play screen via a “silicon retina” vision sensor (Fig. 2). The scene
contains two independently moving black bars on a light back-
ground. The bars move diagonally across the screen and rebound
off its borders. The vision sensor generates action potential-like
address events when and where its pixels detect local changes in
contrast (22) due to the motion of the bars. These asynchronous
address events are processed by real-time software (24) that
detects local stimulus orientation and assigns a vertical or hori-
zontal orientation label to each event. The events are then
transmitted to a multineuron chip comprising an array of 64× 32
integrate-and-fire (I&F) neurons. Depending on their orienta-
tion and retinal location, they are routed to one of two reti-
notopically organized orientation feature maps. Each feature map,
formed by a 32× 32 sheet of VLSI I&F neurons, responds linearly
to the excitatory feed-forward input generated by the orientation
maps and to the top–down attentional inhibitory feedback input
resulting from the SSM computation. The output spikes of the two
feature maps converge to the 32× 32 input synapses of the selective
attention chip (SAC). The net current produced by the SAC
synapses represents a saliency map of the visual field. The SAC
then selects the region of highest salience, via local winner-take-all
circuits, and activates the output neuron corresponding to that
location. The SAC input/output space is partitioned into five scene
subregions: Left (L), right (R), and border (X) regions represent
current positions of stimuli, whereas the cue regions (C1 and C2)
indicate which of two contexts is in force. The output events from
each of these regions are routed to the appropriate transition
neurons of the SSM (Fig. 3,Lower, “SaliencyMap” box). The SSM
processes these symbols according to its embedded state diagram
(Fig. 3, Lower, State-Dependent Behavior). Thus, the left branch
of the SSM recognizes the sequence C1 L R (corresponding to
a target moving from the left-hand to the right-hand side of the
screen) and generates an output A, whereas its right branch rec-
ognizes C2 R L and outputs B. The bars can in principle traverse
the midline after reflecting off a screen border. This trajectory
results in an invalid stimulus pattern and should be ignored. The
SSM achieves this by producing no output and returning to the idle
state when the object moves to the border region X.
Theagent is required toattend toonly oneof the twoorientedbars,

accordingly with the presented cue. Thus, depending on the context,
a bar canbe considered either a target or a distractor.The selectionof
the appropriate target is achieved by biasing the competition (25) on
the saliency map: The active state in the SSM modifies the saliency
map by strongly inhibiting the feature map corresponding to the
distractor (Fig. 3, “top–down attentional feedback” pathway). Con-
sequently, the SAC selects the input provided by the noninhibited
target feature map.
An example trial is shown in Fig. 4. The agent is in its idle state

when the initial context cue C2 is displayed by the experimenter,
indicating that the agent should perform the B subtask (attend to
the horizontal bar). The C2 stimulus triggers the SSM to switch
from idle to B0 (Fig. 4, Right Middle). This state encodes both the
context in force and which of the two feature maps is inhibited.
In this case the activity of B0 inhibits the horizontal feature map
via the top–down connections.

On input R, the SSM switches fromB0 to B1 (Fig. 4,Right Middle,
yellow to red spikes in raster plot) while continuing to inhibit the
horizontal featuremap.When the target in the visual input enters the
left half of the screen, the population L of the SAC activates (Fig. 4,
Right Top, arrow in raster plot). As a result, the SSM produces the
correct output (B) and transitions back to idle, eventually releasing
the top–down inhibition. Shortly afterward, the experimenter
starts a second trial by displaying theC1 cue. The agent successfully
completes this trial by generating an output A.
The effect of the top–down attentional feedback can be seen in

the snapshots of the feature map activity shown in Fig. 3. In this
snapshot the B0 population is active (Fig. 4, Right Middle) and so
inhibits the horizontal feature map (evident also from the SAC
activity in Fig. 4, Left), until the agent returns to its idle state. To
solve this task, the visual preprocessing subsystem required 3,072
spiking neurons, whereas the SSM required 608 neurons.

Robustness and Scaling. The synthesis method we propose can in
principle transform FSMs of arbitrary size into their corre-
sponding SSM (16).
Scaling properties of the state machine are conserved under this

transformation. The size of implementation is dominated by the
size of the transition mechanisms for both SSMs and FSMs. In the
worst case of a full transition matrix, both types of state machines
scale as N2

q . We used a full transition implementation in our sys-
tem because we wished to evaluate a variety of SSMs by rewiring
the same set of modules in our robustness tests. This option means
that the state machine has maximum size for the number of states
implemented. However, a SSM designed for specific tasks, with
fewer possible transitions, would be quite small.
Hardware implementations of state machines can produce

errors due to delays and glitches of the logic gates (26). In our
SSM implementation, the errors are caused by device mismatch,
noise, and finite-size effects. Most SSM errors occurred during
state transitions, either because an incorrect state population
became active or because the activity of an active state pop-
ulation decayed (i.e., did not remain in its persistent state) due to
transient fluctuations in neural activity. The chances of incorrect
transitions grow with the size of the SSM because each transition
is the result of one population winning the competition between
at most NsNq others in the sWTA.
We explored whether large and complex physical SSMs could

in principle be built using our hardware by analyzing how errors
affect the system’s ability to process long strings. We did this by
synthesizing 10 randomly specified state machines of size Nq ¼ 5
and Ns ¼ 5, transforming each of these to its corresponding SSM,
and then measuring the number of consecutive symbols the SSMs
could successfully process without making an incorrect transition
(Materials and Methods). The curves and their shadings in Fig. 5A
indicate themean and the SD of correctly processed string lengths
over the collection of random state machines.
The agent is particularly sensitive to the ambiguous situation in

which an identical input could induce a transition from both the
current state and the new state. These errors are due to an am-
biguity as to when the stimulus ends: for example, in the state
machine of Fig. 1A, an X vs. an XX. In the SSM, the effect of such
ambiguous transitions is reduced by matching the input duration
to the period of the oscillatory behavior that emerges from the
network interactions in the sWTAs (SI Text). Despite this coun-
termeasure, ambiguous transitions were less accurate, with a suc-
cess rate of 88.97%, vs. 95.44% when the transitions were
nonambiguous (Fig. 5B). The proportion of correct transitions was
highest for the self-transition type (97.40%), because the pop-
ulations implementing them were not wired back to working-
memory populations and therefore had little or no effect on the
SSM. On average, 93.43% of the transitions we recorded were
carried out successfully, which is significantly better than random
(Fig. 5B, thick line, 20%). The proportion of accurately processed

4 of 9 | www.pnas.org/cgi/doi/10.1073/pnas.1212083110 Neftci et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1212083110/-/DCSupplemental/pnas.201212083SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1212083110

strings decreases exponentially with length (Fig. 5A). Randomly
generated SSMs without ambiguous transitions could process
about 60% of the presented strings on average, whereas this
number fell to 20% for SSMs having ambiguous transitions. The
SSM designed to solve the task of Fig. 2 could correctly process
82% of strings of length 20 (labeled “Visual task” in Fig. 5A).
State-dependent tasks are demanding even for humans, who
exhibit performances comparable to those achieved by the de-
scribed agent. For example, in ref. 27 human subjects were able
to achieve an accuracy of 98.6% in a working-memory task of
similar complexity (requiring five states) after extensive training
lasting 800 trials.
These results agree with the robustness tests made for the ab-

stract coupled sWTA networks (16) (where the authors show
greater than 90% reliability for four-state machines with moderate
noise level) and with the network proposed in ref. 9, which
implements a five-state FSMable to execute 95–97%of transitions
correctly after extensive training. These results also confirm that
the configuration procedure we propose can robustly implement
a randomly specified SSM on hardware composed of noisy and
imprecise neural circuits, with complexities comparable to those of
neurally plausible software models used for solving cognitive tasks
(9, 28–31).
Robustness is improved in these networks by reducing fluctua-

tions in the neural activity of the sWTA. This reduction can be
achieved by increasing the number of neurons per population or

the number of their synapses in each population (32). Other
methods for improving robustness include adaptation and learning
mechanisms such as those proposed in ref. 31 as well as probabi-
listic and stochastic mechanisms (33), for example to implement
probabilistic inference with Markov models (34).

Discussion
We have described a method for the configuration of simple
cognitive behaviors on electronic neuromorphic neural systems
and demonstrated a typical cognitive task in which a neuro-
morphic agent is required to classify in real-time motion patterns,
conditional on a contextual signal. This task may appear modest,
but it should be noted that similar tasks are used routinely in
experiments designed to probe cognition features such as working
memory, action selection, and context-dependent sensorimotor
mappings in monkeys and humans (11, 28, 35). Of course, such
cognitive tasks could in principle be simulated on digital com-
puters using neurally plausible models (31, 36–38). Indeed, Elia-
smith et al. have recently demonstrated how some simple cognitive
tasks can be systematically compiled onto the connectivity of 2
million simulated spiking neurons (39). In contrast, our goal was to
demonstrate that simple behaviors can be implemented in a real-
time electronic neuromorphic system composed of asynchronously
communicating neurons.
Even in the ideal world of digital simulation, the configuration

of simple cognitive tasks is not straightforward. The agent must

Fig. 4. Results of the visual task experiment. (Left) The silicon retina output (Upper) and the SAC output (Lower). The axes respectively represent the X-Y
coordinates of the events and the color encodes time. The scattered events around the main stimulus are due to spontaneous activity in the silicon retina. The
top–down modulation strongly inhibited the feature map corresponding to the distractor (Results). For this reason, in the Lower panels, only the target
associated to the context in force is observed. The output of the SAC is routed to the corresponding transitions neurons in the SSM (Fig. 3). (Right Top) The
raster plot of the routed events is shown. The detection of the patterns A and B is reported by the output populations OutA and OutB, as shown in the Right
Middle raster plot. The arrows show a clear example of state-dependent computation: Input L induces either an output B or no output, depending on the
context in force. Right Bottom plot shows the mean firing rates of the respective populations.

Neftci et al. PNAS Early Edition | 5 of 9

EN
G
IN
EE

RI
N
G

N
EU

RO
SC

IE
N
CE

PN
A
S
PL

U
S

construct suitable context-dependent sensorimotor mappings.
These require mechanisms for working memory, decision making,
and action selection. Suchmechanisms pose a variety of challenges
for artificial neural systems (29–31, 36, 40), and so behavioral tasks
are not easily programmed even into abstract models of neuronal
computation. If the simulation commits to the neuronal level of
operation, the configuration problem becomes evenmore difficult.
For example, Hopfield networks, multilayer perceptron networks,
or liquid state machines are powerful computational models that
could in principle be used to configure neural hardware to solve
state-dependent tasks. However, their task-related architectures
emerge through protracted training, and the connection patterns
by which these learned networks finally achieve their performance
are usually opaque and bring few insights into their possible gen-
eralization to other tasks or systems.
In the less ideal world of physical implementation of neurons,

the above problems are compounded by the realities of circuit
design. Although neuromorphic chips are fabricated using stan-
dard CMOS VLSI foundries, their electronic circuits are unlike
conventional industrial digital or analog circuits. They are a hy-
brid of analog and digital technologies, and their analog tran-
sistors usually run in the subthreshold regime to emulate very
compactly the crucial functional characteristics of biological
neurons (41, 42). Consequently, neuromorphic circuits are sub-
ject to substantial fabrication variability (device mismatch) and
operating noise. Unlike digital circuits, analog circuits require
dedicated signal restoration mechanisms to avoid signal cor-
ruption through successive stages of processing (3). A similar
signal restoration problem holds for biological neurons, as was
quickly recognized by von Neumann when he considered alter-
native architectures for early computers (2).
Why then develop a neuromorphic computational technology

beset by such difficulties, in the face of the hugely successful digital
approach? The reason is that the reliability of digital systems
comes at high cost of circuit and power dissipation. These costs
arise out of the need to encode and then simulate numerically the
physics of neurons, rather than emulating directly the physics
itself, as neuromorphic systems strive to do. This distinction is il-
lustrated very dramatically by comparing the power dissipation of
a state of the art supercomputer simulation of say 1 million neu-
rons with a state of the art neuromorphic emulation of 1 million
neurons. Modha’s recent impressive simulation of 1010 neurons
running only a hundred times slower than real time on the IBM

Bluegene/Q (43) dissipates some 10 MW, whereas a real-time
neuromorphic emulation of 106 neurons on Boahen’s “Neurogrid”
dissipates about 3.1W (44). This comparison indicates that even at
the system level neuromorphic implementations are 1,000-fold
more efficient (power/neuron) than their digitally simulated
counterparts and suggests that significant advantages could accrue
by deploying neuromorphic systems for useful processing.
Our approach may appear to be relevant only to systems

whose physical implementation layer is composed of poorly
specified or unreliable physical components. However, similar
concepts to these may become relevant even to digital systems as
they scale up to sizes where the conventional model of complete
specification, validation, and control is no longer feasible.
Our key insight in dealing with such systems is that the uncertain

hardware elements should by simple local mappings contribute to
a more computationally stable intermediate layer. In our example,
it is this intermediate abstract neural architecture that couples the
behavioral model to the hardware (or even biological) neuronal
implementation. This intermediate layer serves three purposes.
First, it provides computational primitives on which behaviors are
easily cast and learned. Second, these primitives provide basic
signal processing properties necessary for steering and stabilizing
processing such as signal gain, signal restoration (17), and multi-
stability (45). Finally, the layer of primitives hides the details and
variability of the neuronal hardware implementation from the
behavioral level. Biology may have discovered a similar strategy,
for example in the neocortex, which appears to be a sheet of es-
sentially similar local circuitry that can be configured to satisfy
a variety of processing tasks (12).
We chose an intermediate abstract neural architecture that is

composed of sWTA neural network modules. The sWTA opera-
tion reports the strongest subset of a collection of inputs and op-
tionally reproduces them with a specifiable gain (46, 47). The
connectivity necessary for constructing sWTAs is consistent with
that observed among neurons in the superficial layers of the
neocortex (48), and so this circuit has been proposed as a potential
neural computational primitive (12) that can be combined easily
and stably in large networks that exhibit attractor dynamics (18).
Among other functions, these networks can also be configured as
SSMs (16, 18). However, these SSMs are unlike their classical
digital counterparts, in that they combine digital selection with
analog signal processing properties (45), an intriguing duality that
we have exploited here. Also the sWTA networks used to imple-
ment SSMs differ from digital systems, in that they restore their
input signals toward patterns stored in their connections, rather
than toward logic levels (Fig. S1). Indeed, the SSM is not simply
an imperfect replacement for a conventional FSM based on
traditional electronic hardware, but rather a canonical com-
putational primitive for synthesizing complex behaviors in
neuromorphic systems.
The ability to synthesize behaviors on the SSM has a number of

appealing features: First, cognitive tasks of the kind described here
can be designed at the FSM state diagram level, using a variety of
computer-aided design tools, which is much more convenient than
designing a neural network from scratch. Second, the abstract
computational layer, composed of modular sWTA networks, can
be easily mapped onto multiple neuromorphic chips. Third, the
parameters of the sWTA networks can be reliably and automati-
cally mapped onto the electronic voltage and current biases of
the CMOS electronic neurons (19). Finally, only a small number of
connections between the transition neurons and the state pop-
ulations need to be specified or learned to achieve a desired
functionality. This property can be useful for framing the design of
learning algorithms and for reducing the number of on-chip plastic
synapses required to implement autonomous learning of behaviors
(7, 49, 50). The complexity of a learning problem is proportional
to the dimensionality of the to-be-learned parameters (51).
Providing a computational substrate that enables learning of

Fig. 5. Robustness of randomly specified SSMs. (A) Performance measured as
the percentage of correctly processed strings as a function of string length. To
emphasize the effect of such errors, we separated the SSMs into two classes,
with (red) and without (green) ambiguous transitions. The shaded regions
show the SD over a collection of five randomly specified state machines. The
blue curve shows the accuracy of the SSM used for the context-dependent
visual task (Fig. 3). Each SSM was run with 50 different strings of length of 20.
(B) Proportion of successful transitions per type of transition, namely self-
transitions and ambiguous (AT) and nonambiguous transitions (T), computed
from 3,542, 2,717, and 3,417 transition measurements, respectively. The the-
oretical chance level is computed by assuming arbitrary transitions regardless
of the input (thick black line), meaning

�
1
Nq

�n
.

6 of 9 | www.pnas.org/cgi/doi/10.1073/pnas.1212083110 Neftci et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1212083110/-/DCSupplemental/pnas.201212083SI.pdf?targetid=nameddest=SF1
www.pnas.org/cgi/doi/10.1073/pnas.1212083110

complex behaviors by modifying only a small number of syn-
apses thus reduces both the time and number of data samples
required (13, 52), a procedure analogous to regularization in
learning theory.
The state-encoding scheme that is adopted in the SSM can be

extended to more biologically plausible, distributed representa-
tions. Models of distributed state encodings were shown to be
compatible with experimental observations of perceptual domi-
nance (53), position encoding in grid cells (54), context and task
rule encodings (31), and taste processing (55). Extensions to the
SSM of this sort can enable the neuromorphic implementation of
more versatile hidden Markov models (55), which can be used to
solve a wide variety of machine-learning tasks (34).
The neuromorphic hardware used in this work to solve the

behavioral task comprises multiple prototype chips built to explore
general principles of neural computation in hardware. The chips
were not designed with this specific application in mind, and the
overall system represents a proof of principle. Its success now
opens the way for designing a more specific neuromorphic system
composed of large fields of sWTA networks for efficient state-
dependent sensory-motor processing. The real-time nature of
these neuromorphic circuits and networks, together with their
compactness and low-power features, will allow their integration
into autonomous robotic platforms to augment the event-based
architectures that are already being developed (56). In this pro-
totype the visual processing (visual stimulus orientation detection)
was performed by real-time address-event processing software
(57). In future versions this processing could also be performed in
neuromorphic hardware by using simple-cell orientation selectivity
hardware models (58, 59) or event-driven convolution chips (60).
Overall, the important insight of this paper is that the abstract

layer composed of sWTA provides reliable processing on the un-
reliable underlying neuromorphic hardware, while simplifying the
programming of high-level behavior. This approach is analogous to
the manner in which software is used to program and compile
computational processes in general purpose digital computers, ex-
cept that the underlying neuromorphic hardware is radically dif-
ferent from digital ones in both system concept and electronic
implementation. The approach is sufficiently general to be used on
a wide range of electronic neural networks that have reconfigurable
synaptic weights and reprogrammable connectivity (6, 7, 61).

Materials and Methods
Mathematical Tools for Analyzing Networks of VLSI Spiking Neurons. We use
a mean-field approach (33, 62, 63) to model the spiking activity of the sWTA
networks. In a mean-field model, the state variables represent collective
dynamics of the neurons composing the population, via analytically derived
activation functions. The mean-field approximation is appropriate when the
effect of the synaptic inputs is very small but the overall firing rate is high.
For our experimental system, this means (i) the charge delivered by each
spike to the postsynaptic neuron is small compared with the typical charge
necessary to make the neuron spike, (ii) there are a large number of afferent
inputs to each neuron, and (iii) the spike times are uncorrelated. The net-
work parameters were chosen to satisfy these assumptions.

Theworkingmemory used tomaintain state is supported by self-sustained,
persistent activity. Persistently active states can be stable if the dynamics are
governed by a slow temporal component, such that the temporal fluctuations
are small and the spiking activity in the network is asynchronous (62, 64). In
our experiments, the time constants of the excitatory VLSI synapses lie in
the “NMDA regime” ð50  −   150 msÞ (62), and so the dynamics of the neural
activity are governed by the synaptic dynamics. Slow time constants in the
network result in a “low noise regime”, in which the mathematical formu-
lation of the dynamics becomes tractable. In this regime, the firing rate of
a spiking neuron population can be approximated with a threshold-linear
activation function, σð·Þ ¼ maxð·; 0Þ (19, 63). For convenience, we call a pop-
ulation described by a mean-field state variable a linear threshold unit (LTU).
The equations describing the dynamics of n LTUs are governed by the syn-
aptic time constant τ,

τi _xi ¼ xi þ σ

 XN
k¼0

wikxi −T

!
; i ¼ 1; . . . ;n;

where wik is the weight of the connection between LTUs k and i, and T is the
threshold due to the neuron’s leak. The state variable x describes the
“synaptic state”, instead of the firing rates, but these two are proportional
in steady state (19). In this interpretation, τi is equal to the synaptic time
constant. The weight is w ¼ Mpq, where q is a dimensionless real number
representing the synaptic efficacy, M is the number of spiking neurons in
a LTU, and p is the probability that the neurons in the LTUs connect to each
other. In our implementation, we varied both p and q to configure the
weight. The systematic translation between the LTU model and VLSI neuron
models is explained in ref. 19.

Configuration of the Soft Winner-Take-All Networks. We briefly describe the
mathematical methods underlying the configuration of the sWTA networks
to implement the desired SSM. Amore detailed discussion can be found in ref.
16. We begin with the stability of a single persistent activity state and then
describe the transition between two states. Fig. 1C shows the recurrent
couplings in the spiking neural network that implements the sWTA. The
excitatory neurons in the sWTA network are grouped into subpopulations,
each of which is abstracted by one LTU. The excitatory LTUs excite them-
selves with weight wE and their respective inhibitory unit with weight wEI.
When the inhibitory units activate, they inhibit their respective excitatory
units with weight wIE. Let xE be the activity of an excitatory unit and xI be
the activity of the inhibitory unit. The dynamics of these two units are de-
scribed by the differential system

τE _xE ¼ − xE þ σðwExE −wIExI − TE þ bÞ;
τI _xI ¼ − xI þ σðwEIxE −TIÞ;

where TE and TI are the thresholds of the excitatory and inhibitory LTUs, re-
spectively; b is the externally applied input; and τE and τI are the time constants
of the excitatory and inhibitory LTUs, respectively. A straightforward linear
stability analysis shows that a persistent activity state is stable if (65)

Λ > 0   and   wE >
TE
TI

wEI þ 1;

where Λ ¼ ð1−wE þwEIwIEÞ is the gain of the sWTA circuit and c ¼
ðwIETI − TEÞ (Fig. S4). The firing rate in the active state is c

Λ.
We now turn to the transition between two arbitrary states, represented

by two LTUs, labeled for convenience pre and post. A nullcline analysis
(SI Text) shows that a transition from pre to post occurs if an input

b>bmin ¼ c
�
wIEwEI

Λ − 1
�

is provided to post. Two recurrently coupled sWTA

networks can be used to maintain the states (16, 18). Each state is then
implemented by two populations in the two identical sWTA networks,
excitatively coupled to each other, with a coupling of weight γ verifying
wE ¼ αþ γ, where α is the excitatory feedback within each state population
(Fig. 1). Using two sWTAs allows us to build the transition sWTA and the
state-holding sWTA on the same chip, which would otherwise be difficult
due to the limited number of synaptic weights we can distinctively set in our
hardware. The analysis remains identical to the single sWTA case, because
the states of the two sWTA networks are guaranteed to remain synchro-
nized (18). Therefore, we study the activity of the two state-holding pop-
ulations using one LTU.

The activation of post is conditional on the activation of pre and the
external input. This conditional branching is implemented by a “transition
sWTA network”. One of its subpopulations, T, activates when these two
conditions become true and strongly stimulates post in the state-holding
sWTA (Fig. S3). The transition sWTA is configured such that no persistent
activity state exists. In addition, we assume that the inhibitory synapses are
much faster than the excitatory synapses ðτI � τEÞ, such that xI can be ap-
proximated as steady state ðτI _xI ≅ 0Þ, and that the inhibition common to pre
and post is always active such that we can omit the threshold function for xI.
The responses of the three LTUs in steady state are then

xpre ¼ σ
�
wExpre −wIEwEI

�
xpre þ xpost

�þ c
�
;

xT ¼ σ
�
wETxT − cT þ ϕ1xpre þ bin

�
;

xpost ¼ σ
�
wExpost −wIEwEI

�
xpre þ xpost

�þ c þ ϕ2xT
�
;

with cT ¼ σðwIEwEIxT þwIETIÞ− TE . ϕ1, ϕ2 are the synaptic weights between
the state-holding sWTA and the transition sWTA, and wET is the weight of the
excitatory coupling in the transition sWTA.

Neftci et al. PNAS Early Edition | 7 of 9

EN
G
IN
EE

RI
N
G

N
EU

RO
SC

IE
N
CE

PN
A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1212083110/-/DCSupplemental/pnas.201212083SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1212083110/-/DCSupplemental/pnas.201212083SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1212083110/-/DCSupplemental/pnas.201212083SI.pdf?targetid=nameddest=SF3

To drive the transition from pre to post, we exploit the supralinear re-
sponse of the sWTA:When configured appropriately, the response to the sum
of two inputs can be much larger than the sum of the responses to each input
taken separately. The external input bin projects to T and verifies xTðbinÞ<
bmin=ϕ2, such that post cannot be activated by the input alone. When pre is
active, the transition population T receives an input equal to c=Λϕ1. To avoid
activating post with the state input alone, the ϕ1 coupling must verify
xTðc=Λϕ1Þ<bmin=ϕ2. Finally, to trigger a transition to post when both pre
and the input are active, xT must reach at least bmin=ϕ2. This means that bin

must drive T to satisfy ϕ2xT >bmin. The parameters used in the neuromorphic
setup are provided in Table S1.

The external input consisted of short bursts of spikes to the designated
transition neurons. The duration of the burst was manually adjusted around
300 ms once the chip parameters were set, which roughly corresponds to
the period of the oscillatory behavior that emerges from the network
interactions in the sWTAs (SI Text and Fig. S2). The output of the SSM is
implemented by projecting the transition population activities or the state-
holding population activities to subpopulations in a fourth sWTA network.

Neuromorphic Hardware and Configuration Method. The multineuron chip
used in the neuromorphic setup features a network of low-power I&F
neurons with dynamic synapses. The input and output communication of
spiking activity of the neurons is encoded using the address-event repre-
sentation (AER) protocol (66). In AER, digital events produced by the spiking
neurons are transmitted through a single digital communication pathway
via time multiplexing. The chip can be interfaced to a workstation through
dedicated boards that allow one to stimulate the synapses on the chip and
monitor the spiking activity of the neurons.

The SSM consists of three recurrently connected sWTAnetworks, coupled to
each other through an AER mapper board (67). The neural circuit imple-
menting the sWTA is illustrated in Fig. 1C. The three sWTAs are implemented
in a multichip setup composed of two chips: one providing up to 2,048 excit-
atory neurons and another providing up to 128 inhibitory neurons. The 2,048-
neuron chip contains 32 networks of 64 neurons, each tied to three differ-
ential-pair integrator synapses (68) that are stimulated by externally provided
address events. In addition, there are local hardwired couplings between the
first and second nearest neighbors and self-excitation synapses (69). The lat-
eral excitatory connections were designed to implement the cooperation in
a one-dimensional sWTA operation. The 128-neuron chip is of similar design
and was used to implement the global inhibition (20). Both chips have been
fabricated using a standard 0:35 μm CMOS process and cover areas of about
17 mm2 (2,048 neurons) and 10 mm2 (128 neurons), respectively.

The SSM can produce an output after each incoming symbol. The output is
achieved by connecting appropriate transition populations to particular
populations in a fourth sWTA that encodes the output symbols. The output
sWTA network was implemented by a 128-neuron chip that includes hard-
wired excitatory and inhibitory couplings (20).

Our configuration method maps ideal FSMs into their analogous SSMs
composed of silicon neurons and distributed across multiple neuromorphic
chips. All implemented state-dependent behaviors were first specified as
Mealy machines, using the Java Formal Languages and Automata Package
(JFLAP) software (70). Custom-written Python-based software (71) translated
the XML files produced by JFLAP into the event-routing tables and chips
biases used to configure the SSMs. The size of the sWTA was set according to
the number of attractor states (Nq), inputs (Ns), and neurons per LTU.

For SSMs whose output symbols do not explicitly depend on its input
symbols (i.e., similar to Moore machines or automatons), the transition sWTA
emulates a transition matrix with possibly all nonzero entries full transition
matrix. Therefore, the required number of neurons scales as Nexcð2Nq þ N2

qÞþ
3Ninh, where Nexc and Ninh are the number of excitatory and inhibitory
neurons per LTU, respectively. If the output symbol depends on both state
and input symbol (i.e., similar to a Mealy machine), then the SSM requires up
to Nexcð2Nq þ Nq·NsÞ þ 3Ninh neurons. For all our experiments, we chose
Nexc ¼ Ninh ¼ 16. Similarly, the number of synaptic events scaled as NsNq. For
a randomly specified SSM of dimensions Nq ¼ 5;Ns ¼ 5, we observed about

80;000 synaptic events per second when no input was provided, and this
number increased to 300;000 during transitions (Fig. S5). The parameters of
the sWTA networks were initially configured using the methods described in
ref. 19. A calibration mechanism described in ref. 72 was used to decrease
the effect of fabrication mismatch in the transition sWTA. All of the
reported neural firing rates were computed using 30�ms time bins, aver-
aged over all of the neurons in a population.

Robustness Measurements in Randomly Specified SSMs. The robustness of the
SSM is assessed by its ability to correctly process long sequences of symbols. A
random statemachine is constructed by randomly selecting the target state of
the transitions. The state machine generation method was based on the
methods used in ref. 16. The state of the systemwas determined by observing
which population’s activity in the state-holding sWTA exceeded 15 Hz,
500 ms after the end of the input stimulus. The state machine was initialized
to its predefined initial state by direct 300�ms stimulation. The input con-
sisted of 20 consecutive symbols that were separated by 700�ms intervals.
The state switch was considered successful if the system switched to the
correct state and had an activity above 15 Hz. This experiment was repeated
50 times for each SSM. The outcome is analyzed in two ways. In the first
analysis, we computed Xn

s , where Xn
s ¼ 1 if the first n transitions of string s

were correctly processed and 0 otherwise. We reported the number of con-
secutive symbols the SSM had correctly processed, Yn ¼P50

s¼1X
n
s =50 for

n ¼ 1;⋯; 20. For a perfect SSM, Yn ¼ 1;   ∀n, and for a state machine per-
forming at chance level, meaning a transition to an arbitrary state regardless
of the input, Yn ¼

�
1
Nq

�n
, with Nq the number of states. In the second analysis,

we generated a database of all of the transitions of all of the 10 randomly gen-
erated state machines (totaling 9,677 transitions) and computed the proportion
of successful transitions. These were then reported separately for each type of
transition (self-transitions and ambiguous and nonambiguous transitions).

Visual Input and Attentional Preprocessing. The stimuli were generated with
VisionEgg Software (73). The events produced by the 128×128 Dynamic
Vision Sensor (DVS) camera were preprocessed to detect orientation, using
an open-source real-time event-processing program, jAER (57) (using the
built-in SimpleOrientationFilter). The visual events were labeled by the
detected orientation and routed retinotopically to one of the two feature
maps through a network socket. The feature maps consisted of 32× 32 VLSI
I&F neurons that responded linearly to their inputs. Each neuron of the
feature map was receptive to distinct 4× 4 patches of DVS neurons. The
feature map neurons were implemented by the same chip used for the ex-
citatory neurons in the SSM. The events produced in the feature maps were
routed to a SAC (21). The top–down feedback inhibited the feature map
related to the distracting target defined by the ongoing subtask, such that
the activity provided by the nonsuppressed feature map won the competi-
tion in the SAC. In our case, the left branch of the SSM (states A0 and A1)
inhibited the horizontal feature map, whereas the right branch (states B0
and B1) inhibited the vertical feature map. The SSM allowed the state to
switch from one subtask to the other even while it was not in idle, despite
the top–down inhibition. This is because the cue inputs C1 and C2 are not
oriented such that their activity is not completely suppressed by the top–
down feedback. The implementation of the SSM required 608 neurons
(Nq ¼ 5, Ns ¼ 5, Nexc ¼ Ninh ¼ 16). The SAC and the chip implementing the
feature map were part of a second neuromorphic setup that communicated
bidirectionally with the SSM setup through a network socket.

ACKNOWLEDGMENTS. We thank Daniel Fasnacht for designing the AER
infrastructure; Chiara Bartolozzi for the SAC; Tobi Delbruck for discussion and
jAER support; Tobi Delbruck and Patrick Lichtsteiner for the DVS camera; Shih-
Chii Liu, Jean-Jacques Slotine, and Matthew Cook for discussion; and Michael
Pfeiffer and Florian Jug for review. This work was supported by the European
Union (EU) European Research Council Grant “neuroP” (257219), by the EU In-
formation and Communication Technologies Grant “acoustic SCene ANalysis for
Detecting Living Entities (SCANDLE)” (231168), and by the Excellence Cluster 227
(Cognitive Interaction Technology–Center of Excellence, Bielefeld University).

1. Mead CA (1989) Analog VLSI and Neural Systems (Addison-Wesley, Reading, MA).
2. von Neumann J (1958) The Computer and the Brain (Yale Univ Press, New Haven, CT).
3. Sarpeshkar R (1998) Analog versus digital: Extrapolating from electronics to neurobiology.

Neural Comput 10(7):1601–1638.
4. Indiveri G, Horiuchi TK (2011) Frontiers: Frontiers in neuromorphic engineering. Front

Neurosci 5, 10.3389/fnins.2011.00118.
5. Seo J, et al. (2011) A 45nm cmos neuromorphic chip with a scalable architecture for

learning in networks of spiking neurons. Custom Integrated Circuits Conference

(CICC) (Institute of Electrical and Electronic Engineers, New York), pp 1–4.

6. Silver R, BoahenK,Grillner S, Kopell N,OlsenKL (2007)Neurotech for neuroscience: Unifying

concepts, organizing principles, and emerging tools. J Neurosci 27(44):11807–11819.
7. Schemmel J, et al. (2010) A wafer-scale neuromorphic hardware system for large-scale

neural modeling. International Symposium on Circuits and Systems, ISCAS 2010 (In-

stitute of Electrical and Electronic Engineers), pp 1947–1950.
8. Furber S, et al. (2012) Overview of the spinnaker system architecture. IEEE Trans Comput 99:1.
9. Dayan P (2008) Simple substrates for complex cognition. Front Neurosci 2(2):255–263.
10. Asaad WF, Rainer G, Miller EK (2000) Task-specific neural activity in the primate

prefrontal cortex. J Neurophysiol 84(1):451–459.

8 of 9 | www.pnas.org/cgi/doi/10.1073/pnas.1212083110 Neftci et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1212083110/-/DCSupplemental/pnas.201212083SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1212083110/-/DCSupplemental/pnas.201212083SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1212083110/-/DCSupplemental/pnas.201212083SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1212083110/-/DCSupplemental/pnas.201212083SI.pdf?targetid=nameddest=SF5
www.pnas.org/cgi/doi/10.1073/pnas.1212083110

11. Mansouri FA, Matsumoto K, Tanaka K (2006) Prefrontal cell activities related to
monkeys’ success and failure in adapting to rule changes in a Wisconsin Card Sorting
Test analog. J Neurosci 26(10):2745–2756.

12. Douglas RJ, Martin KAC (2004) Neuronal circuits of the neocortex. Annu Rev Neurosci
27:419–451.

13. Bousquet O, Elisseeff A (2002) Stability and generalization. J Mach Learn Res
2:499–526.

14. Yuille AL, Geiger D (2003) Winner-Take-All Networks (MIT Press, Cambridge, MA), pp
1228–1231.

15. Amari S, Arbib MA (1977) Competition and cooperation in neural nets. Systems
Neuroscience, ed Metzler J (Academic, London), pp 119–165.

16. Rutishauser U, Douglas RJ (2009) State-dependent computation using coupled
recurrent networks. Neural Comput 21(2):478–509.

17. Douglas RJ, Mahowald MA, Martin KAC (1994) Hybrid analog-digital architectures for
neuromorphic systems. Proceedings of the IEEE World Congress on Computational In-
telligence (Institute of Electrical and Electronic Engineers, New York), Vol 3, pp 1848–1853.

18. Rutishauser U, Douglas RJ, Slotine JJ (2010) Collective stability of networks of winner-
take-all circuits. Neural Comput 23(3):735–773.

19. Neftci E, Chicca E, Indiveri G, Douglas R (2011) A systematic method for configuring
VLSI networks of spiking neurons. Neural Comput 23(10):2457–2497.

20. Indiveri G, Chicca E (2011) A VLSI neuromorphic device for implementing spike-based
neural networks. Neural Nets WIRN11 - Proceedings of the 21st Italian Workshop on
Neural Nets, eds Bassis S, Esposito A, Morabito CF, Apolloni B (IOS Press, Amsterdam),
Vol 234, pp 305–316.

21. Bartolozzi C, Indiveri G (2009) Selective attention in multi-chip address-event systems.
Sensors (Basel) 9(7):5076–8098.

22. Lichtsteiner P, Posch C, Delbruck T (2006) A 128×128 120dB 30mW asynchronous vi-
sion sensor that responds to relative intensity change. IEEE ISSCC Digest of Technical
Papers (IEEE International, New York), pp 508–509.

23. Deiss SR, Douglas RJ, Whatley AM (1998) A pulse-coded communications infrastructure
for neuromorphic systems. Pulsed Neural Networks, eds Maass W, Bishop CM (MIT Press,
Cambridge, MA), pp 157–178.

24. The jAER open source project (2006) SourceForge web-site. Available at http://sourceforge.
net/projects/jaer. Accessed July 3, 2013.

25. Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu
Rev Neurosci 18:193–222.

26. Kohavi Z (1979) Switching and Finite Automata Theory (Cambridge Univ Press,
Cambridge, UK), 3rd Ed.

27. Krueger KA (2011) Sequential learning in the form of shaping as a source of cognitive
flexibility. PhD thesis (University College London, London).

28. Koechlin E, Basso G, Pietrini P, Panzer S, Grafman J (1999) The role of the anterior
prefrontal cortex in human cognition. Nature 399(6732):148–151.

29. Fusi S, Asaad WF, Miller EK, Wang XJ (2007) A neural circuit model of flexible
sensorimotor mapping: Learning and forgetting on multiple timescales. Neuron 54(2):
319–333.

30. O’Reilly RC, Frank MJ (2006) Making working memory work: A computational model
of learning in the prefrontal cortex and basal ganglia. Neural Comput 18(2):283–328.

31. Rigotti M, Ben Dayan Rubin DD, Wang X-J, Fusi S (2010) Internal representation of
task rules by recurrent dynamics: The importance of the diversity of neural responses.
Front Comput Neurosci, 10.3389/fncom.2010.00024.

32. Amit DJ, Brunel N (1997) Dynamics of a recurrent network of spiking neurons before
and following learning. Network 8(4):373–404.

33. Martí D, Deco G, Mattia M, Gigante G, Del Giudice P (2008) A fluctuation-driven
mechanism for slow decision processes in reverberant networks. PLoS ONE 3(7):e2534.

34. Bishop CM (2006) Pattern Recognition and Machine Learning (Springer, Secaucus, NJ).
35. Asaad WF, Rainer G, Miller EK (1998) Neural activity in the primate prefrontal cortex

during associative learning. Neuron 21(6):1399–1407.
36. Frank MJ, Loughry B, O’Reilly RC (2001) Interactions between frontal cortex and basal

ganglia in working memory: A computational model. Cogn Affect Behav Neurosci
1(2):137–160 10.3758/CABN.1.2.137.

37. Dayan P (2007) Bilinearity, rules, and prefrontal cortex. Front Comput Neurosci,
10.3389/neuro.10.001.2007.

38. Heinzle J, Hepp K, Martin KAC (2007) A microcircuit model of the frontal eye fields.
J Neurosci 27(35):9341–9353.

39. Eliasmith C, et al. (2012) A large-scale model of the functioning brain. Science 338
(6111):1202–1205.

40. Daw ND, Niv Y, Dayan P (2005) Uncertainty-based competition between prefrontal
and dorsolateral striatal systems for behavioral control. Nat Neurosci 8(12):1704–
1711.

41. Liu S-C, Kramer J, Indiveri G, Delbrück T, Douglas R (2002) Analog VLSI: Circuits and
Principles (MIT Press, Cambridge, MA).

42. Indiveri G, et al. (2011) Neuromorphic silicon neuron circuits. Front Neurosci 5:73.
43. Preissl R, et al. (2012) Compass: A scalable simulator for an architecture for cognitive

computing. Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC 2012), ed Hollingsworth JK (IEEE
Computer Society Press Los Alamitos, CA), pp 1–11.

44. Choudhary S, et al. (2012) Silicon neurons that compute. ICANN 2012:121–128.

45. Hahnloser R, Sarpeshkar R, Mahowald MA, Douglas RJ, Seung S (2000) Digital selection
and analog amplification co-exist in an electronic circuit inspired by neocortex. Nature
405(6789):947–951.

46. Feldman JA, Ballard DH (1982) Connectionist models and their properties. Cogn Sci
6(3):205–254.

47. Grossberg S (1973) Contour enhancement, short term memory, and constancies in
reverberating neural networks. Stud Appl Math 52(3):213–257.

48. Binzegger T, Douglas RJ, Martin KA (2004) A quantitative map of the circuit of cat
primary visual cortex. J Neurosci 24(39):8441–8453.

49. Mitra S, Fusi S, Indiveri G (2009) Real-time classification of complex patterns using
spike-based learning in neuromorphic VLSI. IEEE Trans Biomed Circuits Syst 3(1):
32–42.

50. Giulioni M, Pannunzi M, Badoni D, Dante V, Del Giudice P (2009) Classification of
correlated patterns with a configurable analog VLSI neural network of spiking
neurons and self-regulating plastic synapses. Neural Comput 21(11):3106–3129.

51. Vapnik VN (1982) Estimation of Dependences Based on Empirical Data (Springer,
New York).

52. Kearns M, Ron D (1999) Algorithmic stability and sanity-check bounds for leave-one-
out cross-validation. Neural Comput 11(6):1427–1453.

53. Gigante G, Mattia M, Braun J, Del Giudice P (2009) Bistable perception modeled as
competing stochastic integrations at two levels. PLoS Comput Biol 5(7):e1000430.

54. Sreenivasan S, Fiete I (2011) Grid cells generate an analog error-correcting code for
singularly precise neural computation. Nat Neurosci 14(10):1330–1337.

55. Jones LM, Fontanini A, Sadacca BF, Miller P, Katz DB (2007) Natural stimuli evoke
dynamic sequences of states in sensory cortical ensembles. Proc Natl Acad Sci USA
104(47):18772–18777.

56. Bartolozzi C, et al. (2011) Embedded neuromorphic vision for humanoid robots. The
Seventh IEEE Workshop on Embedded Computer Vision, ECVW 2011 (Institute of
Electrical and Electronic Engineers, New York), pp 1–7.

57. Delbruck T (2008) Frame-free dynamic digital vision. Proceedings of the International
Symposium on Secure-Life Electronics, ed Hotate K (Univ of Tokyo, Tokyo) Vol 1,
pp 21–26.

58. Chicca E, Lichtsteiner P, Delbruck T, Indiveri G, Douglas RJ (2006) Modeling orien-
tation selectivity using a neuromorphic multi-chip system. International Symposium
on Circuits and Systems, ISCAS 2006 (Institute of Electrical and Electronic Engineers,
New York), pp 1235–1238.

59. Vogelstein RJ, Mallik U, Vogelstein JT, Cauwenberghs G (2007) Dynamically
reconfigurable silicon array of spiking neurons with conductance-based synapses.
IEEE Trans Neural Netw 18(1):253–265.

60. Camunas-Mesa L, et al. (2012) An event-driven multi-kernel convolution processor
module for event-driven vision sensors. Solid-State Circuits IEEE Jf 47(2):504–517.

61. Arthur JV, et al. (2012) Building block of a programmable neuromorphic substrate:
A digital neurosynaptic core. International Joint Conference on Neural Networks,
IJCNN 2012 (Institute of Electrical and Electronic Engineers), pp 1946–1953.

62. Wang XJ (1999) Synaptic basis of cortical persistent activity: The importance of NMDA
receptors to working memory. J Neurosci 19(21):9587–9603.

63. Fusi S, Mattia M (1999) Collective behavior of networks with linear (VLSI) integrate-
and-fire neurons. Neural Comput 11(3):633–652.

64. Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory
spiking neurons. J Comput Neurosci 8(3):183–208.

65. Neftci E, Chicca E, Cook M, Indiveri G, Douglas RJ (2010) State-dependent sensory
processing in networks of vlsi spiking neurons. International Symposium on Circuits
and Systems, ISCAS 2010 (Institute of Electrical and Electronic Engineers, New York),
pp 2789–2792.

66. Lazzaro J, Wawrzynek J, Mahowald M, Sivilotti M, Gillespie D (1993) Silicon auditory
processors as computer peripherals. IEEE Trans Neural Netw 4(3):523–528.

67. Fasnacht DB, Indiveri G (2011) A PCI based high-fanout AER mapper with 2 GiB RAM
look-up table, 0.8 μs latency and 66 mhz output event-rate. Conference on In-
formation Sciences and Systems, CISS 2011 (Johns Hopkins University, Baltimore),
pp 1–6.

68. Bartolozzi C, Indiveri G (2007) Synaptic dynamics in analog VLSI. Neural Comput 19
(10):2581–2603.

69. Chicca E, Indiveri G, Douglas RJ (2007) Context dependent amplification of both rate and
event-correlation in a VLSI network of spiking neurons. Advances in Neural Information
Processing Systems, eds Schölkopf B, Platt JC, Hofmann T (Neural Information Processing
Systems Foundation, MIT Press, Cambridge, MA), Vol 19, pp 257–264.

70. Rodger SH, Finley TW (2006) JFLAP - An Interactive Formal Languages and Automata
Package (Jones & Bartlett Learning, Sudbury, MA).

71. Sheik S, Stefanini F, Neftci E, Chicca E, Indiveri G (2011) Systematic configuration and
automatic tuning of neuromorphic systems. International Symposium on Circuits and
Systems, ISCAS 2011 (Institute of Electrical and Electronic Engineers, New York), pp
873–876.

72. Neftci E, Indiveri G (2010) A device mismatch reduction method for VLSI spiking
neural networks. Biomedical Circuits and Systems Conference BIOCAS 2010 (Institute
of Electrical and Electronic Engineers, New York), pp 262–265.

73. Straw AD (2008) Vision egg: An open-source library for realtime visual stimulus
generation. Front Neuroinform 2:4.

Neftci et al. PNAS Early Edition | 9 of 9

EN
G
IN
EE

RI
N
G

N
EU

RO
SC

IE
N
CE

PN
A
S
PL

U
S

http://sourceforge.net/projects/jaer
http://sourceforge.net/projects/jaer

