
Bioinformatic Approaches for
Genome Finishing

Ph. D. Thesis
submitted to the

Faculty of Technology,
Bielefeld University, Germany

for the degree of Dr. rer. nat.

by

Peter Husemann

July, 2011

Referees:
Prof. Dr. Jens Stoye
PD Dr. Andreas Tauch

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications at Bielefeld University

https://core.ac.uk/display/15979124?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Gedruckt auf alterungsbeständigem Papier nach DIN-ISO 9706.
Printed on non-aging paper according to DIN-ISO 9706.

To my brother.

Contents

1 Introduction 1

2 Sequencing Technologies – Biological Background 5
2.1 DNA – The Backbone of Life on Earth 5
2.2 Technologies to Assess the Sequence of DNA 8

2.2.1 Traditional: Sanger Sequencing 8
2.2.2 The ‘Next’ Generation: Massively Parallel Sequencing 9
2.2.3 Third Generation: Single Molecule Sequencing 13

2.3 Genome Sequencing . 15
2.3.1 Shotgun Sequencing . 15
2.3.2 Assembly Phase . 17
2.3.3 Genome Finishing . 18

3 Efficient Matching of Contigs 23
3.1 Finding Local Similarities . 24

3.1.1 Smith-Waterman . 25
3.1.2 Seed and Extend Heuristics . 27
3.1.3 Search Space Filtering . 28

3.2 Matching by Filtering with q-Grams . 29
3.2.1 General Idea . 29
3.2.2 Building an Index of the Reference Genome 30
3.2.3 Filtering for Similarities . 31

3.3 r2cat – The Related Reference Contig Arrangement Tool 33
3.3.1 Matching . 34
3.3.2 Visualization . 37
3.3.3 Simple Contig Mapping . 39

i

4 Advanced Contig Layouting using Multiple Reference Genomes 43
4.1 The Contig Adjacency Graph . 44

4.1.1 Notation . 44
4.1.2 Weighting the Adjacency Edges 47
4.1.3 Creating a Basic Contig Adjacency Graph 48

4.2 Finding a Layout of the Contigs . 50
4.2.1 Traveling Salesman Tour Through the Graph 50
4.2.2 Fast Adjacency Discovery Algorithm 52

4.3 Enhancements of the Graph Creation 53
4.3.1 Including Phylogenetic Distances 53
4.3.2 Integrating Additional Information 54

4.4 Variations of the Contig Layouting . 54
4.4.1 Handling Rearrangements . 55
4.4.2 Repeat-aware Layouting . 55

5 Realization of the Software 63
5.1 Implementational Milestones . 63

5.1.1 r2cat . 63
5.1.2 treecat . 64
5.1.3 repcat . 65
5.1.4 htscat . 66

5.2 External Software and Libraries . 68
5.2.1 FreeHEP Graphics Export . 68
5.2.2 Graphviz . 69
5.2.3 NetBeans Platform . 69
5.2.4 Prefuse Graph Visualization . 69

6 Layouting Corynebacteria Contigs 71
6.1 Background and Preparatory Steps . 71

6.1.1 Description of the Datasets . 71
6.1.2 Determining a Reference Layout 74
6.1.3 Parameter Estimation for the Contig Adjacency Graph 74
6.1.4 Other Software for Contig Layouting 77

6.2 Evaluation on Real Sequencing Data . 79
6.2.1 Single Reference Based Ordering 80
6.2.2 Multiple Reference Based Layouting 83
6.2.3 Layouting Repetitive Contigs . 90

7 Summary and Outlook 95

Acknowledgments 99

Bibliography 101

Chapter 1
Introduction

Molecular biology and bioinformatics are entangled by a fortunate synergetic effect:
Advances in biology provide more and other types of data which again drive the
development of computer aided analyses. Advanced analyses, in turn, help to in-
terpret and understand the data and thus lead to more sophisticated theories, and
eventually result in new experiments providing further data. The research field of
genome analysis, for example, progressed tremendously through this effect.

Genomic sequences are considered having a huge potential to gain deeper insight
into the life of organisms, and to shed light on the inheritance of their properties.
Accordingly, techniques for the sequencing of genomes – that is the determination
of their nucleotide sequence – have evolved during the last decades. Especially
the recent high throughput techniques increased the availability and enhanced the
simplicity of sequencing considerably.

Although the popular press occasionally confuses the determination of a complete
genome sequence with a deciphering of the corresponding genome, there is a big
difference. Genomic data are complex and their analysis is often challenging. Fur-
ther, the plain sequence of nucleotides is not all-encompassing, as the finding of
epigenetic information, such as methylation patterns, demonstrates.

Yet, knowing the genomic sequence allows more detailed analyses than observing
only the visible characteristics of a species. In the investigation of a newly sequenced
genome, the locations of putative genes can be searched, or already known genes
can be annotated. Approaches exist which try to computationally fold the proteins
that these genes encode in order to predict their functions.

Besides genes, other functional sequences exist in a genome which are sometimes
recognizable by special nucleotide patterns, so called motifs. Sophisticated motif
discovery programs can detect, for example, transcription factor binding sites which
play a role in the regulation of gene expression.

The subject of comparative genomics profits from the increasing number of already
sequenced genomes. As early as the 18th century, Carl Linnæus tried to order and

1

Chapter 1. Introduction

categorize life. However, the availability of genomic sequences in current times
undoubtedly boosts the accuracy at which a “tree of life” according to Darwins
theory of evolution can be (re)constructed. Opposed to a distinction of species based
on visible characteristics, nucleotide sequences provide a much finer granularity.
This even resulted in taxonomic reclassifications of some species after sequencing
their genome revealed that they actually belong to another genus.

Comparing the gene content of different species can also provide hints on their
evolutionary relationship. To this end, similarities of genomic regions are deter-
mined by aligning the corresponding sequences. Genes with a similar sequence
that occur in distinct genomes are commonly presumed to be homologous which
means that they were obtained from a common ancestor.

If homologous genes of a set of species are given, then, on a more abstract level,
clusters of genes can be searched in which the genes often appear in near proximity
across species. These gene clusters might indicate a certain evolutionary pressure
to stay together, and possibly even imply a functional relation.

Due to evolutionary processes, sometimes genomes become rearranged. That is,
blocks of DNA are displaced, or reversed, foreign pieces are included, or fragments
of the genome get lost or are duplicated. These rearrangements can be studied at
the level of homologous sequences to answer the question which ‘operations’ may
have caused a rearrangement structure that is observed between two species.

Rearrangements can also be investigated at nucleotide level. In bacteria, for in-
stance, an inversion can possibly disable a gene, rendering an originally pathogenic
germ completely harmless. Vice versa, a toxin producing gene can be introduced
into usually innocuous species.

Comparing the genomes of individuals belonging to the same species can help to
gain deeper understanding as well. For example, in humans minor changes in the
genome, the so called single nucleotide polymorphisms (SNPs), are suspected to be
involved in cancer development.

In biotechnology, bacteria are grown to produce desired compounds or enzymes,
and usually the production strains have undergone a process of artificial selection
to increase their efficiency. The comparison of such a production strain with the
wild type it originated from may help to comprehend which genomic changes led
to an enhanced efficiency.

First attempts were successful to create a synthetic ‘minimal’ genome that con-
tains only the genes necessary to proliferate. This opens the door to fabricated
species containing several genes of different species, almost like building blocks, to
generate certain wanted phenotypes or properties.

All these examples show an impressive development. Nevertheless, the analysis
of genomes has not tapped its full potential. Coming back to the initially men-
tioned synergetic effect, maybe some of computer aided analyses will help to find
new aspects worth investigating which then open new fields of research. Genomic

2

sequences are surely a key component in this process, and having more of them
available also drives the development of methods to analyze them.

Sequencing itself is becoming a routine task. Yet, all current sequencing ap-
proaches still have limitations, and the most striking one is the small read length:
To date, only a few hundred bases can be read consecutively from genomes that are
typically several orders of magnitude larger.

Improvements in chemistry, methodology, and machinery in the latest develop-
ments lead to longer reads, an easier handling of the experiments, and a massive
parallelization of the sequencing and therefore also to higher throughput. Though,
it has not changed that in an assembly phase many overlapping reads of a sequenc-
ing run have to be stitched together.

The goal of this assembly phase is to obtain a single and complete nucleotide
sequence of the genome – or of each chromosome in the case of multi-chromosomal
species. Unfortunately, very often this goal is impossible to reach, or at least its
outcome is unreliable. Instead, several contiguous stretches of nucleotides, the so
called contigs, are reconstructed. Missing or unreliable read information leads to
gaps that separate the contigs.

In the process of finishing, these gaps are resequenced in the lab in order to join
the contigs to the desired complete sequence. It is helpful to know which of the
contigs are adjacent to specifically pick the DNA in between for further sequencing.
Instead of trying all possible adjacencies, sometimes the initial sequencing already
provides hints as to which of the contigs are adjacent.

Another established approach is to use sequences of other genomes as a guiding
reference. These reference genomes originate in general from closely related species
that are assumed to have a high degree of synteny. By matching the contigs onto the
reference and analyzing the matches, adjacencies of the contigs can be estimated.

The work presented in this thesis is based on the concept of using reference ge-
nomes to estimate adjacencies of contigs. We present algorithms and approaches
applicable for one or several reference genomes and compare our performance in
an evaluation with real sequencing data. Some parts of this thesis have already been
published in advance [41, 42, 43].

Overview of this Thesis The following Chapter 2 provides the biological back-
ground of this work by describing the role of genomic sequences and the processes
to acquire them. This includes information about recent high throughput proce-
dures, as well as a description of the typical work-flow to sequence whole genomes.

Chapter 3 gives an introduction how to compute similarities between sequences
and proposes a method which we use for matching contigs onto reference genomes.
Additionally, the application r2cat is presented that can be used to create synteny
plots and to arrange a set of contigs according to matches onto a reference genome.

3

Chapter 1. Introduction

The subsequent Chapter 4 contains the main methodical contribution of this the-
sis. It defines the concept of a contig adjacency graph which we use to collect in-
formation about neighboring contigs from related reference genomes. We give the
algorithms to compute this graph and a heuristic to extract the most promising ad-
jacencies of the contigs. Additionally, we discuss variations to include additional
information and provide enhancements to deal with the special case of repetitive
contigs that map non-uniquely to the reference genomes.

In Chapter 5, we describe how the software implementing our ideas has evolved
and which features are currently available. Further, we briefly introduce external
software that we employ.

After this, we show an evaluation of our software in Chapter 6. To this end, we
compare our implementations to other related approaches using contigs from real
sequencing data.

Finally, Chapter 7 concludes and gives an overview of possible improvements and
unintended applications of our methods.

4

Chapter 2
Sequencing Technologies – Biological
Background

In this chapter, we want to provide the biological background for the contents of
the remaining thesis. We start with an introduction to DNA and its role for the
life sciences, and go on with procedures to access the information contained in
DNA molecules, namely their nucleotide sequence. Finally, in Section 2.3, we ex-
plain in this context how genome sequencing projects work, and why they usually
involve bioinformatics.

Some basic biological information presented in this chapter have been extracted
from a textbook on molecular genetics [52], further information about the newer
sequencing technologies were obtained from a recently published Ph. D. thesis [78].

2.1 DNA – The Backbone of Life on Earth

The deoxyribose nucleic acid (DNA) is a key component for life on earth. All liv-
ing organisms contain thread-like DNA molecules which encode most, if not all,
inheritable information. While first experiments and findings with respect to DNA
can be dated back to the 18th century, the role as a material of inheritance was first
published in 1944 by Oswald Avery and colleagues [8]. This publication sparked
the interest of Erwin Chargaff and he began to investigate this promising molecule.
He discovered that the DNA of all organisms feature the same amounts of the bases
adenine (A) and thymine (T) as well as the same amounts of cytosine (C) and gua-
nine (G) and postulated that these bases occur pairwise [21]. The chemical structure
of the bases is shown in the upper part of Figure 2.1 on the following page. In 1953,
James Watson and Francis Crick [102] published a suggestion for the structure of
DNA molecules that is accepted to be valid until today. Inspired by X-Ray crystal-
lography data of Maurice Wilkins [32] and Rosalind Franklin [107] – published in
the same issue of Nature – Watson and Crick proposed a double helix as shown in

5

Chapter 2. Sequencing Technologies – Biological Background

Base PairHelix of

Sugar−Phosphates

Adenine

A

Thymine

T

Cytosine

C

Guanine

G

Figure 2.1: Chemical structure of the four nucleotides and molecular structure of DNA.
Image is licensed under CC BY-SA 3.0 and was adopted from [106].

the lower part of Figure 2.1. The sugar-phosphate backbones of the helix are held
together by hydrogen bonds of the bases on the inside of the helices, comparable
to the steps of a ladder. In each base pair, they proposed, a purine base (A or G)
would bind to a pyrimidine base (C or T). Together with Chargaff’s observations, it
was clear that A has to pair with T, and C pairs with G. In some understatement
the authors wrote: “It has not escaped our notice that the specific pairing we have
postulated immediately suggests a possible copying mechanism for genetic mate-
rial”. This pairing idea laid the foundations for several important discoveries like
the process of DNA replication, the deciphering of the genetic code, and eventually
the first sequencing of a human genome in 2001 [55, 99].

Each cell of any known organism on earth contains genomic DNA that is often
given in several distinct molecules called chromosomes. The nucleotide sequences of
the chromosomes can be separated into non-coding and coding stretches. The latter
are termed genes and their nucleotide sequences describe blueprints for proteins or
other functional molecules which can have a variety of functions, like the enzymatic
digestion of other proteins or the regulation of the expression of other genes. Collec-
tively, these functions of expressed genes determine the properties, the capabilities,
and the appearance of that organism. In a nutshell, the sequence of nucleotides en-
codes the properties of its organism. It is thus desirable to use genomic sequences as
a data source to predict genes and their functions, to discover regulatory pathways,
or to investigate evolutionary relationships of the species on a molecular level.

The process of acquiring the sequence of bases is called sequencing and will be
addressed in the next sections. Please note that the term ‘sequencing’ is often used
ambiguously. Depending on the context, it either refers to the technical process of
reading single bases from fragments of DNA molecules as addressed in the next

6

http://creativecommons.org/licenses/by-sa/3.0/

2.1. DNA – The Backbone of Life on Earth

105
106
107
108
109

1010
1011
1012

19
82

19
85

19
88

19
91

19
94

19
97

20
00

20
03

20
06

20
09

20
12

N
uc

le
ot

id
es

 in
 G

en
B

an
k

Year

Figure 2.2: Size of nucleotide sequences stored in GenBank. Data from Section 2.2.8
of ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt

section, or it stands for the combined work-flow of obtaining the complete genomic
sequence of an organism as described in Section 2.3.

Although genomic DNA molecules usually consist of two strands of nucleotides,
it suffices to sequence and store one of them because the second strand is the reverse
complement of the first one. The number of available genomic sequences stored in
this way is constantly growing. This is in particular consolidated by Figure 2.2 that
shows the growth of GenBank [12, 104], a central database for genetic sequences
hosted by the National Center for Biotechnology Information (NCBI).

The interest of scientists in these DNA sequences is diverse: In the prokaryotic
domain that contains unicellular organisms without a true cell nucleus, like for
example bacteria, some species are sequenced to increase their biotechnological
efficiency. In Corynebacterium glutamicum the genome sequence helped to under-
stand the metabolomic pathway such that the glutamate production could be opti-
mized [50]. Furthermore, pathogenic bacteria like Bacillus anthracis [77] or Mycobac-
terium tuberculosis [23] are investigated to gain insight about their deathly effects.

Eukaryotic genomes feature, in contrast to prokaryotes, a much larger and more
complex genome. Since the effort to sequence such genomes is still rather high, only
few are sequenced completely, which then for example serve as model organisms.
Analyzing for instance the genomic sequence of the model organism Arabidopsis
thaliana [64] has the potential to reveal deeper insights into metabolic pathways
which might be common in other plants. In the evolving field of personalized
medicine, it is imaginable to use the genome of patients to design drugs specifically
tailored to their needs.

A by-product of the availability of genomic sequences is a new dimension of
accuracy in evolutionary trees. While initially the trees to order and categorize life
were constructed based on phenotypical observations, today the available genome
sequences provide a much finer granularity for phylogenetic reconstruction.

7

ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt

Chapter 2. Sequencing Technologies – Biological Background

2.2 Technologies to Assess the Sequence of DNA

As mentioned before, knowing the genomic sequences of species has an invaluable
impact on the understanding of biology. Unfortunately, it is not possible with the
current technologies to acquire the whole genome at once. All available methods are
restricted to sequence only very small parts of a DNA molecule into so-called reads.
These commonly have a length of up to 1,000 nucleotides depending on both the
technology used and also on properties that are specific to the nucleotide sequence.

This section describes, in historical order, the most widely used approaches for
sequencing DNA, and the following Section 2.3 explains the general way to cope
with the read size limitations of these approaches. For a more detailed overview, the
interested reader may look at [44] or [47]. Since there is a rapid evolution regarding
techniques and methods, this overview can only be a snapshot of the current state.

2.2.1 Traditional: Sanger Sequencing

One of the first approaches to sequence DNA was the so-called chain-termination
method, also known as Sanger sequencing [83]. Although the technique was devel-
oped over 30 years ago, it is – with some modifications – still used today. We will
first elucidate the traditional approach and then briefly address the modifications.

In the traditional procedure, the DNA fragment to be read, also termed template,
is first enriched in a process called amplification such that a high number of copies
exists. On each single stranded template copy, a primer sequence is hybridized such
that the complementary strand can be synthesized by an enzyme, the DNA poly-
merase. Starting from the primer sequence, in a polymerase chain reaction (PCR) the
sequence of complementary nucleotides is elongated if sufficient deoxynucleotides
(dNTP: dATP, dGTP, dCTP, and dTTP) are available. If, however, a dideoxynucleotide
(ddNTP) is incorporated, the chain reaction stops and it is not possible to include
further dNTPs. This can be exploited in a statistical way to read the nucleotide
sequence of the template.

To this end, four different reaction sets are prepared in parallel. Each one contains
the four dNTPs where usually one is radioactively marked. Additionally, one type
of nucleotide is provided as ddNTP in a small fraction to one of the four reaction
sets. When adding the template DNA and the polymerase, the chain reaction begins.

Since randomly and with a small chance a ddNTP is incorporated, a collection of
DNA fragments with different sizes of the complementary strand is produced. If
the dideoxynucleotide of a reaction set is for example thymine, it is clear that the
original strand has a complementary adenine at each stop position.

The strands are then denaturated and subsequently separated by size with gel
electrophoresis, for each reaction set on a single lane. Fragments of the same size
form a band where the shortest fragments have traveled the longest way on the
gel. The bands of the radioactively marked complementary strands can then be

8

2.2. Technologies to Assess the Sequence of DNA

visualized by autoradiography. Each visible band corresponds to a single base at a
certain position. By comparing the relative positions of the bands of all four lanes,
the nucleotide sequence of the template can be recovered.

Today, the radioactive markers have been replaced by fluorescent dyes attached
to the ddNTPs, featuring different colors for each base. This allows to combine
the different lanes to a single capillary where the nucleotides are read with a laser
scanner. With all improvements, this technique is able to produce reads of up to
1,000 bases and it is thus still in use in many labs to produce high quality reads.

Newer technologies, however, outperform the Sanger method in terms of totally
sequenced bases per instrument run. The next two sections introduce some of these
high-throughput sequencing (HTS) techniques and elaborate their advantages and dis-
advantages.

2.2.2 The ‘Next’ Generation: Massively Parallel Sequencing

In the last few years, several new approaches to read DNA have been established in
the labs. The intentions for the development of these methods were to reduce the
cost and to increase the throughput of a single sequencing run in comparison to the
Sanger method. Thus they are often referred to as next-generation sequencing (NGS)
technologies. This term is adequate with respect to Sanger sequencing but, as we
will see in Section 2.2.3, there are already successor techniques of the ‘next’ genera-
tion. That is why we call the technologies described in this section “second-generation
sequencing approaches”.

All of the modern approaches have in common that many fragments of the DNA
are processed in parallel, yielding a very high number of reads per sequencing
run. According to Magi et al. [62], second generation approaches follow the general
pattern of first duplicating each fragment many times in an amplification step, while
fixing the copies to a surface, and then reading the sequences of the copies by
iterative cycles of enzymatic reactions and (mostly) imaging-based data collection.

The main disadvantage is that the generated reads are considerably shorter than
the ones from the traditional approach. But it seems only to be a question of time un-
til improvements in the chemistry and methodology enable the first HTS approaches
to keep up with or even outperform Sanger with respect to the read size.

Table 2.1 lists the main features of three well established second-generation ap-
proaches. Each of them and a newcomer technology, for which these data were not
available yet, will be explained in the following paragraphs.

Roche – 454 Sequencer

Introduced in 2005, the GenomeSequencer was the first commercially available
second-generation sequencing platform. Until now, although with refined chemi-

9

Chapter 2. Sequencing Technologies – Biological Background

Table 2.1: Comparison of the main features of three widely available second genera-
tion sequencing technologies; based on Magi et al. [62], updated according to the
company websites as of June 2011.

Roche 454 Illumina GA ABI SOLiD

Amplification method Emulsion PCR Bridge PCR Emulsion PCR
Sequencing method Pyrosequencing Reversible dye

terminators
Sequencing by

ligation
Read lengths 400 – 800 bp 35 – 150 bp 35 – 75 bp
Sequencing run time 0.4 d 2 – 14 d 1 – 7 d
Throughput per day 1 Gbp 6 – 55 Gbp 10 – 30 Gbp
Error rate 0.1% 1.5% 4%

cals, a sequencing by synthesis approach [63] is used that was developed by 454 Life
Science1 which is now a subsidiary of Roche Applied Science.

The 454 sequencing works as follows: First the DNA is fragmented randomly
in small parts of 500 – 1,000 bases, for example by nebulization. Specific adaptor
sequences are then appended to each fragment such that these can bind on the
surface of specially prepared beads. Starting with a single fragment on a bead,
the fragment is amplified to millions of copies in a process called emulsion PCR.
There, the beads with fragment are distributed with PCR reagents in water-in-oil
microreactors such that all fragments are amplified separately. The beads are then
placed, together with DNA polymerase and further enzymes, on an optical array
of fibers. The array consists of several million wells where a single well has the
appropriate dimensions to hold exactly one bead.

After this preparatory step, the reading of the bases employs the pyrosequencing
technique that was developed already in the 1980es [45]. Pyrosequencing is based on
the principle that each incorporation of a nucleotide via DNA polymerase releases
pyrophosphate. The pyrophosphate can then be detected by utilizing the enzymes
sulfurylase and luciferase that produce, in a cascade of reactions, finally a light
emission [70].

To read the sequence of the DNA templates that are immobilized to the beads, the
different nucleotides are flowed cyclically in a fixed order (T, A, C, G) over the optical
array. If in a cycle an A is provided, all template DNAs with a complementary T
as next unpaired nucleotide will produce a light flash. The emitted light from the
millions of copies of the template on a bead is strong enough to be detected with
a CCD camera. While the picture taken is then used for basecalling, the remaining
nucleotides are washed from the plate such that they do not interfere with the next
step in the cycle.

1http://www.454.com

10

http://www.454.com

2.2. Technologies to Assess the Sequence of DNA

Problematic for this approach are homopolymers on the templates, which are re-
gions where the same nucleotide occurs repeatedly. For few nucleotides, the emitted
light is approximately proportional to the number of integrated bases. While two or
three bases are clearly distinguishable, basecalling is not reliable for homopolymers
of length six or more bases due to a saturation in the detector. Thus, 454 reads
tend to have insertion or deletion errors in homopolymer stretches [63]. However,
substitution errors are rare [62].

Illumina/Solexa – Genome Analyzer

One year after 454, the Solexa sequencing platform came on the market. In 2007,
Solexa was acquired by Illumina,2 which started an extensive advertising campaign
resulting in the Genome Analyzer currently being the most frequently used second-
generation sequencing device [62].

The sequencing technology, based on the work of Turcatti et al. [96], is largely
similar to 454’s but has a few essential differences. The DNA is also fragmented but
the amplification occurs directly on the surface of a solid planar glass slide, the flow
cell, with a technique called bridge PCR [1, 31]. During this process, the templates
are covalently attached to the surface and form bridge-like structures. After several
repetitions of bridge PCR, the flow cell consists of spots that contain millions of
copies of each fragment.

The reading of the bases is done, for each spot of the flow cell, again in a highly
parallel fashion. The difference is that a reversible terminator chemistry is employed
for sequencing. For each type of base, the terminator is fluorescently labeled with
a different color, which allows to provide all bases simultaneously in one reading
cycle. After incorporating a single labeled base, the polymerase function stops due
to the terminator which effectively avoids the problems with homopolymers that
are present in the 454 technique. In the next step, all fluorescent dyes are activated
by a laser and an image is recorded which is then used to call the bases in the
different spots. While the nucleotide stays in place, the label and the terminator
are subsequently removed such that the process can be repeated for the next base.
Unfortunately, there is an increasing rate of erroneous base calls towards the end of
Illumina reads since an incomplete removal of the label or terminator can happen,
which hinders a reliable detection of the following bases.

Although the read sizes generated with this approach are substantially shorter
compared to 454, see Table 2.1, Illumina’s Genome Analyzer finds a variety of appli-
cations and thus also customers since the sequencing costs are lower and the total
throughput per run is much higher. Preferred applications include resequencing,
gene expression analysis and single nucleotide polymorphism (SNP) detection.

2http://www.illumina.com

11

http://www.illumina.com

Chapter 2. Sequencing Technologies – Biological Background

We have described the two above mentioned sequencing techniques in little more
detail since they are actively used in the Center for Biotechnology (CeBiTec) at Biele-
feld University. Our labs sequence mostly the genomes of prokaryotes but currently
the purchased Illumina and 454 sequencing devices are also used to sequence the
eukaryotic genome of a Chinese hamster.

The sequencing methods described in the following are not (yet) established in
Bielefeld. Nevertheless, we give a short review to address advances and unique
points of the other available or currently developed methods.

Applied Biosystems – SOLiD

The SOLiD system [85] is based on sequencing by ligation; its acronym stands for
Supported Oligonucleotide Ligation and Detection. The SOLiD sequencing device
is commercially available since 2007 and like the previous techniques widely spread.
Currently, Applied Biosystems3 that is a part of Life Technologies performs the
marketing and sells the ABI SOLiD sequencer.

Like 454, an emulsion PCR is used for the amplification of the fragments but in-
stead of the enzyme polymerase, a DNA ligase is employed in order to read the
bases. The ligase is able to incorporate oligonucleotides – for example octamers
that consist of eight nucleotides – into the complementary single stranded tem-
plate DNA. While the first two bases of each octamer are known and colorcoded
with four fluorescent dyes of different color, the remaining six random bases are
needed to stabilize the binding. Although the four colors ambiguously encode the
16 possible di-nucleotides, they are chosen in a way that knowing the first base and
the color of a di-nucleotide uniquely identifies the second base.

To assess the sequence, the labeled octamers are ligated to the template DNAs and
their color code is called. This has to be repeated in several rounds with varying
starting positions such that every base is covered twice. Together with the color
coding, this serves as an error correction to improve the accuracy of the base calls.

Compared to the other second-generation techniques in Table 2.1, ABI produces
a very high throughput per day but also features the shortest reads. The rather high
error rate in the table is given with respect to the raw color calls and can be reduced
via the implicit error correction.

Ion Torrent – PGM Sequencer

The company Ion Torrent,4 also acquired by Life Technologies, launched towards
the end of 2010 the Personal Genome Machine (PGM). While the fragment prepara-
tion and the cyclic nucleotide washing steps of the PGM Sequencer are comparable

3http://www.appliedbiosystems.com
4http://www.iontorrent.com

12

http://www.appliedbiosystems.com
http://www.iontorrent.com

2.2. Technologies to Assess the Sequence of DNA

to the 454 technology, the incorporated nucleotides are not recognized optically. In-
stead, hydrogen ions are measured that are released as a by-product every time the
polymerase incorporates a nucleotide. In sequential washing steps of the different
nucleotide types, the charge of the released ions is measured for many DNA frag-
ments in parallel on an array chip that contains a layer of semiconductor sensors.
Since in one washing step several nucleotides can be included into the fragment,
this technique suffers also from the homopolymer problem.

2.2.3 Third Generation: Single Molecule Sequencing

In the aforementioned procedures, every piece of DNA has to be amplified such that
the resulting copies produce a signal strong enough to be detected. However, the
amplification process has some severe drawbacks. Besides being time-demanding
and also requiring costly chemicals, the amplification process shows an effect called
amplification bias. Depending on the primer sequences and the PCR settings, some
nucleotide sequences are more difficult to amplify than others. This results in a
varying abundance of the copied fragments that is also manifested in a varying
coverage of reads. With fewer reads it is harder to eliminate sequencing errors. A
technique of reading the bases directly from a single molecule is thus desirable since
it avoids amplification biases. First ideas of such a Single Molecule Sequencing (SMS)
can be dated back to 1989 [49]. Nevertheless, there are several approaches still under
development. In the remainder of this section, we present three techniques with a
high potential to become the third generation of sequencing devices. Thompson and
Milos give a more detailed review about SMS techniques [92].

Helicos – Heliscope

The first commercially available sequencing instrument that uses the SMS technique
is the Heliscope from Helicos Biosciences.5 The sequencing approach was initially
described in 2003 [16] and has already been applied to sequence a viral genome [38]
as well as an individual human genome [75].

The sequencing is similar to Illumina’s approach: First, millions of random frag-
ments of the genomic DNA are immobilized to a glass slide, the difference is how-
ever that no amplification is needed. Again, fluorescently labeled bases with re-
versible terminators are incorporated and an image is taken with a high-resolution
optical microscope [78].

Reads of this method are with an average of 32 bases rather short and also affected
by deletions [75], since it is likely that the emitted signal of a single base is missed
by the detector.

5http://www.helicosbio.com

13

http://www.helicosbio.com

Chapter 2. Sequencing Technologies – Biological Background

Pacific Biosciences – PacBio RS

The company Pacific Biosciences6 has developed a single molecule sequencing tech-
nology that works in real-time (SMRT), meaning as fast as a DNA polymerase can
include nucleotides into single stranded DNA [30]. The device is called PacBio RS;
first commercial units were delivered in mid 2011.

The SMRT approach immobilizes, in contrast to the other HTS procedures, the
DNA polymerase instead of the DNA template. Each polymerase is anchored to the
bottom of a nanoscale reaction well called zero mode waveguide (ZMW) and loaded
with a DNA template. The wells are flooded with fluorescently labeled nucleotides,
each type in a different color, and illuminated by a laser from below. The dimensions
of the ZMWs are chosen in such a way that the laser light cannot travel directly
through the well and only illuminates its bottom. However, the wavelengths of the
fluorescent dyes, when activated by the laser, are able to reach the top of the well
and can be recorded by a camera. During its incorporation by DNA polymerase,
any labeled nucleotide stays significantly longer at the bottom of a ZMW than by
diffusion alone. This allows the SMRT technique to track the nucleotides that are
incorporated at the same speed of the employed polymerase. Neither washing of
different nucleotides, nor terminators are needed. The fluorescent labels are cleaved
during the incorporation such that they do not interfere with new nucleotides.

This rather distinct technology to read nucleotides offers interesting variations to
the general sequencing process: It is possible to circularize the template after it has
been loaded to the polymerase. Doing this allows to sequence the same physical piece
of DNA several times such that sequencing errors can easier be detected. Another
novel idea is the so called strobe reading. Here, the laser is switched off at certain time
points while the polymerase continues to include nucleotides. Although obviously
nucleotides are missed, the advantage is that the total processed molecule length
is much longer since the polymerase gets less damaged by the laser. Strobe reads
are consequently a set of smaller reads originating from the same template, thus
providing additional information about their order and orientation.

Oxford Nanopore Technologies

The Nanopore technology does neither use fluorescent labels nor an optical recog-
nition system like most of the other approaches. Instead, it measures individual
bases electronically while they travel through nanopores which are proteins that cre-
ate nanoscale holes. When an electrical current is applied to the nanopore, nu-
cleotides cause a disruption of this current as they pass through the pore. Different
nucleotides cause distinguishable changes in current and can thus be classified.

6http://www.pacificbiosciences.com

14

http://www.pacificbiosciences.com

2.3. Genome Sequencing

Even the distinction between the four standard bases and methylated cytosine
is possible. This is a remarkable feature because methylation patterns have been
shown to have an effect on the expression of genes [14].

To provide the necessary single nucleotides to the nanopore, this sequencing tech-
nique employs a DNA exonuclease which cleaves individual bases from the end of
a single strand template DNA. The bases are then introduced to the nanopore and
their current is measured. Clarke et al. describe the procedure and the chemical
modifications to the nanopore that are needed for sequencing [22].

Oxford Nanopore Technologies Ltd.7 developed an array chip to use nanopores in
a parallel fashion. The label free detection and the use of an exonuclease promises
comparably long reads. At the same time, the signal processing is simpler than
an optical detection of bases and the electronics needed can possibly be fabricated
cheaply after some further development. Though, a commercial launch is unknown
as of June 2011.

In the future, the existing approaches will be developed further and will likely
be cheaper and produce longer reads. Maybe new technologies will be invented
accelerating the advances even further. However, a sequencing procedure that reads
the whole DNA of a genome at once can not be expected in the near future. It
is therefore still necessary to have methods to acquire the complete sequence of
a genome despite of the limitations caused by small reads. These methods are
introduced in the next section.

2.3 Genome Sequencing

As mentioned in Section 2.2, all current sequencing technologies face the severe lim-
itation that the produced reads of the DNA molecules are much shorter than even
small genomes. It is surprising that complete genomes can be obtained nevertheless.
The method to achieve this is called whole genome shotgun (WGS) sequencing. Fig-
ure 2.3 on the next page gives an overview of the three basic steps of WGS sequenc-
ing: First the shotgun sequencing (a), then the computational assembly phase (b),
and in the end the finishing of the genome (c). These processes are elaborated in
more detail in the next three sections.

2.3.1 Shotgun Sequencing

The principle of shotgun sequencing [5, 88] is that the DNA molecule to be sequenced
is over-sampled by generating reads at random positions. The name stems from the
random pattern that shotgun projectiles produce when fired on a target. Overlap-
ping parts of the reads can be used to reconstruct the genome sequence as described
in Section 2.3.2.

7http://www.nanoporetech.com

15

http://www.nanoporetech.com

Chapter 2. Sequencing Technologies – Biological Background

Reads

Contigs

DNA Molecules
Cells

Assembly

Sequencing

Extract DNA
Random

Fragmentation

Order
Contigs

Close
Gaps

Complete Sequence

(b)

(a)

(c)

Figure 2.3: Major steps in whole genome shotgun sequencing: (a) Generating a set of
reads during shotgun sequencing, (b) merging the reads to contigs in the assembly
phase, and (c) completing the genome sequence in the finishing step.

To generate the set of overlapping reads, first the DNA has to be extracted and
purified from the cells of the organism, see Figure 2.3 (a). Several copies of the ge-
nomic DNA are then fragmented – mostly using physical shearing like sonification
or nebulization. Following that, the random fragments are sequenced, for example
with one of the methods described in Section 2.2. The reads generated this way are
ideally evenly distributed over the whole genome and their coverage is high enough
such that each base of the genome will be found in several reads. In this context,
current high-throughput sequencing techniques fit perfectly since they can cheaply
generate a high number of reads and thus provide the desired coverage.

However, shotgun sequencing was invented already earlier in times of Sanger
sequencing when each fragment was clonally amplified several times such that the
sequencing would work. This was done using cloning vectors which are pieces
of DNA that can be copied in host cells like Escherichia coli. Foreign DNA that is
included into the vector, as a so-called insert, is copied along with it.

This cloning technique is sometimes employed even today when sequencing com-
plex genomes: In the hierarchical shotgun sequencing, large fragments of the genome
are ‘stored’ in a library of vectors, for example BACs (bacterial artificial chromo-
somes). The inserts of all those BACs that are needed to cover the whole genome
are then sequenced independently with the shotgun approach. This can help to
reduce problems in the assembly phase.

Another helpful variation is the double barreled shotgun sequencing that employs the
so-called paired end sequencing. Here, the fragments are sequenced from both ends
and the corresponding reads of one fragment are called mate pair. If all fragments
have specified and uniform lengths, then the mate pair information can be very
valuable for the following two phases of WGS sequencing. In the first versions of

16

2.3. Genome Sequencing

the recent high-throughput devices, mate pairs were not available, however most of
the companies developed changes in their sequencing protocols to provide them.

2.3.2 Assembly Phase

When the genome is covered sufficiently by reads, their overlaps can be used to
reconstruct contiguous stretches of the genomic sequence that are called contigs. The
process of generating the contigs from a set of reads, as depicted in Figure 2.3 (b), is
referred to as the assembly of the genome, and it is a typical example for advances in
biology gained through bioinformatics. Without the developed assembler programs,
the sequencing of a complete genomic sequence would most likely not have been
successful until today. While a comprehensive review of the challenges of assembly
and how current assemblers deal with them is given in Miller et al. [65], we here
only give an overview of two distinct classes of assembly algorithms.

First assembly algorithms date back to the times when few but relatively long
Sanger reads were predominant. They are called overlap-layout-consensus approaches
because they compare the reads all-against-all in order to merge overlapping parts
into longer contiguous consensus sequences. The merging of reads to contigs is
often done in a greedy fashion, sometimes by building an overlap graph. Some
well known programs of this era are the Celera assembler [66] which was used to
assemble one of the first available human genomes, ARACHNE [11], or Bambus [74].

One of the earliest assemblers that was able to cope with high throughput data,
was the Newbler assembler [63, Supplem. material] that is shipped with 454 se-
quencing devices. Subsequently, SSAKE [100], VCAKE [48], and SHARCGS [29]
were developed to handle short reads as well. The most problematic issue of these
assemblers is the computational time needed for comparing the reads all-against-all.

A different class of assemblers solves this problem elegantly by using a so-called
de Bruijn graph [17] for assembly [46], or more precisely a subgraph of it. The ad-
vantage is that the graph can be built in time linear to the input size, as opposed
to the quadratic time that the overlap-layout-consensus approaches need in general.
A de Bruijn subgraph consists of nodes representing all substrings of length k, called
k-mers, of the reads. The nodes are connected by an edge if two overlapping k-mers
occur adjacently in one of the reads. This way, common substrings are condensed
and the overlaps of the reads are collected implicitly in the graph. If the sequencing
data were perfect – that is without sequencing errors and with reads longer than re-
petitive regions of the genome – then the de Bruijn graph would reveal the complete
genomic sequence: By following an Eulerian path that traverses every edge once, the
desired complete sequence could be obtained. The de Bruijn graphs generated from
real sequencing data are, however, much more complex, such that heuristics have
been developed to cope with the limitations.

The increasing throughput of current sequencing technologies pushed the devel-
opment of de Bruijn graph based assemblers forward since they are better suited to

17

Chapter 2. Sequencing Technologies – Biological Background

handle relatively small reads and can cope with a higher amount of data due to the
condensed nature of the graph. An incomplete list of well known de Bruijn graph
assemblers is: Velvet [108], EULER-SR [20], ALLPATHS [18], and SOAPdenovo [60].

No matter which software is actually used, the assembly ideally results in a sin-
gle sequence that represents the whole genome. In the case that the organism has
several chromosomes, of course each of them should be given by a single contig.
However, the desired ungapped sequence of the genome is in practice usually bro-
ken into several contigs for a variety of reasons: Fragments of the genome could
just by chance not be present during the sequencing run. Also, it might occur that
a single stranded fragment binds to itselves creating a hairpin loop that hinders the
reading of the bases. Both cases result in a gap of a possible consensus sequence
since no (overlapping) reads do exist.

One of the most common reasons for a fragmentation of the consensus sequence
are repetitive parts of the genome [89]. Reads originating from different copies of a
repetitive region within the genome can not safely be distinguished and thus are as-
sembled to a single contig. We call those repetitive contigs. It is often easy to detect a
repetitive contig by looking at the coverage of reads that were used to assemble it. A
contig is likely to be repetitive, if its coverage is considerably higher than the average
(or median) of all contigs. Sometimes, it can even be estimated how often a repetitive
contig occurs within the genome by comparing its coverage to the median coverage.
Unlike in cases when pieces of sequence are missing, here the information which
sequences the repetitive contig belongs to is in general given. The difficulty for
the assembler is to untangle the repeating copies because the consensus sequences
that connect to non-repetitive contigs are not uniquely distinguishable. However,
mate pair information of the reads, if available, can be included to disambiguate the
occurrences of the reads and thus to reduce the number of contigs.

2.3.3 Genome Finishing

The assembly phase usually ends up in a set of contigs that need to be connected
to obtain the complete sequence without gaps, see Figure 2.3 (c). This phase is
called the finishing of the genome and, in general, it comes along with additional
lab work. According to Nagarajan et al. [67], an initial draft assembly of a bacterial
genome can be produced in weeks, while its completion currently takes months or
even years. The process of finishing the genome is very costly, and thus there have
already been debates whether good draft genomes are sufficient for most genomic
analyses or if the increased effort for finishing is worth it. An argument in favor of
the latter is that finished genomes allow a much richer analysis of the genome, for
example in comparative approaches and order based genomic studies. Additionally,
the finishing process can also help to improve the quality of the sequences, if for
example mis-assembled or low coverage regions are examined closer.

18

2.3. Genome Sequencing

Genome finishing typically consists of three parts which might be applied itera-
tively. First, the contigs need to be ordered such that gaps between adjacent contigs
can be spotted. In the gap closure phase missing sequence information to close po-
tential gaps is sequenced with the aim to merge the corresponding contigs. Finally,
and sometimes optionally, the resulting assembly is validated in a polishing phase.

Contig Ordering

In the step of contig ordering, information about the order and relative orientation
of the contigs is gathered. This is valuable for the gap closure where the gaps
are ‘selected’ by specific primer sequences at the end of the contigs. Pairs of these
primers determine a part of the genome that can be amplified and subsequently
be sequenced. Given n contigs and no further information about their order, there
are O(n2) possibilities for primer pairs which would amplify differently sized parts
of the genome which do not necessarily belong to the missing gap sequences. If,
however, the order of the contigs is known, the number of necessary primer pairs to
investigate can be reduced to O(n) [79]. A decrease of pairs to be considered results
in less time and money for the lab work that is necessary to fill the gaps.

In the following, we refer to information regarding the order and the relative
orientation of a set of contigs as their layout. Synonyms for layout are supercontig,
metacontig or scaffold which might have a subtle difference in meaning but always
refer to linking information of the contigs. There is a variety of methods and sources
that help to estimate a suitable layout of the contigs. Here, we describe the ones most
commonly used:

• Linking information between contigs can be extracted from the output of cer-
tain assembly programs like Newbler or the Celera assembler [67]. If the par-
ticular assembly algorithm builds a graph of the reads and their overlaps in
order to merge them to contigs, then this graph often implicitly contains hints
for a layout of the contigs. The assembled contigs are usually created in a
very conservative fashion such that their consensus sequence is supported by
a high coverage of reads. However, the graph might also contain faint hints for
the adjacency of contigs if overlapping reads do connect them but with a cover-
age that is too low to be reliable. While the cautious behavior of the assembly
algorithms makes sense to avoid misassemblies, in some of the simpler cases
there is actually enough information to close the gaps between some contigs
in silico. Of course, this approach does not help if pieces of the sequence are
completely missing after sequencing.

• In the case that mate pairs of the reads are available, some of them can be used
to find a layout of the contigs if they span the gap of two contigs. Depending
on the gap size as well as the distance of the paired reads these local connec-

19

Chapter 2. Sequencing Technologies – Biological Background

tions help to find appropriate contig adjacencies. Unfortunately, sequencing
with mate pairs is usually more expensive such that it is often omitted.

• After an initial assembly of the reads, sometimes fosmid libraries are employed
to accomplish the finishing of a genome. Fragments of the genome with a size
between 35 and 40 kbp are used as inserts for the fosmids in order to sequence
the ends of each inserted fragment. If those end sequences can be mapped to
different contigs, it is possible to infer the distance and orientation of contigs
towards each other. Fosmid libraries have the additional advantage that they
can be used for primer walking even if the gaps between the contigs exceed the
usual size to do primer walking on the genome. But of course this advantage
is paid for with a high amount of work to create the library.

• A method to order contigs [56] that works in the global context of a genome is
optical restriction mapping [82]. Here, just like in the sequencing approaches,
a library of overlapping fragments is created. The fragments are fixed to a
glass slide, digested by a restriction enzyme and then fluorescently labeled.
The order of the restricted pieces is maintained during this process and their
size can be estimated with fluorescent microscopy. Similar to the assembly
phase in shotgun sequencing, a map of overlapping restriction sizes can be
constructed for the whole genomic sequence. This so-called optical restriction
map is specific to the employed restriction enzyme that cuts at definite loca-
tions. To order contigs, an in silico generated restriction map of the contigs
can be compared to the optical restriction map. This is especially useful for
longer contigs whereas very small contigs might be smaller than the average
restriction pieces thus not allowing an ordering of them.

• More and more genomes have already been finished and their sequences are
mostly available to the public. If the genome of a related species is at hand,
it can be used as a reference to layout the contigs. To this end, the contigs
or parts of them are matched onto the related reference allowing to estimate
which of the contigs are adjacent. When doing so, one has to bear in mind
that the related sequence might have undergone larger rearrangement events
like insertions or deletions or even inversions of parts of the genome. Recently,
the related reference based ordering has been applied using a single [79] and
also multiple [109] references.

In this thesis, we build on the idea of reference based contig layouting. Besides
presenting a simple method in Chapter 3 that uses a single reference genome, we
also establish a formal way to collect contig adjacency information from multiple
references in Chapter 4. Additionally, we show how to integrate the phylogeny of
the species into our approach and provide an algorithm to treat repetitive contigs
in a special way. However, it is in general advisable to combine different sources of
information to find a most likely layout.

20

2.3. Genome Sequencing

Gap Closure

The next step in genome finishing is the closure of the gaps between contigs. As
already indicated, this can partially be done in silico but mostly this requires addi-
tional lab work. If two contigs are known to be adjacent it is possible to amplify
the DNA in between the contigs with PCR by designing specific primer pairs that
enclose the gap. The pieces of DNA that are copied this way can then be sequenced.
Often, the gap is larger than the read length of the applied sequencing procedure.
Then, a technique called primer walking can be applied. Here, primer pairs are
designed for the part of the gap that has been sequenced in the last round and the
process is iterated thus ‘walking’ in steps of the sequencing read length from primer
pair to primer pair.

While the contig ordering can be done in little time using computational ap-
proaches, the laborious work of gap closure is the main bottleneck with respect
to time and money. Therefore, it is especially important that the layout which is
estimated in the computational approaches is reliable such that the number of nec-
essary PCR reactions and sequencing steps is reduced.

Polishing

Together with the former steps of contig ordering and gap closing, it is possible to
check the consistency and correctness of the current assembly. A special tool for this
task is BACCardI [9] that uses BAC libraries to validate an assembly. Additionally,
mate pairs or matches to related reference genomes might reveal misassemblies
where a contiguous sequence from the assembler is in fact not contiguous. In the lab,
PCR reactions can amplify regions which had a too low coverage to be assembled
in the first place. Besides automatic suggestions, it is often advisable to manually
curate an assembly. An established tool that helps in this task is Consed [35]. It
allows to look at an alignment of the reads that were used to build the contig thus
allowing to assess how many reads support single bases and whether there are
contigs where repetitive parts of two origins are aligned. In case of mistakes in the
assembly, it is possible to modify it by splitting single contigs or joining others.

21

Chapter 2. Sequencing Technologies – Biological Background

22

Chapter 3
Efficient Matching of Contigs

Initial sequencing of a genome usually results in a set of contigs for which their
relative order and orientation is not known. To close the gaps it is necessary to
know which of the contigs are adjacent. This information is given in a layout of the
contigs, and there are several techniques to estimate a suitable layout. Some of them
are based on information provided by the sequencing run, others rely on external
information. The methods described in this thesis use the genomic sequences of
related species to find a layout for the contigs. Our approach is based on finding
corresponding regions of contigs and reference sequences, where “corresponding”
means in an ideal case that these regions share an evolutionary history and were
probably derived from a common ancestor. However, it is not possible to elucidate
the true evolutionary history of the DNA molecules. A common circumvention is
to use sequence comparison methods to find similar regions between the reference
genomes and the contigs.

The general term sequence comparison subsumes many different questions and also
applications that deal with computing distances or finding similarities between se-
quences. While we want to give a short overview here, a more detailed introduction
to sequence comparison, especially in bioinformatics, can be found in a review by
Batzoglou [10].

Our brief historical overview starts in 1950 with the Hamming distance that sim-
ply counts the differing letters of two equally sized sequences [37]. In 1966, this
concept was extended to the Levenshtein, or edit distance which is defined as the min-
imum number of edit operations – insertions, deletions, and substitutions of letters –
transforming one sequence into another [57].

Equivalently to a minimal distance, a maximal score can be calculated [84] that pe-
nalizes substitutions and rewards matching characters. A first practical algorithm
for scoring a pair of sequences was published in 1970 by Needleman and Wun-
sch [68]. Although their dynamic programming approach was designed to compare
protein sequences, it can be applied to sequences in general.

23

Chapter 3. Efficient Matching of Contigs

One important aspect of the underlying dynamic programming datastructure is
that it allows to derive an alignment of the characters that is optimal with respect to
the applied scores. Thus it is not only possible to tell that two protein sequences are
similar, but also which of the amino acids match and where insertions or deletions
could have occurred.

The Needleman-Wunsch algorithm produces global alignments that consider all
characters of the respective sequences. In molecular biology, however, sometimes
substrings of high similarity are of interest. These local alignments can be found
with the Smith-Waterman algorithm that was published in 1981 [87]. Applied to
two sequences of length n and m respectively, the algorithms have a time and space
requirement of O(nm) [36].

Even though this running time is efficient, it became unpractical in combination
with the growing biological sequence databases and the need to find approximate oc-
currences of protein or DNA sequences in these databases. To face this, two kinds of
heuristics have been developed: Seed and extend heuristics that are typically very
fast but might miss relevant matches, and search space filters which are runtime
heuristics that usually guarantee to find all matches below a specified error rate.
Although the latter are extremely fast in the expected case, their worst case com-
plexity stays O(nm).

In this chapter, we will first review different algorithms to find local similarities
between DNA sequences. The approach that was chosen to be used for matching
contigs is then explained in more detail in Section 3.2. Towards the end of this
chapter, we will present our software r2cat, the related reference contig arrangement
tool, that uses this matching technique to visualize similarities between the contigs
and a reference genome and that is able to arrange the contigs with respect to these
matches. A more sophisticated approach to find a layout of the contigs based on
the information provided by several references will later be given in Chapter 4.

3.1 Finding Local Similarities

Similarities to a reference genome can help to find a layout for a set of contigs. In
the following, we will refer to similar regions between contig and reference genome
as matches, and the process of finding these will be termed contig matching.

Please note that usually in computer science a match refers to an exact and com-
plete occurrence of a search pattern in a text. Here, we allow approximate occur-
rences to account for small scale evolutionary events like insertions, deletions or
single nucleotide polymorphisms. Also, we do not demand that the contigs are
matched completely on the reference since large scale events like translocations or
inversions might have scrambled the sequences. A match is hence equivalent to a
local alignment with a high score or, in other words, to a very similar region shared
by contig and reference genome.

24

3.1. Finding Local Similarities

In biological sequence comparison, the terminology is often to search a “query in
a target” or “database”, instead of a “search pattern in a text” as in computer science.
In the following, the contigs are the queries that are to be matched onto a target
reference genome. Regardless of the different names, all sequences are composed
of letters from a given finite and ordered alphabet Σ. We denote by Σ∗ the set of all
finite strings over Σ, by |s| := ` the length of string s= s1 . . . s`, and by s[i, j] := si . . . sj
with 1 ≤ i ≤ j ≤ ` the substring of s that starts at position i and ends at position j.
For two sequences s and t, a match is a tuple m =

(
(i, j), (k, l)

)
, if the substrings

s[i, j] and t[k, l] have high similarity. An alignment is a string over the alignment
alphabet A(Σ) :=

(
Σ ∪ {–}

)2 \
(–

–
)

where ‘–’ /∈ Σ is a gap character. Each letter of
A(Σ) implies an edit operation:

(–
a
)

and
(a

–
)

stand for the insertion or deletion of
a character a ∈ Σ, and

(a
b
)

is a substitution that is also called match if a = b and
mismatch otherwise.

3.1.1 Smith-Waterman

The Smith-Waterman algorithm [87] is a well known method to search local align-
ments. It is a clever variation of the dynamic programming idea that was proposed
by Needleman and Wunsch [68] for global alignments. The key datastructure is a
score matrix S that is used to tabulate the optimal local alignment scores for all pairs
of possible prefixes of two given sequences x and y. The entry S(i, j) stores the
optimal local alignment score for the prefixes x[1, i] and y[1, j]. After computing the
complete matrix S, its entry with the highest value reveals the best local alignment.
The computation itself is based on the following recurrence:

S(0, 0) := 0

S(i, 0) := 0

S(0, j) := 0

S(i, j) := max

0 (?)
S(i−1, j−1) + score(x[i], y[j]) (↘)
S(i−1, j)− γ (↓)
S(i, j−1)− γ (→)

for all i, 1 ≤ i ≤ |x|,
and j, 1 ≤ j ≤ |y|

where γ is the cost for insertions or deletions of single characters, and score(a, b) is
a scoring function for the similarity of the characters a and b. To be sensible, the
scores should be chosen such that random sequences on average result in negative
global alignment scores.

The three top definitions initialize the first row and column of the matrix and
are the base cases for the recursion. The remaining cells of the matrix are usually

25

Chapter 3. Efficient Matching of Contigs

computed in a row- or column-wise fashion where each entry S(i, j) is calculated by
maximizing over four different cases:

(?) Including zero in the maximization prevents a cumulation of negative scores.
This allows to skip bad scoring prefixes and start a new alignment from the
current sequence indices.

(↘) This case refers to the substitution of x[i] by y[j]. If the characters match, this
will be rewarded by a positive score. Although mismatches are punished by a
negative score, they can also give the maximal value if S(i− 1, j− 1) contains
a high score value.

(↓) A maximal value in this case indicates that the deletion of x[i] provides the
best local alignment up to the current prefixes.

(→) This is similar to the previous case, except for indicating that the insertion of
y[j] is the best choice.

Figure 3.1 shows an example of a completed score matrix. The arrows in this
picture correspond to those of the above cases providing the maximal value for a
cell. By following these arrows backwards, from the highest entry in the matrix to a
zero entry, an optimal local alignment can be retrieved. Let a= x[i], b=y[j], and the
arrow end in (i, j). Then, a diagonal arrow corresponds to the match

(a
a
)
, if a = b,

otherwise to a mismatch
(a

b
)
. A horizontal arrow stands for the insertion

(–
b
)

and
a vertical one for the deletion

(a
–
)
.

The described algorithm only finds a best local alignment of two sequences. In our
case, we are also interested in other similar regions, for example if parts of the contig
occur rearranged in the reference. All local alignments that have a score greater than

- A C A T G G

- 0 0 0 0 0 0 0

A 0 1 0 1 0 0 0

T 0 0 0 0 2 1 0

G 0 0 0 0 1 3 2

j

i

Figure 3.1: Local alignment score matrix for the sequences x = ATG and y = ACATGG.
Matching characters receive a score of +1, while mismatches, insertions and dele-
tions are ‘punished’ by −1. The arrows indicate score maximizing edit operations
where matches are black and all others are gray.

26

3.1. Finding Local Similarities

a certain threshold can easily be found by backtracing all appropriate entries of the
score matrix. However, care has to be taken on overlapping alignments. To this end,
a more advanced algorithm that finds non-overlapping suboptimal alignments was
proposed by Waterman and Eggert [101].

The calculation of the score matrix needs O(|x| · |y|) time since the maximum
value in each cell can be calculated in constant time. The extraction of the optimal
local alignment then needs time proportional to the length of the alignment. Espe-
cially, the matrix computation becomes a computational bottleneck if many smaller
sequences need to be searched in a larger database. To alleviate the time demand in
such cases, heuristics can be applied instead of the exact Smith-Waterman algorithm.
The next section introduces the concept of seed and extend heuristics, which trade
speed for sensitivity. This means that they might miss some true matches found by
the Smith-Waterman algorithm but are usually much faster.

3.1.2 Seed and Extend Heuristics

As the name already suggests, seed and extend heuristics are performed in two
phases: First seeds are searched which are highly similar regions of query and target
sequence. In the second phase, the seeds are extended to a local alignment.

In order to efficiently retrieve high scoring seeds, different techniques can be
used that in general build an index of one of the sequences. Indexing techniques
are called online if only the query is indexed. If it is also possible to preprocess the
target sequence, they are referred to as indexed.

A seed is a pair of substrings of query and target sequence that have high simi-
larity. In the local alignment example in Figure 3.1, a seed corresponds to diagonals
of the score matrix with many increasing entries, indicated by the black arrows. In
the literature, different kinds of seeds are considered which require to some extent
different indexing methods:

• Exact seeds refer to an exact occurrence of a part of the query in the target se-
quence. Usually a minimum length is demanded to avoid unspecific matches.
A hash index of fixed size substrings can be used to efficiently lookup matches,
as for example applied in BLAT [51] to find the seeds. For variable length seeds,
suffix arrays or suffix trees can be used, as for instance in MUMmer [54]. A
space efficient alternative of a suffix tree can be realized using the Burrows-
Wheeler transformation, like in BWA [58].

• Spaced seeds, or gapped seeds, are like exact seeds of a fixed size, however with
the difference that not all character positions have to match. These seeds
are usually longer than exact seeds and contain don’t care characters that are
ignored when comparing query and target sequence. Similarly to exact seeds,
spaced seeds can be collected in a hash based index although it needs to be

27

Chapter 3. Efficient Matching of Contigs

slightly modified. Algorithms using one or two spaced seeds are implemented
in PatternHunter I and II [61, 59].

• Approximate seeds allow that the corresponding sequences are different in any
position, although the sequences should have a high similarity score. Again, a
modified hash-index can be used that stores for each substring the positions of
all strings of the same size having a score above a given threshold t. The choice
of t allows a trade-off between speed and sensitivity. If t is high, the index
contains fewer entries resulting in fewer seeds found. On the one hand, this
makes the extension phase faster, on the other hand, important seeds might
be missing such that a match is not found. A low threshold t, on the contrary,
will result in many seeds found that have weaker similarities. This causes the
extension phase to take more time, although additional matches can be found.
When using approximate seeds, mostly the query is indexed since the index
would grow too big if t is low and the target is large. Implementations that
use approximate seeds are for example FASTA [72] and BLAST [3, 2].

After a set of seeds has been found, the seeds are postprocessed in the extension
phase. Overlapping or nearby seeds are usually merged and subsequently aligned
with a Smith-Waterman like alignment procedure.

The whole seed and extend procedure is based on the assumption that each in-
teresting local alignment must contain at least one high scoring seed. However, it
is possible that an optimal local alignment computed with Smith-Waterman does
not contain an appropriate seed such that heuristics of this kind will miss it. The
sensitivity is lower than a Smith-Waterman alignment that is sometimes referred to
as full-sensitivity alignment.

One of the most prominent tools for approximate matching of nucleotide or pro-
tein sequences is BLAST. It is an online algorithm that preprocesses the query. After
that, the expected running time for searching a preprocessed query is proportional
to the length of the target.

When matching many smaller contigs onto a large reference genome, it can be
advantageous to create an index of the reference, since then the expected search
time for each contig will only be proportional to the contig’s length. The filter
algorithms described in the next section commonly rely on such an indexing of the
larger target sequence.

3.1.3 Search Space Filtering

To find local similarities between two sequences, a Smith-Waterman score matrix
like in Figure 3.1 can be computed. This matrix corresponds to the search space
of all possible local alignments between the two sequences. While in this picture
the seed and extend approaches strive to find high scoring diagonals, search space
filtering does in principle the opposite by discarding regions of the matrix that are

28

3.2. Matching by Filtering with q-Grams

too dissimilar. Search space filtering is also known as an exclusion method for approx-
imate string matching [36, Ch. 12.3].

Although the matrix is not necessarily explicitly created for filtering the search
space, the conceptual idea partitions it into equally sized regions which are possi-
bly overlapping. The goal of a filter algorithm is then to discard as many regions
as possible that do not fulfill a certain filter criterion. This criterion is usually a nec-
essary, although not sufficient, condition that a region yields a score higher than a
given threshold t, or similarly that it has less than e mismatches. The filter is called
lossless if all such regions are kept and none is falsely discarded.

All remaining parts of the matrix, which were not filtered out, have to be verified
in a postprocessing phase that is similar to the extension phase described in the
previous section. In contrast to the seed and extend approaches, filtering with a
lossless filter will find all regions having a score higher than the specified threshold.

After the index is built, the running-time of exclusion methods for searching is
in the expected case typically linear or even sub-linear with respect to the length of
the query. In the worst case, however, the complete score matrix has to be verified
thus resulting in the same time complexity as the Smith-Waterman algorithm.

3.2 Matching by Filtering with q-Grams

For matching the contigs we chose to use the SWIFT1 algorithm, a lossless search
space filter that was developed in Bielefeld [76]. The filter guarantees to find all
regions of a specified minimum size that have less than a given error rate. The
algorithm is very fast when matching many contigs on a reference genome due to
an indexing of the reference sequence. Most information presented in this section
is based on the work of Rasmussen et al. [76].

3.2.1 General Idea

Filtering methods to find approximate matches usually follow a so-called q-gram
counting strategy. A q-gram is simply a string s∈Σq of fixed size q; the literature uses
frequently l-tuple or k-mer synonymously. Counting the q-grams that are shared
between sequences allows to determine whether an alignment with less than e errors
is possible. The so called q-gram lemma [71, 98] states that two sequences of length `

with Hamming distance e share at least T(`, q, e) := ` + 1− q · (e + 1) q-grams. If the
sequences are completely identical, they share all overlapping (`− q + 1) q-grams.
With each mismatch, up to q matching q-grams are destroyed. The lemma also holds
for the edit distance, if ` is the length of the shorter sequence in an alignment.

The q-gram lemma can be used to efficiently discard many dissimilar regions of
query sequence and target. In a naive approach that we call the basic algorithm, both

1The acronym stands for: Sequence Searching and Alignment with Indexing and Filtering

29

Chapter 3. Efficient Matching of Contigs

sequences are partitioned into overlapping parts of equal size. This is equivalent
to partition an implicit score matrix, like the one in Figure 3.1 on page 26, into
overlapping boxes. For each box, the q-grams can be counted that are shared by
both sequences. We call these shared q-grams in the following q-hits. If the q-hit
count of a box is higher than the threshold defined by the q-gram lemma, then this
is a necessary condition that an approximate match with less than the specified
number of mismatches exists. If the count is below that threshold, there is definitely
no such match.

The SWIFT algorithm uses further observations to partition the score matrix more
cleverly than the above basic algorithm. Additionally, it provides a sophisticated
calculation of the partition dimensions and the needed q-hit threshold. Before we
explain details of the SWIFT filter in Section 3.2.3, we will first address how the
q-hits can be found efficiently using an index datastructure.

3.2.2 Building an Index of the Reference Genome

In the above basic algorithmic idea it is crucial to find exact matches of q-grams, the
q-hits, within the boxes very quickly. This can be achieved with a so called q-gram
index which is a simple hash-based index of all q-grams and their positions in the
indexed sequence.

In order to access the q-grams efficiently in memory, a hash function maps each
possible q-gram to a natural number in the range

[
0, |Σ|q−1

]
. A hash number of a

q-gram s ∈ Σq can be calculated, for example, with the following ranking function:

r(s) =
q

∑
i=1

rΣ
(
s[i]
)
· |Σ|i−1 (3.1)

where rΣ(c) maps each character c ∈ Σ to an integer in
{

0, . . . , |Σ| − 1
}

.
With the help of this hash function, an implementation of a q-gram index can be

realized with two tables. The occurrence table OCC that contains the concatenated
lists of occurrences for all q-grams and the second offset lookup table OFF which
contains for each q-gram the offset where its list of occurrences begins in the first
table. The table OCC is of size O(n), and OFF is of size O(|Σ|q). With both tables
in memory, all occurrences of a q-gram s can be retrieved quickly by looking at the
offsets OFF[r(s)] to OFF[r(s)+1]−1 in table OCC.

The q-gram index can be built by going two times through the sequence to be
indexed. In the first run, each occurring q-gram is counted. Based on the counts,
we can specify the offsets in OFF, and add each occurrence of a q-gram during the
second run to the appropriate location in OCC.

When computing the hash number of the overlapping q-grams in both above runs
with ranking function (3.1), we can efficiently retrieve the rank of a next q-gram that
overlaps at q−1 positions: If for two overlapping q-grams az and zb with a, b ∈ Σ

30

3.2. Matching by Filtering with q-Grams

and z ∈ Σq−1 the rank r(az) is known, then it can be updated in constant time to
r(zb) using the following equation:

r(zb) =
⌊

r(az)
|Σ|

⌋
+ rΣ(b) · |Σ|q−1

When using this constant-time update, the construction of a q-gram index takes
O(n + |Σ|q) time for a sequence of length n.

There are a few points worth mentioning for a practical application of a q-gram
index. First of all, indexing large sequences can lead to memory problems. The con-
catenated list of occurrences OCC needs (n−q+1) times the size of an integer value.
Depending on the architecture, the complete list needs about four times the size of
the sequence to be indexed. The main memory of current desktop computers might
thus be a limiting factor for indexing larger eukaryotic genomes. As a workaround,
the index can be built for partitions of the sequence, or may be written to disk. Both
will be more time consuming when querying for q-grams.

Besides the memory restriction for the occurrence table OCC, also the use of an
integer to point to a location in the original sequence is limited. The programming
language Java, for example, allows a maximum value of 231−1 ≈ 2.1 · 109 for an
integer. This inhibits to index the human genome that has over 3 · 109 bases.

A second practical issue is a proper choice of q. On the one hand, a high value
of q lets the highest hash number for a q-gram (|Σ|q− 1) get bigger than the maximal
integer value. Then it is not possible to access the OFF array properly. Since also the
size of the alphabet Σ matters, this kind of index is better suited for small alphabets
like for DNA sequences. If, on the other hand, q is too small, then co-occurring
q-grams might not be very specific and are merely observed by coincidence. The
expected number of occurrences of a q-gram in a uniformly i.i.d. random sequence
of length ` is (`− q + 1)/|Σ|q. If we consider DNA sequences with |Σ|= 4 and an
exemplary size of `=6 · 106 bases for prokaryotic genomes, a value of q=11 results
in each q-gram occurring about once in the expected case.

3.2.3 Filtering for Similarities

Unlike the basic filtering algorithm of Section 3.2.1 that partitions the search space
into blocks, the SWIFT algorithm partitions the score matrix diagonally into parallel-
ograms. This reflects more appropriately the shape of an area in which high scoring
matches appear.

In the simple case of finding exact matches, these parallelograms would have
a width of one diagonal and all overlapping q-grams would have to match. For
approximate matches, we consider epsilon-matches which are basically optimal local
alignments where the involved query substring has a length of at least n0 and the
alignment has a maximal error rate of ε. The latter means that the alignment contains

31

Chapter 3. Efficient Matching of Contigs

less than bε·n0c insertions, deletions, or mismatches. Rasmussen et al. provide a
lemma for the dimensions of a parallelogram containing such an ε-match:

Lemma 1 (Rasmussen et al. [76]) Let x be a substring of the query of length n0 or greater
that has an ε-match to a substring y of the target. Let U(n, q, ε) := (n + 1)− q · (bεnc+ 1),
and assume that the q-gram size q and the threshold τ have been chosen such that

q < d1/εe and τ ≤ min{U(n0, q, ε), U(n1, q, ε)},

where n1 = d(bεnc+ 1)/εe. Then, there is guaranteed to exist a w × e parallelogram
containing at least τ q-hits in x and y, where

w = (τ − 1) + q · (e + 1) and e =
⌊

2(τ − 1) + (q− 1)
1/ε− q

⌋
.

For the choice of n0 the authors give the corollary that a w× e parallelogram accord-
ing to Lemma 1 exists if n0 ≥ q

⌈
τ+q−1
1/ε−q

⌉
. Rasmussen et al. give the corresponding

proofs, together with an efficient algorithm to find all w × e parallelograms for ε-
matches of length n0 or greater. The outline of the algorithm is as follows:

With the dimensions for the parallelograms given, the search of appropriate re-
gions uses a sliding window approach. Therefore the score matrix is separated
into overlapping bins, each containing e+1 diagonals. Then a window of size w
is slid over the query sequence. The intersection of the window and the diagonals
of the bins define parallelogram regions for which all q-hits are counted that occur
within them. It suffices to add the entering and substract the leaving q-hits of each
parallelogram. The positions of query q-grams on the target are retrieved with the
q-gram index of Section 3.2.2. If a parallelogram counter reaches τ q-hits, then the
parallelogram is reported to be postprocessed. Instead of reporting overlapping
parallelograms, they are merged on the fly.

To improve the space requirements of this algorithm, the number of counters
needed can be reduced [76, Section 3.2.1]. To this end, w× (e+∆) parallelograms
are considered that overlap by e diagonals. Figure 3.2 (a) shows the concept of the
w× (e+∆) parallelograms. If ∆ is a power of two and greater than e, then the bin
indices can be efficiently computed with fast bit shift operations.

The running time of this algorithm can be improved by processing each q-gram
of the query only once [76, Section 3.2.2]. Usually, it is processed one time when
entering and a second time when leaving the window. The improved version, as
illustrated in Figure 3.2 (b), remembers for each parallelogram, besides the q-hit
counter, also the minimum and maximum starting position of a q-hit with respect
to the query. This allows that only entering q-hits at the current position need
to be considered. If a q-hit is more than w−q away from the previous one, then
an ε-match cannot contain both q-hits. Hence, the maximal parallelogram without
this new q-hit, defined by minimum and maximum position and of width e (or

32

3.3. r2cat – The Related Reference Contig Arrangement Tool

(a) (b)Target Sequence
Q

u
e

ry

Counter

Target Sequence

Q
u

e
ry Current

Position

Counter

Maximum

Minimum

d > w−q

Windoww

e+
Hitq−

{
{

{

Figure 3.2: Improvements to the SWIFT filter algorithm: (a) Space reduction for the
counters due to the use of w× (e+∆) parallelograms, and (b) speed improvement
by processing each q-gram of the query only once instead of twice. Figures adapted
from unpublished work of K. Rasmussen.

e+∆ respectively) is reported, if it contains at least τ q-hits. In any case, the q-hit
counter is reset and the minimum and maximum positions are set to the current
position on the query. When the end of the query is reached, all parallelograms
are checked and reported if they contain enough q-hits. The pseudocode of the
complete algorithm as well as further considerations are discussed in detail in the
aforementioned publication [76].

The next section introduces our implementation of the SWIFT filter algorithm that
provides the matches to visualize and arrange the contigs.

3.3 r2cat – The Related Reference Contig Arrangement Tool

If reference genomes are available, it has to be assessed whether they are related
enough to provide information for contig layouting and thus might help in the gap
closing phase. A visual inspection of corresponding regions between contigs and
reference genome gives first clues in this regard.

We implemented the program r2cat (related reference contig arrangement tool)
that is able to quickly match a set of contigs onto a related genome and display
their similarities in an interactive visualization. The speed of our matching routine
is competitive to other established programs, and an automated contig arrangement
can be performed that is helpful in the finishing phase of a sequencing project by
giving valuable hints on layout of the contigs.

In several sequencing projects, r2cat was already successfully applied to help in
the finishing process: Corynebacterium pseudotuberculosis FRC41 [95], Rhizobium lupini
(now Agrobacterium sp. H13.3) [105], and Corynebacterium ulcerans [93]. Additionally
many in-house users at the CeBiTec appreciate the capability to quickly generate
synteny plots for prokaryotic genomes with r2cat.

In the following we explain the steps of matching, visualizing, and arranging
contigs with r2cat in more detail.

33

Chapter 3. Efficient Matching of Contigs

3.3.1 Matching

To assess their relatedness, similar regions between the contigs and a related refer-
ence genome have to be determined. We implemented for this task the q-gram filter
algorithm described in Section 3.2.

As motivated in Section 3.2.2, we use a default size of q = 11 for the q-grams. To
calculate the parallelogram dimensions of the filter, we chose a minimum length of
n0 =450 bases. This choice is based on the observation that smaller contigs are often
discarded since these do not provide much information and might even be a result
of a sequencing error. Furthermore, we set the maximum error rate ε to 8% in order
to allow mutations to have happened between related sequences, but at the same
time keep the filter algorithm fast.

According to Lemma 1, the chosen values yield the threshold τ = 44 q-hits that
have to occur in a region of width e=64 bases and height w=758 bases. While filter-
ing we consider w× (e+∆) parallelograms with ∆=128 as proposed in Section 3.2.3
to reduce space requirements.

Our matching routine is capable of handling multi-chromosomal genomes, pro-
vided in multiple FASTA files, and also finds matches for the reverse complement
of each contig. To perform the matching, first a q-gram index is created for the ref-
erence genome. Only q-grams consisting of the letters A, C, G, and T are considered,
not distinguishing between lower- and upper-case letters. If the sequences contain
other characters, for example of the IUPAC nucleotide ambiguity code, these char-
acters are ignored and q-grams containing them are not indexed.

After building the index, each contig is processed in forward and reverse comple-
mentary direction to find all parallelograms fulfilling the filter criterion. The reverse
complement matching is necessary since the orientation of the contigs with respect
to the reference genome is usually not known, and additionally the genomes might
have been shuffled by inversion events during evolution.

Normally, all found parallelograms are aligned with a Smith-Waterman like al-
gorithm to verify whether they are true matches, and to find the local alignments
of the sequences. In our implementation, we omit this time consuming step and
consider the parallelograms as matches. A disadvantage of this is, that our matches
might not start at the exact position of a true match on the reference. The positions
may differ by up to ∆ bases because of the overlapping w× (e+∆) parallelograms
used by the implemented memory improvement. Additionally, it might happen
that parallelograms are shorter than 450 bases and also do not strictly fulfill the
filter criterion due to the speed improvement mentioned in Section 3.2.3 that we
also implemented. However, Rasmussen et al. remark for the latter case “that when
searching for local alignments in biological sequences the regions triggering such
parallelograms are often of great interest anyway” [76]. That is why we keep them.

Despite of these objections, the matches of our filter provide an acceptably ac-
curate impression of the relatedness of two DNA sequences, as Figure 3.3 demon-

34

3.3. r2cat – The Related Reference Contig Arrangement Tool

Reference Genome

Contig 2

Reference Genome

(a)

(b)

Contig 1

Contig 2

Contig 1

Figure 3.3: Two Corynebacterium urealyticum contigs matched on the reference ge-
nome Corynebacterium jeikeium: (a) with the q-gram filter implemented within r2cat,
and (b) generated with BLAST.

strates. For this figure, we arbitrarily picked two large contigs and matched them
onto a related reference genome: first with our matching routine and the second
time using BLAST [2]. Both plots, which visualize the matches found by the pro-
grams, agree largely. Sometimes, BLAST finds small matches that our filter misses.
On the other hand, our filter frequently shows a single combined match, where
BLAST has several smaller. In general, we believe that the quality of the matches is
acceptable for the purpose of displaying syntenies and also for layouting contigs.

All matches found can be cached in human readable text files for which we chose
*.r2c as extension. In these files, also the order of the contigs is stored, if, for example,
the automatic arrangement of Section 3.3.3 has been used. Besides loading and
saving matches in r2cat, it is also possible to parse and modify the files with other
programs, or to edit them manually.

To show that the matching implemented in r2cat is competitive in running time,
we compared it to the three well known matching programs BLAST [2], BLAT [51]
and MUMmer [54]. For BLAST, we used two different versions: The program blastn
was completely reprogrammed in C++ and seems to have become faster in some
cases than its predecessor blastall implemented in C. We changed the output format
of both BLAST versions from ‘pairwise alignment’ to the less extensive ‘tabular
output’ that is likewise produced by the other programs. This slightly improved the
running time of the BLAST programs.

Each program was used on two prokaryotic datasets to match a set of contigs
onto a reference genome: The first, small dataset of Streptococcus suis, taken from [7],
consists of 281 contigs with a total size of 2.1 Mbp that were matched on the ge-
nome of another strain of this species. Details of the contigs are listed in Table 3.1,
details of the reference genome are given in Table 3.2. The second, larger dataset
of Sinorhizobium meliloti has 446 contigs and was matched on another strain with a
total size of 6.7 Mbp, given in three replicons. Details are given in the tables.

35

Chapter 3. Efficient Matching of Contigs

Table 3.1: Contig data that was used to test the matching. Sizes are given in base
pairs (bp). The N50 contig size is defined as the size of the largest contig such that
at least half of the total size is covered by contigs larger than that contig.

Contig Organism #Contigs Total Size N50 Contig Size Median Size

Sinorhizobium meliloti SM11 446 7,187,910 34,216 7742
Streptococcus suis 281 2,071,601 32,959 121

Table 3.2: The reference genomes to test the matching. Sizes are given in base
pairs (bp).

Reference Genome Replicon Type Size NCBI Number

Sinorhizobium meliloti 1021 chromosome 3,654,135 NC_003047
Sinorhizobium meliloti 1021 megaplasmid pSymB 1,683,333 NC_003078
Sinorhizobium meliloti 1021 megaplasmid pSymA 1,354,226 NC_003037
Streptococcus suis SC84 chromosome 2,095,898 NC_012924

The results for each program and dataset can be found in Table 3.3. It shows
the time that was needed for matching and additionally the number of contigs that
could not be matched and thus can neither be visualized nor arranged.

Most programs do not give matches for all contigs except for blastall that outputs
matches as short as 12 bases. It is arguable if those matches can help to find a layout
for the contigs since these matches might occur only by chance.

The competing programs find real alignments and thus have a harder task than
r2cat that only finds parallelograms which could contain a match. However, when
looking at Figure 3.3, the reduced work seems to be adequate for a quick impression
on the synteny of the sequences. Using our own matching routine has the advantage
that r2cat has no dependencies on other programs which might be difficult to install
and maintain. To use exact matches nevertheless, we wrote an additional Perl script
that is able to reformat the tab-separated output of BLAST in order to create a *.r2c
file that can be opened with r2cat. In principle, matches of any other program can
be used as long as they are provided in a similar tab format.

The matching was primarily implemented to be used on desktop computers and
with prokaryotic genomes in mind that typically are smaller than 12 Mbp. On com-
puters with sufficient memory, the matching is also possible for smaller eukaryotic
genomes. To demonstrate this, we matched a scaffold of the Drosophila ananassae
genome (Dana, revision 1.3, 13749 sequences with a total size of 231 Mbp) onto the
genome of Drosophila melanogaster (Dmel, revision 5.35, 15 chromosomes with a total
size of 169 Mbp). Both genomes were acquired from the websites of the FlyBase
project [97] in multiple FASTA format. The scaffold of Dana seems to be in draft
status and contains many small sequences. In contrast, Dmel is completely finished

36

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide\&cmd=search\&term=NC_003047
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide\&cmd=search\&term=NC_003078
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide\&cmd=search\&term=NC_003037
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide\&cmd=search\&term=NC_012924

3.3. r2cat – The Related Reference Contig Arrangement Tool

Table 3.3: Times for matching a set of contigs on a reference genome (average of
two consecutive runs). Additionally, the number of contigs having no match at all
is given. The experiments were performed on a sparcv9 processor operating at
1593 MHz.

Streptococcus suis Sinorhizobium meliloti
Program Version Time (s) Unmatched Time (s) Unmatched

blastall 2.2.24 12.3 0 110.9 0
blastn 2.2.24+ 4.8 86 121.2 72
blat 15 44.9 94 674.2 84
nucmer 3.07 9.0 109 40.8 92
r2cat 7.7 102 39.3 75

such that it can be used as a reference genome. The matching took 6.9 hours on
the same machine that was used for the results in Table 3.3. The peak memory con-
sumption was at 3.1 GByte while creating the q-gram index. We also matched this
dataset with blastall and surprisingly this was with 6.6 hours a few minutes faster.
This might be explained by our observation that r2cat found five times as many
matches, measured in the total length of contig substrings involved in matches.

3.3.2 Visualization

There is a variety of graphical tools to explore and analyze genomic data. For an
overview, see the review of Nielsen et al. [69].

We use a synteny plot to visualize similar parallelograms of contigs and reference
genome. In such a plot, the sequences are represented by the x and y-axis of a
coordinate system and matching regions are displayed as diagonal lines. This visu-
alization is related to a dot plot that can be derived if in a score matrix, like the one
of Section 3.1.1, every score-increasing diagonal is plotted as a dot. Synteny plots
usually combine several dots to diagonals and are often flipped vertically.

Figure 3.4 on the next page shows an exemplary synteny plot that was generated
with r2cat. For this plot, the contigs of Corynebacterium urealyticum were matched
onto the closely related genome of Corynebacterium jeikeium as reference genome.
The horizontal axis represents the reference genome, and on the vertical axis all
contigs are stacked in the order of the underlying FASTA file.

Each parallelogram that was found by the implemented matching routine of Sec-
tion 3.3.1 is displayed as a diagonal line. Lines with negative slope correspond to
reverse complementary matches.

The horizontal bar at the bottom of the plot helps to assess the coverage of the
matches: maximum coverage is displayed in black and fades to light grey with less
coverage. Uncovered regions are highlighted in red.

37

Chapter 3. Efficient Matching of Contigs

C
.
u
re

a
ly

ti
c
u
m

 D
S
M

7
1
0
9

 C
o
n
ti

g
s

C. jeikeium K411

Figure 3.4: Synteny plot generated by r2cat. The contigs of Corynebacterium ure-
alyticum are matched onto the reference sequence of Corynebacterium jeikeium.
Details of the sequences are given in Section 6.1.1.

Our implementation features an export of the displayed synteny plots to either
bitmap or vector based graphics formats. Since editable formats like scalable vector
graphics (SVG) are supported, r2cat is well suited to produce high quality synteny
plots to be used in publications and other print media.

In the program, the view area is zoomable and panable such that matches can
be examined more closely. Matches can be selected in the plot and also displayed
in a separate table window. Besides the start and stop positions of the matches in
contigs and reference genome, also the number of exactly matching q-grams and an
estimate for the repetitiveness of a match is shown. Selected matches are displayed
in red and matches belonging to a contig that is selected, appear in orange inside
the plot (not shown in Figure 3.4).

Initially, the contigs are stacked in the order as they appear in the FASTA file that
was used for matching. There are two possibilities to change their order: Either with
the automated approach that is described in Section 3.3.3, or manually in a separate
window showing the contigs in a table. In addition to moving contigs per drag and
drop in this table, it is also possible to reverse complement a contig if this seems
appropriate. After matching, r2cat automatically reverse complements a contig if
the majority of matches belong to the reverse complement. Contigs that have been
reversed are displayed in the plot in blue color.

As an additional table column, r2cat shows an estimation for each contig how
much of its sequence is repetitive according to the reference genome. Details of the
repeat detection are given in Section 4.4.2.

While the main focus of our tool is to arrange a set of contigs, the synteny vi-
sualization can also be used to investigate the relationship between two species if,

38

3.3. r2cat – The Related Reference Contig Arrangement Tool

C
.
u
re

a
ly

ti
c
u
m

 D
S
M

7
1
0
9

C. jeikeium K411

Figure 3.5: Synteny plot of two genomes. The reference is the same as in Figure 3.4,
but instead of the contigs of Corynebacterium urealyticum, its already finished ge-
nome is used as query.

instead of the contigs, the genomic sequence of another genome is chosen for match-
ing. Exemplary, Figure 3.5 shows such a plot where a large scale inversion and
several smaller insertions and deletions can be observed. Additionally, repetitive
elements can be seen that appear in regular patterns aside from the main diagonals.

3.3.3 Simple Contig Mapping

Alternatively to changing the order of the contigs manually, r2cat features an auto-
matic arrangement of the contigs based on their matches to the displayed reference
genome. The order of the contigs is inferred by mapping them onto the reference.

To perform the mapping, we consider for each contig the coverage of its matches
to the reference genome: Let cov(c, p) be the maximum number of q-hits of a match
– from contig c to the reference genome – that covers a single base position p. We use
the maximum instead of a sum to avoid counting the q-hits in overlapping matches
several times. To find where a contig has the best coverage, we use a sliding window
approach. In a window of the size of a contig, we look at the average window coverage
that is defined as the sum of cov(c, p) over the positions in that window, divided by
its size. By sliding the window over the reference, we calculate the average window
coverages for all possible positions. Each contig is then mapped to that window
position where it yields the highest average window coverage. Figure 3.6 shows the
result of applying this procedure to the matches displayed in Figure 3.4.

After an automated arrangement, the displayed order of the contigs in r2cat can
be exported to text files where each line gives the identifier of a contig, as well as
a ‘+’ or ‘−’ sign, indicating the inferred orientation with respect to the original

39

Chapter 3. Efficient Matching of Contigs

C
.
u
re

a
ly

ti
c
u
m

 D
S
M

7
1
0
9

 C
o
n
ti

g
s

C. jeikeium K411

Figure 3.6: The contigs displayed in Figure 3.4 are ordered with the simple mapping
approach implemented in r2cat. Matches in blue indicate that the contig is reverse
complemented.

FASTA file. If the original FASTA file is still available, it is also possible to export
the contigs, ordered and oriented, into a copy of it.

In a recent extension of r2cat, Yvonne Hermann – one of our bachelor students –
integrated an automatic primer design step to aid the gap closing process in the
finishing phase of a sequencing project. Primer pairs at the borders of putatively
adjacent contigs can be used to amplify the DNA in between, and sequence it sub-
sequently. For the primer design, a variety of relevant sequence features, like for
instance the GC content, or the occurrence of homopolymers, are evaluated and
scored to find suitable primer candidates. The best candidates are then paired to
assure that they have comparable melting temperatures and that they bind to the
target sequence instead of to each other.

The matching of contigs to a reference genome can be considered valuable for gap
closing purposes, assuming that the corresponding genomes have a high degree of
synteny. Still, the results of the simple mapping of this section have to be handled
with care. Figure 3.7 shows the contigs of Corynebacterium urealyticum in their true
order, matched on different reference genomes. The true order was obtained by
matching the contigs onto its already finished genome. This figure shows possible
causes why a simple reference based approach might not be sufficient:

1. Large scale inversions might suggest that two contigs are adjacent while in
fact they are not, like in Figure 3.7 (a). Here, the breakpoints of the inversion,
which are the points where the inverted sequence had been cut, coincide with
the borders of the contigs and thus cannot be detected. In other cases, like
the inversion in the center of Figure 3.7 (b), the breakpoints are detectable,
since a single contig has matches on the forward and backward strand of the

40

3.3. r2cat – The Related Reference Contig Arrangement Tool

C. jeikeium

(a)
C

.
u

re
a

ly
ti
c
u
m

 C
o

n
ti
g

s

C. efficiens

(b)

C
.

u
re

a
ly

ti
c
u

m
 C

o
n
ti
g

s

C. diphteria

(c)

C
.

u
re

a
ly

ti
c
u

m
 C

o
n

ti
g

s

C. aurimucosum

C
.

u
re

a
ly

ti
c
u

m
 C

o
n

ti
g

s

(d)

Figure 3.7: Pairwise synteny plots of the contigs of Corynebacterium urealyticum and
four chosen complete genomes of the Corynebacteria genus. Details of the se-
quences are given in Section 6.1.1.

reference. In simple cases, this might be untangled; however, the influence of
several inversions like in Figure 3.7 (d) complicates this task.

2. For a given reference, some contigs cannot be matched reasonably. This hap-
pens if the degree of synteny is low, as for example in Figure 3.7 (c). Alter-
natively, the sequence of a contig might have been deleted in the reference
during the course of evolution, or, equivalently, its sequence could have been
inserted into the contigs’ genome. If a contig is not matched, it cannot be con-
tained in a reference based layout and thus not be considered for closing the
gaps between the contigs. Fortunately, if the reference is close enough, only
very small contigs cannot be matched at all.

3. Repetitive contigs are mapped to one of their possible occurrences on the ref-
erence. The actual placement is merely done by chance when the highest

41

Chapter 3. Efficient Matching of Contigs

number of matches is considered. Figure 3.7 (a) shows the typical patterns of
repetitive matches.

Some of these obstacles can be avoided, or at least alleviated, if not one but several
reference genomes are considered. While the simple mapping approach described
in this section is not capable of handling several references, a more sophisticated
approach will be described in Chapter 4. There, we show how to incorporate sev-
eral reference genomes, as well as their phylogenetic relationship, and also give an
algorithm to treat repetitive contigs in a special way.

42

Chapter 4
Advanced Contig Layouting using
Multiple Reference Genomes

I appreciate theoretical work for its elegance, yet find it sterile
when it is too detached from practical value.

(Justin Zobel, Writing for Computer Science)

A simple mapping of contigs to a single reference genome might not be sufficient
to devise a valuable layout of the contigs. Using several related genomes as refer-
ences can improve the predictions of neighboring contigs for more distantly related
genomes [109]. However, conflicting information may arise that complicates to find
a layout in which the contigs are uniquely ordered.

In this chapter, we describe a strategy to find a layout of a set of contigs that
is capable to employ several related genomes as references. Our approach uses
all similarities between the contigs and the reference genomes to collect hints that
a pair of contigs is adjacent. The hints are gathered in a weighted graph that is
introduced in Section 4.1. The weights in this graph can help in the finishing phase
of a sequencing project. To this matter, Section 4.2 describes a fast algorithm for
estimating a layout of the contigs with respect to a given graph. After this, we
discuss enhancements of the graph creation in Section 4.3, and possible variations
of the layouting algorithm in Section 4.4.

43

Chapter 4. Advanced Contig Layouting using Multiple Reference Genomes

4.1 The Contig Adjacency Graph

In this section, we provide the formal notation for the contig adjacency graph that
we use to collect adjacency information of a set of contigs. Basically, this graph
contains edges for all possible adjacencies. These are weighted in a way that the
edges between potential neighbors receive high weights. The weighting is done by
analyzing the matches of the contigs with respect to a set of reference genomes.
Each reference genome can be used independently to compute the weights, and it is
straightforward to merge the information of several references into a single graph.

In the following, we will first introduce the notation for the contig adjacency
graph, then motivate the edge weighting function and finally, in Section 4.1.3, give
an algorithm to construct the graph.

4.1.1 Notation

Recall the notation for strings and matches given in Section 3.1. In this chapter, let
Σ = {A,C,G,T} be the alphabet of nucleotides such that Σ∗ is the set of all possible
finite DNA sequences. Suppose we are given a set of contigs C={c1, . . . , cn}, ci∈Σ∗,
and a set of already finished reference genomes R={g1, . . . , g|R|}, gr∈Σ∗.

As already announced, we use matches of the contigs to related reference ge-
nomes to infer information about the layout of the contigs. Let m=

(
(sb, se), (tb, te)

)
be a match of contig c and reference g. This means that s = c[sb, se] is a substring
of the contig, t= g[tb, te] is a substring of the reference genome, and both sequences
are similar. The length of a match, |m| := |t|= te−tb+1, is defined as the length of
the covered substring in the reference genome. For sb > se we define c[sb, se] to be
the reverse complement of c[se, sb] and call m a reverse match. Further, we assume
without loss of generality that tb < te for all g[tb, te]. Otherwise we can replace both
involved substrings by their reverse complements.

We generate the matches with the q-gram filter described in Section 3.3.1. Thus,
for each match m, the number of exactly matching q-grams is provided which can
be used as a quality estimation for that match. We refer to this number as qhits(m).
The set of matches between a contig ci ∈ C and reference genome gr ∈ R is in the
following denoted asMr

i ={m1, . . . , ms}.
Each match m =

(
(sb, se), (tb, te)

)
∈Mr

i can be interpreted as a projection of con-
tig ci onto the reference genome gr. The projected contig π(m) :=

(
(tb − sb), (te +

|ci| − se)
)

refers to the implied pair of index positions on gr. For reverse comple-
ment matches, the projection can be defined similarly. Note that the size of the
projected contig can deviate from the real size of a contig due to insertions or dele-
tions in the match. Figure 4.1 shows an example of two projected contigs as well as
their distance, which we define next.

44

4.1. The Contig Adjacency Graph

{

Reference Genome

c

c’

m

m’

d
(m) (m’)

sb

se

tb te

Figure 4.1: Projections π(m) and π(m′) of the contigs c and c′ based on their matches
m and m′. The distance d reflects the displacement of the projections.

The distance of two projected contigs π(m)=(pb, pe) and π(m′)=(p′b, p′e) is given
by the following function:

d
(
π(m), π(m′)

)
=

p′b − pe if pb < p′b
pb − p′e if pb > p′b
−min{|m|, |m′|} if pb = p′b .

(4.1)

If the matches refer to different reference genomes, the distance of their projections
is undefined. Note that the term ‘distance’ is used here in the sense of ‘displace-
ment’, and d is not a metric in the mathematical sense. For example, d is negative if
the projected contigs overlap.

Now, we define the edge-weighted contig adjacency graph GC,R = (V, E), which is
the central concept of our layouting approach. The contig adjacency graph contains
for each contig ci ∈ C two vertices: li as the left connector and ri as the right connec-
tor of contig ci. The set of vertices V is thus defined as V = {l1, . . . , ln, r1, . . . , rn}.
A function contig(v) refers to the contig for which vertex v represents the left or
right connector.

The contig adjacency graph GC,R is fully connected, that is E = (V
2), and we

term A = {{v, v′} ∈ E | contig(v) 6= contig(v′)} the adjacency edges that connect the
contigs among each other. The remaining edges are termed the intra contig edges
I ={{l1, r1}, . . . , {ln, rn}}. Each intra contig edge {li, ri}∈ I ‘represents’ the contig ci.
To ease the understanding of this concept, Figure 4.2 on the following page shows
an exemplary graph with four contigs.

By using a left and a right connector per contig, the adjacency edges encode the
relative orientation of two contigs. The edge {ra, lb}, for example, states that the
right end of contig ca is adjacent to the left end of contig cb, which means that
both contigs have the same direction. We illustrate this adjacency edge by ca−→ cb−→, or
equivalently by

cb←− ca←−, since the edge is not directed. The adjacency edge {la, lb}, on
the contrary, indicates that one of the contigs is reversed towards the other, depicted

45

Chapter 4. Advanced Contig Layouting using Multiple Reference Genomes

c2c1

r1

l1

c4

r4

l4

c3

r3

l3

r2

l2

Figure 4.2: Exemplary contig adjacency graph containing four contigs. The intra contig
edges I are omitted. Instead of this, the contigs are drawn as pictograms.

as either ca←− cb−→, or
cb←− ca−→. The last possible case of an adjacency of the two contigs

would be ca−→ cb←−, or
cb−→ ca←− respectively, given by the edge {ra, rb}.

The edge weights of the contig adjacency graph are calculated with a function
w : E→R+

0 that will be defined in Section 4.1.2. We are primarily interested in the
weights of the adjacency edges A. These shall provide a score of how likely the
involved connectors are adjacent with respect to the reference genomes gr ∈R. We
call this the support of two contigs being adjacent. For convenience, we assume that
we can retrieve the support values after their computation from the symmetrical
contig adjacency matrix W, in which a row (or column) contains all weights involving
a particular contig connector:

W =

0 . . . w({r1, rn}) w({r1, l1}) . . . w({r1, ln})
...

ci−→
cj←−

...
...

ci−→
cj−→

...
w({rn, r1}) . . . 0 w({rn, l1}) . . . w({rn, ln})
w({l1, r1}) . . . w({l1, rn}) 0 . . . w({l1, ln})

...
ci←−

cj←−
...

...
ci←−

cj−→
...

w({ln, r1}) . . . w({ln, rn}) w({ln, l1}) . . . 0

(4.2)

Each quadrant of this matrix contains that type of adjacency edges as depicted
in the central boxes. The weights in the main diagonal are set to zero since they
correspond to self-loops of the contig connectors which are not considered in our
contig adjacency graph.

We call the sum of the weights of all edges incident to a node v∈V the total support
of that node, denoted by Sv = ∑v′∈V w({v, v′}). In Matrix (4.2), this is equivalent to

46

4.1. The Contig Adjacency Graph

the row- (or column-wise) sum of a contig connector. To estimate how significant
an adjacency edge e = {v, v′}∈ A is for a given contig connector v∈V, we consider
its relative support: S rel

v (e) = w(e)
Sv

. Intuitively, this fraction tells how specific the
connection is for the given contig connector. A single high weighted edge results in
a relative support close to 100%, while many equally good connections will lower
the value. Note that in general S rel

v ({v, v′}) 6= S rel
v′ ({v, v′}).

4.1.2 Weighting the Adjacency Edges

For each intra contig edge e∈ I, we set the weight w(e)=0 since these do not tell us
about the relationship between the contigs. For the other edges, let e = {vi, vj} ∈ A
be an adjacency between the contigs ci = contig(vi) and cj = contig(vj). Then, the
total weight of this adjacency edge is defined as

w(e) = ∑
gr∈R

wr(vi, vj) (4.3)

where the (symmetric) function wr defines the support of this adjacency with respect
to a single reference genome gr. Each support wr(vi, vj) is based on the matches of
the involved contigs on that reference:

wr(vi, vj) = ∑
m∈Mr

i , m′∈Mr
j

s
(

d
(
π(m), π(m′)

))
· qhits(m) · qhits(m′) . (4.4)

Here, d is the distance between two projected contigs, see Equation (4.1), and s(d)
is a suitably defined scoring factor to weight the matches based on the distance of
their projections. Note that instead of the number of q-hits as quality measure for
the matches, also the BLAST bit-score can be used.

The scoring factor s(d) is based on the following observations concerning the
distances of projected contigs:

1. Projected contigs that are not adjacent have, in general, a high distance and
should obtain a low score. Adjacent contigs should gain a high score for usu-
ally having a distance close to zero. However, as illustrated in Figure 4.3 (a),
the distance of two projected contigs can reach positive values due to inser-
tions into the reference genome. Similarly, the distances can be negative if
the projections overlap, which is the case if there are insertions in the newly
sequenced genome. This case is shown in Figure 4.3 (b). Note that an insertion
in one genome corresponds to a deletion in the other, and vice versa.

We model the effect of insertions and deletions in the reference genome with
a random variable X ∼ N (µX, σ2

X) that satisfies a Gaussian distribution. The
expected value µX is zero, and the standard deviation σX correlates with the
size of insertions and deletions.

47

Chapter 4. Advanced Contig Layouting using Multiple Reference Genomes

{ {

Reference Genome

= Insertion

Reference Genome

(a) (b)

c

c’

m

m’

d > 0
(m) (m’)

c

c’

m

m’

d < 0
(m)

(m’)

Figure 4.3: (a) An insertion in the reference genome leads to a positive distance,
whereas (b) an insertion in a contig leads to a negative distance.

2. In the fragmentation phase of a sequencing project, often fragments disappear
such that there are no reads for this fragment. Additionally, the assembler
software might discard unreliable reads at the ends of the contigs, which also
leads to missing sequence information. If pieces of the newly sequenced ge-
nome are missing, the same situation arises as if there is an insertion into the
reference genome, which causes positive distances.

The effect of missing sequences can be modeled according to a random vari-
able Y ∼ N (µY, σ2

Y) that also obeys a Gaussian distribution. Here, the ex-
pected value µY models the average size of the lost fragments, and σ2

Y models
their variation.

To take the mentioned effects into account, we use a superposition of both Gaussian
distributions. Assuming that X and Y are independent, their sum is also distributed
according to a Gaussian distribution [27, Ch. 11.2]: X + Y ∼ N (µX + µY, σ2

X + σ2
Y).

Hence, we set µ = µY and σ2 = σ2
X +σ2

Y, and use for our scoring the combined
Gaussian distribution N (µ, σ2):

s(d) :=
1

σ
√

2π
e−

1
2

(
d−µ

σ

)2

. (4.5)

The combined parameters µ and σ can be estimated from already finished sequenc-
ing projects, as done in the evaluation in Section 6.1.3. Based on this estimation, we
can assume that both µ>0 and σ>0.

4.1.3 Creating a Basic Contig Adjacency Graph

Using the above definitions, a contig adjacency graph can be created for a set of con-
tigs and a set of reference genomes as described in Algorithm 1. For each reference
genome, the contigs are matched independently. Based on the projected contigs, the
weights of the edges are calculated and integrated into the contig adjacency graph.

48

4.1. The Contig Adjacency Graph

Algorithm 1: Basic Contig Adjacency Graph Creation
Input: set of contigs C, set of related genomes R
Output: contig adjacency graph GC,R

1 initialize contig adjacency graph GC,R=(V, E) with w(e)=0 for all e∈E
2 foreach reference genome gr∈R do
3 foreach contig ci∈C do
4 find matchesMr

i
5 calculate for all matches m∈Mr

i the projected contig π(m)
6 end
7 foreach pair of contig connectors e={vi, vj}∈A do
8 compute the weight wr(vi, vj) and add it to w(e)
9 end

10 end

This procedure is the basic way to create a contig adjacency graph and we will
introduce enhancements to it in Section 4.3. These were designed to improve the
reliability of the edges if additional information is available. For example, we pro-
vide a modified edge weight function that is able to incorporate the phylogenetic
distances of the involved species.

Properties of the Graph The weights of a contig adjacency graph created with
Algorithm 1 have some noteworthy properties: Strong matches of two contigs that
have a high number of q-hits produce a high support of the employed contig con-
nectors if their projected contigs occur close on a reference genome.

Small scale evolutionary events, like mutations or smaller rearrangements, may
result in a fragmentation of large matches into several weaker ones. However, our
scoring should be robust to this, since the projected contigs of these matches coin-
cide with the projection of the unfragmented match. The distances are thus alike,
and consequently the weights of all match fragments contribute to a high weight
in total. In contrast, projected contigs of weak matches that occur only by chance
usually have large distances to other projections such that the score factor, and thus
also the weight contributed to an adjacency support, is low.

The approach of Algorithm 1 assumes that the reference genomes are closely re-
lated. In fact, large scale rearrangements can be problematic for the significance of
the adjacency support values: A large insertion on a reference, for instance, causes
an adjacency of two projected contigs surrounding it to gain a low weight. In such
cases it is advantageous that we use several reference genomes. A single reference
genome that does not have this insertion is sufficient to also gain a noticeable sup-
port for the proper adjacency. If we look at large scale inversions, these can cause
high weight edges for contigs that are in fact not adjacent. When using several refer-

49

Chapter 4. Advanced Contig Layouting using Multiple Reference Genomes

c1

r1

l1

c4

r4

l4

c3

r3

l3

c2

r2

l2

c1

r1

l1

c4

r4

l4

c3

r3

l3

c2

r2

l2

Weighting Layouting
c1

r1

l1

c4

r4

l4

c3

r3

l3

c2

r2

l2

Figure 4.4: Overview of our approach to find a layout for the contigs. First, the edges
of the contig adjacency graph are weighted according to Algorithm 1, and then the
best adjacencies are extracted to a layout graph, as described in Section 4.2.2.

ence genomes, this can lead to conflicting information for a contig connector since
we do not know which of the high weight adjacencies is correct.

Another property of the contig adjacency graph concerns repetitive contigs. These
have, in terms of adjacencies, several neighbors. In the adjacency matrix, this be-
comes apparent by several high entries in a row (or column) if the contigs are also
repetitive on at least one of the reference genomes. This means that a repetitive
contig usually has not one but several supported adjacencies per contig connector.

To summarize, the contig adjacency graph contains the collected information
given by all matches to the references. Figure 4.4 (center) illustrates this property.
Although rearrangements and repetitive contigs may cause high weights that have
to be handled with care, we can use the calculated edge weights to find a layout of
the contigs. The next section focuses on how to extract the most promising edges
for this task.

4.2 Finding a Layout of the Contigs

Given a contig adjacency graph, we want to find a subgraph of it that contains all
relevant adjacencies in order to ease the gap closure phase of a sequencing project.
We call any subgraph with this property a layout graph of a set of contigs. Ideally,
the edges of a layout graph build a single path that contains each contig once. We
call this a linear layout of the contigs.

4.2.1 Traveling Salesman Tour Through the Graph

A natural approach to discover a linear layout is to find a tour of maximal weight
that contains each contig exactly once, and in a specified direction. With the follow-
ing minor modifications of the graph, this becomes equivalent to finding a shortest
Hamiltonian cycle: All edge weights have to be converted to distances. This is done
by replacing each edge weight w by c−w where c is a constant that is not lower than

50

4.2. Finding a Layout of the Contigs

the maximum weight in the graph. Further, we add an intermediate node between
the left and the right connector of each contig to ensure that each contig is incorpo-
rated exactly once, and only in one direction. The modified graph is then defined as
G′C,R=(V ′, E′) with V ′=V ∪ {vi | 1≤ i≤n} and E′= A ∪ {{li, vi}, {vi, ri} | 1≤ i≤ n}.
The distance of all edges that lead to an intermediate node vi is set to 0.

A shortest Hamiltonian cycle in the modified graph G′ defines an order as well as
the relative orientation of all contigs. Thus, any algorithm to solve the traveling sales-
man problem (TSP) can be used to find a linear layout of the contigs that is optimal
with respect to the weights of the underlying contig adjacency graph. The naive ap-
proach, which is to calculate the lengths of all possible tours, is already unfeasible
for more than a few nodes since the TSP is NP hard. Besides the naive approach,
there are many other algorithms to solve the TSP [6]. These can be divided in run-
time heuristics that find an optimal solution while being in the expected case faster
than the naive approach, and exactness heuristics that very quickly find a good
– although not necessarily optimal – solution.

Runtime heuristics like branch-and-bound algorithms can be used to solve prob-
lem instances of up to several nodes. However, in the worst case, they still need
exponential time. For hundreds of contigs, the time demand to compute a solution
is thus still not feasible.

In comparison to algorithms providing exact solutions, many exactness heuristics
are much faster. A very fast greedy algorithm, for instance, is the multi-fragment
heuristic [13] that proceeds as follows: First the edges of the graph are sorted by
increasing distance and then added in this order into an initially empty set of path
fragments. Whenever an involved node would exceed the maximal degree of two,
or if a path fragment would create a cycle, the edge is skipped. The only exception
to the latter is the final Hamiltonian cycle of length n. This “best connection first”
procedure creates multiple low distance path fragments which are merged sooner
or later.

The multi-fragment heuristic is well suited to find a linear layout of the contigs.
Although it produces not necessarily an optimal tour, it gathers high support ad-
jacencies. This local optimization of the adjacencies might in the context of contig
layouting be more valuable than spending much time to globally optimize the tour.

In brief, a linear layout of the contigs that is optimal, or near optimal, with re-
spect to the adjacency edge weights, can be computed using a suitable TSP algo-
rithm. However, we found out that a linear layout of the contigs is not necessarily
biologically relevant. This is mainly due to an arbitrary placement of repeated or re-
arranged regions. A method that provides a unique layout where possible, but also
points out alternative solutions where necessary, may be more useful in practice. In
the next section, we present our approach to tackle this problem.

51

Chapter 4. Advanced Contig Layouting using Multiple Reference Genomes

4.2.2 Fast Adjacency Discovery Algorithm

Our approach to discover relevant adjacencies from a contig adjacency graph is
based on the multi-fragment heuristic introduced in the previous section. We chose
this greedy heuristic because it seems natural to first incorporate those adjacencies
into a layout that are most promising to be investigated for gap closure.

As already indicated, repeating or rearranged regions may prohibit an unambigu-
ous linear layout of the contigs. Repeating contigs create cycles in a possible path,
and rearrangements can lead to conflicting adjacencies of a contig. To account for
this, we relax the constraints of the multi-fragment heuristic: First, we allow cycles
that could appear due to repetitive contigs. Secondly, when inserting an edge, we
permit one of the incident nodes, but not both, to exceed a degree of two. This
allows to also include conflicting information into a layout.

Our procedure to extract a layout graph is formally described in Algorithm 2. The
input is a contig adjacency graph, for instance created with Algorithm 1. We start
with the most promising edges – those with the highest support – and integrate
them one by one into the initially empty layout graph, except if both of the involved
contig connectors have already been integrated. When an adjacency edge is inte-
grated, we also say the edge is realized in the layout. To avoid that too faint edges
are realized in the final layout, one can check if the relative support of an edge to
be integrated with respect to both contig connectors is above a certain threshold.

The result of our greedy algorithm is a layout graph, as exemplified in Fig-
ure 4.4 (right). There, the adjacency

c4−→ c2←−, having the highest weight, is realized
first. The edge {r3, r2} is introduced later, although conflicting, because it has a
higher weight than {l4, r3}, and thus r3 is not occupied yet. Finally, the adjacency
c4←− c3←− is realized, since l4 is the last free connector.

The resulting layout graph usually does not describe a linear layout, and in gen-
eral the graph is not necessarily connected. However, it contains many of the
strongly supported adjacencies of the contigs and includes at least one edge for each
contig connector. The best edges are realized first and then padded with possibly
conflicting information such that all contig connectors are included in the layout.

All unambiguously incorporated contigs can be helpful in the finishing process
to guide the primer design for gap closure. Yet, knowing about conflicting edges
can also be contributive since these indicate possible rearrangements or show the
influence of repetitive contigs. So, instead of pinning the result down to a single,
possibly wrong, linear layout of the contigs, we prefer to output the best possibilities.
Nonetheless it should be kept in mind that rearrangements can cause seemingly
good adjacencies that do not belong to a correct layout.

Algorithm 2 is our basic approach to layout contigs. Section 4.4 shows variations
of this layouting, for example a special treatment for repetitive contigs.

52

4.3. Enhancements of the Graph Creation

Algorithm 2: Basic Contig Adjacency Discovery
Input: contig adjacency graph GC,R=(V, I ∪ A)
Output: layout graph L of the contigs

1 create empty layout graph L = (VL, EL) with VL = ∅ and EL = ∅
2 foreach adjacency edge e={v, v′}∈A, sorted by decreasing weight w(e) do
3 if

∣∣VL ∩ {v, v′}
∣∣ ≤ 1 then

4 VL = VL ∪ {v, v′}
5 EL = EL ∪ e
6 end
7 end
8 EL = EL ∪ I

4.3 Enhancements of the Graph Creation

So far, we introduced the contig adjacency graph and its creation, as well as a layout-
ing algorithm to extract the interesting edges. This section explains how additional
information can be used in the graph creation phase to improve the reliability of the
calculated edge weights.

4.3.1 Including Phylogenetic Distances

The reference genomes used for layouting are typically related to different degrees
to the contigs genome. Sometimes, a phylogenetic tree of the species is available
that contains phylogenetic distances of the species towards each other. If not, such
a tree can be generated even if some genomes are not completely assembled yet, for
example, from the highly conserved 16S ribosomal RNA.

Given a phylogenetic tree, we can use it to weight the matches according to the
relatedness of the reference genome. Assuming that between closer related species
less rearrangements have taken place, this weighting also helps to avoid contradict-
ing edges in the contig adjacency graph that can be caused by rearrangements.

When a phylogenetic tree T of the involved species is available, we can use the
contained evolutionary distances to change the score factor s(d) from Equation (4.5)
at page 48 to:

sT (d, dT) :=
1

dT · σ
√

2π
e−

1
2

(
d−µ
dT ·σ

)2

(4.6)

where dT is the tree distance to the particular reference genome.
As illustrated in Figure 4.5, a higher tree distance dT allows larger insertions

and deletions, but scores the reliability of the matches to more distantly related
genomes to a lesser degree. To use the score factor of Equation (4.6) as displayed, it

53

Chapter 4. Advanced Contig Layouting using Multiple Reference Genomes

−100000 −50000 0 50000 100000

S
c
o
re

 F
a
c
to

r

Distance of Projected Contigs (Bases)

Tree Distance 1.0
Tree Distance 2.0
Tree Distance 3.0
Tree Distance 4.0

Figure 4.5: Influence of the phylogenetic tree distance given in Equation (4.6). Param-
eters σ = 10, 000 and µ = 0 arbitrarily chosen for illustration.

is advisable to normalize the phylogenetic distances such that the closest reference
species has a distance of one and less related genomes have a higher distance.

The basic layouting algorithm, together with this phylogenetic tree enhancement
has been published [41], and the implementation is known as treecat, the “phyloge-
netic tree based contig arrangement tool”. Later, in the evaluation in Chapter 6, we
will refer by this name to the corresponding algorithms and enhancements.

4.3.2 Integrating Additional Information

In sequencing projects, often additional information occurs which can be helpful to
layout the contigs. Section 2.3.2 mentions for example mate pairs, fosmid libraries,
or optical restriction maps. These pieces of information can be included into our
approach by modifying the weights of the contig adjacency graph after their compu-
tation, which then influences the predicted adjacencies in a layout graph. If expert
information indicates that two contigs are not adjacent, it suffices to set the ap-
propriate edge weight to zero. This contig connection will not occur in the result
afterwards. On the contrary, if for example fosmid end sequencing shows that two
contigs are adjacent and quite close, the incorporation of that edge into the layout
graph can be forced by setting the corresponding edge weight to the maximum
weight of the graph.

4.4 Variations of the Contig Layouting

In applications of the basic layouting algorithm to real data, it became clear that
rearrangements in the reference genome as well as repetitive contigs are the main
reason for misleading predictions of adjacent contigs in the layout graph. In the
next section, we discuss the detection and handling of rearrangements. After that,
we deal with repetitive contigs and give an algorithm to include them more appro-
priately in Section 4.4.2.

54

4.4. Variations of the Contig Layouting

4.4.1 Handling Rearrangements

Rearrangements that happened between the newly sequenced genome and the ref-
erence genome can cause false or missing adjacencies in a computed layout of the
contigs. We first consider rearrangements due to insertions and deletions, and then
examine how to deal with large scale inversions.

An insertion in one of the genomes, for example caused by horizontal gene trans-
fer, can not be distinguished from a potential deletion of that sequence block in the
other. In reference based contig layouting, both cases can thus be treated equiva-
lently. If the size of a respective sequence block is rather small, the rearrangement is
sufficiently handled by our scoring factor for the distances of projected contigs, as
described in Section 4.1.3.

On a larger scale, it depends which part of the contig was inserted or deleted: If
the whole contig is affected, then there is no information how to layout this contig.
The only chance in this case is to use more, or other related references in the hope
that they contain the necessary information. If only an inner part, or either side of
the contig is inserted or deleted, the remaining parts that match do contribute to
the weight of the adjacency edge. The support is then proportional to the size of the
corresponding matches.

Another type of large scale rearrangements that occur frequently in prokaryotic
genomes are inversions [26]. In this case, using more reference genomes likely in-
troduces even more conflicting edges. While simple inversion scenarios might suc-
cessfully be untangled by examining the matches, a series of overlapping inversions
can be impossible to resolve.

One suggestion to detect which of the contigs show misleading edges due to
inversions is to cluster the matches of a contig to find their main diagonals, for
example with a clustering by linear regression [34]. Contigs that contain significant
forward as well as reverse complementary matches can be marked to warn that the
corresponding edges may be unreliable.

4.4.2 Repeat-aware Layouting

As already stated, a meaningful biological order of the contigs might differ from a
linear layout. Our concept of a layout graph withdraws the restriction of a linear
layout by allowing alternative adjacency edges. This is in particular utilized by
Algorithm 2 that allows cycles which can be caused by repetitive contigs. Still, this
basic algorithm generates a layout graph in which each contig is incorporated only
once. However, a repetitive contig has to be included several times into an adequate
layout, since its sequence occurs several times in the genome.

While other approaches often try to avoid repetitive contigs completely (see Sec-
tion 6.1.4), we found that ordering non-repetitive contigs first and adding connec-
tions to repeats later seems to be a good strategy. Unfortunately, the information

55

Chapter 4. Advanced Contig Layouting using Multiple Reference Genomes

about repetitive contigs is not directly accessible from the contig adjacency graph.
Therefore, we describe how to infer which contigs are repetitive based on their
matches to a reference genome. Afterwards, we introduce an enhanced layouting of
the contigs that integrates repetitive contigs as often as necessary.

Repeat Detection

There are several ways to detect repetitive contigs. One possibility is to find known
repetitive sequences on the contigs that are stored in a database as done, for example,
by RepeatMasker [86]. However, we aim at a de-novo repeat detection that is based on
the provided sequence data. Therefore, we chose to use the matches to a reference
genome in order to distinguish between repetitive and non-repetitive contigs. We
call the latter for the sake of a shorter notation from now on regular contigs.

Using the matches to detect repeats assumes that repeating regions are conserved
between closely related species. Surely, this is a very strong assumption, and we will
discuss its sensibility in more detail later in Section 6.2.3. In accordance with this as-
sumption, we consider for the repeat-aware layouting, instead of several references,
only a single reference genome that is most closely related.

Given a set of matchesMr
i of contig ci ∈C to a reference genome gr ∈R, we first

determine which matches are repetitive, and from this we derive whether the whole
contig can be considered as repetitive.

We call m =
(
(sb, se), (tb, te)

)
∈Mr

i a repetitive match if there exists another match
m′=

(
(s′b, s′e), (t′b, t′e)

)
∈Mr

i such that

(i) the contig substring of m is included in the substring of m′:
sb ≥ s′b and se ≤ s′e, and

(ii) the match positions on the reference are not overlapping:
{tb, . . . , te} ∩ {t′b, . . . , t′e} = ∅.

Since the exact positions of the matches may vary, depending on the matching pro-
cedure that is used, we allow for condition (i) a slack of ρ1 times the length of m. By
default we use a value of 10% for ρ1.

Based on this, we speak of a repetitive contig if the contig has at least one repetitive
match m of sufficient length. Sufficient means that at least ρ2 percent of the contig
is covered by the repetitive match: se−sb ≥ ρ2 ·|c|. As default we set ρ2 to 90%. In
the following let CR ⊂ C be the set of repetitive contigs. We consider all contigs that
are not repetitive to be regular.

An advantage of this approach is that the matches which are needed to create the
contig adjacency graph of Section 4.1 can also be used for detecting repeats. How-
ever, contigs that are repetitive on the newly sequenced genome, are not necessarily
repetitive on the employed reference genome.

56

4.4. Variations of the Contig Layouting

To extend, as well as verify, the prediction of repetitive contigs, one can use the
read coverage information obtained in the assembly phase that is discussed in Sec-
tion 2.3.2. This even allows to estimate how often a repetitive contig has to be
included. Another possibility to verify the repetitive contigs is to study them in the
tangle structure of the de Bruijn (sub-)graph of all reads (or contigs) of the genome
to be assembled [4].

Repeat-aware Layout Algorithm

Having the repetitive contigs identified, we show how to use this information to
compute an appropriate layout of the contigs. To this end, we adopt Algorithm 2
from page 53 to be aware of repetitive contigs and include them appropriately. The
overall strategy is to distinguish between regular and repetitive contigs and to pro-
cess both sets one after another. The absence of repetitive contigs in the first set
implies that most contigs should have exactly two neighbors. Following this obser-
vation, we will begin to create a simple linear chaining of the contigs. After that,
we explore how the repetitive elements can be integrated into this initial layout in a
meaningful way.

Layouting the Non-repetitive Parts of the Genome To create an initial layout
graph of the regular contigs, we realize their edges in a two pass procedure. The
first pass is basically a variation of Algorithm 2 that creates linear chains. In the
second pass we realize additional edges to contigs that would be missed otherwise.

The complete algorithm to create an initial layout graph is listed in Algorithm 3.
The single parts are explained in the following: In line 1 of Algorithm 3, the contig
adjacency graph is created. Note that it is built for repetitive and regular contigs,
thus the procedure starts with matching all contigs onto the given reference genome.
Like in Algorithm 1, all pairwise matches are used to calculate the adjacency support
values. However, we introduce a slight modification that helps to reduce misleading
edges for regular contigs. As mentioned before, contigs as well as matches can be
repetitive. It can happen that a regular contig has repetitive matches if they are
small enough, for example contig ends are often flanked by repeats. Such matches
are ignored in the weight calculation in order to avoid misleading edges with high
support that are based on unreliable repetitive matches. Of course, for repetitive
contigs all matches are used.

After the contig adjacency graph has been built for all contigs, we create an initial
layout graph of the regular contigs. Starting at line 2 of Algorithm 3, we proceed
similarly to Algorithm 2. The difference is that an edge is realized if both of the
contig connectors are not included yet. Algorithm 2 requires only that one contig
connector is free. Thus, we generate multiple fragments of good adjacencies that are
in general joined to larger chains during the course of the algorithm. This matches
the expectation that since we do not resolve repetitive contigs at this stage, the result

57

Chapter 4. Advanced Contig Layouting using Multiple Reference Genomes

Algorithm 3: Simple Chaining and Extension
Input: set of contigs C, set of repetitive contigs CR ⊂ C, reference genome g
Output: initial layout graph GL of the regular contigs

1 create contig adjacency graph GC,g = (V, E), as in Algorithm 1, omitting
repetitive matches for regular contigs

2 create empty layout graph GL = (VL, EL) with VL = ∅ and EL = ∅
3 Eregular = {{v, v′} | contig(v), contig(v′) /∈CR and contig(v) 6=contig(v′)}

// find regular edges
4 foreach e={v, v′}∈Eregular, sorted by decreasing weight w(e) do
5 if

∣∣VL ∩ {v, v′}
∣∣ = 0 then

6 VL = VL ∪ {v, v′}
7 EL = EL ∪ {e}
8 end
9 end

// find additional regular edges
10 foreach e={v, v′}∈Eregular\EL, sorted by decreasing weight w(e) do
11 if e has exactly one vertex u in VL and S rel

u (e) > τ1 then
12 VL = VL ∪ {v, v′}
13 EL = EL ∪ {e}
14 end
15 end

16 EL = EL ∪ {li, ri} for the left and right connectors li, ri of all ci /∈CR

should be a set of linear chains of the contigs which can also be present in the form
of one or several cycles.

Up to line 9, we find appropriate neighbors for most regular contigs. However,
if very small contigs lie between two large contigs, then we sometimes observe a
shadowing effect, as illustrated in Figure 4.6: The adjacency edge between the large
contigs can have a higher support that shadows the edge weights to the small con-
tig. Thus, the algorithm would not realize the weaker edges with the consequence
that the small contig is not included in the layout graph. This behavior is generally
unwanted, but, as we will see in Algorithm 4, it can be advantageous for small repet-
itive contigs. That is why we do not abandon the effect, for example by ignoring the
size of the matches in the weight function. Instead, we compensate the shadowing
effect for the affected regular contigs by integrating them into the initial layout as
good as possible. Starting in line 10 of Algorithm 3, we look at all edges not yet
realized and see if they can append an unintegrated contig connector to the initial
layout. Although the shadowing edge stays in the layout, in most cases the correct

58

4.4. Variations of the Contig Layouting

c2

l2 r2

c1
r1

c3

l 3

Figure 4.6: Shadowing effect: If a small contig c2 is on a reference genome located
between the larger contigs c1 and c3, in the contig adjacency graph the correct
edges to c2 can have a lower weight than the adjacency

c1−→ c3−→.

edges from the small contig will also be realized, resulting in a triangle shape of
connected contigs. To control that only very specific edges are incorporated, we test
whether the additional edge has a high relative support S rel of at least τ1.

Adding the Repetitive Contigs Starting with the initial layout graph constructed
by Algorithm 3, the task is now to include the repetitive contigs into the layout.

Knowing the layout of the regular contigs helps to close the gaps in between.
Repetitive contigs are, in contrast, not well suited for a primer-based closing of gaps
since primers in repetitive sequences will bind unspecifically to several regions on
the genome. This results in unspecific PCR products and should thus be avoided.
Nonetheless, we believe that it is very helpful in the finishing phase of a sequencing
project for a researcher to be informed whether repetitive contigs interrupt a gap of
two regular contigs, or not. In the case of several repetitive contigs in a gap, their
order plays, to our opinion, only a secondary role because this information cannot
directly help in the finishing process: If both primers are based on repetitive contigs,
this will produce even more unpredictable results.

Our idea in Algorithm 4 is therefore to place each repetitive contig as often as
necessary between the corresponding regular contigs into the initial layout graph.
Consequently, the important edges that we want to integrate in our initial layout are
those which connect a repetitive contig with a regular one, see line 1 of Algorithm 4.
We demand that the relative support of these edges with respect to the repetitive
contig is higher than a threshold τ2. This avoids the incorporation of arbitrarily weak
edges. The edges between repetitive contigs are not considered in this approach, as
motivated above.

For the interesting edges, we try to find for each involved regular contig connector
a suitable counterpart that is also connected to the other end of the repetitive contig,
as shown in lines 4 to 10 for the left connectors. This procedure is based on the
following observation: As illustrated in Figure 4.7, a repetitive contig c∈CR usually
has several good edges for its right and its left connector leading to different regular
contigs. The problem is to determine which edges belong to a particular repeat
occurrence on the reference genome. The shadow effect, which was an obstacle for
regular contig ordering, becomes here an advantage. In the example of Figure 4.7,
the adjacency

c1−→ c5−→ has a high support, if the contigs c1 and c5 are only separated
by the occurrence of the relatively small repeating contig c. Thus, the objective is to

59

Chapter 4. Advanced Contig Layouting using Multiple Reference Genomes

Algorithm 4: Integration of Repetitive Contigs
Input: set of contigs C, set of repetitive contigs CR ⊂ C, contig adjacency

graph G = (V, E), initial layout graph GL

Output: repeat-aware layout graph GL of the contigs
1 let Erep ={{v, v′} | contig(v)∈CR, contig(v′) /∈CR and S rel

v ({v, v′})>τ2}
2 foreach edge e∈Erep, sorted by decreasing weight w(e) do
3 if e={v1, l} contains the left connector l of a contig c∈CR then
4 let r be the right connector of contig c
5 if exists v2 =arg maxv∈V

{
w ({v1, v}) | {r, v}∈Erep

}
then

6 duplicate l and r to l′ and r′

7 VL = VL ∪ {v1, l′, r′, v2}
8 EL = EL ∪ {{v1, l′}, {l′, r′}, {r′, v2}}
9 remove {v1, l} and {r, v2} from Erep

10 end
11 else // e = {r, v2} contains the right connector r of a contig c∈CR

12 perform lines 4 to 10 analogously
13 end
14 end

c
l r

c4

l 4

c5

l 5

c6

r6

c1

r1

c2

l 2

c3

r3

... ...

Figure 4.7: Typical scenario for the adjacency edges of a repetitive contig c∈CR. The
dashed lines depict the best edge from a contig connector on the right to a contig
connector on the left.

search for any regular node that is connected to either side of a repetitive contig, a
suitable counterpart that is connected to the other side, such that the edge from the
node to the counterpart has the highest weight.

This way, we find for each significant occurrence of a repetitive contig the two sur-
rounding regular contigs with respect to the reference genome. For all occurrences,
we add two new connectors of the repetitive contig and the appropriate edges to
the layout graph.

Assuming that a reference genome is highly related, the variation of the basic
layouting algorithm introduced in this section helps in two ways: First, it detects
contigs that are repetitive and marks them in the output to avoid misinterpretation.
Second, Algorithm 4 includes the repetitive contigs into a previously generated

60

4.4. Variations of the Contig Layouting

initial layout such that a copy will be placed between two regular contigs for which
the contig adjacency graph suggests a repeat occurrence. Unfortunately, it is not
possible with this approach to propose an order of the repetitive contigs, if several
are included between two regular ones.

Dealing with the repetitive contigs is a hard task and usually other algorithms
filter them in order to not get confused. In our basic layouting algorithm, we do not
filter repetitive contigs. However, they lead to conflicting information in the result-
ing layout graph. With the variation described in this section, we aim at resolving
these conflicts. The proposed algorithms include repetitive contigs more appropri-
ately and find a linear layout for the regular contigs. The contents of this section
have been published [43], and we refer to the implementation of the algorithms in
the evaluation chapter as repcat, the “repeat-aware contig arrangement tool”.

We hope that the presented layouting algorithms of this chapter are helpful in
a gap closing process, although we are aware that they do not produce a perfect
layout of the contigs. This might in some cases even be impossible when relying
only on related reference genomes to find the layout. That is why we want to appeal
to the common sense of a researcher to see the process of layouting more like an
experiment in a lab instead of an impeccable algorithm that finds the true layout of
the contigs. The algorithms propose likely adjacencies that are based on the data,
but they may fail to give a unique linear layout of the contigs. Nevertheless, when
comparing our implementation with other related programs in Chapter 6, we show
that our predictions provide competitive, and often even better results.

61

Chapter 4. Advanced Contig Layouting using Multiple Reference Genomes

62

Chapter 5
Realization of the Software

The software containing the ideas and algorithms of Chapters 3 and 4 evolved grad-
ually until it reached the current state. Instead of just describing this state, we want
to sketch the most important steps of this development. To our opinion, this ex-
plains best how the current features emerged and which design decisions have been
taken. The second part of this chapter briefly introduces some external programs
and libraries that are employed within, or in combination with, our software.

5.1 Implementational Milestones

In the beginning of this Ph. D. project, the idea arose to use an existing C++ imple-
mentation of the SWIFT algorithm (see Section 3.2.3) to match contigs onto a related
reference genome to aid in the process of genome finishing. This implementation
was faster than BLAST, and it permitted to also match very large contigs. Naturally,
the need came up to visualize the matches in order to inspect the reliability of the
reference genomes, and to infer information about the order and orientation of the
contigs. This need eventually led to the birth of r2cat.

5.1.1 r2cat

For the implementation of r2cat, we chose the programming language Java, mainly
because of two reasons: Firstly, Java is a highly platform independent language such
that our software runs on Windows, Linux, Mac OS, and also on Solaris which is the
CeBiTec default environment. The second reason is that Java features default graph-
ical capabilities due to the included graphical user interface (GUI) library Swing.

Accordingly, a first prototype of r2cat used Swing to provide a basic dot plot vi-
sualization for matches that were previously generated using the above mentioned
SWIFT C++ implementation that was developed by Kim Rasmussen. At this stage,
we also devised and implemented a rudimentary ordering of the contigs based on

63

Chapter 5. Realization of the Software

their ‘center of mass’ which is in principle the mean of all matches on a reference ge-
nome. However, this concept had a few flaws and such we adopted an idea of Jochen
Blom which resulted in the simple contig mapping as explained in Section 3.3.3.

The next step in the development was driven by the wish to create a stand-alone
application for matching and visualization that was independent of calling external
programs. Consequently, the matching idea of SWIFT was reimplemented in Java.

At this point in time, we decided to license the software under the general public
license (GPL) that allows users to obtain and modify the source code free of charge.
This decision is based on the belief that the scientific community profits from shar-
ing and reusing code. Additionally, providing also the code allows other researchers
to comprehend and also test our approaches more deeply than with an executable
application alone.

Early users of the software requested additional features, like for example the
possibility to export the ordered contigs into FASTA files, or to save pictures of the
displayed synteny plots. These and several other usability features, like the ones
introduced in Section 3.3, have been implemented over time. For exporting the
synteny plots, we used existing code of the open source project FreeHEP that will
be introduced in Section 5.2.1. Exemplary plots were already shown in Section 3.3.2.

The complete application of r2cat, including the FreeHEP graphics code, can be
packed in a single Java Archive (JAR) file with a size of less than one megabyte.
Using this archive, the program can be started with the Java Web Start Technology
without the need for an installation.

In 2009, we wrote an applications note [42] introducing r2cat, and made the imple-
mentation available on the Bielefeld University Bioinformatics Server (BiBiServ).1

Later, one of our bachelor students, Yvonne Herrmann, extended r2cat with code
to automatically design primer pairs. The code is based on a Perl script that was
developed by Jochen Blom and Christian Rückert to aid the finishing of in-house
sequencing projects.

5.1.2 treecat

Simultaneously with the latest developments of r2cat, we also worked on the ideas
described in Chapter 4. Here, it was helpful that the already implemented matching
routine of r2cat could be reused to compute the matches to the reference genomes.
Until mid 2009, we implemented the basic contig adjacency graph creation and the
first layouting algorithms. Additionally to the layouting heuristic proposed in this
thesis, we also implemented an exact branch-and-bound method which, however,
becomes too slow for more than a dozen of contigs.

Subsequently, the ideas of treecat were published [41], and the implementation
was made available to be started with Java Web Start from the BiBiServ.2

1http://bibiserv.techfak.uni-bielefeld.de/r2cat
2http://bibiserv.techfak.uni-bielefeld.de/treecat

64

http://www.gnu.org/copyleft/gpl.html
http://bibiserv.techfak.uni-bielefeld.de/r2cat
http://bibiserv.techfak.uni-bielefeld.de/treecat

5.1. Implementational Milestones

The software treecat features a basic GUI where the user can select a FASTA file of
the contigs, and for several related reference genomes. Additionally, a phylogenetic
tree in Newick format can be specified that contains the distances of the species.
The matches to the reference genomes are cached to avoid another time consuming
matching if the algorithm is rerun, for example with different parameters. After
matching, the contig adjacency graph is constructed like described in Section 4.1,
and the layouting is performed using Algorithm 2 on page 53.

To visualize the generated layout graphs, we initially applied the Graphviz pack-
age (see Section 5.2.2). To this end, the computed layout graph was output in a
textual format – the Graphviz DOT language – and then converted to a graphical
representation using an external program.

However, the Graphviz visualization has some severe drawbacks: An excess of
contigs and connections results in overlapping edges and nodes, which renders the
graph unreadable since the output is static. Consequently interactive visualizations
have been developed in two bachelor projects with the goal to make the treecat layout
graphs more accessible and user friendly:

1. Christian Miele developed an integration of the prefuse graph drawing toolkit
(see Section 5.2.4) as a replacement of the external Graphviz visualization. A
layout graph created by treecat can thus interactively be assessed: Nodes can
be moved, edges can be selected, and the graph can be zoomed and panned.

2. Annica Seidel implemented a local view to navigate through the complete
contig adjacency graph. To this end, a single contig is displayed as center,
and on both sides the adjacency edges to other contigs are shown, sorted by
their adjacency support. A user can interactively traverse through the graph
by clicking on the contigs. Additionally, edges can be marked as promising.

Both extensions were finished in early 2011 but are only tentatively attached to
treecat. The successor htscat (see Section 5.1.4) includes them in a common frame-
work.

5.1.3 repcat

By analyzing the results of treecat, we realized that repetitive contigs pose a problem
in layouting. Consequently, we started in the beginning of 2010 to implement ideas
how to handle repetitive contigs. To this end, we modified the existing code of
treecat which resulted in a prototype of repcat. In fact, most code is very similar,
the changes affect mainly the layouting and partially the contig adjacency graph
creation. The ideas of repcat were published [43], but to date the implementation
is not officially released as a tool. Reasons for this decision can be found in the
evaluation of repcat in Section 6.2.3.

65

Chapter 5. Realization of the Software

5.1.4 htscat

In late 2010, we started to combine the existing tools into a uniform application: The
software htscat, the “high throughput sequencing contig arrangement toolsuite”, is
designed to be an extensible framework that includes different methods and algo-
rithms to layout a set of contigs in order to help in the finishing process of prokary-
otic genome sequencing projects.

The modular framework simplifies a possible extension with further code of
other developers. Initial efforts were taken to integrate a repeat resolving approach
(Ph. D. project of Patrick Schwientek) that is not based on related references but on
information already provided in the assembly phase. Currently, the source codes
of both projects are joined in a single repository,3 and some matching parts of r2cat
have been integrated into the other project.

Until now, htscat combines the functionality of r2cat and treecat in a single desktop
application. The organigram shown in Figure 5.1 gives an overview about the in-
corporated components. The r2cat code base provides the matching routine and the
visualization of synteny plots. Due to the treecat sources, we add the capabilities to
handle multiple reference genomes simultaneously. The bachelor projects support
this with an interactive visualization of the layout graphs. Besides prefuse and Free-
HEP as external libraries, we use in htscat the NetBeans Platform framework that
will be introduced in Section 5.2.3. It contributes greatly to the usability and user
friendliness of the GUI and also supports to write modular code for a simplified
extensibility of the application.

A screeenshot of the running application in Figure 5.2 on page 68 shows the most
important components: The panel displayed on the left helps to organize different
sequencing projects. In a folder like view, for each contig set, the reference genomes
are shown on which the contigs were matched. Besides creating new projects in a
wizard dialog, new reference genomes can be specified for any opened project.

The matches to each reference genome are visualized with the r2cat code, as dis-
played in the center of the application window. One or several references of a project
can be selected to create a contig adjacency graph. The resulting layout graph pro-
duced by the treecat code is visualized with the implementations of the two bachelor
projects that were mentioned above. In the given Figure 5.2 on page 68, these visual
components are shown on the right and at the bottom of the window.

All components of the window can be freely reordered to adapt to the user’s
needs. For dual display use, each component can be undocked to an independent
window. Thanks to the NetBeans Platform, all changes are remembered and re-
stored when the application is started.

3http://htscat.svn.sourceforge.net/

66

http://htscat.svn.sourceforge.net/

5.1. Implementational Milestones

External Libraries

FreeHEP
Graphics Export

NetBeans Rich
Client Platform

Prefuse Graph
Visualization

htscat

treecat

Contig Adjacency
Graph Creation

Layout Export

Greedy Layout
Heuristic

Layout
Graph

Contig Adjacency
Graph

Text DOT

r2cat

q−Gram Matcher
Match In−

and Export

Synteny
Visualization

Simple Contig
Mapping

Layout Export

Linear
Order

Matches

Text FASTASynteny Plot

Bachelor Projects

Primer
Generation

Layout Graph
Visualization

Contig Adjacency
Graph Visualization

Graphviz

Figure 5.1: Overview of the htscat software structure. Program components are de-
picted with dark blue boxes, orange boxes refer to results or output. Arrows indicate
dependencies or processing.

67

Chapter 5. Realization of the Software

Figure 5.2: Screenshot of htscat. Top, from left to right: Project management, r2cat
synteny plot visualization, layout graph created by treecat. Bottom: Local visualiza-
tion of the contig adjacency graph.

5.2 External Software and Libraries

In this section, we describe the libraries and external software packages that we use
within the htscat framework. Most information about the mentioned features was
gathered from the specified project websites.

5.2.1 FreeHEP Graphics Export

FreeHEP4 is a Java library that is licensed under the terms of the lesser general
public license (LGPL) such that it can be shared and reused. Although the library
was actually developed for the very specific subject of high energy physics (HEP), it
also contains source code with a broader scope. In particular useful for our project
is the vector graphics package that allows to export Swing components to a variety
of different graphics formats. These include the vector based formats EPS, PDF, PS,
and SVG, but also bitmap images like GIF or PNG are provided. There is even
an export to TEX that draws a given component with PSTricks. We integrated that
part of the FreeHEP code into our project which allows to export synteny plots to
the above mentioned formats. Especially the SVG format is useful since it is easily

4http://java.freehep.org/

68

http://www.gnu.org/copyleft/lesser.html
http://java.freehep.org/

5.2. External Software and Libraries

editable and provides an excellent possibility to create high quality, vector based
graphics for publications.

5.2.2 Graphviz

The open source software package Graphviz5 can be used to visualize graphs [33]
that are provided in a textual representation, the so called DOT language. This
language eases the description of graph structures which can be specified by simply
providing all nodes and edges. The programs of the Graphviz package then perform
a layouting to create a visual representation of the graph. Note that in this context,
layouting refers to moving the contents of the graph such that it ideally has no
overlapping edges or nodes. With this aim, different programs of the package are
specialized for different graph types. The most prominent is perhaps dot which
layouts hierarchical data represented in directed graphs. For our purpose, however,
neato is better suited that layouts undirected graphs according to a spring model.
An example of such a graph is shown in Figure 6.9 on page 89.

5.2.3 NetBeans Platform

The NetBeans Platform6 is a framework that was originally programmed for the
NetBeans Integrated Development Environment (IDE), but can be used more gener-
ically in the development of Swing applications. Thanks to a modular architec-
ture, many functions can be reused in own desktop applications which improves
the usability of the application without adding much overhead. The main reasons
why we decided to use the NetBeans Platform for htscat are an advanced window
management within the application, a powerful lookup concept for intra process
communication, existing code for project management, and a module management
with loose coupling of the components that allows to easily develop and distribute
extensions to the software.

5.2.4 Prefuse Graph Visualization

The prefuse visualization toolkit7 contains a library to display graph like data within
Java programs [39]. In our software, we use it as an interactive replacement of the
Graphviz visualization. It supports panning and zooming into the graph and is
extensible enough to visualize custom nodes. Additionally, several different pro-
cedures can be used to place the nodes, like for example a force based layouting
comparable to the spring model in Graphviz.

5http://www.graphviz.org/
6http://netbeans.org/features/platform/
7http://prefuse.org/

69

http://www.graphviz.org/
http://netbeans.org/features/platform/
http://prefuse.org/

Chapter 5. Realization of the Software

70

Chapter 6
Layouting Corynebacteria Contigs

This chapter demonstrates the performance of our proposed methods on real se-
quencing data. After introducing the datasets and discussing preparatory steps in
Section 6.1, we evaluate and compare the capabilities of several layouting programs
using different contig sets in Section 6.2. More specifically, r2cat is compared with
other single reference based layouting approaches, and treecat is compared with a
related approach that also uses multiple references. In the end, we assess the ability
of repcat to cope with repetitive contigs.

6.1 Background and Preparatory Steps

This section gives a detailed description of the employed test data, explains the gen-
eration of a reference layout for the contigs, describes the estimation of the param-
eters for our contig adjacency graph creation, and finally introduces other related
programs for contig layouting.

6.1.1 Description of the Datasets

For our evaluation, we used data from sequencing projects conducted at the CeBiTec.
The assembled contigs that we used for our studies were kindly provided by An-
dreas Tauch and his group. All genomic sequences involved in this evaluation
belong to the genus Corynebacterium that is comprised of Gram-positive rod-shaped
eubacteria which typically have a high GC content.

Though the habitats and properties of the Corynebacteria are diverse, they are
intensively investigated for two major reasons: Firstly, the genus contains several
pathogen species, for example Corynebacterium diphtheriae which causes the severe
disease diphtheria in humans. The second motivation that drives the research in this
field is the industrial utilization of Corynebacteria, for instance in the production of

71

Chapter 6. Layouting Corynebacteria Contigs

Table 6.1: The three contig sets used in the evaluation experiments. The number
of repetitive contigs, as defined in Section 4.4.2, was determined with r2cat by
matching the contigs onto their already finished genomes.

Contigs Total N50 Contig
Contig Organism (# Repetitive) Length (bp) Size (bp)

C. aurimucosum ATCC 700975 73 (15) 2,736,233 82,833
C. kroppenstedtii DSM 44385 6 (1) 2,434,342 546,376
C. urealyticum DSM 7109 69 (15) 2,294,755 86,391

amino acids and nucleotides. Corynebacterium glutamicum is a prime example that is
used in the mass production of glutamate for the food industry.

Several species of the Corynebacterium genus have been completely sequenced
by now. Due to their diversity, however, there are also many ongoing sequencing
projects. Corynebacteria genomes are thus perfectly suited to deliver test datasets
for our evaluation: There are enough closely related finished genomes available as
references, and new sequencing data are produced regularly.

For the evaluation, we prepared three datasets, each consisting of a set of contigs
to be layouted and a set of reference genomes which are related to the contigs’
genome. The three contig sets were sequenced and assembled from the species of
C. aurimucosum [94], C. urealyticum [91], and C. kroppenstedtii [90], respectively. The
complete genomes of these species have already been finished and are available
from the NCBI website.

We discarded all contigs of the original assembly with a size of less than 500 base
pairs, resulting in the sets shown in Table 6.1. This step is a common practice and
was taken since small contigs that consist of only two or three reads are not very
informative, but can be very confusing in the mapping process. The N50 contig size
that is a more robust characterization for the size distribution of contig sets than the
mean or median, does not change due to this action. As a reminder, the caption of
Table 3.1 on page 36 contains the definition of the N50 contig size.

While C. aurimucosum and C. urealyticum consist of a few dozens of contigs, and
required some effort to be closed, C. kroppenstedtii is a special case. Here, the ini-
tial sequencing and assembly resulted instantly in five very large contigs, ranging
from 150–850 kbp. In this case, the finishing was rather straightforward, and ref-
erence based methods were not necessary. Nevertheless, we included this dataset
in the evaluation to show that seemingly simple tasks for biologists might be more
complex for computer programs when relying on the given data only.

As reference genomes for layouting the contigs, the three above mentioned fin-
ished genomes were used and were extended by choosing four additional publicly
available Corynebacteria genomes, C. diphtheriae, C. efficiens, C. glutamicum, and
C. jeikeium, that we downloaded from the NCBI website. The complete set of refer-

72

6.1. Background and Preparatory Steps

Table 6.2: Overview of the reference genomes that we employed in our evaluation. All
sequences belong to the Corynebacterium genus.

Reference Genome Replicon Type Length (bp) NCBI Number

C. aurimucosum ATCC 700975 chromosome 2,790,189 NC_012590
C. diphtheriae NCTC 13129 chromosome 2,488,635 NC_002935
C. efficiens YS-314 chromosome 3,147,090 NC_004369
C. glutamicum ATCC 13032 chromosome 3,282,708 NC_006958
C. jeikeium K411 chromosome 2,462,499 NC_007164
C. jeikeium K411 plasmid pKW4 14,323 NC_003080
C. kroppenstedtii DSM 44385 chromosome 2,446,804 NC_012704
C. urealyticum DSM 7109 chromosome 2,369,219 NC_010545

C. glutamicum

C. efficiens
C. diphtheriae

C. jeikeium
C. urealyticum*
C. kroppenstedtii*

C. aurimucosum*

Figure 6.1: Phylogenetic tree of the involved Corynebacteria. For all species marked
with an asterisk (*) the underlying contig data were available. The tree was calcu-
lated with EDGAR [15] and visualized with TreeVector [73].

ence genomes, including their accession numbers, is shown in Table 6.2. Note that
the DNA molecules of all mentioned reference sequences occur as circular replicons
in the bacteria.

To assess the evolutionary relationships of the involved species, we generated a
phylogenetic tree of the species with the EDGAR framework [15] that applies Neigh-
bor Joining [81] to distances of a set of core genes. The resulting tree is shown in
Figure 6.1. For a more detailed illustration for the varying degree of rearrangements
and synteny between the employed species let us reconsider some of the synteny
plots that were already given in Chapter 3: Figure 3.7 on page 41 exemplarily shows
four synteny plots involving the C. urealyticum contigs. While Figure 3.7 (a) shows
a high degree of synteny and only few rearrangements to the C. jeikeium genome,
Figure 3.7 (d) shows low synteny combined with many major rearrangements in the
C. aurimucosum genome. Figures 3.7 (b) and 3.7 (c) show a similar inversion pattern
but differing levels of synteny with respect to the reference genomes of C. efficiens
and C. diphtheriae.

73

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide\&cmd=search\&term=NC_012590
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide\&cmd=search\&term=NC_002935
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide\&cmd=search\&term=NC_004369
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide\&cmd=search\&term=NC_006958
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide\&cmd=search\&term=NC_007164
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide\&cmd=search\&term=NC_003080
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide\&cmd=search\&term=NC_012704
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide\&cmd=search\&term=NC_010545

Chapter 6. Layouting Corynebacteria Contigs

6.1.2 Determining a Reference Layout

The availability of the finished genomic sequences of the contig sets enables us to
compute a reference layout which can be used as a ‘standard of truth’ when compar-
ing the layouts generated by the different programs.

The reference layout for each set of contigs was devised by mapping them with
r2cat onto their corresponding finished genome. Three of the C. aurimucosum contigs,
with a size of 28 kbp in total, did not match on the finished genome and could
thus not be included into the reference layout. The explanation for this is that the
sequences belong to the C. aurimucosum plasmid pET44827.

In the process of mapping, r2cat revealed that all contig sets contain repetitive con-
tigs; their quantity is given in Table 6.1. Due to these repetitive contigs, a reference
layout created by simple mapping is not necessarily reliable. In general, repetitive
contigs map non-uniquely to multiple locations on the genome. However, their ac-
tual placement in the linear layout of r2cat is merely by chance since a repetitive
contig is placed on a single occurrence where it has the most matches. Whether an
adjacency of two regular contigs is interspersed with repetitive contigs is thus only
a matter of chance.

To account for this, and to ease the evaluation, we relabeled the contigs of each
dataset. We prefixed all regular contigs with a ‘c’ and all repetitive contigs with
an ‘r’. The regular contigs were then numbered consecutively in their true order
such that adjacencies can easily be seen. Repetitive contigs were numbered too, but
only to distinguish them. Their arbitrary numbers do not contain any information
about adjacencies.

For the following evaluation, we created two multiple FASTA files for each contig
set: The first file contains all regular contigs of the reference layout in their original
order and orientation, however with the FASTA identifiers renamed as stated above.
This allows to examine whether the programs predict the correct adjacencies of the
regular contigs. At the same time, the file does not contain any further hints due
to pre-ordered or already oriented contigs. Since the repetitive contigs are removed,
the programs ideally recover the true layout which is c00, c01, c02, c03, . . . , and so
forth. The second file is created likewise, but it also contains the repetitive contigs.
This file was used in the evaluation of repcat that is specifically designed to handle
these contigs.

6.1.3 Parameter Estimation for the Contig Adjacency Graph

To compute a layout for a set of contigs based on multiple reference genomes, we
utilize the contig adjacency graph introduced in Section 4.1. The weights in this
graph depend on two parameters of the scoring function given in Equation (4.5):
The mean µ, and the standard deviation σ of the Gaussian distribution that models
the distances of projected contigs.

74

6.1. Background and Preparatory Steps

Table 6.3: Contigs and finished genome that we used to estimate parameters for the
contig adjacency graph creation.

Contigs Total N50 Contig
Contig Organism (# Repetitive) Length (bp) Size (bp)

C. pseudotuberculosis FRC41 87 (1) 2,315,337 50032

Finished Genome Replicon Type Length (bp) NCBI Number

C. pseudotuberculosis FRC41 chromosome 2,337,913 NC_014329

In order to find suitable values for these parameters, we acquired another contig
set that is explicitly omitted in the evaluation experiments such that the estimation
is largely independent of the evaluation contigs. We used contigs of Corynebacterium
pseudotuberculosis, and again filtered them for a minimum length of 500 bases. Ta-
ble 6.3 contains more detailed information about the resulting contig set, and also
about the complete genome which has recently been finished [95].

With the mentioned genomic sequences, we estimated µ and σ as follows: First,
we devised a reference layout of the contigs and created a FASTA file of the regular
contigs as described in the previous section. In the next step, the contigs were
matched on all genomes of Table 6.2. Then, for each genome, the pairwise distances
of projected contigs were calculated. Since we know from the reference layout which
contigs are adjacent, we can investigate all distances of projected contigs that belong
to truly adjacent contigs. The histogram of Figure 6.2 shows these distances, and
we can observe that, besides outliers, most projected contigs have a small distance.
Reasons for outliers are mainly rearrangements in the reference genomes, repetitive
substrings in the contigs, or unspecific matches occurring by chance.

While the main fraction of the distances follows approximately a Gaussian dis-
tribution, the outliers hinder a proper estimation of µ and σ. Consequently, we
try to exclude them by discarding all distances larger than the third quartile (Q3 =
20, 906 bases) of the data. To also remove outliers on the other side, while account-
ing for the asymmetry of the histogram, we clip the data symmetrically with respect
to the median (Q2 = 4, 808 bases) of the distances. Thus, all values smaller than
Q2−Q3 = −16, 098 are discarded. The result of the described outlier reduction is
shown as histogram in Figure 6.3.

On the trimmed data, we performed then a maximum-likelihood fitting to a
Gaussian distribution. Rounded to integers, the fitting resulted in a mean value
of µ = 3, 000 and a standard deviation of σ = 6, 926. The corresponding Gaussian
function with the estimated parameters is also plotted in Figure 6.3.

75

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide\&cmd=search\&term=NC_014329

Chapter 6. Layouting Corynebacteria Contigs

Distances of Projected Contigs (kilobases)

F
re

qu
en

cy

0 500 1000 1500 2000 2500 3000

0
20

0
40

0
60

0
80

0

Figure 6.2: Complete histogram over the distances of projected contigs that are adja-
cent according to the reference layout.

Distances of Projected Contigs (kilobases)

−40 −20 0 20 40

Figure 6.3: Range selected for parameter estimation and resulting Gaussian function
with µ= 3,000 and σ= 6,926.

Distances of Projected Contigs (kilobases)

R
an

k
D

iff
er

en
ce

−50 0 50 100 150 200 250 300 350 400 450

1
2

3
4

Figure 6.4: Box-plots of the distances of projected contigs grouped by the difference
of the rank of the contigs with respect to the reference layout.

76

6.1. Background and Preparatory Steps

Certainly, the choice of µ and σ has an effect on the contig adjacency graph, and
therefore also on the edges predicted. The difficulty to find sensible parameters is
illustrated in Figure 6.4. It shows box-plots of the distances of projected contigs
– not only for truly adjacent contigs that have a difference in their rank in the
reference layout by one – but also for contigs that have a rank difference of two,
three, and four. The latter correspond to approximate adjacencies of contigs that have
one, two, or three contigs in between. Note that the box-plot for rank one and the
histogram in Figure 6.2 represent the same data, however, the box-plot displays only
the reduced range of the distances from -50 to 450 kilobases to emphasize the inter
quartile ranges.

An ideal scoring function has the property that rank one distances are separated
from those of all other ranks, meaning that immediate neighbors receive high scores
and the latter low scores. As can be seen in the box-plots for rank one and two of
Figure 6.4, this is only possible to a certain degree on this data, since the inter
quartile ranges of both distributions overlap.

In general, the graph creation and the layouting is relatively robust to smaller
changes of the parameters. If, however, the width σ is increased too much, then a
wider range of distances get high scores. This results in a stronger shadowing effect
since for example a part of the rank two distances will also get high scores. On the
contrary, a very small value for σ considers only a small range of distances and thus
scores only a fraction of the correct distances adequately.

The choice of µ depends on the expectations how big gaps between the contigs
are. If, for example, small contigs are removed from a contig set, the gap sizes
change, and consequently µ should be increased. However, too large values for µ

favor adjacencies between contigs that actually have a small contig in between.

We experimented with the estimated values of µ = 3, 000 and σ = 6, 926 a little
and found out that they actually yield quite reasonable results. Therefore, we de-
cided to use the derived parameters for all applications of treecat in the evaluation
experiments in Section 6.2.

6.1.4 Other Software for Contig Layouting

We found several programs in the literature that are able to compute a layout of a
set of contigs based on related genomes. In the following, we introduce the pro-
grams which we used to compare our layouting performance with. First, the single
reference based approaches are described in chronological order, followed by the
only other approach to handle multiple references.

Single Reference Based Methods

Projector 2 The web service Projector 2 [40] maps contig ends onto a template ge-
nome using BLAST or BLAT. Features of Projector 2 are an optional repeat masking

77

Chapter 6. Layouting Corynebacteria Contigs

for contig and template sequences, a visualization of the mapping, and an auto-
mated primer design step for gap-closing purposes. Prior to the automated primer
design, difficult regions for primer walking are removed. These include sequences
with an unbalanced GC content, or repetitive sequences like phage DNA, IS elements
or gene duplications.

OSLay The program OSLay [79] takes a set of BLAST or nucmer matches between
the contigs and a reference sequence or scaffold, and computes from these a layout
of the contigs. To this end, the algorithm minimizes height differences of so-called
local diagonal extensions, which are basically matches from the border of a contig
to the reference sequence. If the reference is a scaffold, then the program optionally
layouts both sets of sequences simultaneously. A resulting layout is visualized and
can be imported into a Consed [35] project to aid gap closure.

ABACAS The acronym ABACAS [7] stands for “algorithm-based automatic con-
tiguation of assembled sequences”. The authors refer by contiguation to the process
of aligning, ordering, and orienting a set of contigs. These tasks are mainly done
with tools of the MUMmer package: The aligners nucmer or promer of this package
are used for matching, and then the delta-filter and show-tiling programs perform
the ordering and orienting of the contigs. Before matching, the reference FASTA
sequence is checked that it contains only a single chromosome which hinders to
use ABACAS for multi-chromosomal reference genomes. After contiguation, the
Artemis Comparison Tool (ACT) [19] can be used to visualize and manually reorder
the contigs. Additionally, the Primer3 [53] program can be run to find suitable
primer pairs to close the gaps.

MCM The Mauve Contig Mover (MCM) [80] is integrated into the genome align-
ment and visualization system Mauve [24]. MCM proposes the relative order of
the contigs based on a complete or draft reference genome. To this end, it uses
the Mauve progressive aligner [25] to identify local collinear blocks (LCBs). The
ordering exploits that placing contigs in a correct order will merge LCBs, thus the
program strives to minimize their number. The process of matching and ordering
is iteratively repeated until the order does not change anymore. After ordering the
contigs, the Mauve visualization can be used to inspect potential misassemblies, or
also rearrangements between reference genome and contigs.

Multiple References

PGA Zhao et al. [109] present a method to find a layout for a set of contigs using
several related sequences as references. For each reference genome a fitness matrix
is computed giving distances between the contigs based on their BLAST matches.

78

6.2. Evaluation on Real Sequencing Data

All matrices are combined into a single fitness matrix to search a (near) optimal
path of contig connections with their heuristic PGA (pheromone trail-based genetic
algorithm). It is noteworthy that the randomized algorithm potentially proposes
different adjacencies each time it is run.

6.2 Evaluation on Real Sequencing Data

In the remainder of this chapter, we address the outcome of three different exper-
iments: At first, we evaluate the performance of single reference based contig lay-
outers, each time with the closest genome as reference sequence. Secondly, we
compare PGA and treecat using all reference genomes except for the one to be fin-
ished. Finally, we assess the effect of repeats by applying treecat and repcat on a
contig set including repetitive contigs.

In each experiment, some of the introduced programs, as well as our implementa-
tions, were run to devise a layout of the contigs. The output was then compared to
the corresponding reference layout. As quality measurement, we take the following
four values that we also state in the result tables of each experiment:

TP We count all proposed connections that also occur in the reference layout as
true positive predictions.

FP Predictions that do not appear in the reference layout are false positives.

TPR From the values of TP and FP, we calculate the true positive rate (also sensitivity):

TPR :=
TP
P

,

with P being the total number of achievable correct connections.

PPV The positive predictive value (also precision) tells the percentage of all predictions
that were actually correct:

PPV :=
TP

TP + FP

Note that when counting the true or false positives we do not consider the orien-
tation of the contigs since PGA does not always provide this information. In con-
sequence, it is possible that we count too many true positives. However, we think
that this evaluation procedure is fair since all programs are treated equally and we
presume that no program gains a particular benefit.

Besides the true and false positives of a predicted layout, we also measured the
running time of the different approaches. All experiments were performed on a
Sun-Fire-V440 Solaris server with four sparcv9 processors operating at 1,593 MHz.
During the experiments, we were the only user logged in such that effects by other
processes on the running time are minimized. Further, we measured the user time

79

Chapter 6. Layouting Corynebacteria Contigs

of the processes which excludes the time for system calls like for example I/O oper-
ations. Obviously, the times of the web service Projector 2 are not comparable.

6.2.1 Single Reference Based Ordering

This first experiment was designed to compare the layouting of other single ref-
erence based approaches with r2cat. To this end, we applied the single reference
programs of Section 6.1.4 on the contig sets using the closest phylogenetic neighbor
as reference sequence. According to the phylogenetic tree, shown in Figure 6.1, this
is C. glutamicum for the contigs of C. aurimucosum, and C. jeikeium for the other two
contig sets.

As contig sets, we used the FASTA files containing the renamed regular contigs.
For any adjacency estimated by a program we could thus determine whether it is
a true positive or a false positive prediction. Besides the obvious adjacencies of ci
and ci+1, we considered the first and the last contig of each set as adjacent since the
genomes are circular. The number of possible true positive adjacencies (P) is thus 55
for C. aurimucosum, 5 for C. kroppenstedtii, and 54 for C. urealyticum.

We describe now first, how the different programs were used and how the esti-
mated adjacencies were extracted, and then discuss the results given in Table 6.4 on
page 82. Except otherwise stated, we used the default parameters of each program.

• The Projector 2 results were generated using its web service. There, we first
selected the appropriate reference genome for each dataset from a given list.
For the C. jeikeium genome either the chromosome, or the plasmid pKW4 was
selectable, but not both, so that we used the chromosome without the plasmid.
The next step was to upload the contigs to the web server. On the following
parameter page, we kept the default settings, except that we selected to down-
load a zip file containing the generated files. As default, the matching was
performed by running BLAT on the server. The running times for Projector 2
were estimated from the provided start and stop times of the contig ordering
jobs. According to the website, the server runs on a quad core AMD Opteron
with 2.0 GHz, thus, the running times on the server are not directly compara-
ble to the other programs that we ran locally. We give the times nevertheless
to provide a rough impression. The adjacencies of the contigs were extracted
from the mapped_sort_1.csv files found in the downloaded zip files.

• To generate the OSLay results, we first had to match the contigs onto the cor-
responding reference genome since, unlike for all other programs, this is not
done by the program. The matches that we generated with nucmer (v. 3.07),
as well as the original FASTA files, could then be provided to OSLay which
computed an optimal syntenic layout of the contigs. To this end, we used the
standard parameters of the implementation and selected to export the syntenic
layout. The adjacencies were extracted from the supercontigsList.x.txt

80

6.2. Evaluation on Real Sequencing Data

files. The running time of OSLay in the following results table is only the
time for matching with nucmer. The layouting time could not reasonably be
measured since the necessary files have to be provided manually in the graph-
ical user interface. As an estimation, the layouting takes between two to four
additional seconds.

• The program ABACAS refused to use reference genomes with more than
one sequence. Thus, we provided the C. jeikeium reference without its plas-
mid pKW4. For the matching, the user can specify that either nucmer or promer
is called. After a rapid matching with nucmer, we discovered that the program
had no results for two of the datasets, and only false positive predictions for
the third. The explanation is that ABACAS relies on the show-tiling program
of the MUMmer package which produced an empty file for the two datasets
when using the nucmer matches. Consequently, we decided to match also with
the much slower promer which yielded better results. The adjacencies were in
both cases extracted from the generated <fasta>.tab files, where <fasta>
is the filename of the original contig file.

• The Mauve extension MCM iteratively matches and reorders the contigs. For
each iteration, a new folder is created that contains the sequences and the
estimated layout. We used the batch option to start MCM from the command
line. The matching was performed with the progressiveMauve program, of
the Mauve package version 2.3.1, which we compiled for the Solaris operating
system. The resulting adjacencies were extracted from the folder created in the
last iteration. There, the file <base>_contigs.tab contains the proposed
adjacencies of the contigs, with <base> being the prefix of the contigs’ FASTA
filename up to the first dot.

• Finally, we used r2cat as described in Section 3.3. After sorting the contigs, the
result was written to a file.

Table 6.4 gives the results of applying the different programs on the three datasets.
It shows that the pioneering approaches Projector 2 and OSLay, which mainly use
matches at the end of the contigs, clearly find less true positive adjacencies than
newer algorithms considering all matches. The more recent programs ABACAS
(with promer matches) and MCM predict more correct adjacencies but also more
false positive connections. The running times of these programs are dominated by
the matching: For ABACAS, the matching with promer takes several days. In view
of the few seconds of some other programs this is an unacceptable amount of time.
Also the hours that MCM needs for the iterative matching are not desirable.

Our implementation r2cat shows on these datasets a reasonable performance.
Matching and simple ordering are performed in seconds and the layout result con-
tains high numbers of correct adjacencies and a moderate number of false positives.

81

Chapter 6. Layouting Corynebacteria Contigs

Table 6.4: Results of the single reference based layouting programs using the phylo-
genetically closest genome as reference sequence. The running times for OSLay
contain only the matching, those of Projector 2 are not comparable to the other
times since they were measured on a different CPU.

Program TP FP TPR PPV Time (s)

C. aurimucosum contigs with C. glutamicum reference
Projector 2 7 14 0.13 0.33 (26)
OSLay 0 1 0.00 0.00 16
ABACAS with nucmer 0 0 0 undef. 32
ABACAS with promer 26 12 0.47 0.68 92,769
MCM 22 33 0.40 0.40 9,526
r2cat 33 11 0.60 0.75 13

C. kroppenstedtii contigs with C. jeikeium reference
Projector 2 3 2 0.60 0.60 (25)
OSLay 0 0 0.00 undef. 12
ABACAS with nucmer 0 0 0 undef. 24
ABACAS with promer 3 1 0.60 0.75 79,415
MCM 2 3 0.40 0.40 684
r2cat 2 3 0.40 0.40 8

C. urealyticum contigs with C. jeikeium reference
Projector 2 16 15 0.30 0.52 (24)
OSLay 6 2 0.11 0.75 23
ABACAS with nucmer 0 7 0.00 0.00 44
ABACAS with promer 23 15 0.43 0.61 180,047
MCM 25 29 0.46 0.46 6,327
r2cat 26 22 0.48 0.54 11

Let us take a closer look at the C. kroppenstedtii contigs. Figure 6.5 shows the syn-
teny to the closest reference genome with the contigs ordered and oriented accord-
ing to the reference layout. With the simple contig mapping of r2cat, the contig c03
is placed between c00 and c01, as indicated in the figure. This obstructs three true
positive adjacencies.

The example shows that a single misplaced contig can produce up to three false
positive connections. The measurement of false positives is thus very stringent in
this evaluation, and one might argue that it is better to know about approximate
adjacencies in which maybe a smaller contig can be missing between two larger
ones. Especially in the next experiment, the programs provide more false positives,
and often these are such approximate adjacencies.

82

6.2. Evaluation on Real Sequencing Data

C
.
k
ro

p
p
e
n
s
te

d
ti

i
C
o
n
ti
g
s

C. jeikeium

c01

c02

c03

c04

c00

Figure 6.5: Synteny plot of the contigs of C. kroppenstedtii matched on its closest
reference genome C. jeikeium. The contigs are ordered and oriented according to
the reference layout.

6.2.2 Multiple Reference Based Layouting

In this experiment, we want to investigate whether the use of multiple reference
genomes can improve the adjacency prediction. Several reference genomes most
likely increase the information that can be collected from matches of the contigs.
This information can, however, also be conflicting and thus lead to false positive
predictions. Approaches that are not restricted to output a single linear layout, as
for example treecat with its layout graph, will even accumulate such false positives.
Nevertheless, we believe that showing several likely possibilities is better than to
output a single linear layout. The latter can be misinterpreted as containing the
only correct solution. Giving alternatives in conflicting cases expresses better that a
result should be handled with caution.

In the following, we compare the multiple reference based layouting programs
PGA and treecat by applying them on the contig sets with all genomes of Table 6.2
as references. Of course, whenever a genome is to be reconstructed from its set of
contigs, this genome is removed from the dataset of reference genomes. Like in the
previous experiment, we used the contig sets without repetitive contigs. We first
describe how both programs were used and which parameters have been chosen,
and then present and discuss the results of Table 6.5 on page 85.

Although we already introduced PGA briefly, we want to provide some further
details. This helps to better understand some aspects of the results and of the
application of PGA.

A layout computation with PGA can be divided into two parts: In the first part, a
fitness matrix is created which is comparable to our contig adjacency graph. To this
end, the set of contigs is matched onto each reference genome using BLAST. The

83

Chapter 6. Layouting Corynebacteria Contigs

corresponding Perl script discards contigs smaller than 3.5 kbp before matching and
masks repetitive matches. Additionally, too short, as well as overlapping matches
are filtered. Based on the remaining matches, the fitness matrix is created such that
it contains pairwise distances between the contigs. The distances range from 0 to 20,
where a value close to 0 indicates that the contigs are potential neighbors. In the
last step of this part, the matrices derived from all reference genomes are combined
into a single matrix.

In the second part of applying PGA, a genetic algorithm is used to calculate a lin-
ear layout of the contigs that aims to minimize the distances given in the combined
fitness matrix. For the application of the algorithm, we used the default parameters
that are also given in the publication [109]: We set the “pheromone trail persistence”
ρ = 0.8, the “relative importance of [the] pheromone trail and the visibility” β = 3,
the “probability for pseudo-random-proportional selection” q0 = 0.8, and the maxi-
mal number of iterations to 10, 000.

The underlying genetic algorithm is a randomized algorithm such that the lay-
outs of each computation may differ. This is probably the reason why the C++ im-
plementation of the genetic algorithm computes five linear layouts each time it is
run, which are then combined into a single result. In a combined result, for each
predicted adjacency the percentage is given how often it occurred in one of the five
layouts. Despite of this attempt to produce more robust results, the combined lay-
outs are still subject to variation. That is why we applied the layouting part of PGA
20 times for each contig set, resulting in 100 computed layouts. In the comparison
in Table 6.5, we give the mean values of the 20 runs, and additionally the best re-
sult in parentheses. As best, we define that combined result yielding the highest
true positive rate. In case of several equally good layouts, we break ties using the
positive predictive value.

Next, we applied treecat on the data as described in Section 5.1.2. To compute the
adjacency support values, we used the phylogenetic tree of the Corynebacteria, and
set µ=3, 000 and σ=6, 926, as discussed in the section on parameter estimation.

The results of both programs are listed in Table 6.5. The comparison shows that
our treecat achieves equal or better results than PGA while at the same time being
much faster. The running times given for the matching mainly compare the corre-
sponding routines in r2cat and BLAST, as already done in Section 3.3.1. However,
the running times for the layouting impressively demonstrate that treecat is 200-fold
faster than PGA, on average for the three datasets.

Another advantage of treecat is that it has only two parameters that influence the
layouting, and nevertheless produces quite robust results. In contrast, PGA depends,
besides the already mentioned four parameters, on further ‘default values’: For
instance, an initial population size, default mutation and crossover probabilities, as
well as min and max values for the population fitness are stated in the publication.

84

6.2. Evaluation on Real Sequencing Data

Table 6.5: Results of applying PGA and treecat to layout the contig sets with the help
of the remaining genomes of Table 6.2 as references. PGAs results are averaged
over 20 runs, its best run (highest TPR with best PPV) is given in parentheses.

Times (s)

Program TP FP TPR PPV Matching Layouting

C. aurimucosum contigs
PGA 28.1 (31) 76.0 (79) 0.51 (0.56) 0.27 (0.28) 214.1 92.3
treecat 31 36 0.56 0.46 34.6 0.3

C. kroppenstedtii contigs
PGA 3.0 (3) 2.0 (2) 0.60 (0.60) 0.60 (0.60) 98.0 15.6
treecat 3 4 0.60 0.43 30.5 0.2

C. urealyticum contigs
PGA 15.5 (18) 75.9 (75) 0.29 (0.33) 0.17 (0.19) 221.9 80.9
treecat 28 40 0.52 0.41 34.2 0.3

We now examine the results for of all three contig sets in more detail and provide
some additional observations that cannot be derived from the table alone.

Corynebacterium aurimucosum For this contig set, PGA found in the best run
the same number of 31 true positive connections as treecat. But looking at the best
result of PGA alone might distort the general impression of its layouting quality.
The box-plots in Figure 6.6 clarify that this result is not typical for PGA, since often
worse results are predicted.

Staying at this dataset, a comparison of treecat with r2cat shows that using more
reference genomes does not automatically provide better results. While r2cat pre-

PGA treecat

0
5

10
15

20
25

30

TP

o

PGA treecat

0
20

40
60

80

FP

PGA treecat

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

TPR

o

PGA treecat

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PPV

Figure 6.6: Box-plots of the varying results of 20 PGA runs for the C. aurimucosum
dataset. The steady result of treecat is shown by a plain bar.

85

Chapter 6. Layouting Corynebacteria Contigs

dicts 33 correct adjacencies, treecat finds two less, although using the information
of five additional reference genomes. Fourteen of treecat’s false positive predictions
might nevertheless be helpful in the gap closing process, since they are approximate
adjacencies having a rank difference of one in the reference layout.

When treecat is run with C. glutamicum as single reference genome, like in the
experiment with r2cat, it yields 35 true positives and 25 false positive predictions.
This shows that additional genomes can introduce high weight edges to the contig
adjacency graph that hinder the extraction of true adjacencies in the layouting phase.

The advice is therefore to first assess the relatedness of the genomes to be used for
layouting, for example with synteny plots. Then, the most promising ones should
be chosen to be the basis of the contig adjacency graph, following the guideline
“quality before quantity”. Our htscat suite supports such a workflow by allowing to
investigate the synteny plots of the contigs and to select those references that are
most related to build the contig adjacency graph.

Corynebacterium kroppenstedtii This contig set consists only of five regular con-
tigs, but it seems to be hard to layout. None of the contig ordering programs pre-
dicted more than three of the five possible true positive adjacencies. To investigate
this further, we take a look at the contig adjacency matrix W from page 46. The com-
plete matrix devised by treecat for the C. kroppenstedtii contigs is shown in Figure 6.7.
Each row (or column) contains the integer rounded adjacency support values for a
certain contig connector. The adjacencies of the reference layout

c00←−− c01−−→ c02−−→ c03←−− c04←−−

are underlined in the matrix. In the circular genome, c04 and c00 are also adjacent.
As a reminder, the matrix is symmetric such that each adjacency support appears

W =

r00 r01 r02 r03 r04 l00 l01 l02 l03 l04

r00 0 0 0 0 3 0 2 0 0 6
r01 0 0 23 0 0 2 0 294 0 0
r02 0 23 0 20 377 1 0 0 0 0
r03 0 0 20 0 0 1 0 0 0 0
r04 3 0 377 0 0 4 394 0 37 0
l00 0 2 1 1 4 0 42 0 43 8
l01 2 0 0 0 394 42 0 0 2 15
l02 0 294 0 0 0 0 0 0 0 0
l03 0 0 0 0 37 43 2 0 0 0
l04 6 0 0 0 0 8 15 0 0 0

Figure 6.7: Symmetrical weight matrix of Equation (4.2) filled with integer rounded

weights computed by treecat for the C. kroppenstedtii contigs. True adjacencies
are underlined, edges predicted by treecat are printed in bold face.

86

6.2. Evaluation on Real Sequencing Data

twice. The adjacencies extracted by treecat in its layouting process are printed in
bold face in the matrix. Consequently, all bold faced entries that are underlined are
true positive predictions, and those not underlined are false positives.

In the given matrix, we can observe that the highest adjacency support (394) for
the connection of the left connector of c01 to the right connector of c04 actually
does not belong to a correct adjacency. The high weight is caused by an inversion
that is also documented in the synteny plot in Figure 6.5 for the case of the closest
reference genome.

This example shows that in general the weights in the contig adjacency graph
just collect the information given by the matches. If the matches are biased or
unreliable, then the weights are so, too. Consequently, all results derived with the
help of reference genomes have to be judged in the context of their reliability.

Corynebacterium urealyticum On this contig set, our approach treecat found the
most true positive adjacencies compared to all other approaches. This success is
slightly diminished by the 40 false positive connections that are also contained in the
resulting layout graph. Nevertheless, this number is much lower than the 75.9 false
positives that PGA predicted on average.

In the following, we want to visually compare the layouts generated by PGA and
treecat. To this end, we exemplarily show the resulting layout graphs computed by
both programs for this dataset in Figures 6.8 and 6.9. The graphs are visualized
with the program neato of the graph visualization package Graphviz, as described
in Section 5.2.2. For PGA we used the best layout as defined above.

The nodes in both graphs are labeled with the renamed contig names that indicate
the correct adjacencies. An optimal layout would therefore be a single circle showing
all contigs in order c00, c01, . . . , c54. In the treecat graph in Figure 6.9, a node label
additionally gives the size of that contig. We have drawn in gray all nodes of contigs
smaller than 3, 500 bases, as well as the incident edges, to improve the comparability
of both graphs, since PGA filters all such contigs before matching and thus cannot
contain them in the layout.

It is arguable whether the missing contigs might be a disadvantage for PGA or
not; however, we like to note that neither the size of the contigs to be removed
can be specified, nor the removal can be switched off completely in their software.
Further, in the treecat layout, the small contigs contributed only to four true positive
connections but at the same time introduced ten false positives.

The edge weights in PGA’s layout graph in Figure 6.8 tell in how many of the
five layouts this connection was proposed. To increase the readability of this graph,
we draw all edges in gray that belong to a connection occurring only once. The
edge labels in our treecat graph give the relative support, as defined in Section 4.1.1.
A value close to 100% indicates that this is the only relevant adjacency of the incident
contig connector.

87

Chapter 6. Layouting Corynebacteria Contigs

c01

c44

2 c51

2

c505

c43

5
c42

1

c45

3

c53

1

c46

c47

5

c35

1

c02

3

5

c03

c36

1
c31

1

1

c19

2

c00

2

c37

1

c08

1

c25
1

c07

1

c38

2

c26

1

2

1

1

1

c16
4

c34

4

c30

5

1

c09

1

1

3

1

1

1

1

1

c29

3

2

c33

1

c12

1

c13

5

c11

2

2

1

1

5

c39

c20

5

c18
5

1

1

1

4

4

5c04

1

1

1

5

1

1

c05

1

51

1

1

1

2
1

5

c10

1

4

5

1

1

5

1

c24

3

1

1

c22

5

1

1

1

5

2

c14

4

c21
4

1

5

c15

5

5

Figure 6.8: The best layout (TP 18, FP 75, TPR 0.33, and PPV 0.19) that PGA gen-
erated for the C. urealyticum contigs in 20 runs when using all other genomes as
reference sequences. The contig nodes are numbered according to the reference
layout. The edge labels tell how often an adjacency occurred in one of the five lay-
outs. To improve the readability, all 50 edges occurring only in a single layout are
drawn in gray.

88

6.2. Evaluation on Real Sequencing Data

c50

38.5kb

c51

54.3kb

1.1

29.9

c47

3.8kb

78.8

3.5
c46

51.2kb

84.7

71.7

c53

55.5kb

82.1

1.2

c22

39.7kb

83.1
23.6

c41

1.8kb
94.2

49.6

c28

1.0kb 58.217.5

c49

1.0kb

c01

86.4kb
0.8

24.5

c07

64.5kb

0.6 39.8

c18

19.9kb

c20

176.0kb

69.1

94.8

c19

3.5kb

67.6

4.4

c44

5.9kb

c10

102.2kb

1.2

18.8

61.7

91.7

c16

77.6kb

90.7

75.9

c17

0.6kb

72.6
12.2

50.6
3.6

c25

96.6kb

73.9

85.2

c24

35.2kb

52.52.5

9.0

29.2

c13

72.1kb

c14

108.1kb

72.380.3

c12

61.6kb

86.6

77.7

31.6

10.1

c21

164.5kb

43.699.0

c15

23.2kb

81.5

64.5

c31

4.2kb

52.1

0.4

c42

56.2kbc39

35.5kb

49.7
73.4

c08

56.2kb

89.2

95.9

c40

1.4kb

6.8

40.7

1.6

31.6

c11

21.1kb

53.4

86.7

c48

1.8kb
87.3

13.1

99.5
17.5

3.9

59.6

c06

2.6kb

28.7

99.4

c04

89.7kb

2.699.2

c05

9.3kb

99.9

76.7

c36

17.5kb

c35

4.4kb

95.3

58.0

2.2

59.6

c00

7.7kb

47.9

11.4

75.9

66.9

41.0

7.0

c02

106.4kb

91.9

81.0

c43

135.7kb

90.6

89.3

c45

50.2kb

89.4
82.9

c38

14.8kb

91.9

84.3

c29

31.1kb

19.8

47.3

c26

51.3kb 46.5
5.1

92.1

65.8

5.5
40.0

c30

43.1kb

68.9

59.5

c34

28.6kb

38.0
52.3

c37

8.3kb

22.1

24.7

c09

142.3kb

5.1

20.3

2.6
40.0

97.3

94.1

81.5
0.8

98.1

62.9

84.4

59.5 83.523.7

55.2
49.8

78.0

99.2

69.3

59.0

c03

6.0kb

84.8

15.2

92.5
63.3

c33

3.6kb

61.5

0.4

3.3

19.5

99.780.7

7.2

91.7

Figure 6.9: C. urealyticum contig adjacencies predicted by treecat when using all other
genomes as reference sequences. The contig nodes are numbered according to
the reference layout. Contigs smaller than 3.5 kbp have gray nodes. The edge
labels show the relative support with respect to the contig connector nearby.

89

Chapter 6. Layouting Corynebacteria Contigs

In a comparison of the displayed graphs, the treecat result looks less cluttered and
it seems that our approach is able to more robustly interpret the information given
by the matches to the reference genomes.

Further investigation of the treecat layout graph in Figure 6.9 reveals that for the
contigs c07 to c22 an almost unique path can be observed which orders most of the
inner contigs correctly. However, our graph contains also connections like from c02
to c43 that have a high (relative) support but are not correct. The high support is
due to the big inversion that can be observed in the synteny plot in Figure 3.7 (a) on
page 41. There, the reference genome is C. jeikeium which is the next phylogenetic
neighbor to C. urealyticum and thus has a high influence on our result.

The results show that using several reference genomes can be advantageous, but
this is not necessarily the case. In particular, we found an example where the use
of a single reference instead of several would improve the results of treecat. In
general, the true positive rate of treecat is among the best compared to all other
approaches. The idea of treecat to display also conflicting information in a layout
graph, however, comes with the disadvantage of producing more false positives than
approaches predicting a single linear layout. Yet, in contrast to PGA the resulting
positive predictive value is mostly better. Additionally, we would like to emphasize
that several false positives of treecat are approximate adjacencies. Such a prediction
can be considered helpful for the finishing process in practice, despite of being a
false positive in theory.

6.2.3 Layouting Repetitive Contigs

The aim in the last section of this evaluation is to study how good repetitive contigs
can be integrated into a contig layout. In the previous experiments these were
excluded since none of the involved programs was intended to handle repetitive
contigs properly. Some approaches even actively try to remove such contigs.

Here, we exemplify the integration of repetitive contigs on the C. urealyticum
dataset. In the following experiment, we thus employed all 69 contigs as listed
in Table 6.1, including the 15 repetitive contigs. We want to remind that we have
prefixed all regular contigs with a ‘c’ and numbered them in their true order. The
repetitive contigs are prefixed with an ‘r’ and are numbered arbitrarily.

To know where instances of the repetitive contigs can be placed correctly, we
manually inspected their matches on the finished C. urealyticum genome with r2cat.
For each pair of adjacent regular contigs we noted which repetitive contigs have an
occurrence between them. The list contains for example that the repetitive contig r05
can be placed between the regular contigs c19 and c20 but as well between c50
and c51. We observed that some repetitive contigs occur several times in tandem
between the same pair of regular contigs.

We applied two programs to find a layout of the contigs. The first program was
treecat that is among the best programs in the previous experiments, and the second

90

6.2. Evaluation on Real Sequencing Data

was repcat which was created to correctly place the repetitive contigs between the
regular contigs allowing them to appear more than once.

Both programs were run two times using a single genome as reference: The al-
ready finished genome of C. urealyticum as a perfect reference, and the genome of
C. jeikeium as a more realistic reference that is still very closely related. Details to
these genomes are given in Table 6.2.

In the case of treecat, we used the same parameters as in the previous experiment.
For the application of repcat, however, we tweaked the parameters of the contig ad-
jacency graph creation to better match the employed references: We experimentally
adjusted µ to 2, 000 and σ to 2, 000 as well. This decrease of both parameters yielded
more reasonable results and can be justified by the high relatedness to the reference
genomes. Closer references have less insertions and deletions and, additionally, the
repetitive contigs are included this time which also decreases the expected gap size.
Further, we set two thresholds for repcat that were introduced in Section 4.4.2: We
set the additional edges threshold τ1 = 90% and the threshold for incorporating
repetitive contigs to τ2 = 0.1%.

The manually annotated list of repetitive contigs between regular contigs serves as
reference layout in these experiments. As motivated in Section 4.4.2, the interesting
connections are those from a repetitive contig to a regular contig. Therefore, we
extracted those connections from the output of both programs and compared them
with our manually annotated list. If a repetitive contig is present in between two
adjacent regular contigs, we count the connections to the corresponding regular
contigs as true positive. If such an adjacency is not given in our list, we count this
as a false positive prediction. Consider the following list where all regular contigs
are printed in bold face for a better distinction:

· · · c27−−→ c28−−→ r09−−→ c29−−→ r03−−→ r13−−→ r12−−→ c30−−→ c31−−→ c32−−→ · · ·

In this example, a predicted connection from r09 to c28 or c29 is naturally counted
as true positive. Also, we count a connection from r13 to c29 or c30 as true positive
since it is present in between the regular contigs, although not being directly adja-
cent. A predicted connection from r13 to c31, however, is counted as false positive
because the repetitive contig is not found somewhere next to c31.

We ran both programs on the datasets and counted the true and false positive pre-
dictions as described above. Our manually annotated list revealed that the 15 repet-
itive contigs occurred in 79 instances on the genome. For each occurrence, two true
positive connections could be predicted, so the sum of all positive predictions (P)
is 158. This number is needed to calculate the true positive rate which is given in
Table 6.6, together with the other layout quality measurements.

When comparing treecat and repcat, it has to be noted that the latter was specifi-
cally designed to include repetitive contigs several times into a layout. While treecat
will stop to add edges if both connectors of a repetitive contig have been considered,

91

Chapter 6. Layouting Corynebacteria Contigs

Table 6.6: Results for layouting the repetitive contigs of the C. urealyticum dataset. Un-
like the previous result tables, not the adjacencies of regular contigs were counted,
but the proper placement of a repetitive contig next to a regular one.

Perfect Reference C. jeikeium Reference

Program TP FP TPR PPV TP FP TPR PPV

treecat 29 1 0.18 0.97 23 7 0.15 0.77
repcat 139 8 0.88 0.95 61 50 0.39 0.55

repcat can predict two true positive connections for many occurrences of a repeti-
tive contig, stopping when the relative support becomes less than τ2. It would be
desirable to verify the number of included repetitive contigs, for example with the
read coverage information discussed in Section 4.4.2, however this information is
not always given so that we are not using it here. Nevertheless, repcat has a clear
advantage in this experiment.

As expected, repcat recovers more repeat occurrences than treecat. With the perfect
reference, almost 90% of the possible connections are found. Most missing connec-
tions are due to repetitive contigs that appear several times in a single gap. Here,
repcat only predicts a single occurrence and thus misses possible true positives.

While in the result table only connections from repetitive to regular contigs were
considered, we show the complete layout predicted by repcat, for the case of the
perfect reference, in Figure 6.10. This graph is comparable to the layout graphs of
Figures 6.8 and 6.9, though it also contains instances of repetitive contigs which
are depicted by rectangular nodes. A repetitive contig is further labeled with an
occurrence count in parentheses. The shown graph illustrates that the ideas of the
repcat algorithm in principle do work. It is observable how the regular contigs form
a circle and the repetitive contigs are attached in between.

However, it is apparent in Table 6.6 that using the more realistic C. jeikeium refer-
ence decreases the true positive rate, as well as the positive predictive value. The
tendency is observed for both programs although treecat is affected more drastically.

At this point, we need to come back to the assumption stated in Section 4.4.2.
The repcat algorithm assumes that repeating regions are conserved between closely
related species. It might be true that such regions in one genome are usually also
repetitive on a related genome. Our results, however, indicate that the placement
of these regions in different genomes is very fragile. The idea of repcat seems to
work only with the perfect reference that holds the very stringent assumption of
conserved repeat patterns.

Frankly, we have to advise against using a related genome as a reference to layout
repetitive contigs. This outcome is rather unfortunate since repetitive regions are
one of the biggest obstacles on the way to a finished genome. Fortunately, there
are other methods to handle repeats that do not rely on reference genomes. For

92

6.2. Evaluation on Real Sequencing Data

c50
c51

c49

c53

c52

c48

c18

c20

c44

c45

c43

r08
(1)

c25

c24

r08
(2)

r08
(3)

c00

r08
(4)

c46

r08
(5)

c47

r08
(6)

c05

c04

r08
(7)

c01

r08
(8)

r08
(9)

c16

c17

c13

c14

c12

c22

c23

c21

c15

r03
(1)

c09

c10

r03
(2)

r03
(3) c29

c30

r03
(4)

c07

r03
(5)

c38

c37

r03
(6)

c06
c42

c41

c39

c08

c40

r04
(1)

c26

r04
(2)

c28

r01
(1)

r01
(2)

c02

r01
(3)

c36

c11

c19

c35

r06
(1)

r06
(2)

r06
(3)

c27

c33

c31

c34

r07
(1)

r07
(2)

r07
(3)

r11
(1)

r11
(2)

r11
(3)

r14
(1)

r14
(2)

r09
(1)

r09
(2)

r09
(3)

r09
(4)

r13
(1)

r13
(2)

r13
(3)

r13
(4)

r13
(5)

r13
(6)

r13
(7)

r13
(8)

r13
(9)

r13
(10)

r13
(11)

r13
(12)

r13
(13)

r13
(14)

r13
(15)

r13
(16)

r13
(17)

r10
(1)

r10
(2)

r12
(1)

r12
(2)

r12
(3)

r12
(4)

r12
(5)

r12
(6)

r12
(7)

r12
(8)

r12
(9)

r12
(10)

r12
(11)

r12
(12)

r12
(13)

r12
(14)

r12
(15)

r12
(16)

r12
(17)

c03

r00
(1)

r00
(2)

r00
(3)

r05
(1)

r05
(2)

r05
(3)

r05
(4)

r05
(5)

r05
(6)

r02
(1)

r02
(2)

Figure 6.10: C. urealyticum contig connections generated by repcat using the finished
genome as reference. Contigs smaller than 3.5 kbp are drawn in gray. Repetitive
contigs, depicted with rectangular nodes, can appear more than once. Their occur-
rence count is given in parentheses.

93

Chapter 6. Layouting Corynebacteria Contigs

example, Wetzel et al. [103] recently proposed a two-tiered approach where an initial
sequencing and assembly is subsequently augmented with mate-pairs that are fine-
tuned to the repeat structure of the genome.

Reference based layouting of contigs has been improved over the years. First
approaches used only matches of the contig ends on a reference genome to de-
vised a relative order of them. More recent approaches, including our r2cat, use
all matches to a reference, and our evaluation shows that they provide better re-
sults compared to the initial approaches. Equally important, the single reference
layouting approaches differ in their running times. In contrast to several hours that
other approaches need to compute a reasonable layout, certainly r2cat has with a
few seconds a top rank in this field.

If only few contigs match on a reference genome due to a more distant relation-
ship, it can be advantageous to use several of them, if this is possible. Contigs not
matching on one reference might match on another genome that is provided. In a
comparison to the single other available approach that handles multiple reference
genomes, treecat shows a convincing performance: Time demand for layouting is
superior, and the layout quality is at least equal, often even better than PGA’s.

The last experiment of this chapter shows the limitations of reference based lay-
outing. Repetitive contigs are problematic since they should be placed in several
instances into a proper layout. Although repetitive contigs often also occur repet-
itively on a related genome, the adjacencies of the repetitive regions do not seem
to be conserved too well between species, and thus a reference based placement is
unlikely to be successful.

As a conclusion of this whole evaluation, we would recommend a combination
of r2cat and treecat. If a closely related reference is available – and the relatedness
can easily be assessed with the synteny plots of r2cat – then the simple mapping
produces reasonable results. If the synteny plots indicate that the references are
more distantly related, then a layout graph can be computed which shows the most
promising adjacencies that were collectable from the data. Our suite htscat contains
all necessary components supporting such a workflow.

94

Chapter 7
Summary and Outlook

In this thesis, we introduced bioinformatic approaches to aid the process of genome
finishing. One result of our efforts is the program r2cat – introduced in Chapter 3 –
which can be used to quickly match a set of contigs onto a related reference genome,
and to inspect the matches in a synteny plot visualization. The matches can then
be used to arrange the contigs in a linear layout according to the reference genome.
For adjacent contigs, primer pairs can be designed to facilitate the amplification
and sequencing of the gaps in between. Through its availability and its ease of use,
this tool has already been engaged in several sequencing projects conducted at the
Center for Biotechnology (CeBiTec) of Bielefeld University.

While r2cat is mainly a software contribution, the program treecat also contains
novel ideas and concepts: In Chapter 4, we devised an approach to simultaneously
include the information given by multiple reference genomes. To this end, we use
an advanced scoring function to collect hints on which of the contigs are adjacent
based on matches to the reference genomes. The scoring function can even uti-
lize evolutionary distances of the reference genomes given by a phylogenetic tree.
All information is gathered in a contig adjacency graph which represents all possi-
ble adjacencies of the contigs. After building the contig adjacency graph, we use
a fast heuristic to extract the most promising edges into a layout graph. This is a
more flexible and powerful output compared to the linear layout that most other
programs provide. In an evaluation with real sequencing data, we found out that
treecat provides equivalent or better results while being much faster than other re-
lated approaches from the literature.

The concepts of treecat were extended to also handle repetitive contigs which are
ideally included into a proper layout as often as they occur in the genome. Although
promising in theory, we discovered in the evaluation of the resulting program repcat
that the repetitive parts of a genome do not behave as expected for realistic data.
Thus, unfortunately, a desired reference based integration of repetitive contigs ap-
pears not to be reliable.

95

Chapter 7. Summary and Outlook

All our implementations are bundled in the open source software project htscat
that we initiated. As described in Chapter 5, it provides an extensible modular
framework which currently combines the features of r2cat and treecat. We hope that
it will become valuable in many sequencing projects.

To our opinion, a well-balanced collaboration between biology and bioinformatics
is the engine that drives the research in our field. Due to different scientific ‘lan-
guages’ that computer scientists and biologists use, this can become complicated.
Yet, many successful joint projects show that the effort is worth it. Also our project
would not have been fruitful without constant feedback and suggestions, and we
are grateful for the possibility of these collaborations within the CeBiTec.

The goal in our research was to help in the sequencing of prokaryotic genomes.
Though, this help was never meant to be a replacement of biological expertise or
knowledge. On the contrary, we want to generally warn against trusting automated
‘analyses’ of bioinformatic software without restrictions. Hence, also a layout com-
puted by one of our programs should not be seen as ground truth, but more as a
support for a proper finishing of the genome.

Any predicted layout has to be critically questioned and it should be clear that the
layout graph only reflects the information given by the data. If different reference
genomes provide conflicting information, then a devised layout graph most likely
shows misleading adjacencies. In our evaluation, particularly inversions happened
to be a major reason for introducing conflicts. A possible improvement of our meth-
ods would therefore comprise a detection and possibly also an untangling of these
inversions, or of rearrangement events in general.

To investigate conflicting information, it might be desirable to know which of
the reference genomes contributed to which proposed adjacencies. One idea is
thus to create for each reference genome an own contig adjacency graph instead
of collecting the information in a single one. All graphs could subsequently be
compared, and if one adjacency is favored in one graph, but not in the others, then
this shows a conflict to be studied.

Another possibility is to try to untangle the inversions, already before the contig
adjacency graph is computed from the matches. In the recent literature we observed
an approach that tried exactly this [28] by detecting so called inversion signatures.
Given these signatures, it is under some circumstances possible to untangle the
inversion events; however, this is not possible in general.

Ultimately, we have to face the question whether further endeavor is necessary
for reference based layouting of contigs. Certainly, approaches have been improved
over the years. But is further development still required?

The answer is ambivalent. On the one hand, there is still room for improvement
as demonstrated above. On the other hand, we have to admit that, most likely,
one day the layouting of contigs will be gratuitous. By the time when sequencing
approaches can either obtain very large reads of several hundred kilobases, or even

96

read complete chromosomes at once, the assembly and finishing of genomes will
become a minor matter. Consequently, also approaches to layout contigs will vanish.

Nevertheless, we think that some of our ideas and implementations even then can
be considered useful. Very large reads can also be matched on a reference genome
with r2cat. The resulting synteny plots give an impression about rearrangements
and also about repetitive regions of both genomes, and additionally the reads can be
arranged according to the reference using the simple mapping procedure. Moreover,
complete genomes can also be compared visually, as already discussed in Section 3.3.
Due to an open source licensing, the corresponding parts of our software to match
genomes or to display synteny may be integrated in future projects as well.

Even the contig adjacency graph, which is specialized for contig layouting and
was solely designed to do this in the context of multiple reference sequences, can
possibly be reused in the field of comparative analysis of genomes: A ‘gene’ adjacency
graph could be employed to discover genes that occur in different related species
in near proximity and thus are perhaps functionally associated. Besides marginal
changes of the parameters, we believe that the current implementation can be used
with a FASTA file containing genes instead of contigs. The gene adjacency graph
has maybe even advantages over existing approaches that rely on a prior homol-
ogy assignment. While these commonly only accept sequences of uniquely labeled
genes as input, our graph additionally processes the distances between homologous
regions and also includes incompletely matching genes implicitly.

This last example shows that some concepts and methods devised in this thesis
are more generally applicable. Possibly they will contribute to other important
subjects in bioinformatics, or even beyond. We are very excited where this might
lead to in the future.

97

Chapter 7. Summary and Outlook

98

Acknowledgments
I am very grateful to all the people who supported and encouraged me in the last
five years. Thanks for cheering me up in hard times and sharing nice moments in
good times. The following people, I would like to acknowledge by name.

At first, I want to thank Jens Stoye for his support and for giving me the opportunity
to work in his group. You were not only an adviser and boss, but also a good friend.

Many thanks go also to Andreas Tauch for his willingness to review this thesis and
for supporting the collaboration with his group.

During my Ph. D. years in Bielefeld, I enjoyed being a member of the Genome In-
formatics group. In particular, I remember various retreats and social events where
we had fun and experienced science. I want to thank all members, past and present,
that I was in contact with for an amicable atmosphere. Especially, Roland Wittler,
my good friend and office mate, made this time very pleasant for me. Thanks for
sharing a passion for photography and espresso making with me. Furthermore,
Roland often gave valuable hints and contributed to my work by helping to refine
concepts. I also want to recognize our secretary Heike Samuel as the soul of our
group who keeps everything together.

On the professional side, I am thankful to all people who helped me with ideas and
discussions, who gave hints or support, especially Jochen Blom, Alexander Goes-
mann, and Tim Nattkemper. Thanks to Christian Rückert, Susanne Schneiker-Bekel,
Eva Trost, and Daniel Wibberg for their collaboration, their biological expertise, and
for providing datasets. Additionally, I want to thank several people for proofread-
ing parts of this thesis: My sister Monika Hare, and my colleagues Pina Krell and
Patrick Schwientek. Roland Wittler even read the whole manuscript.

Not only was social and professional encouragement important; I also want to ac-
knowledge the financial support I received. Thank you, Jens, for the position in
your group. I am also grateful to the ‘International NRW Graduate School in Bioin-
formatics and Genome Research’. Besides providing travel grants for conferences
and workshops, like BREW 2007, ISMB 2008, and WABI 2009, the graduate school
gave me the possibility to meet the Dalai Lama in September 2007 in Münster.

Ending these acknowledgments, I dedicate the last words to my family and my
loved ones. I am grateful for the constant support and care from my parents Eva
and Franz Husemann, and my sisters Monika Hare and Uta Sander. Finally, I thank
my fiancée Svea Stork for her patience and encouragement.

99

100

Bibliography

[1] C. Adessi, G. Matton, G. Ayala, G. Turcatti, J. J. Mermod, P. Mayer, and
E. Kawashima. Solid phase DNA amplification: characterisation of primer
attachment and amplification mechanisms. Nucleic Acids Res., 28(20):e87, 2000.

[2] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local
alignment search tool. J. Mol. Biol., 215:403–410, 1990.

[3] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and
D. J. Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res., 25(17):3389–3402, 1997.

[4] J. A. Amgarten Quitzau and J. Stoye. Detecting repeat families in incompletely
sequenced genomes. In Proc. WABI, vol. 5251 of LNBI, 342–353. 2008.

[5] S. Anderson. Shotgun DNA sequencing using cloned DNase I-generated frag-
ments. Nucleic Acids Res., 9(13):3015–3027, 1981.

[6] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook. The Traveling Salesman
Problem: A computational study. Princeton University Press, 2006.

[7] S. Assefa, T. M. Keane, T. D. Otto, C. Newbold, and M. Berriman. ABACAS: al-
gorithm based automatic contiguation of assembled sequences. Bioinformatics,
25:1968–1969, 2009.

[8] O. T. Avery, C. M. MacLeod, and M. McCarty. Studies on the chemical nature
of the substance inducing transformation of pneumococcal types. J. Exp. Med.,
79(2):137–158, 1944.

[9] D. Bartels, S. Kespohl, S. Albaum, T. Drüke, A. Goesmann, et al. BACCardI—a
tool for the validation of genomic assemblies, assisting genome finishing and
intergenome comparison. Bioinformatics, 21(7):853–859, 2005.

[10] S. Batzoglou. The many faces of sequence alignment. Brief. Bioinform., 6(1):6–
22, 2005.

101

[11] S. Batzoglou, D. B. Jaffe, K. Stanley, J. Butler, S. Gnerre, E. Mauceli, B. Berger,
J. P. Mesirov, and E. S. Lander. ARACHNE: a whole-genome shotgun assem-
bler. Genome Res., 12(1):177, 2002.

[12] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, B. A. Rapp, and D. L.
Wheeler. Genbank. Nucleic Acids Res., 28(1):15–18, 2000.

[13] J. L. Bentley. Fast algorithms for Geometric Traveling Salesman Problems.
Informs. J. Comp., 4(4):387–411, 1992.

[14] A. Bird. DNA methylation patterns and epigenetic memory. Genes Dev.,
16(1):6–21, 2002.

[15] J. Blom, S. P. Albaum, D. Doppmeier, A. Pühler, F.-J. Vorhölter, and A. Goes-
mann. EDGAR: a software framework for the comparative analysis of micro-
bial genomes. BMC Bioinformatics, 10:154, 2009.

[16] I. Braslavsky, B. Hebert, E. Kartalov, and S. R. Quake. Sequence information
can be obtained from single DNA molecules. In Proc. Natl. Acad. Sci. USA, vol.
100, 3960–3964. 2003.

[17] N. G. de Bruijn. A combinatorial problem. In Proc. Nederl. Akad. Wetensch.,
vol. 49, 758–764. 1946.

[18] J. Butler, I. MacCallum, M. Kleber, I. A. Shlyakhter, M. K. Belmonte, E. S.
Lander, C. Nusbaum, and D. B. Jaffe. ALLPATHS: de novo assembly of whole-
genome shotgun microreads. Genome Res., 18(5):810–820, 2008.

[19] T. J. Carver, K. M. Rutherford, M. Berriman, M.-A. Rajandream, B. G. Bar-
rell, and J. Parkhill. ACT: the Artemis Comparison Tool. Bioinformatics,
21(16):3422–3423, 2005.

[20] M. J. Chaisson and P. A. Pevzner. Short read fragment assembly of bacterial
genomes. Genome Res., 18(2):324–330, 2008.

[21] E. Chargaff. Chemical specificity of nucleic acids and mechanism of their
enzymatic degradation. Experientia, 6(6):201–209, 1950.

[22] J. Clarke, H.-C. Wu, L. Jayasinghe, A. Patel, S. Reid, and H. Bayley. Continuous
base identification for single-molecule nanopore DNA sequencing. Nature
Nanotech., 4(4):265–270, 2009.

[23] S. T. Cole, R. Brosch, J. Parkhill, T. Garnier, C. Churcher, et al. Deciphering
the biology of Mycobacterium tuberculosis from the complete genome sequence.
Nature, 393(6685):537–544, 1998.

102

[24] A. C. E. Darling, B. Mau, F. R. Blattner, and N. T. Perna. Mauve: multiple
alignment of conserved genomic sequence with rearrangements. Genome Res.,
14(7):1394–1403, 2004.

[25] A. E. Darling, B. Mau, and N. T. Perna. progressiveMauve: Multiple genome
alignment with gene gain, loss and rearrangement. PLoS ONE, 5(6):e11 147,
2010.

[26] A. E. Darling, I. Miklós, and M. A. Ragan. Dynamics of genome rearrange-
ment in bacterial populations. PLoS Genet., 4(7):e1000 128, 2008.

[27] F. Dekking, C. Kraaikamp, H. Lopuhaä, and L. Meester. A Modern Introduction
to Probability and Statistics: Understanding Why and How. Springer, 2007.

[28] Z. Dias, U. Dias, and J. C. Setubal. Using inversion signatures to generate
draft genome sequence scaffolds. In Proc. ACM Conference on Bioinformatics,
Computational Biology and Biomedicine. 2011.

[29] J. C. Dohm, C. Lottaz, T. Borodina, and H. Himmelbauer. SHARCGS, a fast
and highly accurate short-read assembly algorithm for de novo genomic se-
quencing. Genome Res., 17(11):1697–1706, 2007.

[30] J. Eid, A. Fehr, J. Gray, K. Luong, J. Lyle, et al. Real-time DNA sequencing
from single polymerase molecules. Science, 323(5910):133–138, 2009.

[31] M. Fedurco, A. Romieu, S. Williams, I. Lawrence, and G. Turcatti. BTA, a novel
reagent for DNA attachment on glass and efficient generation of solid-phase
amplified DNA colonies. Nucleic Acids Res., 34(3):e22, 2006.

[32] R. E. Franklin and R. G. Gosling. Molecular configuration in sodium thymonu-
cleate. Nature, 171(4356):740–741, 1953.

[33] E. R. Gansner and S. C. North. An open graph visualization system and its
applications to software engineering. Softw. Pract. Exper., 30:1203–1233, 1999.

[34] A. J. Gonzalez and L. Liao. Clustering exact matches of pairwise sequence
alignments by weighted linear regression. BMC Bioinformatics, 9:102, 2008.

[35] D. Gordon, C. Abajian, and P. Green. Consed: a graphical tool for sequence
finishing. Genome Res., 8(3):195–202, 1998.

[36] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

[37] R. W. Hamming. Error detecting and error correcting codes. Bell System Tech.
J., 29:147–160, 1950.

103

[38] T. D. Harris, P. R. Buzby, H. Babcock, E. Beer, J. Bowers, et al. Single-molecule
DNA sequencing of a viral genome. Science, 320(5872):106–109, 2008.

[39] J. Heer, S. K. Card, and J. A. Landay. prefuse: a toolkit for interactive infor-
mation visualization. In Proc. SIGCHI conference on Human factors in computing
systems, CHI, 421–430. 2005.

[40] S. A. F. T. van Hijum, A. L. Zomer, O. P. Kuipers, and J. Kok. Projector 2: contig
mapping for efficient gap-closure of prokaryotic genome sequence assemblies.
Nucleic Acids Res., 33:W560–W566, 2005.

[41] P. Husemann and J. Stoye. Phylogenetic comparative assembly. Algorithms
Mol. Biol., 5(1):3, 2010.

[42] P. Husemann and J. Stoye. r2cat: synteny plots and comparative assembly.
Bioinformatics, 26(4):570–571, 2010.

[43] P. Husemann and J. Stoye. Repeat-aware comparative genome assembly. In
Proc. GCB, vol. P-173 of LNI, 61–70. 2010.

[44] C. A. Hutchison, III. DNA sequencing: bench to bedside and beyond. Nucleic
Acids Res., 35(18):6227–6237, 2007.

[45] E. D. Hyman. A new method of sequencing DNA. Anal. Biochem., 174(2):423–
436, 1988.

[46] R. M. Idury and M. S. Waterman. A new algorithm for DNA sequence assem-
bly. J. Comp. Biol., 2:291–306, 1995.

[47] M. Imelfort and D. Edwards. De novo sequencing of plant genomes using
second-generation technologies. Brief. Bioinform., 10(6):609–618, 2009.

[48] W. R. Jeck, J. A. Reinhardt, D. A. Baltrus, M. T. Hickenbotham, V. Magrini,
E. R. Mardis, J. L. Dangl, and C. D. Jones. Extending assembly of short DNA
sequences to handle error. Bioinformatics, 23(21):2942, 2007.

[49] J. H. Jett, R. A. Keller, J. C. Martin, B. L. Marrone, R. K. Moyzis, R. L. Ratliff,
N. K. Seitzinger, E. B. Shera, and C. C. Stewart. High-speed DNA sequencing:
an approach based upon fluorescence detection of single molecules. J. Biomol.
Struct. Dyn., 7(2):301–309, 1989.

[50] J. Kalinowski, B. Bathe, D. Bartels, N. Bischoff, M. Bott, et al. The complete
Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on
the production of L-aspartate-derived amino acids and vitamins. J. Biotechnol.,
104(1-3):5–25, 2003.

104

[51] W. J. Kent. BLAT – the BLAST-like alignment tool. Genome Res., 12(4):656–664,
2002.

[52] R. Knippers. Molekulare Genetik. Thieme, Stuttgart, 2001.

[53] T. Koressaar and M. Remm. Enhancements and modifications of primer de-
sign program Primer3. Bioinformatics, 23(10):1289–1291, 2007.

[54] S. Kurtz, A. Phillippy, A. L. Delcher, M. Smoot, M. Shumway, C. Antonescu,
and S. L. Salzberg. Versatile and open software for comparing large genomes.
Genome Biol., 5(2):R12, 2004.

[55] E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, et al. Initial
sequencing and analysis of the human genome. Nature, 409(6822):860–921,
2001.

[56] P. Latreille, S. Norton, B. Goldman, J. Henkhaus, N. Miller, et al. Optical
mapping as a routine tool for bacterial genome sequence finishing. BMC
Genomics, 8:321, 2007.

[57] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

[58] H. Li and R. Durbin. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics, 25(14):1754–1760, 2009.

[59] M. Li, B. Ma, D. Kisman, and J. Tromp. PatternHunter II: highly sensitive and
fast homology search. J. Bioinform. Comput. Biol., 2(3):417–439, 2004.

[60] R. Li, H. Zhu, J. Ruan, W. Qian, X. Fang, et al. De novo assembly of hu-
man genomes with massively parallel short read sequencing. Genome Res.,
20(2):265–272, 2010.

[61] B. Ma, J. Tromp, and M. Li. PatternHunter: faster and more sensitive homol-
ogy search. Bioinformatics, 18(3):440–445, 2002.

[62] A. Magi, M. Benelli, A. Gozzini, F. Girolami, F. Torricelli, and M. L. Brandi.
Bioinformatics for next generation sequencing data. Genes, 1(2):294–307, 2010.

[63] M. Margulies, M. Egholm, W. E. Altman, S. Attiya, J. S. Bader, et al. Ge-
nome sequencing in microfabricated high-density picolitre reactors. Nature,
437(7057):376–380, 2005.

[64] D. W. Meinke, J. M. Cherry, C. Dean, S. D. Rounsley, and M. Koornneef. Ara-
bidopsis thaliana: a model plant for genome analysis. Science, 282(5389):662–682,
1998.

105

[65] J. R. Miller, S. Koren, and G. Sutton. Assembly algorithms for next-generation
sequencing data. Genomics, 95(6):315–327, 2010.

[66] E. W. Myers, G. G. Sutton, A. L. Delcher, I. M. Dew, D. P. Fasulo, et al. A
whole-genome assembly of Drosophila. Science, 287(5461):2196–2204, 2000.

[67] N. Nagarajan, C. Cook, M. Di Bonaventura, H. Ge, A. Richards, K. A. Bishop-
Lilly, R. DeSalle, T. D. Read, and M. Pop. Finishing genomes with limited
resources: lessons from an ensemble of microbial genomes. BMC Genomics,
11(1):242, 2010.

[68] S. B. Needleman and C. D. Wunsch. A general method applicable to the
search for similarities in the amino acid sequence of two proteins. J. Mol. Biol.,
48(3):443–453, 1970.

[69] C. B. Nielsen, M. Cantor, I. Dubchak, D. Gordon, and T. Wang. Visualizing
genomes: techniques and challenges. Nature Methods, 7:S5–S15, 2010.

[70] P. Nyrén and A. Lundin. Enzymatic method for continuous monitoring of
inorganic pyrophosphate synthesis. Anal. Biochem., 151(2):504–509, 1985.

[71] O. Owolabi and D. McGregor. Fast approximate string matching. Softw. Pract.
Exper., 18(4):387–393, 1988.

[72] W. R. Pearson and D. J. Lipman. Improved tools for biological sequence com-
parison. In Proc. Natl. Acad. Sci. USA, vol. 85, 2444–2448. 1988.

[73] R. Pethica, G. Barker, T. Kovacs, and J. Gough. TreeVector: Scalable, interactive,
phylogenetic trees for the web. PLoS ONE, 5(1):e8934, 2010.

[74] M. Pop, D. S. Kosack, and S. L. Salzberg. Hierarchical scaffolding with Bam-
bus. Genome Res., 14(1):149–159, 2004.

[75] D. Pushkarev, N. F. Neff, and S. R. Quake. Single-molecule sequencing of an
individual human genome. Nat. Biotechnol., 27(9):847–852, 2009.

[76] K. R. Rasmussen, J. Stoye, and E. W. Myers. Efficient q-gram filters for finding
all ε-matches over a given length. J. Comp. Biol., 13(2):296–308, 2006.

[77] T. D. Read, S. N. Peterson, N. Tourasse, L. W. Baillie, I. T. Paulsen, et al. The
genome sequence of Bacillus anthracis Ames and comparison to closely related
bacteria. Nature, 423(6935):81–86, 2003.

[78] D. C. Richter. Algorithms and Tools for Genome Assembly and Metagenome Analy-
sis. Ph.D. thesis, Eberhard-Karls-Universität, Tübingen, 2009.

[79] D. C. Richter, S. C. Schuster, and D. H. Huson. OSLay: optimal syntenic layout
of unfinished assemblies. Bioinformatics, 23(13):1573–1579, 2007.

106

[80] A. I. Rissman, B. Mau, B. S. Biehl, A. E. Darling, J. D. Glasner, and N. T. Perna.
Reordering contigs of draft genomes using the mauve aligner. Bioinformatics,
25(16):2071–2073, 2009.

[81] N. Saitou and M. Nei. The neighbor-joining method: a new method for recon-
structing phylogenetic trees. Mol. Biol. Evol., 4(4):406–425, 1987.

[82] A. Samad, E. Huff, W. Cai, and D. Schwartz. Optical mapping: a novel, single-
molecule approach to genomic analysis. Genome Res., 5:1–4, 1995.

[83] F. Sanger, S. Nicklen, and A. R. Coulson. DNA sequencing with chain-
terminating inhibitors. In Proc. Natl. Acad. Sci. USA, vol. 74, 5463–5467. 1977.

[84] P. H. Sellers. On the theory and computation of evolutionary distances. SIAM
J. Appl. Math., 26(4):787–793, 1974.

[85] J. Shendure, G. J. Porreca, N. B. Reppas, X. Lin, J. P. McCutcheon, A. M.
Rosenbaum, M. D. Wang, K. Zhang, R. D. Mitra, and G. M. Church. Accu-
rate multiplex polony sequencing of an evolved bacterial genome. Science,
309(5741):1728–1732, 2005.

[86] A. F. A. Smit, R. Hubley, and P. Green. RepeatMasker Open-3.0. http://www.
repeatmasker.org, 1996–2010.

[87] T. F. Smith and M. S. Waterman. Identification of common molecular subse-
quences. J. Mol. Biol., 147(1):195–197, 1981.

[88] R. Staden. A strategy of DNA sequencing employing computer programs.
Nucleic Acids Res., 6(7):2601–2610, 1979.

[89] H. Tang. Genome assembly, rearrangement, and repeats. Chem. Rev,
107(8):3391–3406, 2007.

[90] A. Tauch, J. Schneider, R. Szczepanowski, A. Tilker, P. Viehoever, et al. Ultrafast
pyrosequencing of Corynebacterium kroppenstedtii DSM44385 revealed insights
into the physiology of a lipophilic corynebacterium that lacks mycolic acids.
J. Biotechnol., 136(1-2):22–30, 2008.

[91] A. Tauch, E. Trost, A. Tilker, U. Ludewig, S. Schneiker, et al. The lifestyle
of Corynebacterium urealyticum derived from its complete genome sequence
established by pyrosequencing. J. Biotechnol., 136(1-2):11–21, 2008.

[92] J. Thompson and P. Milos. The properties and applications of single-molecule
DNA sequencing. Genome Biol., 12(2):217, 2011.

[93] E. Trost, A. Al-Dilaimi, P. Papavasiliou, J. Schneider, P. Viehoever, et al. Com-
parative analysis of two complete Corynebacterium ulcerans genomes and de-
tection of candidate virulence factors. BMC Genomics, 12(1):383, 2011.

107

http://www.repeatmasker.org
http://www.repeatmasker.org

[94] E. Trost, S. Götker, J. Schneider, S. Schneiker-Bekel, R. Szczepanowski, et al.
Complete genome sequence and lifestyle of black-pigmented Corynebacterium
aurimucosum ATCC 700975 (formerly C. nigricans CN-1) isolated from a vagi-
nal swab of a woman with spontaneous abortion. BMC Genomics, 11(1):91,
2010.

[95] E. Trost, L. Ott, J. Schneider, J. Schröder, S. Jaenicke, et al. The complete
genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from
a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-
regulatory networks contributing to virulence. BMC Genomics, 11(1):728, 2010.

[96] G. Turcatti, A. Romieu, M. Fedurco, and A. P. Tairi. A new class of cleavable
fluorescent nucleotides: synthesis and optimization as reversible terminators
for DNA sequencing by synthesis. Nucleic Acids Res., 36(4):e25, 2008.

[97] S. Tweedie, M. Ashburner, K. Falls, P. Leyland, P. McQuilton, et al. FlyBase: en-
hancing Drosophila gene ontology annotations. Nucleic Acids Research, 37:D555–
D559, 2009.

[98] E. Ukkonen. Approximate string-matching with q-grams and maximal
matches. Theor. Comput. Sci., 92(1):191–211, 1992.

[99] J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, et al. The sequence
of the human genome. Science, 291(5507):1304–1351, 2001.

[100] R. L. Warren, G. G. Sutton, S. J. M. Jones, and R. A. Holt. Assembling millions
of short DNA sequences using SSAKE. Bioinformatics, 23(4):500–501, 2007.

[101] M. S. Waterman and M. Eggert. A new algorithm for best subsequence align-
ments with application to tRNA-rRNA comparisons. J. Mol. Biol., 197:723–728,
1987.

[102] J. D. Watson and F. H. C. Crick. A structure for deoxyribose nucleic acid.
Nature, 171(4356):737–738, 1953.

[103] J. Wetzel, C. Kingsford, and M. Pop. Assessing the benefits of using mate-
pairs to resolve repeats in de novo short-read prokaryotic assemblies. BMC
Bioinformatics, 12(1):95, 2011.

[104] D. L. Wheeler, C. Chappey, A. E. Lash, D. D. Leipe, T. L. Madden, G. D.
Schuler, T. A. Tatusova, and B. A. Rapp. Database resources of the national
center for biotechnology information. Nucleic Acids Res., 28(1):10–14, 2000.

[105] D. Wibberg, J. Blom, S. Jaenicke, F. Kollin, O. Rupp, et al. Complete genome
sequencing of Agrobacterium sp H13-3, the former Rhizobium lupini H13-3, re-
veals a tripartite genome consisting of a circular and a linear chromosome and

108

an accessory plasmid but lacking a tumor-inducing Ti-plasmid. J. Biotechnol.,
2011.

[106] Wikimedia. http://commons.wikimedia.org/wiki/File:Difference_DNA_
RNA-EN.svg. Creative Commons License BY-SA 3.0. File accessed on July
13th, 2010.

[107] M. H. F. Wilkins, A. R. Stokes, and H. R. Wilson. Molecular structure of
deoxypentose nucleic acids. Nature, 171(4356):738–740, 1953.

[108] D. R. Zerbino and E. Birney. Velvet: algorithms for de novo short read assem-
bly using de Bruijn graphs. Genome Res., 18(5):821–829, 2008.

[109] F. Zhao, F. Zhao, T. Li, and D. A. Bryant. A new pheromone trail-based genetic
algorithm for comparative genome assembly. Nucleic Acids Res., 36(10):3455–
3462, 2008.

109

http://commons.wikimedia.org/wiki/File:Difference_DNA_RNA-EN.svg
http://commons.wikimedia.org/wiki/File:Difference_DNA_RNA-EN.svg
http://creativecommons.org/licenses/by-sa/3.0/

	1 Introduction
	2 Sequencing Technologies -- Biological Background
	2.1 DNA -- The Backbone of Life on Earth
	2.2 Technologies to Assess the Sequence of DNA
	2.2.1 Traditional: Sanger Sequencing
	2.2.2 The `Next' Generation: Massively Parallel Sequencing
	2.2.3 Third Generation: Single Molecule Sequencing

	2.3 Genome Sequencing
	2.3.1 Shotgun Sequencing
	2.3.2 Assembly Phase
	2.3.3 Genome Finishing

	3 Efficient Matching of Contigs
	3.1 Finding Local Similarities
	3.1.1 Smith-Waterman
	3.1.2 Seed and Extend Heuristics
	3.1.3 Search Space Filtering

	3.2 Matching by Filtering with q-Grams
	3.2.1 General Idea
	3.2.2 Building an Index of the Reference Genome
	3.2.3 Filtering for Similarities

	3.3 r2cat -- The Related Reference Contig Arrangement Tool
	3.3.1 Matching
	3.3.2 Visualization
	3.3.3 Simple Contig Mapping

	4 Advanced Contig Layouting using Multiple Reference Genomes
	4.1 The Contig Adjacency Graph
	4.1.1 Notation
	4.1.2 Weighting the Adjacency Edges
	4.1.3 Creating a Basic Contig Adjacency Graph

	4.2 Finding a Layout of the Contigs
	4.2.1 Traveling Salesman Tour Through the Graph
	4.2.2 Fast Adjacency Discovery Algorithm

	4.3 Enhancements of the Graph Creation
	4.3.1 Including Phylogenetic Distances
	4.3.2 Integrating Additional Information

	4.4 Variations of the Contig Layouting
	4.4.1 Handling Rearrangements
	4.4.2 Repeat-aware Layouting

	5 Realization of the Software
	5.1 Implementational Milestones
	5.1.1 r2cat
	5.1.2 treecat
	5.1.3 repcat
	5.1.4 htscat

	5.2 External Software and Libraries
	5.2.1 FreeHEP Graphics Export
	5.2.2 Graphviz
	5.2.3 NetBeans Platform
	5.2.4 Prefuse Graph Visualization

	6 Layouting Corynebacteria Contigs
	6.1 Background and Preparatory Steps
	6.1.1 Description of the Datasets
	6.1.2 Determining a Reference Layout
	6.1.3 Parameter Estimation for the Contig Adjacency Graph
	6.1.4 Other Software for Contig Layouting

	6.2 Evaluation on Real Sequencing Data
	6.2.1 Single Reference Based Ordering
	6.2.2 Multiple Reference Based Layouting
	6.2.3 Layouting Repetitive Contigs

	7 Summary and Outlook
	 Acknowledgments
	 Bibliography

