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Gedruckt auf alterungsbeständigem Papier nach DIN-ISO 9706

i



Acknowledgements

First and foremost I would like to express my deep and sincere gratitude to my su-
pervisor, Prof. Dr. Walter Trockel, Institute of Mathematical Economics, University
of Bielefeld. I thank him for the patient guidance, encouragement and advice, for
his detailed and constructive comments he has provided throughout my work on
the thesis. His wide knowledge and logical way of thinking have been of great value
for me. It was under his tutelage that I developed a focus and became interested
in computational economics. Despite it was a real challenge to satisfy his exacting
requirements, I have been not only extremely lucky but it is my honor to have a
supervisor who cared so much about my work, and who responded to my questions
and queries so promptly. I doubt that I will ever be able to convey my appreciation
fully, but I owe him my eternal gratitude. One simply could not wish for a better or
friendlier supervisor.

I wish to express my warm and sincere thanks to my second supervisor, Prof. Dr.
Herbert Dawid, Dean of the Department of Economics and Business Administration,
University of Bielefeld. His understanding, encouraging and personal guidance have
provided a good basis for the present thesis and added considerably to my graduate
experience. I also wish to express my gratitude for giving me the opportunity to
attend conferences and meet so many interesting people.

A very special thanks goes out to Prof. Volker Böhm, Ph.D., University of Biele-
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Summary

This thesis proves the existence of the spiral effect in different scenarios with different
modeling approaches. With a spiral effect is called the hypothesis that if, due to his
bargaining power, one buyer has better procurement conditions than other buyers,
he can use them to strengthen his market position in the sales market, which in turn
improve his procurement situation, e.g. as he is in a position to negotiate additional
quantity discounts.

The analysis is divided into three blocks:

• In ”Asymmetric bargaining power in intermediate industry”we provide a mo-
del which extends the model of Katz (1987) to the case of the bargaining over
the wholesale prices between firms that are Cournot competitors in the final
market. We show that the asymmetry in the bargaining weights of downstream
firms leads to the asymmetry in their wholesale prices and results in increasing
concentration ratio and in increasing profitability of the most efficient firm.

• In ”Asymmetric bargaining power in capacity-constrained industry”we extend
the model of Kreps and Scheinkman (1983) allowing the costly capacities. We
prove that for any capacity pair the capacity-constrained price game (with
asymmetric capacity costs) has unique (mixed) equilibrium expected payoffs.
In particular, if firms choose Cournot quantities as capacities, the resulting
constrained capacity price game has a unique equilibrium outcome, namely
Cournot outcome. We also analyze the existing literature on the capacity-
constrained price game with asymmetric production costs and check whether
this scenario may be incorporated into the prior formal bargaining model.
If the asymmetry is not sufficiently high, in equilibrium firms choose Cournot
quantities as capacities; if the asymmetry is sufficiently high, the more efficient
firm has an incentive to choose the capacity above its Cournot level and price
its less efficient rival out of the market.

• In ”Dynamic duopoly with sticky prices and asymmetric production costs” we
examine the corresponding differential game for different equilibrium concepts:
open-loop, feedback - and closed-loop equilibria. We describe the dynamics and
the characterization of the particular (stable) fixed points. We show that, si-
milar to the symmetric case, prices in steady state open-loop- and feedback-
equilibrium are lower than the prices in the static Cournot game. If the speed
adjustment parameter falls then the prices and quantities in all three types
of equilibrium converge to the prices and quantities of the static game when
both firms act as price-takers. If the speed adjustment parameter grows the
steady state price in the open-loop equilibrium converges to the static Cournot
equilibrium price, and feedback- and closed-loop equilibrium prices converge
to the prices which are lower than the static Cournot price.

Keywords
Spiral effect; Intermediate industry; Bargaining games; Bargaining power; Asymme-
tric costs; Cournot competition; Bertrand-Edgeworth price competition; Quantity
precommitment; Differential games; Sticky prices.
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Chapter 1

Introduction

1.1 Background

The rise to prominence of EDEKA and other big-box retailers has given new life to
the debate about whether ”buyer power” at intermediate links in a vertically related
chain of industries is good or bad for consumers and hence whether it requires the
attention of competition authorities. There is no consensus at the present time on
the economic and legal meaning of buyer power, although a number of alternative
definitions have been put forward. As a result, there has been no clear agreement
on the appropriate measurement of buyer power.

Competition Authorities need to distinguish between efficiency enhancing co-
operation and cooperation which, on balance, harms competition and consumers.
Guidelines on the assessment of horizontal mergers under the Council Regulation
on the control of concentrations between undertakings (2004/C 31/03) mention two
possible effects of exercising buyer power: Output-Effect and Lock-Effect, including
Spiral Effect.

In 2001 buyer power was a central issue in the European Commission’s assess-
ment of the merger of the supermarket chains Carrefour and Promodes. European
Commission argued, however, that the buyer power which the merger would create
could distort competition. It identified two related mechanisms, namely Spiral Ef-
fect and Threat Point. The first refers to the self re-enforcing effect of market share
and volume discounts, while the second refers to the power that a buyer of even a
small percentage of a producer’s total output can have in affecting its viability as
a business. There are some other theories of harm arising from powerful buyers or
buyer groups that are often considered in the literature: Waterbed Effect, Predatory
Overbuying, and Dynamic Inefficiency.

On the other hand, buyer power can have a positive impact in a situation where
intermediate suppliers have substantial market power. For example, in the food
retail sector, an increase in buying power of retailers may countervail (a term coined
by Galbraith in 1952) the market power of food manufacturers. Such situation
would particularly benefit consumers if retailers behaved competitively in selling,
i.e. if there was a low degree of selling power in the retail sector, which would
guarantee that the buying price reductions that retailers obtain would be passed on
to final consumers.
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1.2 Related literature

In the recent literature the main attention has been gained to the negative com-
petitive effect so called ”Waterbed Effect”. The paper of Inderst (2008) explains
the reasons of its occurring by the differentiated products. He assumes two local
markets, which are characterized by Hotelling competition. Both local markets are
supplied by an incumbent that offers each buyer a limit price so that they do not
have incentives to integrate backwards. If two firms from the different local markets
merge, the merged unit can spread the fixed cost of backwards integration over both
outlets and so obtains a lower input price. The cost advantage obtained in such a
way allows the new merged unit to capture some additional demand from its inde-
pendent rivals and thereby to weak rivals’ credible threats to integrate backwards.
As a result, rival buyers pay more. Inderst finds that downstream prices fall in all
outlets if the costs of switching to the rival source of supply are sufficiently low.

The paper of Majumdar (2005) differs from Inderst in the following aspects.
First, it develops more explicit welfare results. In this paper buyer mergers are
harmful because the price rises in markets where the chain has already operated.
Second, buyer power is modeled by first mover advantage to avoid a potential effect
of gatekeeping. Third, he assumes Cournot competition at the downstream market.
In the model the supplier serves not only the chain store, but also different indepen-
dents. His result about the harmfulness of the input price discrimination is applied
both to the linear demand and to a class of strictly concave demand functions.

Somewhat similar papers of Matthewson and Winter (1996) and of Gans and
King (2002) show how a buyer group with a first-mover advantage can benefit at
the expense of smaller buyers, which move second. However, in their models buyers
do not compete downstream.

Salop and Scheffman (1983) show the problem of the Waterbed Effect from some
different angle, namely that the dominant firm could have an interest on raising its
own costs because this would raise rivals’ costs sufficiently more. Such behavior
harms the competition. However, as Mason (2002) notes, cost raising strategies
usually require strong restrictions on parameters if they are to be profitable.

Schiff (2008) analyzes the conditions that lead to the existence of a Waterbed
Effect, whereby the prices charged by a multiproduct firm are interdependent. As
a result, Waterbed Effect will exist if either the marginal revenue or marginal cost
of one good depends on the quantity of the other good.

Katz (1987) develops the model, which is addressed to the price discrimination
in input markets. He assumes that a monopoly supplier sells to the downstream
firms, which are represented by a chain store and independent local stores. In
each local market, the chain store competes with one or more independent stores.
The chain store can integrate backwards while independents are assumed not to
have this option. Katz compares regimes where price discrimination is allowed with
those where it is prohibited. Price discrimination is good for welfare, where it
deters integration that would have led to wasteful duplication of upstream fixed
costs of production. However, allowing discrimination can reduce welfare by leading
to higher prices for downstream firms.

Inderst and Valletti (2006) extend that work of Katz. They consider a monopoly

2



supplier selling to two downstream firms, both of which have the option to integrate
backwards at a fixed cost. Inderst and Valletti find that allowing price discrimination
enhances pre-existing cost differences when both downstream firms are Cournot
competitors. If the more efficient downstream firm obtains additional demand from
its competitor who is less efficient, then the rise to a Waterbed Effect occurs.

Buyer mergers are considered in Dobson and Waterson (1997) and von Ungern-
Sternberg (1996), where a buyer merger which destroys a retailer increases both
downstream market power and upstream bargaining strength with a monopoly sup-
plier. These authors find that buyer mergers harm welfare until downstream com-
petition becomes very intensive, almost perfect.

There are different papers that show that the exercise of buyer power may harm
consumers through different channels which are not related to the Waterbed Effect.
For example, Chen (2003) analyzes the impact on suppliers’ investment incentives,
as well as Inderst and Wey (2003) and Vieira-Montez (2004).

The theory of the Waterbed Effect exhibits a major difference compared to the
Spiral Effect, another theory of competitive harm from buyer power. According to
the theory presented in the paper of Inderst and Valletti (2008), the Waterbed Effect
should already work in the short run, as manifested by the coincidence of a decrease
in wholesale prices for some buyers and an increase for other buyers. In contrast,
the theory of the Spiral Effect is much more prospective: competitive harm should
be expected only in the long run, when less powerful rivals have exited the market,
thereby probably creating scope for a price increase by the remaining oligopolists.

1.3 Motivation

At the meeting on 18 September 2008 the Working Group on Competition Law
gave the following definition of the Spiral Effect: ”If, due to his bargaining power,
one buyer has better procurement conditions than other buyers, he can use these
to strengthen his market position in the sales market. A strengthened position
in the sales market can in turn improve his procurement situation, e.g. as he is
in a position to negotiate additional quantity discounts. As a result, less efficient
(smaller) competitors are squeezed out of the market. In the long term, however,
this could lead to price increases if, due to decreasing competitive pressure, the
remaining companies are no longer forced to pass on their procurement advantages.”
The Working Group has also discussed the following questions: Are Spiral and
Waterbed Effects only theoretical considerations or possible effects of the exercise of
buyer power which should also be taken seriously in practice? What criteria could
be applied to assess the risk of their occurrence?

To our knowledge, Spiral Effect has not been modeled formally in the theory.
Moreover, it is not clear that such an effect would be necessarily harmful. The
Spiral Effect could simply be a process in which lower prices are passed on to end
customers allowing a buyer to grow. If such growth allows the buyer to obtain even
lower prices, which are then passed on to end customers once again, this would be
a virtuous circle that benefits end customers. If the fear is that more efficient firms
drive out weaker retailers, this could simply reflect the process of competition.

3



1.4 Analytical framework

Legal cases involving price discrimination in the sale of intermediate goods typically
concern pricing schemes under which customers with large individual purchases or
large cumulative purchase volumes receive lower prices than do customers making
small purchases. The first analysis of the third-degree price discrimination in in-
termediate good markets was made by Katz (1987). He shows that models of final
good markets are inappropriate for the analysis of intermediate good markets. He
sketches two fundamental differences between final and intermediate good markets.
First, in an intermediate good market, unlike a typical final good market, the buyers’
demands for the product are interdependent. The profits of any given downstream
firm and its demand for an input are functions both of the price that firm pays
for the input and of the prices that the buyer’s product-market rivals pay. A sec-
ond important difference is that buyers of inputs often have the ability to integrate
backward into supply of the good. Many theories why larger buyers, either if they
grow organically by becoming more efficient or if they grow by acquisition, obtain a
discount compared to smaller buyers are driven by changes in the value of buyers’
outside options, one of them is the backward integration.

In our opinion, the analysis of price discrimination is more complex than it is
made by Katz. It is important to understand why the large buyers often charge lower
prices than the smaller buyers do. Such quantity discounts are typically explained
with the argument, that losing a high-volume customer is more costly to the seller
than losing a low-volume customer. But the question where the customer goes if it
leaves its current supplier is still not answered by such arguments. To make a credible
threat to leave, a buyer must have an alternative source of supply. Katz assumes
that a large buyer receives lower prices because there are economies of scale in
finding an alternative source of supply, and thus the threat of finding an alternative
is stronger when it is made by a high-volume buyer. In his model the chain has a
stronger threat of backward integration than the local stores because of its larger
demand for the input and the economies of scale in production of the intermediate
good. This gives rise to the seller’s incentives to discriminate. In particular, a buyer
may threaten to engage in self-supply using a production technology that exhibits
economies of scale or the buyer also could threaten to go to other upstream supplier.
In this case, the economies of scale on the buyers’ side of the market could arise
from a buyer having to incur fixed costs to find and contract with another supplier.
Alternatively, the buyer might have to bear fixed costs to modify its production line
to utilize an alternative variant of the input. It is also interesting to investigate how
the greater bargaining power is related to possibilities of backward integration. Our
aim is to show, that even if an explicit threat to integrate backward is not credible,
the chain may also receive a discount if it has greater bargaining power.

4



Chapter 2

Asymmetric bargaining power in
intermediate industry

2.1 Introduction

2.1.1 The industry

The upstream industry in our model is represented by a single supplier who produces
some output, which he sells to the firms in the intermediary industry. Then these
downstream firms produce the same final good and sell it in a local market. The
supplier’s production takes place after negotiations with downstream firms at a
constant, positive marginal cost c. Fixed costs of production do not affect the
supplier’s behavior because they are sunk.

The price in the local market is described by the inverse demand function P (·),
which is a function of the total output sold in the local market, where P ′(·) < 0
and P ′′(·) ≤ 0. Both firms have identical production functions. Assume that they
transform one unit of the input into one unit of the output at no additional costs.
A natural example where this specification is reasonable is retailing. Firms compete
in a horizontally differentiated product market.

Whenever i and j appear in the same expression in the whole work, it means
that i, j ∈ {1, 2} and i 6= j.

2.1.2 Basic concepts and notations

We present a non-cooperative bargaining process between the supplier and two
downstream firms where results from two-person cooperative axiomatic bargaining
games are used to define the payoffs of some of the terminal nodes of our exten-
sive game. The definition of the extensive game is quite complex that is why its
illustration via game tree is very intuitive.

In our bargaining model the upstream supplier and the downstream firm i ∈
{1, 2} bargain over the wholesale price denoted as wi. Making the price offer each
player binds it to some particular output quantity which he is ready to sell / to buy
for the suggested price. These quantities and their dependence on the suggested
prices we shall consider in one of the following sections.

5



We assume that the downstream firms are asymmetric in the sense that firm 1
can integrate backwards (to produce the input by itself, instead of buying it from
the supplier) and firm 2 cannot. We shall show that this assumption is crucial for
the determination of the firms’ behavior depending on the obtained price offers.

Before turning to the formal analysis, let us emphasize that through the whole
model we assume that all players possess complete information and they are all
rational.1

In the model we suggest a stepwise bargaining, because in our case it is a process
in which the parties achieve interim settlements step by step, where each settlement
is a starting point for further negotiations.

We model the events in the industry in the following steps. We start with the final
stage and describe the Cournot competition between both downstream firms in the
local market. Then we describe a non-cooperative simultaneous bargaining between
each downstream firm i ∈ {1, 2} and the supplier over the wholesale prices wi for
some particular output quantities and finally we show that there is a unique subgame
perfect equilibrium wholesale price vector which will be offered and accepted in the
first period.

2.2 Equilibrium in the product market

In this section we describe the equilibria in the final subgames that represent the
product market. We determine the dependence between the supplier’s/firms’ price
offers and the offered/requested quantities for these prices. We derive the respec-
tive equilibrium profits as they play an important role in the determination of the
outcome of bargaining.2

According to our model both downstream firms are Cournot competitors in the
final stage. Therefore let us first describe the respective competition process.

To present the Cournot competition we consider the local market in which two
firms ”produce” the same product. The aggregate output q̄ is the sum of the outputs
of both firms. The inverse demand function P (q̄) is decreasing so that P ′(q̄) < 0 for
all q̄ ≥ 0. Further we shall derive the equilibrium price p = P (q̄) from the aggregate
output q̄.

w = (w1, w2), q = (q1, q2), where qi denotes the output quantity of down-
stream firm i ∈ {1, 2}, which it will have bought by the upstream supplier at
unit price wi. (wi, qi) 7−→ Ci(wi, qi) := wiqi. So C1 := C1(w1, q1) = w1q1 and
C2 := C2(w2, q2) = w2q2 are the downstream firms’ costs.

A Cournot game for given w1, w2 can be modeled as a normal form game.

Definition 2.2.1. Let Γw := (Q̄w, π) be a game with n = 2 players, where Q̄w
i

is the strategy set for player i, Q̄w = Q̄w
1 × Q̄w

2 is the set of strategy profiles and
π : Q̄w → <2

+ : q(w) 7→ πw(q) = (πw1 (q), πw2 (q)) is the payoff function.

1With rationality assumption we avoid the possibility of backward integration of particular
downstream firm in equilibrium.

2Profits of each downstream firm i depend on its own and rival’s purchased quantities. The
quantities depend on the negotiated wholesale prices, which both rivals pay.
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The profit of each downstream firm i depends not only on its own output quantity
but also on the output quantity of its rival.

πwi (q) = P (q̄)qi − Ci(wi, qi) (2.2.1)

Both firms want to choose their outputs in order to maximize their profits. Let
us next assume that the first and the second order conditions for the profit maxi-
mization in the Cournot game are satisfied everywhere for both firms3 so that their
(reaction) functions are the optimal response for them in the local market.

Downstream firms must buy the output from the upstream supplier, therefore
the quantities depend on the wholesale prices w1 and w2 for the purchased good.

Notation 1. For any Cournot game Γw based on w := (w1, w2) we denote Nash
equilibrium quantities by q∗(w) ≡ (q∗i (w1, w2))i=1,2.

Definition 2.2.2. The output values [q∗1(w1, w2), q∗2(w1, w2)] for any given pair (w1, w2)
build a Nash equilibrium in the Cournot game Γw if the following inequality holds:

πwi
[
q∗i (wi, wj), q

∗
j (wi, wj)

]
≥ πwi

[
q̂i, q

∗
j (wi, wj)

]
, ∀q̂i, i = 1, 2 (2.2.2)

In other words, a Nash equilibrium is a set of actions such that no player taking his
opponents’ actions as given, wishes to change his own action.

Assumption 1. In any considered two-player Cournot game Γw there exists a pure-
strategy equilibrium, it is unique and (locally) strictly stable.4,5

The local market is in Cournot equilibrium at price p∗(w) = P (q̄∗(w)), where
q̄∗(w) :=

∑2
i=1 q

∗
i (w). For any q∗(w) the equilibrium profit for each downstream firm

i is given below:

π∗i (w) := πwi (q∗(w)) = (p∗ − wi)q∗i (w), i = 1, 2 (2.2.3)

Thus, in order to receive a positive profit the purchase price for each downstream
firm i must satisfy the following condition: wi < p∗, i = 1, 2.

2.3 The game

We consider the following three-player non-cooperative bargaining game G, which
lasts r ≥ 1 rounds. We restrict our attention to subgame perfect equilibria. We as-
sume that the upstream supplier (S) initiates the negotiations with two downstream
firms, denoted as firm 1 and firm 2. At the initial time the upstream supplier makes

3For these to be true the demand function must be concave (or linear) and the marginal costs
increasing in the own output.

4Novshek (1985), Bamon and Fraysse (1985) introduce the approach which shows that if a firm’s
marginal revenue decreases with the other firm’s output, a pure-strategy equilibrium exists.

5Following Tirole (1988), p. 226 the following sufficient condition for the uniqueness is satisfied:∣∣∣∣∂Ri(qj)
∂qj

∣∣∣∣ ∣∣∣∣∂Rj(qi)
∂qi

∣∣∣∣ < 1, where Ri(qj) is a continuous reaction function.
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price offer to each downstream firm simultaneously and publicly and firms may ac-
cept it (A), reject it (R), or withdraw (W) from negotiations. As the illustrated
structure of the extensive form of the whole game is very complicated we restrict
to the geometric stylized illustrations of the considered problems. The illustration
of the initial part of the game, in which the supplier makes price offers is given in
Figure 2.1.
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 · 
 · 
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 · 
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 · 
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 · 
 ·

 · 
 · 
 ·

Figure 2.1: The supplier offers the wholesale prices

The circle around the set of nodes (information set) indicates that the decision is
made at the same time as the decision at the previous node, and hence downstream
firms decide uninformed of each other’s choices. The payoffs of all players, depending
on their choices of actions will be defined later.

If both firms decide to reject the supplier’s offer they will make counteroffers in
the next bargaining period, which on its turn the upstream supplier may accept or
reject. Geometrically this problem is illustrated in Figure 2.2.
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Figure 2.2: Downstream firms’ actions constitute the counteroffers

If supplier on his turn rejects both offers, then in the next bargaining period he
will make price offers by himself. If in each bargaining period the upstream supplier
or both downstream firms reject offers of their opponent, then the branch of the
game tree with actions ”Reject” becomes infinite as it is illustrated in Figure 2.3.

Players discount stages with a discount factor δ ∈ (0, 1). This is a game of
perfect information. Each player, when making or responding to an offer, knows all
actions taken before his move. The game ends when, and if, an agreement is reached
between the upstream supplier and one or both downstream firms. The agreements
in such bargaining may appear in different forms, i.e. both downstream firms have
come to contract terms, firm 1 has decided to integrate backward, they have decided
to withdraw from negotiations, etc.

As it has been shortly mentioned in Section 2.1.1 we assume that the supplier
produces the output only when the bargaining is over, namely when the prices and
respective quantities are determined and accepted.

The aim of the forthcoming analysis is to prove the existence of the subgame
perfect equilibrium and if it exists to show whether it is unique or not. The result
depends on the assumptions about the discreteness or continuity of the set of possible
alternatives. Such assumption is fundamental for our approach and for our future
result and it is also often discussed in the literature on game theory. For example, van
Damme, Selten and Winter (1990) show that the result of Rubinstein (1982) who
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has shown that impatience implies determinateness of the two-person bargaining
problem depends also on the assumption of his model that the set of alternatives
is a continuum. If the pie can be divided only in finitely many different ways (for
example, because the pie is an amount of money and there is the smallest money
unit), any partition can be obtained as a result of the subgame perfect equilibrium if
the time interval between successive offers is sufficiently small. Rubinstein’s theory
specifies a unique solution, the uniquely determined subgame perfect equilibrium of
his model. Van Damme, Selten and Winter (1990) show that the introduction of
the smallest money unit destroys Rubinstein’s uniqueness result.

On this stage we make the following statement which is crucial for our future
analysis: As the bargaining in our model takes place over the wholesale prices there
exists the smallest possible unit in prices, namely 1 cent.

This approach also means that there is no lack of credible treats for all players
to reject, because there exists the best alternative.

S

w
1

S, w
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1

A R W
2

A R W
δP

f
1

2

w
1

f

w
2
f

S

δP
s

(R,R)

Figure 2.3: All players always reject any offers
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2.4 The bargaining model

In order to correctly describe the bargaining process, we must define the aims of all
players; their payoffs in case if they reach an agreement; their outside option payoffs,
if the agreement is not reached; and the feasible set over which both sides bargain.

2.4.1 The aims of all players

In our model we have three players: the upstream supplier and two downstream
firms. The main difference between downstream firms lies in the assumption that
only firm 1 possesses the possibility of backward integration.

As we know the bargaining takes place over the wholesale prices. Making some
particular price offer each player binds it to some particular quantity of the output,
which he wants to sell or to buy at this unit price. The respective output quantities
haven’t been defined in our model until now, therefore let us consider them more
precisely.

In fact we need to determine what quantities are acceptable for the upstream
supplier because of his costs by some particular prices w1 and w2; and what quantities
depending on the situation are acceptable for downstream firms 1 and 2.

For the forthcoming analysis let us now consider the special case of the bargain-
ing between the upstream supplier and a single downstream firm. Earlier we have
assumed the common knowledge for all players in our model. Therefore the costs
of both players, denoted as Cs for the upstream supplier and Cf for the considered
monopolistic downstream firm, as well as the inverse demand function in the local
market P (·) are known. Hence it is obvious that we can determine the monopoly
output quantity qm and the monopoly price pm.

In the initial period when the bargaining starts the upstream supplier offers some
particular wholesale price w to the downstream firm, which must decide whether to
accept, to reject or to withdraw from negotiations. The price offer w means that
the downstream firm should pay this unit price for the output quantity qm(w).

If the downstream firm accepts this price offer then the bargaining ends and both
sides obtain the following payoffs:

The payoff of the upstream supplier: πs(q
m(w)) = wqm(w)− Cs(qm(w))

The payoff of the downstream firm: πf (q
m(w)) = (pm(w)− w)qm(w)

If this downstream firm has the possibility of backward integration, then receiving
the supplier’s offer it will decide whether to integrate or not. To make a decision it
will compare its costs without integration Cw

f (qm(w)) := wqm(w) with its costs after
integration CvIB

f (qm(v)) := vqm(v), where v is the price of self-production. Conse-
quently if w > v the upstream supplier earns zero and the integrated downstream
firm earns (pm(v)− v)qm(v).

Denoting πm := pmqm−Cw
f (qm) we obtain as possible profit distributions without

integration for both players all profit distributions from (0, πm) to (πm, 0). Assume
that the supplier and the firm negotiate the profits using the Nash bargaining ap-
proach. The graphic illustration of the case if the downstream firm does not have
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an option of backward integration is given on the left hand-side of Figure 2.4.
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Figure 2.4: Profits of both players via Nash bargaining solution

It is important to mention that even if the downstream firm has the possibil-
ity to integrate backwards, it is still interested in negotiations with the upstream
supplier, because it cannot supply itself under equal conditions, nevertheless its po-
sition in negotiations is stronger comparing with the firm which can not integrate
backwards and it is obvious that the distribution of the obtained profits between the
downstream firm and the supplier will be different from the case without backward
integration option. The bargaining solution for the case when the downstream firm
has the backward integration option is illustrated on the right hand-side of Figure
2.4. The monopoly profit is denoted as π̃m := (p̃m − v)q̃m, where p̃m, q̃m are the
monopolistic price and quantity if C1(v, q̃m1 ) := vq̃m1 .

On this stage let us emphasize that in both cases (with and without backward
integration option) the Nash solution (due to linear Pareto frontier) coincides with
all other standard solutions: Kalai-Smorodinsky, Perles-Maschler, Raiffa etc. So
”Nash” in this specific case does not need a particular justification.

Now let us consider the situation with two downstream firms in the market. The
negotiations illustrated on the left hand-side of the Figure 2.4 could take place only
between the upstream supplier and the downstream firm without backward inte-
gration option. But it is obvious that the downstream firm which has an option
of backward integration will enter the local market also in the case if it withdraws
from negotiations with the supplier. Hence, there are two downstream firms in the
market, which are Cournot competitors in the final stage, and therefore instead of
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monopoly quantity, - price and - profit appear Cournot quantities, - price and -
profits, which we have already considered and defined in Section 2.2. Consequently,
the right hand-side illustration on Figure 2.4 will be also impossible.

As firm 1 will enter the local market in all cases, the upstream supplier and the
firm 2 may make an attempt to disadvantage firm 1. Hence, let us now consider the
underlying extensive game with three players.

We know the cost functions of all three players denoted as Cs(·), Cw
1 (·) and

Cw
2 (·), respectively. As both downstream firms are asymmetric in the existence of

the backward integration option there are the following restrictions on their cost
functions that must hold. For the downstream firm 2:

min(Cw
2 (qm), Cw

2 (q∗2(w))) > max
p≥0

(p− w)qm (2.4.1)

For the downstream firm 1:

Cs(q
m) < Cw

1 (qm) < pmqm (2.4.2)

As we have already mentioned in Section 2.3 we restrict our attention on the sub-
game perfect equilibria, therefore it is important to notice that the whole following
reasoning is based on the assumption of behavior in subgame perfect equilibrium.

Now let us consider the supplier’s behavior when he makes the price offers to both
downstream firms. It is obvious that his offers are bound to some particular quan-
tities that he wants to sell at these prices and these quantities from the supplier’s
point of view are acceptable own strategies. In order to correctly describe the bar-
gaining process we need to define these quantities (the set of supplier’s acceptable
own strategies).

The supplier has the following options: he can sell Cournot quantities q∗1(w) and
q∗2(w) to downstream firms; he can offer quantity qm(w) at some particular price to
each firm; or he can force firm 1 to backward integration and as a result to sell the
quantity q∗2(w) to downstream firm 2.6 Now we consider these three cases in details
in order to specify the relation between price offers and quantities.

1. Making the price offer (w1, w2) the supplier sells the Cournot quantities q∗1(w)
and q∗2(w) at unit prices w1 and w2 to downstream firms 1 and 2, respectively.
Both downstream firms accept these price offers if:

Cw
1 (q∗1(w)) < p∗(w)q∗1(w)

Cw
2 (q∗2(w)) < p∗(w)q∗2(w)

Cw
1 (q∗1(w)) < CvIB

1 (q∗1(w))⇔ w1 < v

2. The offer (w1, w̄) means that the supplier wants to sell the monopoly quantity
qm(w1) at price w1 to firm 1, and at price w̄ := 2pm(w1) to firm 2. Then the

6Downstream firm 2 will buy only Cournot quantity because it knows that it will compete with
firm 1 in the local market.
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following conditions must hold for firm 1 to buy the monopoly quantity:

Cs(q
m(w1)) < w1q

m(w1) < CvIB
1 (qm(w1)), w1 < pm(w1)

3. The price offer (w̄, w2) with w̄ := 2pm(w2) forces firm 1 to integrate backward
and to produce the input by itself. Hence, the upstream supplier aims to sell
the Cournot quantity q∗2(w̄, w2) at unit price w2 to downstream firm 2. In such
case the following inequality must hold for firm 2 to accept the offer:

w2q
∗
2(w̄, w2) < p∗(w̄, w2)q∗2(w̄, w2) ⇔ w2 < p∗(w̄, w2)

If both downstream firms decide to reject the supplier’s offers they make coun-
teroffers in the next bargaining period. Now let us also consider their price offers and
the quantities for which these offers are determined, namely the supplier’s acceptable
strategies from the firms’ point of view.

Let us start with the downstream firm 2 which does not have the backward
integration option. Its price offer will be bound to Cournot quantity q∗2(w), because
it knows that it will never be alone in the local market but it will compete with
firm 1. Therefore, the offer w2 means that firm 2 is ready to pay the unit price w2

for the Cournot quantity q∗2(w). Thereby the following inequality must hold for the
downstream firm 2:

w2q
∗
2(w) < p∗(w)q∗2(w)⇔ p∗(w) > w2

The upstream supplier accepts this price offer only if:

w2q
∗
2(w) > Cs(q

∗
2(w))

Considering price offer of the downstream firm 1, which has the option of back-
ward integration, it is obvious that it has the following choices: firm 1 may buy from
the supplier qm(w), q∗1(w) or nothing at all and instead produce by itself.

Thus the downstream firms’ price offers (w1, w2) means that the firm 1 is ready
to pay w1 for q∗1(w) and the firm 2 the unit price w2 for q∗2(w).

As firm 1 will never make an offer which forces it to integrate backwards, we are
left with the situation that it offers the supplier the unit price w̃ for the quantity
qm(w̃). Hence, the offer (w̃, w2) means that firm 1 is ready to buy qm(w̃) at price w̃
and firm 2 offers price w2 for q∗2(w̃, w2). For firm 1 there are following restrictions
on the suggested price w̃:

w̃ < v, w̃ < pm(w̃)

The supplier accepts such a price offer of firm 1 only if:

w̃qm(w̃) > Cs(q
m(w̃))

w̃qm(w̃)− Cs(qm(w̃)) > max
w

(p∗(w)q∗(w)− Cs(q∗(w)))

The second inequality means that the supplier is better off by accepting the offer
of firm 1 selling qm(w̃) at price w̃, than to choose some other actions, e.g. to sell to
both firms Cournot quantities. One of such actions is explained in the next section.
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But briefly speaking, if the supplier accepts the offer of firm 2 to sell q∗2 at price w2,
but rejects firm 1’s offer, then it will settle some price ŵ1 with firm 1 for quantity
q∗1 (what the price ŵ1 is and how it is determined will be discussed later). Hence,
the second inequality means that, whatever ŵ1 could be, the downstream firm 1 in
order to buy the monopoly quantity qm should offer such price w̃ that the inequality
ŵ1q

∗
1 + w2q

∗
2 < w̃qm will hold.

Having considered all these issues we have specified the relations between the
price offers of both downstream firms and the quantities that they want to buy from
the supplier at the suggested prices after they reject the supplier’s offers.

2.4.2 Determination of the players’ payoffs

2.4.2.1 Preliminaries

For the analysis in this section let us introduce some notations on the payoff vectors
of all players by all possible outcomes of negotiations. Hence, we denote the following
3× 1 payoff vectors, which will be determined later:

• P (w1, w2) the payoffs of all players are determined by agreed w1 and w2 (they
are proposed and accepted in the same period);

• Pi(wj) the payoffs are determined by the agreed wj and wi, which is a Nash
bargaining solution;7

• Pw
j (wi) the payoffs are determined by the agreed wi (firm j withdraws from

bargaining with the supplier in the same period);

• Pw(wi) the payoffs are determined by the agreed wi (the supplier withdraws
from bargaining with the firm j in the same period);

• Ps indicator s denotes the payoffs when the supplier makes the price offers;

• Pf indicator f denotes the payoffs when the downstream firms make the coun-
teroffers.

As we have already mentioned at the initial time the upstream supplier proposes
some wholesale prices to both downstream firms simultaneously and firms may ac-
cept or reject them. If both firms decide to reject, they make counteroffers in the
next period; if they decide to accept, the negotiation process ends with agreement.
If the upstream supplier and firm 1 agree on some price such as firm 1 will buy
the quantity qm, then the negotiation also ends with agreement where firm 2 gets
nothing.

Therefore it turns out that in order to find the equilibrium payoffs, we need to
determine what happens in the subgames in which one wholesale price has already
been accepted and the other - not.

So assume that at some point of the game, at stage t, the upstream supplier and
firm j have ended their negotiation by agreeing on price wj, which becomes known
to firm i. Then in such case we assume that we have reached a terminal node of the

7The explanation follows below.
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game tree where the price for firm i results from the Nash bargaining solution which
is just a justified part of the rules of the non-cooperative game. This idea belongs
to cooperative game theory. The reasons for choosing the Nash bargaining solution
will be discussed in Section 2.5.

As we use the cooperative game approach in our non-cooperative bargaining
model let us make some useful notations and definitions concerning the cooperative
bargaining game:

Definition 2.4.1. A bargaining solution is a rule µ that assigns a solution vector
µ(S, s0) ∈ S to every bargaining problem (S, s0) in the class γ.

As we have shown in the previous section for each pair w := (w1, w2) there exist
some particular quantities qi(w1, w2), i = 1, 2 which are suggested by the supplier
to downstream firms or vice versa the downstream firms want to buy from the
supplier. For simplicity let us denote the profit of each downstream firm i given in
equation (2.2.1) as πi(w) := πwi (q1, q2). The profit of the supplier is U ≡ U ◦ q with
U(w) := Uw(q1, q2) =

∑2
i=1wiqi(w)−Cs(q̂(w)), where q̂(w) is the total output that

the supplier produces for both downstream firms.

Definition 2.4.2. The bargaining game between the upstream supplier and firm i is
a pair (S, s0), where s0 ∈ S ⊂ <2

+ and S 6= ∅ is compact, convex, comprehensive and
closed. S = {(U, πi)|(U, πi) = (U(w), πi(w)), w := (w1, w2)}; s0 = (U b, πbi ), where
S is the set of possible utility allocations, s0 is the threat point, namely the outcome
of the event if the bargaining process breaks down.8

The symmetric Nash bargaining solution is determined by the maximization
problem maxs∈S(s1 − s0

1)(s2 − s0
2) subject to s1 ≥ U b, s2 ≥ πbi .

Hence, applying the definitions given above the symmetric Nash bargaining so-
lution is taken from the following bargaining problem for given wj:

max
wi

µi(w1, w2) =
[
U(w1, w2)− U b

] [
πi(w1, w2)− πbi

]
(2.4.3)

For the rest of this thesis we make the following additional assumptions that are
essential for our future analysis:

Assumption 2. U = U(·, ·) is strictly concave, U ′′ < 0.

Assumption 3. µi(w1, w2) is strictly concave in wi, for all wi ≥ 0, i = 1, 2.

Turning back to our model when the supplier and firm j agreed on price wj let
us denote the price for firm i as w

′
i(wj). So we assume that for any given fixed wj

the supplier and the downstream firm i agree on the price w
′
i(wj) which is, applying

equation (2.4.3), given below:

w
′

i(wj) = arg max
wi

[
U(w1, w2)− U b

] [
πi(w1, w2)− πbi

]
, (2.4.4)

where U b and πbi are the status quo profits (i.e. the profit obtained if one player

8More on the choice of s0 in Binmore, Rubinstein and Wolinsky (1986).
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decides not to bargain with the other player). In the literature U b and πb are
commonly interpreted as the outside option utility levels of bargaining units. An
outside option is often defined as the best alternative that a player can command
if he withdraws unilaterally from the bargaining process. If both downstream firms
take part in the bargaining then it is obvious that:

X :=
{

(w1, w2) ∈ R2
+ | U(w1, w2) ≥ U b, πi(w1, w2) ≥ πbi , i = 1, 2

}
w
′
i(·) should not be interpreted as the reaction function of firm i, because it does not

represent the best reply of firm i on the behavior of firm j. Instead, it represents the
outcome of our non-cooperative game when the particular terminal node of the game
tree is reached: wj has been already accepted and price w

′
i(wj) is an ”out of game”

part of the rules on the payoff function of the whole underlying non-cooperative
game.

To determine the slopes of both functions w
′
i(·), i = 1, 2 let us consider how the

price w
′
i(wj) which results from Nash solution depends on the given wj. As it is

shown in Appendix A.1 the functions w
′
i(·) and w

′
j(·) are increasing in the wholesale

price of the firms’ rival. On this stage it is important to notice that function w
′
1(·)

is increasing until the following inequality holds: w
′
1(w2)q∗1 + w2q

∗
2 < w̃qm.9 As we

have assumed earlier that functions w
′
i(·), i = 1, 2 are concave, to ensure that they

intersect only once we assume additionally that whenever they intersect w
′
1(·) is

steeper than w
′
2(·).10 Both functions are illustrated in Figure 2.5.

The analogue of the outside option in our model is the possibility for downstream
firms to integrate backwards. As we know in our model only firm 1 can do it. In
case of integration, it faces a fixed cost, which must be sunk for production to take
place and pays a unit wholesale price v, which is a marginal cost of self-supply.11

To simplify the following analysis without loss of generality let us assume that fixed
costs are zero.

Now let us rewrite the function (2.4.4) for each downstream firm considering the
existence of the backward integration option.

w
′

1(w2) = arg max
w1

U(w1, w2)
[
π1(w1, w2)− πIB1 (v, w2)

]
, (2.4.5)

where πIB1 (v, w2) is the profit of firm 1 at (v, w2) if it integrates backward. More
precisely it will be described in the next section. But it is obvious that it does not
influence the settled price w

′
1(w2).

w
′

2(w1) = arg max
w2

[
U(w1, w2)− U b

]
π2(w1, w2), (2.4.6)

Remark 1. In equation (2.4.5) U b = 0, because if supplier breaks down the negotia-
tion with firm 1, firm 1 will produce the input by itself. In such case firm 2 will still
buy from the supplier the same quantity (Cournot) for the same price w2 because

9More precisely it was explained in Section 2.4.1.
10See Tirole (1988), Chapter 5, p. 226; Friedman (1977), pp. 70-74, 168-172.
11According to Katz (1987), given the assumption that v > c, it is not socially efficient for any

downstream firm to integrate; integration will lead to higher industrywide costs of producing a
given level of total output.
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it will compete with firm 1 afterwards. Hence, there is no sense for the supplier to
refuse to deal with firm 1, because he will lose additional profit (from selling to firm
1) and will get nothing substituted from firm 2.

In equation (2.4.6) πb2 = 0 (firm 2 does not have the outside option); U b = w̃1q̃
m,

because the upstream supplier will decide not to bargain with firm 2 (to withdraw from
negotiations with it) only if he sells to firm 1 the quantity q̃m for some agreed unit
price w̃1, which was explained in Section 2.4.1.

w
1

w
2

w
2
' ( · )

w
1
' ( · )

Figure 2.5: Functions w
′
i(·) and w

′
j(·)

2.4.2.2 Payoffs if nobody withdraws

Now let us define the payoff vectors. In each vector described below on the first posi-
tion the profit of the supplier stays, then of downstream firms 1 and 2, respectively:12

P (w1, w2) = (U(w1, w2), π1(w1, w2), π2(w1, w2)) (2.4.7)

P1(w2) =
(
U(w

′

1(w2), w2), π1(w
′

1(w2), w2), π2(w
′

1(w2), w2)
)
, (2.4.8)

where w2 is a price that was negotiated between downstream firm 2 and the supplier
and w

′
1(w2) is the price on which the supplier and firm 1 agree (explanation in Section

2.4.2.1 (eq. 2.4.5)).

12Important feature of the intermediate good market: the profit of each downstream firm and
its demand for an input are functions both of the price that firm pays for the input and of the
price that the buyer’s product-market rival pays.
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2.4.2.3 Payoffs with backward integration

According to our basic assumption that all players are rational utility maximizers,
firm 1 decides whether to integrate during negotiations. As the supplier knows firm
1’s cost of self-production v he can influence the firm’s decision by suggesting some
particular price value.

Now let us define the payoff vector if w2 is accepted, but firm 1 chooses to with-
draw, namely to integrate backward.

Pw
1 (w2) =

(
U(0, w2), πIB1 (v, w2), π2(v, w2)

)
, (2.4.9)

where:
U(0, w2) = w2q

∗
2(v, w2)− Cs(q∗2(v, w2))

πIB1 (v, w2) = (p∗(v, w2)− v)q∗1(v, w2)
π2(v, w2) = (p∗(v, w2)− w2)q∗2(v, w2)

Firm 1 makes its integration decision by comparing its expected profit with in-
tegration and without it. Hence, firm 1 integrates if and only if:

πIB1 (v, w2)− π1(w1, w2) ≥ 0, (2.4.10)

where w1, w2 are the wholesale prices, offered by the upstream supplier in the
bargaining period in which firm 1 makes a decision. In the future analysis we
assume that firm 1 has not integrated backward yet.

Analogously, if price w1 was agreed upon, but firm 2 chooses to withdraw, then
there is the following payoff vector:

Pw
2 (w1) = (U(w1, 0), πm1 (w1), 0) (2.4.11)

As due to our assumption firm 2 does not have an option of backward integration,
it will not withdraw from negotiations with the supplier as long as its expected
profit isn’t negative. Therefore, the illustration in Figure 2.1 of the process when
the supplier makes an offer could be simplified as it is shown in Figure 2.6.

Pw(w1) = (U(w1, 0), πm1 (w1), 0) , (2.4.12)

with:
πm1 (w1) = (pm(w1) − w1)qm(w1), where qm(w1) is a monopoly output in the local
market; U(w1, 0) = w1q

m(w1)− Cs(qm(w1)).

Pw(w2) =
(
U(0, w2), πIB1 (v, w2), π2(v, w2)

)
, (2.4.13)

where:
U(0, w2) = w2q

∗
2(v, w2)− Cs(q∗2(v, w2));

πIB1 (v, w2) = (p∗(v, w2)− v)q∗1(v, w2);
π2(v, w2) = (p∗(v, w2)− w2)q∗2(v, w2).

19



S

  2
R A

1

R RW     WA A

 · 
 · 
 ·

 · 
 · 
 ·

 · 
 · 
 ·

 · 
 · 
 ·

 · 
 · 
 ·

 · 
 · 
 ·

Figure 2.6: The supplier makes a price offer (simplified illustration)

2.4.3 The bargaining procedure

In the previous section we have determined the aims and payoffs of all players. Using
these results let us now describe the bargaining procedure.

Remark 2. The whole following reasoning is based on the assumption of behavior
in subgame perfect equilibrium.

Let us denote the prices that the upstream supplier offers to both downstream
firms as ws1 and ws2. In Section 2.4.1 we have already discussed the dependence
between the offered prices and suggested to them output quantities. Hence, in the
initial period the supplier offers simultaneously (ws1, w

s
2). Both downstream firms

decide also simultaneously whether to accept or to reject this offer. If both prices
are accepted, the payoffs are represented by vector P (ws1, w

s
2). If, for example, wsj is

accepted, but wsi - not, then firm i and the supplier adjust the price w
′
i(w

s
j), with

given price wsj , the payoff vector in this case is Pi(w
s
j).

If both initial offers are rejected, then in the next bargaining period t+1, where t
is the number of the current period, both downstream firms will make a counteroffer
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to the supplier. The payoff vector in this case is determined by the vector δt+1P t+1
f .13

Let us denote the prices which both downstream firms simultaneously offer to
the supplier as wf1 and wf2 , respectively. The relation between these price offers and
the suggested quantities was also specified in Section 2.4.1. Receiving the offers from
downstream firms the supplier has the following choices:

1. he can accept both prices, the payoffs in this case are represented by vector
P (wf1 , w

f
2 );

2. he can accept price wfj and reject wfi , then the payoffs are represented by

vector Pi(w
f
j ), for j = 1, 2;

3. he can reject both prices, the payoffs in this case are represented by vector
δt+1P t+1

s ;

4. he can accept price wfi and withdraw from negotiations with firm j, the payoffs
in this case are denoted by vector Pw(wfi ), for j = 1, 2.

Considering these actions it is important to mention, that only the downstream firm
1 can presumably withdraw from negotiations, as we have already described earlier.
As for the downstream firm 2, if it withdraws from the negotiation process with the
supplier, it earns zero profit, therefore the action in which it continues to bargain
dominates the action to withdraw. The upstream supplier faces a similar situation:
we know from the analysis in Section 2.4.1 that the downstream firm 2 will offer such
price w2 for which it is ready to buy the Cournot quantity q∗2, because it knows that
firm 1 will enter the market in all cases, therefore if the supplier plays the action
(W,A) (when the downstream firms make a counteroffer), he refuses to sell to firm
1 at least the Cournot quantity q∗1, so he earns Pw(wf2 ), but if it plays the action
(R,A) it earns P1(wf2 ), which is larger than the payoff by the action (W,A). Hence,
the action (R,A) dominates the action (W,A). In subgame perfect equilibrium the
downstream firm 2 will never withdraw from the negotiations with the supplier and
the supplier will never withdraw from negotiations with the downstream firm 1.
He can withdraw from negotiations with firm 2 if firm 1 suggests some particular
purchase price w1 for the monopoly quantity qm.

Next let us consider more precisely the behavior of all players and how does
the non-cooperative bargaining process go on? Let us assume that the supplier has
already announced his prices and now both downstream firms must react on these
price offers.

2.4.3.1 Supplier offers. Determination of the downstream firms’ best
actions

The illustration of the considered situation is given in Figure 2.6. Assume that the
upstream supplier offers (ws1, w

s
2) in order to maximize his utility. Both downstream

firms must simultaneously decide whether to accept or to reject this offer. Moreover,
firm 1 has an option to withdraw from the negotiations and to produce the output
by itself. The reaction of both downstream firms on supplier’s offer is illustrated in

13See Section 2.4.2.1.
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Figure 2.7. As it has been already mentioned, we assume that if the supplier offers
the wholesale price ws1 > v, where v is the firm’s 1 price of the self-production, the
downstream firm 1 withdraws from the negotiation.
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Figure 2.7: Downstream firms’ reaction on supplier’s price offer

The payoff of each firm depends on the response (action) of its rival as it was
shown in the previous section. Let us find the optimal reactions of both downstream
firms depending on the behavior of their rival.

To make an optimal decision, each player must generally foresee how his opponent
will behave. The first and indisputable basis for such a conjecture is that one’s
opponent should not play dominated strategies. If an action always gives a lower
payoff to a player than another action, whatever the other player does, we may
assume that the player will not pick that action.14 Unfortunately, in many games
the elimination of dominated strategies does not go very far toward selecting a
unique ”reasonable” outcome (or limited set of them). Similarly, in Bertrand or
Cournot games of simultaneous choices of prices or quantities, the optimal action
for one firm depends on that of the other firm, which means that one already has a
lot of undominated strategies.15

First let us find the best reaction of firm 1 on the accepted price ws2. For simplicity
we omit the upper index t in the payoff vectors when we describe the current period.
If firm 1 accepts ws1, then according to equations (2.4.7) and (2.4.8), firm 1 will get

14Tirole (1988), p. 425.
15ibid., Chapter 5.
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the payoff shown in the payoff vector P (ws1, w
s
2), but if it rejects ws1 its payoff is

given in P (w
′
1(ws2), ws2). It is straightforward, that in order to make a decision firm 1

will compare both payoffs. π1(ws1, w
s
2) ≥ π1(w

′
1(ws2), ws2) if and only if ws1 ≤ w

′
1(ws2).

Thus, firm 1 accepts ws1 if ws1 ≤ w
′
1(ws2).

Analogously, the best reaction of firm 2 on the accepted ws1 is the price ws2 if
ws2 ≤ w

′
2(ws1). Hence, if ws1 ≤ w

′
1(ws2) and ws2 ≤ w

′
2(ws1), in equilibrium both firms

may choose the action (A,A).
Next assume that firm 2 rejects the price offer ws2. Then if firm 1 accepts ws1 it

receives π1(ws1, w
′

2(ws1)). If it rejects ws1 it receives πf1 (from the payoff vector P t+1
f ).

Since π1(ws1, w
′
2(ws1)) is a decreasing function in ws1, there exists such a unique w̃s1

that π1(w̃s1, w
′
2(w̃s1)) = πf1 . Hence, for all ws1 ≤ w̃s1 the best reaction of firm 1 is to

accept the price if firm 2 rejects ws2; and for all ws1 > w̃s1 the best reaction of firm 1
is to reject the offered price. Therefore, if ws1 ≤ w̃s1 and ws2 > w

′
2(ws1), then the best

action for both downstream firms in equilibrium is to choose (A,R).
Using similar argumentation if the offered prices are so that ws2 ≤ w̃s2, ws1 ≥

w
′

1(ws2) and ws1 < v, then in equilibrium both downstream firms choose (R,A). If
ws2 ≤ w̃s2, ws1 ≥ w

′

1(ws2) and ws1 ≥ v, then in equilibrium the best reaction is (W,A).
At ws1 ≥ w̃s1, ws2 ≥ w̃s2 and ws1 < v, in equilibrium both downstream firms may

choose (R,R); at ws1 ≥ w̃s1, ws2 ≥ w̃s2 and ws1 ≥ v, they choose (W,R) as the best
response.

Result 1. If the offered prices lie in region ABCD in equilibrium both downstream
firms may choose the action (A,A) as well as the action (R,R).

Summarizing the obtained results let us make the following definition:

ϕ :=
{

(ws1, w
s
2) | ws1 ≤ w

′

1(ws2), ws2 ≤ w
′

2(ws1)
}

Hence, for any supplier’s price offer (ws1, w
s
2) the equilibrium payoffs are given by the

following vectors:16

Ps(w1, w2) =



P (ws1, w
s
2), if ∀(ws1, ws2) ∈ ϕ (A,A)

P (ws1, w
′
2(ws1)), if ws1 ≤ w̃s1, w

s
2 > w

′
2(ws1) (A,R)

P (w
′
1(ws2), ws2), if ws2 ≤ w̃s2, w

s
1 ≥ w

′
1(ws2), ws1 < v (R,A)

Pw
1 (ws2), if ws2 ≤ w̃s2, w

s
1 > w

′
1(ws2), ws1 ≥ v (W,A)

Pw
1 (ŵ2), if ws1 ≥ w̃s1, w

s
2 ≥ w̃s2, w

s
1 ≥ v (W,R)

(2.4.14)
If both downstream firms choose action (R,R) to the supplier’s price offer (ws1, w

s
2)

(ws1 ≥ w̃s1, w
s
2 ≥ w̃s2, w

s
1 < v) then in the next bargaining period they make coun-

teroffers to the supplier and equilibrium payoffs will be determined by the payoff
vector P t+1

f (ẃ1, ẃ2). More precisely we shall describe this situation in the next
section.

16ŵ2 is the new negotiated price to which firm 2 and the supplier will come if firm 1 withdraws
from negotiations.
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2.4.3.2 Counteroffers by downstream firms. Determination of supplier’s
best actions

Assume that in the previous period both downstream firms rejected the offered
prices and now it is their turn to make counteroffers to the upstream supplier. In
this section let us find the supplier’s best reaction on the downstream firms’ price
offers. As we have already described the supplier’s response ”Withdraw” from the
negotiations is dominated by the response ”Reject”. Therefore we do not consider
it in this section.

Let us assume that both downstream firms offer the prices wf1 and wf2 , respec-
tively. Below we describe these prices more precisely. The supplier’s reaction on
any pair of (wf1 , w

f
2 ) is shown in Figure 2.8. In order to simplify the analysis, let

us first consider the case where at least one price offer is accepted.17 Then we shall
consider separately the response (R,R) illustrated in Figure 2.9.

Assumption 4. We assume that the downstream firm 1 offers to the upstream
supplier such price wf1 , that is strictly lower than its own price of self-production v.
Both Figures 2.8 and 2.9 display this case.
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Figure 2.8: Derivation of the supplier’s best response

17That means that we consider only the actions: (A,R), (R,A), (A,A).
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Analyzing the depicted strategies let us first assume that both downstream firms
offer such prices, that (wf1 , w

f
2 ) lies in Region I, say in some arbitrary point B. If

the supplier rejects wB1 and accepts wB2 it will lead in the next period to vector C,
if he accepts wB1 and rejects wB2 it will lead to vector D in the next period. So in C
the prices are (wC1 , w

C
2 ); in D they are (wD1 , w

D
2 ), respectively. The supplier’s profit

is increasing in the wholesale prices, so he chooses (wB1 , w
B
2 ). Hence, in the Region

I, the actions (A,R) and (R,A) are dominated by (A,A).
Next let us assume that the price vector lies in Region II, say in some arbitrary

point E, then if supplier rejects wE1 and accepts wE2 , that will lead to vector C
in the next period. If he accepts wE1 and rejects wE2 , that will lead to vector F .
Comparing the optimal prices in three vectors F,E,C, the best option for supplier
is C, because wC1 > wE1 = wF1 and wC2 > wF2 . Since C dominates E and F , action
(R,A) dominates (A,A) and (A,R).

Let us assume that the price vector lies in Region IV, say in some arbitrary point
G. Then accepting wG1 and rejecting wG2 will lead to the vector D in the next period.
Analogously, rejecting wG1 and accepting wG2 will lead to the vector H in the next
period. As wD1 > wH1 and wD2 > wH2 = wG2 , D dominates G, and G dominates H,
therefore action (A,R) dominates (A,A) and (R,A).

The next interesting case is if prices lie in Region III, let us say in some arbitrary
points above or below the 45◦-line I or L. Let us consider first point I. If the supplier
accepts wI1 and rejects wI2 in the next period prices will lie in J . Analogously, if the
supplier rejects wI1 and accepts wI2, it will lead to vector K in the next period.
Comparing them, as wK1 > wI1 = wJ1 and wJ2 > wI2 = wK2 , both J and K dominate
I. The next step is to compare J and K. In J prices are wJ1 and wJ2 , in K prices
are wK1 and wK2 . As wK1 > wJ2 and wK2 > wJ1 , the utility of supplier is larger if
prices lie in K than in J , and therefore K dominates J , that means that in the
region above the 45◦-line the action (R,A) dominates the action (A,R). Analogous
arguments are necessary to prove that below the 45◦-line, in the region where L lies,
the action (A,R) dominates (R,A). Along the 45◦-line the supplier is indifferent
between (A,R) and (R,A).

Result 2. We have found the supplier’s best responses to any possible price offers
(wf1 , w

f
2 ), assuming that at least one price will be accepted.

Now let us check when the supplier’s optimal response is (R,R). It is clear, that
the supplier’s response depends on the payoff in the next period, when he will make
a counteroffer.

If supplier chooses (R,A) his payoff according to equation (2.4.8) is:18

U(w
′

1(wf2 ), wf2 ) = w
′

1(wf2 )q∗1(w
′

1(wf2 ), wf2 ) + wf2q
∗
2(w

′

1(wf2 ), wf2 ) (2.4.15)

Û with Û(wf2 ) := U(w
′
1(wf2 ), wf2 ) is an increasing function in wf2 . That means, that

there exists some critical price w̃f2 , at which the payoff, given in equation (2.4.15),
is equal to the payoff which will appear in the next bargaining period, when the

18As the supplier will sell to both downstream firms we are speaking about Cournot quantities;
the relation between price offers and quantities was explained in Section 2.4.1.
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supplier makes counteroffers.19 Therefore it is obvious, that if wf2 < w̃f2 , then the
action (R,R) dominates; if wf2 ≥ w̃f2 , then the action (R,A) dominates.

Next let us compare (R,R) with (A,R). The action (A,R) gives the following
profit:

U(wf1 , w
′

2(wf1 )) = wf1q
∗
1(wf1 , w

′

2(wf1 )) + w
′

2(wf1 )q∗2(wf1 , w
′

2(wf1 )) (2.4.16)

Ũ with Ũ(wf1 ) := U(wf1 , w
′
2(wf1 )) is an increasing function in wf1 and therefore there

exists such price w̃f1 by which the payoff given in equation (2.4.16) is equal to the
supplier’s payoff given in vector P t+1

s . Hence, if wf1 < w̃f1 , then (R,R) dominates
(A,R); if wf1 ≥ w̃f1 , then the strategy (A,R) dominates.

The supplier’s actions are illustrated in Figure 2.9.
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Figure 2.9: The supplier’s best response (R,R)

Result 3. For each downstream firms’ price offer (wf1 , w
f
2 ) with wf1 < w̃f1 , wf2 < w̃f2

in equilibrium the supplier’s action (R,R) dominates all other actions.

To summarize the obtained results let us first make the following definition:

γ :=
{

(wf1 , w
f
2 ) | wf1 ≥ w

′

1(wf2 ), wf2 ≥ w
′

2(wf1 )
}

19This payoff vector is denoted as P t+1
s (w̌1, w̌2).
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For arbitrary counteroffers made by downstream firms the payoff vectors are shown
below:20

Pf (w1, w2) =


P (wf1 , w

f
2 ), if ∀(wf1 , w

f
2 ) ∈ γ (A,A)

P t+1
s (w̌1, w̌2), if wf1 < w̃f1 , w

f
2 < w̃f2 (R,R)

P (wf1 , w
′
2(wf1 )) or P (w

′
1(wf2 ), wf2 ) otherwise. (A,R) or (R,A)

(2.4.17)

Similarly with one of the previous sections, in which we have considered the subgame
where the supplier made the price offers, let us determine the optimal counteroffers
for both downstream firms if they know the supplier’s behavior.

In our model both downstream firms do not cooperate, therefore the choices of
the offered prices wfi , i = 1, 2 depend on the prices of the firm’s rival wfj . Therefore
we must determine the reaction of each downstream firm on the behavior of its rival.

Taking the actions of the supplier as given, the different choices of wfi for any
given wfj are shown in Figure 2.10.
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Figure 2.10: Determination of the downstream firms’ optimal price offers

• Let us assume that wf2 < w̃f2 , then firm 1 will choose price wf1 ≥ w̃f1 in order
not to end the negotiations by (R,R). But it is to be mentioned that firm 1
will choose the lowest possible value of wf1 , namely wf1 = w̃f1 , because its profit
is decreasing in price. So the best response of firm 1 if wf2 < w̃f2 is wf1 = w̃f1 .

20For simplicity the upper index t which denotes the current period was omitted.
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• Let us assume that wf2 = wx2 > w̃f2 . In this case if wf1 < wx2 , then both
prices will lie in region (R,A), so wf1 will be rejected and wx2 will be accepted.
If wf1 = wx2 then the prices lie in B and the supplier is indifferent between
strategies (A,R) and (R,A). But if firm 1 suggests the price a little bit larger
than wx2 , it will be better off than by price wf1 = wx2 . Applying the statement
at the beginning of the Section 2.3 about the existence of the smallest possible

unit in prices, for all given wf2 ∈
(
w̃f2 , w

∗
2

)
the best response for firm 1 is

wf1 = wf2 + 1 cent.21

• Let us assume that wf2 = w
′′
2 . If firm 1 offers wf1 < w

′
1(w

′′
2 ), then wf1 will

be rejected and w
′′
2 will be accepted (Region (R,A)). So firm 1 must offer

wf1 ≥ w
′
1(w

′′
2 ) in order to get it accepted.

Hence, we can state the following result.

Result 4. In equilibrium the counteroffer of both downstream firms (wf1 , w
f
2 ) given

the supplier’s reaction on the offered prices lies on the intersection of the graphs of
the functions w

′
1(·) and w

′
2(·) with wf1 = w∗1 and wf2 = w∗2.

2.4.3.3 Equilibrium

Due to the analysis made in the previous sections we can finally find equilibrium
wholesale prices.

Definition 2.4.3. A (subgame) perfect equilibrium (Selten 1965) is a set of strate-
gies for each player that in any subgame induces a Nash equilibrium.

Perfection requires that strategies be in equilibrium whatever the location (sub-
game) in the game tree, and not only along the equilibrium path.

The basic idea of perfect equilibrium is to select Nash equilibria that do not
involve noncredible threats, by (roughly) requiring that the players’ behavior be
optimal even in situations that are not reached on the equilibrium path.

In order to find a subgame perfect equilibrium in the wholesale prices let us de-
compose our analysis into several steps. First, let us summarize the results that we
obtained in the previous sections concerning the behavior of all players in a subgame
perfect equilibrium:

1. Let us start with the upstream supplier. According to our analysis made in
Section 2.4.3.2 in the equilibrium he will support all prices lying in Region I (see
Figure 2.8), such as (w1, w2) ∈ γ. The highest prices that both downstream
firms accept lie in point C (Figure 2.7). Hence, the supplier knowing the behav-
ior of both downstream firms will offer prices (w

′
1(w∗2), w

′
2(w∗1)) = (w∗1, w

∗
2) in

order to get them accepted. If downstream firms accept, then the equilibrium
payoff vector P (w∗1, w

∗
2) is realized.

21Assuming that the players use Euro as a currency so the smallest unit is 1 cent.
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2. Now let us consider the behavior of downstream firms. If the supplier offers
prices w

′
1(w∗2) and w

′
2(w∗1) there are two possible ways to act. As we have found

out, in the equilibrium in Region ABCD (see Figure 2.7) the downstream firms
may choose actions (A,A) and (R,R). If they choose (A,A) the bargaining
ends with the equilibrium payoff vector P (w∗1, w

∗
2), where w∗1 = w

′
1(w∗2) and

w∗2 = w
′
2(w∗1).

If the downstream firms choose the action (R,R), then in the next period they
will make a counteroffer to the supplier. The profit of each downstream firm is
a decreasing function in its wholesale price, so both downstream firms want to
offer the lowest possible price. But as they act non-cooperatively, the payoff
of each of them depends on the behavior of its rival. According to the analysis
which we have made in Section 2.4.3.2 (see Result 4) we have found out that
the best price offer for both downstream firms, if they know the behavior of the
supplier, are prices that lie on the intersection of the graphs of the functions
w
′
1(·) and w

′
2(·), namely in point C (Figure 2.7). Therefore, both downstream

firms will offer prices (w∗1, w
∗
2) to the supplier and he will accept them, so the

equilibrium payoff vector δP (w∗1, w
∗
2) will be realized.

Hence, it is obvious that neither another proposal nor any other reaction to a pro-
posal can constitute an advantageous unilateral deviation of any player. So (w∗1, w

∗
2)

is a subgame perfect equilibrium price vector. Moreover, as δ < 1 the supplier will
offer the equilibrium prices and they will be accepted by downstream firms already
in the initial period, and the equilibrium payoff vector P (w∗1, w

∗
2) will be realized.

Now it is to prove whether a subgame perfect equilibrium price vector that we have
found is unique and there are no other equilibrium price vectors in the considered
game.

As we know from our analysis the supplier will offer prices w1 ≥ w
′
1(w2) and

w2 ≥ w
′
2(w1). Now without loss of generality let us first assume, that he makes the

following offer (ŵ1, w
∗
2), with ŵ1 > w

′
1(w∗2) and w∗2 ≥ w

′
2(ŵ1) and both downstream

firms accept. For firm 1 such behavior will lead to the following profit π1(ŵ1, w
∗
2) <

π1(w∗1, w
∗
2). This cannot possibly be part of a Nash equilibrium, because firm 1 could

just reject an offer and ensure itself profit closer to π1(w∗1, w
∗
2), namely π1(w∗1, w

∗
2) >

π1(ŵ1, w
∗
2) (firm 2 will accept w∗2). Analogously, there will be also no equilibrium if

the supplier offers (w∗1, ŵ2) with ŵ2 > w
′
2(w∗1).

Second, let us assume that at the initial stage the supplier offers prices (w1, w2),
so that w1 > w

′
1(w2) and w2 > w

′
2(w1). If downstream firms accept, they will

obtain profits π1(w1, w2) < π1(w∗1, w
∗
2) and π2(w1, w2) < π2(w∗1, w

∗
2). These prices

(w1, w2) are also not equilibrium, because profit of each firm could be easily improved
by rejecting its offer. Hence, assume now that downstream firms reject an offer
w1 > w

′
1(w2) and w2 > w

′
2(w1). They will make a counteroffer in the next bargaining

period. As firms’ profit functions are decreasing in their own wholesale prices, both
firms are better off by offering the lowest possible prices. Now assume that they
suggest prices w1 < w

′
1(w2) and w2 < w

′
2(w1). If supplier accepts one of them or

both, then analogously with previous cases, it is obvious, that there will be also no
equilibrium, because the supplier can increase his profit by rejecting one or both
offers.
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Now assume that the supplier rejects both w1 < w
′
1(w2) and w2 < w

′
2(w1). Then

in the next bargaining period he will make the price offer. The situation in which all
players are better off by rejecting the offers of each other may repeat. Such situation
is illustrated in Figure 2.3, where we are in the branch of the game tree when all
players reject. Without loss of generality let us assume that permanent rejection
of each other offers brings us to some stage t when both downstream firms have
already received an offer from the supplier and must decide. After some particular
time of regular rejections one or both downstream firms may doubt that they will
finally get an offer wsi ≤ w

′
i(wj), i = 1, 2. The player who plays the same game

repeatedly may develop a reputation for certain kinds of play. That means that if
the player always plays in the same way, his opponents will come to expect him to
play that way in the future and will adjust their own play accordingly.22 Therefore,
in order not to end with nothing one particular firm i or both firms will accept
an offer, which will end the bargaining process and will lead to the payoff vectors
δtP (wsi , w

′
j(w

s
i )), i = 1, 2, i 6= j or δtP (ws1, w

s
2), respectively. It is obvious that the

agreed prices are not the equilibrium prices and the obtained payoff vectors are also
not the equilibrium vectors.

On the other hand, as all players are interested in reaching agreement, in each
bargaining period they will make more steps to each other in order to find a compro-
mise. That means that with each even period, when it is supplier’s turn to make an
offer, he will suggest smaller prices to both firms than he has done in the previous
period; with each odd period both downstream firms will offer higher prices to the
supplier, comparing with the previous period. Hence, assume that at some bargain-
ing period m the upstream supplier offers (w∗1, w

∗
2). As it has been proved earlier

both downstream firms will accept this offer, which will lead to the equilibrium payoff
vector δmP (w∗1, w

∗
2). As δ < 1 it is straightforward that δmP (w∗1, w

∗
2) < P (w∗1, w

∗
2).

That means, that despite the suggested equilibrium prices, δmP (w∗1, w
∗
2) does not

result as a subgame perfect equilibrium payoff vector and all players will get smaller
payoff than they could get if they made offer and accepted these prices in the initial
period.

Summarizing the obtained results we can state the following proposition:

Proposition 2.4.1. There exists a unique subgame perfect equilibrium wholesale
price vector (w∗1, w

∗
2), which lies on the intersection of the graphs of the the functions

w
′
1(·) and w

′
2(·) with w∗1 = w

′
1(w∗2) and w∗2 = w

′
2(w∗1). Moreover this price vector is

offered and accepted in the first round and leads to the equilibrium payoff vector
P (w∗1, w

∗
2).

2.5 Concluding remarks

2.5.1 On use of the cooperative game approach

In his paper Nash (1950) introduces the bargaining problem as follows: ”A two-
person bargaining situation involves two individuals who have the opportunity to

22Fudenberg and Tirole (1991), p. 369.
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collaborate for mutual benefit in more than one way”.23 Applying such definition
almost all human interactions can be seen as bargaining.

According to Binmore, Osborne and Rubinstein (1992) the target of a non-
cooperative theory of bargaining is to find theoretical predictions of what agreement,
if any, will be reached by the bargainers. One hopes thereby to explain the manner in
which the bargaining outcome depends on the parameters of the bargaining problem
and to shed light on the meaning of some of the verbal concepts that are used
when bargaining is discussed in ordinary language. However, the theory has only
peripheral relevance to such questions as: What is a just agreement? How would a
reasonable arbiter settle a dispute? What is the socially optimal deal?

In cooperative bargaining theory the bargaining procedure is left unmodeled.
Cooperative theory therefore has to operate from a poorer informational base and
hence its fundamental assumptions are necessarily abstract in character. As a con-
sequence, cooperative solution concepts are often difficult to evaluate. Sometimes
they may have more than one viable interpretation, and this can lead to confusion
if distinct interpretations are not clearly separated.

Nash (1953) notices that both cooperative and non-cooperative approaches to
the bargaining problem are complementary, namely each of them helps to justify
and clarify the other.24

As Binmore (2007) observes: ”Cooperative game theory sometimes provides sim-
ple characterizations of what agreement rational players will reach, but we need
non-cooperative game theory to understand why”.

Binmore, Osborne and Rubinstein (1992) who introduce the brief and clear dis-
cussion about the cooperative and non-cooperative game theoretic shared goals from
different approaches do not see cooperative and non-cooperative theories as rivals.
They notice that cooperative theory may be seen as ”too general”; but equally there
is a sense in which non-cooperative theory may be seen as ”too special”.

We have modeled and analyzed our bargaining problem as a non-cooperative
game, but we have used some tools which belong to cooperative game theory.
The idea of implementing the cooperative game approach into the model of non-
cooperative game is not new. It is widely used in the applied literature for labor
negotiations. But, unfortunately, in most papers the formal model of the bargaining
process is not presented.

DeMenil (1971) uses the Nash cooperative bargaining solution to model the bar-
gaining between the union and firm. Despite provided empirical support for Nash
bargaining solution, the modeling is axiomatic and cannot be generalized or ex-
tended.

O’Brien (2002) examines the welfare effects of third degree price discrimination
by an intermediate good monopolist selling to downstream firms with bargaining
power. He applies a modeling approach that according to a terminology used by
Binmore and Dasgupta (1987) belongs to the Nash program. This seeks to justify
axiomatic solutions of cooperative games like the Nash bargaining solution from an
underlying non-cooperative game. He explicitly models negotiations and motivates
the role of outside options, disagreement payoffs and bargaining weights from an

23See p. 155.
24See p. 129.
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underlying non-cooperative bargaining game. Nevertheless, he also does not describe
the formal model and the whole bargaining process.

When two players are involved into negotiation process the relationship between
cooperative and non-cooperative approaches to bargaining are well understood and
described in the literature. But by the existence of more than two players the
implementation of the cooperative game approach in underlying non-cooperative
games are far less clear. The generalization of the Nash bargaining solution to
n players is straightforward, but the extension of its non-cooperative justification
seems to be much more difficult problem. For example in Chae and Yang (1994)
and Krishna and Serrano (1996) a uniqueness of subgame perfect equilibrium and
convergence to the Nash bargaining solution come at the cost of allowing partial
agreements, rather than requiring unanimous consent to a comprehensive proposal.

There are many cooperative solution concepts that may be implemented in the
models of non-cooperative games such as Raiffa, Nash bargaining, Kalai-Smorodinsky,
Perles-Maschler, etc. But which of them are appropriate for the model, and how
should they be applied? The answers to these questions are given in the next section.

2.5.2 Critisism

According to Binmore, Osborne and Rubinstein (1992) the ultimate aim of what
is now called the ”Nash program”25 is not only to classify the various institutional
frameworks within which negotiation takes place but also to provide a suitable ”bar-
gaining solution” for each class. As a test of the suitability of a particular solution
concept for a given type of institutional framework, Nash proposed that attempts
be made to reduce the available negotiation ploys within that framework to move
within a formal bargaining game. If the rules of the bargaining game adequately
capture the salient features of the relevant bargaining institutions, then a ”bargain-
ing solution” proposed for use in the presence of these institutions should appear as
an equilibrium outcome of the bargaining game.

In the presented thesis we are concerned with the Nash bargaining solution,
which is the leading solution concept for bargaining situations.26 Nash (1950, 1953)
provided a definition as the maximizer of the ”Nash product” of players’ utility
levels and an axiomatic characterization.27

The definition and some useful notations to the bargaining solution were shown
in Section 2.4.2.1. However, the question of when Nash bargaining solution is ap-
propriate for a two-player bargaining environment involving alternating offers is still
open. Binmore, Osborne and Rubinstein (1992) consider the model in which there
is a probability p of breakdown after any rejection.28 They obtain that when a
unique subgame-perfect equilibrium exists for each p sufficiently close to one, the
bargaining problem (S, s0), in which S is the set of available utility pairs at time 0
and s0 is the breakdown utility pair, has a unique Nash bargaining solution. This

25See Nash (1953).
26See Nash (1950).
27To our knowledge this is the first introduced bargaining solution.
28Compare with Moulin (1982), Binmore, Rubinstein and Wolinsky (1986) and McLennan

(1988).
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is the limiting value of the subgame-perfect equilibrium payoff pair as p → 0+.29

They prove the similar result in the time-based alternating-offers model when the
length τ of a bargaining period approaches 0.

In discussion whether other bargaining solutions from cooperative game theory
can be implemented the important example is Moulin’s (1984) contribution to the
Nash program, namely the implementation of the Kalai-Smorodinsky solution for
two-person bargaining games in subgame perfect equilibrium. His model begins with
an auction to determine who makes the first proposal. The players simultaneously
announce probabilities p1 and p2. If p1 ≥ p2, then player 1 begins by proposing an
outcome a. If player 2 rejects a, then he makes a counterproposal, b. If player 1
rejects b, then the status quo q results. If player 1 accepts b, then the outcome is a
lottery that yields b with probability p1 and q with probability 1 − p1. (If p2 > p1

then it is player 2 who proposes an outcome, and player 1 who responds.) Binmore,
Osborne and Rubinstein (1992) criticize his work noting that it is not clear to what
extent such an ”auctioning of fractions of a dictatorship” qualifies as bargaining in
the sense that this is normally understood.

Haake (1998) provides a setup for implementing bargaining solutions and con-
struct a strategic mechanism for n players that implements the Kalai-Smorodinsky
bargaining solution in dominant strategies. He shows the uniqueness of dominant
strategy equilibria in each of the induced games. From the obtained mechanism he
derives an extensive game form so that the final outcome in the unique subgame-
perfect equilibrium coincides with the Kalai-Smorodinsky bargaining solution.

Binmore, Rubinstein and Wolinsky (1986) show how some of the data of an
economic situation that involves bargaining can be used to apply Nash’s bargaining
solution to the problem. The main idea is to use the insights of the strategic approach
to bargaining in making the modeling judgments involved in the selection of the
utility representations and the disagreement point for the application of the Nash’s
solution.

The axiomatic bargaining theory of Nash presumes that only status quo utilities
and the shape of the utility possibilities set are relevant to the bargaining outcome.30

Chen and Maskin (1999) study a class of economic problems for which bargaining
solutions may depend on more than just utility information. For example a solution
to the fifty-fifty split of a single good between two bargainers. They show that the
requirements of Pareto efficiency, weak symmetry, and technological monotonicity
(i.e., bargainers should gain from technological improvement) combine to character-
ize welfare egalitarianism.

Hendon and Tranass (1991) analyze the bargaining model in a market with one
seller and two buyers, which differ only in their reservation price. Differently to
our model the seller’s output may be sold to one and only one of two buyers, h
and l. The smaller reservation price is assumed to be strictly larger than halfway
between the reservation prices of the seller and the high buyer, thus making it more
profitable for the seller to sell at the low buyer’s reservation price than to sell to
the high buyer at the two-person bargaining price. They show that no subgame
perfect equilibrium exists for stationary strategies and demonstrate the existence of

29More in Binmore and Dasgupta (1987).
30Welfaristic point of view.
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inefficient equilibria in which the low buyer receives the good with large probability,
even as friction becomes negligible. Investigating the relationship between the use
of Nash and sequential bargaining they notice that the Nash bargaining seems to
be applicable only when the sequential approach yields a unique stationary strategy
subgame perfect equilibrium.

Gerber and Upmann (2006) provide a general analysis of different solution con-
cepts for the case of a labor market model where negotiations take place between a
labor union and an employers’ federation. They show that economic policy implica-
tions may be very sensitive to the choice of the bargaining solution. They investigate
the robustness of the comparative static effects of the bargaining outcome with re-
spect to the different solutions. The obtained comparative static results vary in a
significant way across the different solution concepts.31 Their analysis shows that
it is not sufficient to investigate the bargaining outcome in the utility space if one
is interested in economic applications. Important information may be lost by con-
sidering the utility space only, and remarkable phenomena, such as, for example,
seemingly surprising labor market effects, may be veiled and thus overlooked. De-
spite they make an analysis on the sample of the labor market their results carry
over to other economic environments where the equilibrium outcome is determined
through multilateral negotiations.

Despite the variety of solution concepts in bargaining theory which may be used
to model the outcome of negotiations on economic environments, the Nash bar-
gaining solution is now the most prominent solution concept for bargaining games.
Nevertheless whether in a specific economic environment a bargaining outcome is
adequately described by the Nash, the Kalai-Smorodinsky, or any other bargaining
solution is an open empirical question. As long as this question has not been set-
tled, any policy conclusion derived from a particular bargaining model requires a
robustness check with respect to the applied solution concept.32

In our model due to the linear Pareto frontier the Nash solution coincides with
all other standard solutions such as Kalai-Smorodinsky, Raiffa, etc. Hence, for our
model the Nash solution does not need to be justified.

31In the model they show that higher reservation utility (or wage) leads to a lower employment
level and a higher wage for the Nash solution, while it has an ambiguous employment effect but a
positive wage effect for the Kalai-Smorodinsky solution.

32More in Gerber and Upmann (2006).
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Chapter 3

Extension

3.1 Insertion of buyer power indicator

In the previous sections we have found the unique subgame perfect equilibrium
wholesale price vector (w∗1, w

∗
2) with w∗1 = w

′
1(w∗2) and w∗2 = w

′
2(w∗1). We have made

our analysis using the assumption, that if at some point of the game the upstream
supplier and firm j have ended their negotiation by agreeing on price wj then we
have reached a terminal node of the game tree, where the price for the second player
(firm i) is determined using the symmetric Nash solution as a justified part of the
rules of our underlying non-cooperative game. Such approach to model negotiations
is consistent with what Binmore and Dasgupta (1987) call the ”Nash program”,
which seeks to motivate cooperative approaches to the bargaining problem like the
Nash bargaining solution from an underlying non-cooperative game.1

In this section we involve asymmetric Nash solution which is justified as reflecting
the different ”bargaining power” of the players. According to Binmore (1998) ”the
bargaining power is determined by the strategic advantages conferred on players by
the circumstances under which they bargain”.2 Our previous analysis was based on
the assumption that firm 1 had the option of integrating backward into the supply
of the input and firm 2 did not. This is the crucial source of differences in ”strategic
advantages” which we justify in the model. It is straightforward that due to the
possibility of self-production firm 1 is less risk-averse than firm 2. Hence, the inter-
pretation of the bargaining power in our model is the risk-aversion of downstream
firms in negotiations with supplier.

For the future analysis let us introduce α as an indicator of the bargaining power
of a downstream firm, α ∈ [0, 1]. We denote the bargaining weight of each down-
stream firm i as αi, so that the supplier’s bargaining weight is 1− αi, respectively.
According to the assumption on the backward integration possibility it is obviously
meaningful to assume that α1 > α2.3

1See also the Introduction in Binmore, Osborne and Rubinstein’s (1992) for a discussion about
the cooperative and non-cooperative game theoretic shared goals from different approaches.

2See p. 78.
3Also intuitively, the more costly it is for a firm to reject the supplier’s offer, the less bargaining

power the firm has.
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3.2 Equilibrium price vector

Turning back to our basic model introduced in the previous chapter when the sup-
plier and firm j agreed on price wj, but price wi was not accepted, we assume that
we have reached the terminal node of the game tree where the price for firm i is
asymmetric Nash bargaining solution which is just a justified part of the rules of the
non-cooperative game. Hence, the price for firm i is the asymmetric Nash solution
to the following problem:4

max
wi

µi(w1, w2) =
[
U(wi, wj)− U b

]1−αi
[
πi(wi, wj)− πbi

]αi
(3.2.1)

Rewriting this problem for both downstream firms we obtain:

ŵ
′

1(w2) = arg max
w1

U(w1, w2)1−α1
[
π1(w1, w2)− πIB1 (v, w2)

]α1
, (3.2.2)

ŵ
′

2(w1) = arg max
w2

[
U(w1, w2)− U b

]1−α2
π2(w1, w2)α2 (3.2.3)

The interpretation of the functions ŵ
′
i(·) is analogous with that of the functions

w
′
i(·), i = 1, 2 given in the previous chapter.5 They are also increasing in the

wholesale price of the firms’ rival. They are also concave and intersect only once.
Both functions are illustrated in Figure 3.1.

w
1

w
2

ŵ
2
' ( · )

ŵ
1
' ( · )

Figure 3.1: Functions ŵ
′
i(·) and ŵ

′
j(·)

4Compare with function (2.4.4).
5See p. 17.

36



Now let us consider how the price ŵ
′
i(wj), which results from the asymmetric

Nash bargaining solution, on which the upstream supplier and the downstream firm
i agree if wj is accepted and wi - not, depends on the changes in the bargaining
weight of firm i. The first order condition to the problem (3.2.1) after simplification
is:

(1− αi)
∂U(wi, wj)

∂wi

[
πi(wi, wj)− πbi

]
+ αi

∂πi(wi, wj)

∂wi

[
U(wi, wj)− U b

]
= 0 (3.2.4)

Next let us rewrite it in the way shown below

−
αi
∂πi(wi, wj)

∂wi
πi(wi, wj)− πbi

=
(1− αi)

∂U(wi, wj)

∂wi
U(wi, wj)− U b

(3.2.5)

From equation (3.2.5), using the assumption on the concavity of firms’ profit
functions, we can state the following result:

Result 5. An increase in firm i’s bargaining weight αi or in its disagreement profit
πbi , or a decrease in the supplier’s disagreement profit U b, when all other factors stay
equal, requires an increase in firm i’s net profit

[
πi(wi, wj)− πbi

]
for equation (3.2.5)

to hold, that results in a decrease in firm i’s wholesale price for any given wj.

Consequently we may state the following proposition about the influence of the
bargaining power on the asymmetric Nash bargaining solution presented in this part
of the model.

Proposition 3.2.1. Assume that the upstream supplier and downstream firm j
agreed on the wholesale price wj, but the price wi was not accepted. After that the
supplier and downstream firm i agree on the price which results from the asymmetric
Nash bargaining solution to the problem given in equation (3.2.1). Then:

i) the price ŵ
′
i(wj) which results from asymmetric Nash bargaining solution is

strictly decreasing in the firm i′s bargaining weight αi;

ii) the difference in both prices, or in other words, the discount for firm i, (wj −
ŵ
′
i(wj)) is strictly increasing in αi.

Proof. i) First let us differentiate the equation (3.2.4) with respect to αi getting:

∂ŵ
′
i(wj)

∂αi
=

∂2µi
∂w2

i

(
∂U(w1, w2)

∂wi

[
πi(w1, w2)− πbi

]
− ∂πi(w1, w2)

∂wi

[
U(w1, w2)− U b

])
∂2µ1

∂w2
1

∂2µ2

∂w2
2

− ∂2µ1

∂w1∂w2

∂2µ2

∂w2∂w1

(3.2.6)

Given that
∂U(w1, w2)

∂wi
> 0,

∂πi(w1, w2)

∂wi
< 0, U(w1, w2) ≥ U b, πi(w1, w2) ≥

πbi , µi is strictly concave in wi, we obtain that the numerator of the fraction
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is negative. Hence, the sign of the fraction depends only on the sign of the
denominator.

Now let us differentiate the equation (3.2.4) with respect to wi and wj. Hence
we obtain:

∂2µi
∂wi∂wj

= −R′i(wj)
∂2µi
∂w2

i

,

where R′i(wj) is the reaction function of firm i on the accepted price wj.

Now we can rewrite the denominator of equation (3.2.6) in the following way:

∂2µ1

∂w2
1

∂2µ2

∂w2
2

[1−R′1(w2)R′2(w1)] > 0 (3.2.7)

As the bargaining equilibrium is stable due to the assumptions at the beginning
of the model description, [1−R′1(w2)R′2(w1)] ≥ 0. Hence, the denominator is
positive and therefore the whole fraction is negative.

∂ŵ
′
i(wj)/∂αi < 0, therefore the wholesale price for each downstream firm i is

decreasing in its bargaining weight αi.

ii) To prove whether the discount of firm i is increasing in its bargaining weight
we need to analyze the equation (3.2.8) which is shown below.

∂(wj − ŵ
′
i(wj))

∂αi
=

−
(
∂2µi
∂w2

i

+
∂2µi

∂wi∂wj

)(
∂U(w1, w2)

∂wi

[
πi(w1, w2)− πbi

]
− ∂πi(w1, w2)

∂wi

[
U(w1, w2)− U b

])
∂2µ1

∂w2
1

∂2µ2

∂w2
2

− ∂2µ1

∂w1∂w2

∂2µ2

∂w2∂w1

(3.2.8)
Analogously to the previous case (i) we obtain that ∂(wj − ŵ

′
i(wj))/∂αi > 0,

which means that the discount for each downstream firm i is increasing in its bar-
gaining weight.

Omitting the similar analysis of the behavior of all players which was made in
the previous chapter and which can be applied here without any restrictions we may
summarize the following result:

Proposition 3.2.2. There exists a unique subgame perfect equilibrium wholesale
price vector (ŵ∗1, ŵ

∗
2), which lies on the intersection of the graphs of the the func-

tions ŵ
′
1(·) and ŵ

′
2(·) with ŵ∗1 = ŵ

′
1(ŵ∗2) and ŵ∗2 = ŵ

′
2(ŵ∗1) shown in Figure 3.2.

Moreover this price vector is offered and accepted in the first round and leads to the
equilibrium payoff vector P (ŵ∗1, ŵ

∗
2).

Proof. See proof of Proposition 2.4.1.
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Figure 3.2: Illustration of equilibrium prices

Similarly with the basic model let us graphically illustrate the results of Propo-
sition 3.2.1, namely how the change in the bargaining weight of at least one buyer
will change the equilibrium price vector.

Assume that the point A′ in Figure 3.3 represents the bargaining equilibrium
when downstream firms have symmetric bargaining power α1 = α2. If firm 1 in-
creases its bargaining power, e.g. by rejecting the costs of self-production, etc. then
it will become even more risk-seeking in negotiations with the supplier as it was
before, comparing with the downstream firm 2. Graphically the increase in the
bargaining power of firm 1 will shift the function ŵ

′
1(·) to the left, from ŵ

′
1(·) to

ŵ
′′
1 (·) as it is illustrated in Figure 3.3. This changes the point of intersection of both

functions from point A′ to the point A′′. Hence, the equilibrium wholesale price of
firm 1 falls unambiguously.

The difference in the equilibrium wholesale prices is interpreted as the ability
of firm 1 (which has greater bargaining weight) to negotiate discounts. There are
the following reasons for that, such as the ability to integrate backward; higher
disagreement payoff than by firm 2 and therefore the higher bargaining weight.
Summarizing the results of propositions 3.2.1 and 3.2.2 if αi > αj then ŵ∗i < ŵ∗j . In
other words, firm 1 will receive a discount if, other factors equal, it has a greater
bargaining weight than firm 2, namely α1 > α2. So we obtain that α1 > α2 is a
sufficient condition for firm 1 to receive a discount.

In our model we have considered the indicator α as exogenously given. But it is
important to determine how to choose the weights αi and αj to reflect some possible
asymmetries and how to measure the bargaining power.
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Figure 3.3: Equilibrium prices when α1 changes

3.3 Measure of the bargaining weight

Binmore et al. (1986) consider two models of alternating offers. The models differ
in the source of the incentive of the bargaining parties to reach agreement: the
bargainers’ time preference and the risk of breakdown of negotiation.

In our bargaining model with a risk of breakdown of negotiations, the time it-
self is not valuable, but delays are costly because there is an endogenous risk that
negotiations might break down after each period in which the firms fail to reach an
agreement. Binmore et al. (1986) demonstrate how the power weights α and 1− α
can be chosen to reflect some possible asymmetries in the procedure and in the par-
ties’ beliefs.6 Hence, assume that ∆i is the length of the interval between i’s reaction
to j’s proposal and the next point at which i proposes to j and the procedure is sym-
metric, such as ∆1 = ∆2 = ∆. But parties differ in their beliefs in the likelihood of a
breakdown.7 Thus, in each bargaining period of length ∆ that separates two consec-
utive bargaining stages there is a positive probability p = p(∆) = 1− e−λ∆ that the
process will break down, in which case the outcome will be b ∈ X, where X is the set

6More in Binmore et al. (1986), pp. 186-187.
7It is assumed that, conditional on the bargaining process’ reaching time t and no agreement’s

being reached before time t+h, the probability that the process will break down before time t+h
is λh+ o(h). That is, the time of the breakdown is exponentially distributed with parameter λ.
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of possible agreements, X = {(x1, x2)|x1, x2 ≥ 0, x1, x2 ≤ 1}. Let pi(∆) = 1− e−λi∆

be the probability assigned by party i to the event that the process will break
down during a single bargaining period. As ∆ approaches zero, the unique per-
fect equilibrium of the model with asymmetric beliefs approaches the solution for
maxs∈S(s1 − s0

1)α(s2 − s0
2)1−α, where αi = λj/(λi + λj) and (S, s0) is the static rep-

resentation of the exogenous-risk model. Thus, the higher party i’s estimate of the
probability of breakdown is, the lower its bargaining power is.

In the time preference model, delays are also costly because firms discount the
future at positive rates. Assuming that the procedure is asymmetric in the sense
that ∆1 6= ∆2 and computing the unique perfect equilibrium for each of the strategic
models, and letting ∆1 and ∆2 approach zero while keeping their ratio constant, it
is easy to verify that the limiting equilibrium outcomes of both models coincide with
the respective asymmetric solutions with poor α1 = ∆2/(∆1 + ∆2). The larger ∆2

is relative to ∆1, the larger α1 will be, and hence the ”stronger” is party 1. Similar
asymmetric solutions arise if the proposer at each time t∆ is chosen with different
probabilities for two players.

Both motivations of avoiding the costs of bargaining delays as well as avoiding
the delays because of the risk of breaking down may play a role in negotiations over
intermediate good prices, since firms generally discount the future at positive rates
and there is often some risk that a profitable opportunity will be exploited by third
party.

Muthoo (1999) considers an alternating-offer bargaining model in which both
types of delay costs (discounting and the risk of a breakdown) are present. Suppose
the one-period discount rates of firm i and the upstream supplier are ri and ru,
respectively, and there is an exogenous probability pi that negotiations between
the supplier and firm i will break down after any period that one of them rejects
the other’s offer. His results imply that firm i’s bargaining weight in this case is
αi = (ri + pi)/(2pi + ri + ru).

8

3.4 Market share

In Section 3.2, involving the indicator of the bargaining power, we have found the
subgame perfect equilibrium wholesale price vector. We have assumed that the
source of the higher bargaining power of downstream firm 1 comparing with firm
2 is the existence of backward integration option. We have also shown that if the
outside option payoff of firm 1 increases (e.g. firm 1 will find some technology to
produce the input for some unit price ṽ < v), then its wholesale price will be smaller
than by firm 2.

On this stage we finally come to the main aim of this chapter, namely we check
how the changes in the buying abilities of one player influence the firms’ market
shares in the local market, or in other words we want to prove the existence of the
Spiral Effect.

8Let Ūi and π̄i be the profits earned by the supplier and firm i, respectively, in each period
during their negotiations; let bui and bi be their profits (per period) in the event negotiations
break down. When both motivations for reaching agreement are present, the results imply that
the disagreement profits are U(bui) = (Ūi + pibu)/(ru + pi) and πi(b) = (π̄i + pibi)/(ri + pi).
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Usually firms use different instruments in competing for market shares, such as
high quality, extra services, low prices, etc. Anyway the cost of production is a very
important factor that influences market penetration. Let us denote the market share
of each firm i as si, where si ≡ qi(·)/Q(·), with Q(·) =

∑2
i=1 qi(·), then examining

the influence of the bargaining power on the market share we state the following
proposition:

Proposition 3.4.1. Suppose there are two downstream firms with linear demands
in the downstream market, which are Cournot competitors. Both firms exercise the
bargaining power in negotiations with the supplier. Their bargaining weights are
denoted by α1 and α2, respectively. Then the increase in the bargaining power of a
particular firm leads to the increase of its market share.

Proof. In Cournot duopoly, under the assumptions on linearity of the demand and
cost functions, the firm’s equilibrium output is a decreasing function of its own
marginal costs and increasing in the marginal costs of its rival. Consequently, the
market share of each firm is a decreasing function in the own wholesale price, namely
∂si/∂wi < 0, for i = 1, 2. The market share si is a composite function of variables wi
and wj, which on their turn depend on the bargaining weights αi and αj. Applying
the Chain Rule and using the results of Proposition 3.2.1 that ∂wi/∂αi < 0 we
obtain that the market share of each downstream firm is increasing in its bargaining

weight,
∂si
∂αi

> 0, i = 1, 2.

Let us further consider the general case. Therefore we write the FOC for the
existence of Cournot equilibrium using elasticity of demand, denoted as ε.9

P (Q)

[
1− 1

ε

qi
Q

]
= wi, (3.4.1)

where ε = −P (Q)

Q

∂Q

∂P (Q)
and transform it into:

qi
Q

=

[
1− wi

P (Q)

]
ε (3.4.2)

Summarizing (3.4.2) over 2 firms gives us:

1 = 2ε− ε
∑
wi

P (Q)
, i = 1, 2 (3.4.3)

Using the definition of the Herfindahl index, which is equal to the sum of squares of
the market shares or could be expressed in terms of output quantities

H =

∑
q2
i

Q2
(3.4.4)

9P (Q) + P ′(Q)qi = C ′
i(qi).
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and plugging equations (3.4.2) - (3.4.3) into equation (3.4.4) we obtain:

H =

∑
q2
i

Q2
= −2ε2 + 2ε+ (1− 2ε)2

∑
w2
i

(
∑
wi)2

(3.4.5)

Cowling and Waterson (1976) suggest the profit-revenue ratio
Π

Rev
, where Π

and Rev are the profit and the revenue function, respectively, of the whole branch.
In case of Cournot oligopoly this profit-revenue ratio is positively related to the
Herfindahl index of concentration and inversely related to the elasticity of demand

Π

Rev
=
H

ε
, so one obtains:

Π

Rev
= −2ε+ 2 +

(1− 2ε)2
∑
w2
i

ε(
∑
wi)2

(3.4.6)

In equation (3.4.6) the concentration ratio is expressed in terms of demand and

cost conditions as represented by ε and

∑
w2
i

(
∑
wi)2

. Equations (3.4.5) and (3.4.6) show

that both H and Π/Rev will be larger, the greater are cost or efficiency differential

between firms as measured by

∑
w2
i

(
∑
wi)2

.10

Concluding the above analysis we come to the following result:

Result 6. Any asymmetry in the bargaining weights leads to an asymmetry in pro-
duction costs (in our model to an asymmetry in wholesale prices) between firms and
results in increasing concentration ratio as well as in increasing profitability of the
most efficient firm.

Demsetz (1973) also indicated the positive correlation between concentration
ratio and profitability. The reason of such correlation could be explained in the
following way: the asymmetry in firm’s costs brings the asymmetry in outputs, so
the concentration ratio of the most efficient firm will increase. At the same time the
asymmetry brings the additional income for firms with smaller costs that in turn
leads to the increase in the average profitability of the branch.

3.5 Conclusion

Chapters 2 and 3 of the presented work is based on the paper of Katz (1987). We
have extended his model of quantity competition by involving the bargaining over the
wholesale prices between both competitors. We have considered the basic bargain-
ing model and have proved that there exists a unique subgame perfect equilibrium
wholesale price vector, which is offered and accepted in the first round and which
leads to the equilibrium payoff vector. Then we have extended the obtained model

10In the context of our analysis the fraction
∑
w2

i

(
∑
wi)2

may be called Herfindahl index of costs.

43



assuming that both downstream firms exercise the bargaining power in negotiations
with the upstream supplier. We have shown that the asymmetry in the bargaining
weights of both downstream firms leads to the asymmetry in their wholesale prices
and results in increasing concentration ratio and in increasing profitability of the
most efficient firm.

The aim of such analysis is to find the reasons for which the particular firms
receive discounts. One of such reasons is the possibility of backward integration.
We have shown that the possibility of backward integration that arises in the inter-
mediate good markets can have powerful effects on the equilibrium outcome.

The next reason for the existence of the discounts, presented in our model, is an
exercising of the bargaining power. Proposition 3.2.1 shows that even if an explicit
threat to backward integration is not credible, firm 1 may also receive a discount if
it has greater bargaining power.

According to the definition of the Spiral Effect, if, due to his bargaining power,
one buyer has better procurement conditions than other buyers, he can use them
to strengthen his market position in the sales market. A strengthened position in
the sales market can in turn improve his procurement situation, e.g. as he is in
a position to negotiate additional quantity discounts. In support of this opinion
Proposition 3.4.1 shows that the increase in the asymmetry between the wholesale
prices leads to increase of the market share of the most efficient firm.

As the implications of bargaining for antitrust policy are not well understood,
these results may play a useful role for government regulation of a discriminatory
pricing. However, bargaining is prevalent in intermediate good markets, where a
large share of the antitrust enforcement takes place in developed countries.
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Chapter 4

Asymmetric bargaining power in
capacity-constrained industry

4.1 Introduction

4.1.1 Motivation

In the previous chapters we have presented a non-cooperative bargaining process
between the supplier and two downstream firms where the results from two-person
cooperative axiomatic bargaining games were used to define the payoffs of some of
the terminal nodes of our extensive game. The upstream supplier had bargained with
the downstream firms over the wholesale prices denoted as w for some particular
output quantities q(w) which downstream firms then offered in the local market.

In the previous analysis we have assumed that entering the local market both
downstream firms were engaged into Cournot competition. With the aim to make
the analysis complete it seems to be interesting to investigate the behavior of down-
stream firms under the Bertrand competition. In order to describe the model it is
important to consider the main differences in both kinds of competition, which will
influence the future results.

4.1.2 Preliminaries

In Cournot competition producers make their output decisions independently and
simultaneously; after that they bring their production to the market. The market
price is then set at such level that demand equals the total quantity produced by
all firms. In Bertrand competition producers simultaneously and independently set
prices. If all firms charge the same price, consumers randomly select among them.
If the prices are different, demand is allocated to the low-price producers, who then
produce up to the demand they encounter. Any unsatisfied demand goes to the
second lowest price producers, and so on. The main difference in these competition
models is the price determination, in Cournot it is made by an auctioneer and in
Bertrand - by price ”competition”.

Bertrand competition can be modeled as a normal form game.

45



Definition 4.1.1. Let (P, π) be a game with n ≥ 2 players, where Pi is the strategy
set for player i, Pi = [0,∞), P = P1 × P2 · · · × Pn is the set of strategy profiles and
π : P → <+ : p 7→ π(p) = (π1(p), · · · , πn(p)) is the payoff function. When each
player i ∈ 1, · · · , n chooses strategy pi resulting in strategy profile p = (p1, · · · , pn)
then player i obtains payoff πi(p). Let p−i be a strategy profile of all players except
for player i. Under the assumption of profit maximization, the payoff to each firm i
is:

πi(pi, p−i) = piDi(pi, p−i)− Ci(Di(pi, p−i)),

where Di(pi, p−i) represents the total demand for firm i’s product at prices (pi, p−i),
and Ci(Di(pi, p−i)) is firm i’s total minimal cost of producing the output Di(pi, p−i).
A Nash equilibrium of this game is sometimes called Bertrand equilibrium.

The Bertrand model of price competition in which all firms have constant returns
to scale technologies with the same cost, c > 0, per unit produced, leads to the
unique Nash equilibrium in which all firms set their prices equal to marginal costs,
p∗i = c,∀i = 1, · · · , n. As these prices always equal marginal costs all firms earn zero
profit. Many economists have interpreted this result as implying that a market with
two identical firms is perfectly competitive or, if costs are similar, approximately
competitive. Such situation in which two firms reach Nash equilibrium where both
firms charge a price equal to marginal cost is called Bertrand paradox. It is called
paradox because it is hard to believe that in industries with few firms, they never
succeed in manipulating the market price to make profits. If both firms set the
same price, they share the market in some manner. However, if one of them has an
absolute cost advantage over its rival that he exploits for setting a lower price, it
captures the entire market.

On this stage let us consider the price competition first when both firms have
symmetric production costs and then asymmetric.

4.1.2.1 Symmetric production costs

In the ”classic” model of Bertrand competition, each of the firms produces an iden-
tical product at a constant unit cost of c, that is, Ci(qi) = cqi. Since their products
are perfect substitutes, firms effectively compete for the total demand, D(p), that a
monopolist serving the entire market would obtain by pricing at p. The firm setting
the lowest price gets all of this demand; in the event of a tie, the firms charging the
lowest price share total demand equally. Total demand is sufficiently well-behaved to
ensure that the corresponding monopoly profit function, Π(p) ≡ pD(p)− C(D(p)),
is not only continuous, but (a) has a unique maximizer, the monopoly price pm;
(b) satisfies Π(p) < Π(c) = 0 < Π(p̂) < Π(pm) for p < c < p̂ < pm. Despite the
continuity of Π(·), each firm faces a discontinuous profit function Πi with

Πi(pi, pj) =

{
(pi − c)D(pi), if pi < pj, for all i 6= j

0, otherwise
(4.1.1)
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4.1.2.2 Asymmetric production costs

Considering the asymmetric duopoly case, where firm 1 has constant unit cost c1

with c1 < c2, the results of Bertrand competition that firms price at marginal
costs and that they do not make profits do not hold any more for the following
reasons: i) if both firms charge price p1 = p2 = p = c2, then firm 1 could charge
an ε below c2 to make sure it has the whole market and ii) that firm 1 makes a
profit of (c2 − c1)D(c2), and firm 2 makes no profit as long as c2 ≤ pm(c1), where
pm(c1) maximizes (p− c1)D(p). Thus firm 1 charges above marginal cost and makes
a positive profit. But it is a strained conclusion. If c2 is very close to c1, then
firm 1 makes little profit, and firm 2 makes no profit at all. Typically, oligopoly
firms earn positive profits by charging prices above marginal cost. The Bertrand
paradox is rare in practice, because among other possible reasons two firms rarely
have identical costs. Bertrand paradox also foresees that one producer could satisfy
the whole demand if he has the cost advantage over its rival. Edgeworth (1897)
found this assumption to be unrealistic and he solved the Bertrand paradox by
introducing capacity constraints, by which firms cannot sell more than they are
capable to produce.

A variant of Bertrand competition, known as ”Bertrand-Edgeworth competi-
tion”, allows any firm to ration the demand that it faces at given prices by only
providing its optimal or competitive supply at its price. Rationing may stem from
a physical capacity constraint, q̃i, that prevents firm i from producing more than
q̃i units (as in Edgeworth’s original formulation), or more generally, from a firm’s
strategic incentive to refuse to fulfill the quantity demanded of all consumers at a
given price. Under Bertrand-Edgeworth competition one must therefore specify how
demand is rationed when a firm’s quantity demanded at given prices exceeds the
amount of product it produces.1

4.1.3 Theoretical framework

At this stage let us provide some basic theory that will be useful for the future
analysis. Let us start first with a simple case, namely a symmetric duopoly with
homogeneous market and two identical firms 1 and 2, which compete in prices.
Each firm i, i ∈ [1, 2], has a capacity q̃i, so firm i’s output must satisfy qi ≤ q̃i. The
marginal cost of unit production (once the capacity is installed) is wi up to q̃i and
∞ after q̃i. For simplicity we assume an affine linear demand, P (Q) = 1 − Q (or
D(p) = 1− p), with 1 > w.

According to the Bertrand competition model, in equilibrium both firms will sell
the goods for price pb1 = pb2 = w if they both are able to satisfy the whole demand
D(w). Next consider the case when for both firms the following inequality holds
q̃i < D(w). It is straightforward that by this assumption pb1 = pb2 = w will not
hold anymore in equilibrium. If one of both firms slightly raises its price, it will
not immediately lose its whole demand. Because of the constrained capacities its
rival could cover only the part of the demand by price w. In this case the firm
with the higher price will still have positive residual demand and still could have

1More precisely explained in Baye and Kovenock (2009).
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positive profit. The Bertrand-Paradox that both firms make no profit is not valid if
production is constrained.

Now let us consider two cases, namely when the prices of both firms differ and
then when they are identical:

1. Without loss of generality let us assume that p1 < p2. Then consumers first
try to buy from firm 1, when its supply q1 is exhausted, consumers turn to firm
2. On this stage it is important to note that we consider identical consumers,
by which ”income effect” (salary, etc.) does not influence their preferences.
Then the aggregate demand at price p2 depends on the way the constrained
supply q̃1 is allocated among the consumers. As firm 1 can produce only q̃1,
then the demand functions are of the following forms:

D1(p1, p2) = min [D(p1), q̃1] (4.1.2)

D2(p1, p2) =

{
0, if D(p1) ≤ q̃1

max [0, D(p2)− q̃1] , if D(p1) > q̃1

(4.1.3)

The first equation of (4.1.3) says that if the capacity of firm 1 is enough to
cover the demand D(p1), no consumer will buy from firm 2 at price p2. In the
second equation, namely when D(p1) > q̃1, firm 1 could cover only the part
of the whole demand for price p1. Consumers should then be rationed. It is
natural to assume that the rationing scheme is chosen by the low-price firm
1. However, this is not enough to determine what scheme is chosen, since 1’s
profit is independent of the scheme used.2 Given that this is so, let us make
the following assumption:

Assumption 5. The low-cost firm (in our case firm 1) chooses efficient ra-
tioning, the scheme which minimizes the profit of the higher-cost firm (firm
2).3

With such rationing, each of the identical consumers is allowed to purchase
the same fraction of q̃1, instead of buying as much as he wants. For identical
consumers it is socially efficient, because each of them will receive the same
quantity of output and there will be no exchange between them.

Under the assumption about efficient rationing and if D2(p1, p2) > q̃1 > 0
consumers are able to buy some additional quantity of good from firm 2 for
price p2 > p1. So firm 2 sells some quantity q2 for price:

p2 = P (q2 + q̃1) = 1− (q2 + q̃1) (4.1.4)

From equation (4.1.4) it follows that q2 = 1− p2 − q̃1 = D(p2)− q̃1. As firm’s
2 capacity is q̃2 its sale will be equal to:

D2(p1, p2) = max [0,min [D(p2)− q̃1, q̃1]] , if p2 ≥ p1 and D(p1) > q̃1 (4.1.5)

2Only firm’s 2 profit is affected.
3This assumption appears to be consistent with the competitive nature of the model.
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In case of efficient rationing equation (4.1.5) shows the residual demand that
the high-priced firm obtains if the rivals production capacities are constrained.

2. Now let us consider the second case, namely when p1 = p2 = p. Demand in
such case is allocated in proportion to capacities. If firms charge the same
price, there should be an assumption about the distribution between con-
sumers. Even if prices of both firms are equal, their costs could be different.
Therefore let us consider these two cases separately:

• If production costs of both firms are equal w1 = w2 they both face the
following demand:

Di(p1, p2) = min

(
q̃i,
D(pi)

2
+ max

(
0,
D(pi)

2
− q̃j

))
= min

(
q̃i,max

(
D(pi)

2
, D(pi)− q̃j

))
, i = 1, 2; i 6= j.

(4.1.6)

• At asymmetric production costs, assuming that w1 < w2, the firms face
the following demand:{

D1(p1, p2) = min [D(p), q̃1]

D2(p1, p2) = max [0, D(p)− q̃1]
(4.1.7)

We assume that in case of a tie in prices, the low cost firm sells its capacity
first.4

Analyzing the cases when firms set equal and unequal prices we have specified in
equations (4.1.2) - (4.1.7) the resulting demand functions for both firms. Hence it
is now possible to define the profit functions for each firm i = 1, 2, which are shown
below:

Πi(p1, p2) = (pi − wi)Di(p1, p2) (4.1.8)

The profit-maximizing prices of each firm i = 1, 2 are given by:

p∗i = arg max
p

Πi(p1, p2), i = 1, 2 (4.1.9)

If the conditions (4.1.10) are satisfied, then (p∗1, p
∗
2) is a Bertrand equilibrium.{

Π1(p∗1, p
∗
2) ≥ Π1(p1, p

∗
2), ∀p1

Π2(p∗1, p
∗
2) ≥ Π2(p∗1, p2), ∀p2

(4.1.10)

It is straightforward that the price equilibrium depends on the producers’ capacities.

4Analogously in Deneckere and Kovenock (1996). They show that equilibrium profits are unaf-
fected by the tie breaking rule, and that equilibrium distributions are altered only in the classical
Bertrand region when the low cost firm does not have a drastic cost advantage. In order to break
ties when w1 = w2, they arbitrarily let firm 1 sell its capacity first.
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Continuing to follow Bester (2004) the most interesting case is if both producers
have relative small capacities, such as:

q̃i ≤
1− 2wi + wj

3
= q̃i

C (4.1.11)

Inequality (4.1.11) means that the capacity of each firm is not larger than the
output that the respective firm would suggest by the quantity (Cournot) compe-
tition. Beckmann (1965) obtains that for small capacities the reduced-form profit
function has the exact Cournot form in the case of proportional rationing; Levitan
and Shubik (1972) extend this result for the case of efficient rationing. They also
provide that pure-strategy equilibrium does not exist for larger capacities, unless
each firm has enough capacities to supply the whole demand at the competitive
price. The equilibrium is thus in mixed strategies, and it is computed in closed form
by Beckmann (1965) for proportional rationing and by Levitan and Shubik (1972)
for efficient rationing in the special case of symmetric capacities.

The important result is also provided by Kreps and Scheinkman (1983), who
characterize the pure-strategy and mixed-strategy equilibrium for efficient rationing
for asymmetric capacities. They consider a two-stage game in which both firms
simultaneously choose capacities q̃i and then, knowing each other’s capacity, they
simultaneously choose prices pi, i = 1, 2. Their paper shows that if the demand
function is concave and if there is an efficient rationing rule then the outcome,
namely capacity choices and market price of two-stage game is the same as that of
one-stage Cournot game.

The most important results of the paper of Kreps and Scheinkman (1983) are
summarized below:

1. The profit function has exact Cournot reduced form. The capacity-constrained
price game yields reduced-form profit functions that are identical to Cournot profit
functions, in which quantities are to be interpreted as capacities.

2. Cournot outcome in two-stage game. Equilibrium of two-stage (capacity and
then the price) game coincides with the Cournot equilibrium, in which quantities
are to be interpreted as capacities.

The first result implies the second. These results rest on very strong assump-
tions, such as efficient-rationing rule, absence of intertemporal price competition and
product differentiation. Following Tirole (1988) these features provide some foun-
dations for the Cournot model, in which firms choose quantities and an auctioneer
then chooses the price so as to clear the market, as long as quantities are identified
with capacities. Thus, Bertrand and Cournot models should not be seen as two
rival models giving contradictory predictions of the outcome of competition in a
given market. (After all, firms almost always compete in prices). Rather, they are
meant to depict markets with different cost structures. Bertrand price competition
among even a few firms yields competitive, socially optimal outcome. However it is
softened when the firms face sharply rising marginal costs, or when they compete
repeatedly. The Bertrand model may be better approximation for industries with
fairly flat marginal costs; the Cournot model may be better for those with sharply
rising marginal costs. The quantity competition can more generally be seen as a
competition in choices of scale, where a firm’s choice of scale determines its cost
function and thus the conditions of price competition.
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Despite a common defense of the Cournot model which was based on the Kreps
and Scheinkman’s (1983) argument that simultaneous quantity choice followed by
simultaneous price-setting can yield a Cournot outcome, the paper of Davidson and
Deneckere (1986) shows that this result is sensitive to the choice of the rationing
rule.

4.2 Capacity-constrained price games

4.2.1 Basic concepts and notations

In the previous chapter we have developed the model in which both downstream
firms compete for the same input which they buy from the upstream supplier. We
have also shown that the purchasing input cost of one firm depends on the purchasing
strategy of other firm. The important feature is that each firm can overbid its rival
and foreclose access to the input supply, or it can make this access more expensive.

In capacity-constrained games that we are going to present in this section, inputs
are identified with capacities and each firm can restrict its competitor’s capacity by
bidding input supplies up.5

Our forthcoming research bases on the model which was developed and analyzed
in Chapter 2. The events in the industry take place in the following stages: first,
the supplier bargains simultaneously with each downstream firm over the wholesale
prices for some particular quantities. These quantities are identified with firms’
capacities and we denote them as q̃1 and q̃2, respectively. After capacities are pro-
duced, both downstream firms bring them to the market and engage in Bertrand-like
price competition: they simultaneously and independently name prices and demand
is allocated in Bertrand fashion, with the assumption that one cannot satisfy more
demand than the capacity allows.

It is straightforward that the equilibrium outcome (profit) depends on the choice
of capacities by both downstream firms. If capacities of both firms are equal to
Cournot quantities it is easy to find the equilibrium in price, which will be the
Cournot price.

In the context of our analysis the paper of Kreps and Scheinkman (1983) is
of great importance. They show that given capacities for two firms, equilibrium
behavior in the second Bertrand stage will not always lead to a price that exhausts
capacity, but when those given capacities correspond to the Cournot output levels,
in the second stage each firm names the Cournot price. And for the entire game,
fixing capacities at the Cournot output levels is the unique equilibrium outcome.

The exploitation of the results of Kreps and Scheinkman for our model is not
straightforward, because they based their analysis on the assumptions that two firms
had equal capacity costs and no production costs.

5Stahl (1985) assumes that the input-supply industry is competitive, he shows that the outcome
of the two-stage game in which in the first stage firms bid for inputs (capacities) and in the second
stage they choose prices, is competitive. As in Bertrand equilibrium, even two firms producing
the final good cannot prevent the price from falling to the level at which the consumers’ marginal
willingness to pay is equal to the marginal cost of supplying the final good.
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In this chapter we base our research on the model which was introduced in
Chapter 2. The difference, however, is that the quantities that both downstream
firms buy from the upstream supplier are now considered as firms’ capacities and we
denote them as q̃1(w1, w2) and q̃2(w1, w2), respectively. We continue by describing
the results of Kreps and Scheinkman more precisely and extend them to the cases
of asymmetric capacity costs and asymmetric production costs, which are very im-
portant for our whole analysis. Finally, basing on the obtained results we suggest
what prices both downstream firms should name in order to reach the equilibrium
in profits.

4.2.2 Price competition with capacity costs

4.2.2.1 Case of symmetric capacity costs according to Kreps
and Scheinkman (1983)

Kreps and Scheinkman (1983) considered the following two-stage game: capacities
are set in the first stage by two producers, who produce a perfectly substitutable
final product. Production takes place at zero cost, subject to capacity constraints.
Capacity level q̃i means that up to q̃i units can be produced at zero cost. Both
firms have identical production functions. They transform one unit of the input
into one unit of the output at no additional costs. In the second stage both firms
bring these quantities to the market, where demand is determined by Bertrand-like
price competition: they simultaneously and independently name prices pi from the
interval [0, P (0)]. The inverse market demand and market demand are denoted by
P and D := P−1, respectively. Both firms face only the costs for capacity installing,
denoted by b(q̃i), b(q̃i) ≥ 0, i = 1, 2.

The quantities sold by both firms at prices p1 and p2, respectively are denoted in
equations (4.1.2) and (4.1.3) for the case p1 6= p2 and in equation (4.1.6) for p1 = p2.
The net profits of both firms are defined in equation (4.2.1):

πi = piqi − b(q̃i), i = 1, 2 (4.2.1)

On this stage let us provide some additional assumptions that Kreps and Scheinkman
made for their analysis:

Assumption 6. There is an efficient rationing rule. Customers buy first from the
cheapest supplier, and income effects are absent.

Assumption 7. Function P (·) is strictly positive on some bounded interval (0, Q),
on which it is twice-continuously differentiable, strictly decreasing and concave. For
q̃ ≥ Q, P (q̃) = 0.6

Assumption 8. The cost to install capacity q̃ is b(q̃), where b : <+ → <+ is twice
continuously differentiable and convex on <+, and satisfies 0 < b′(0) < P (0), and
b(0) = 0. Without loss of generality the marginal cost of production is assumed to
be zero.7

6Assumption 1, p. 328.
7Assumption 2, p. 328.
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Assume that both firms install the capacities q̃1 and q̃2, respectively. Using
the terminology of Kreps and Scheinkman, beginning from the point where (q̃1, q̃2)
becomes common knowledge there is a proper subgame, namely the ”capacity-
constrained subgame” with capacities q̃1 and q̃2. It is not obvious whether such
capacity-constrained subgame has an equilibrium, as payoffs are discontinuous in
actions.8

The basic fact that Kreps and Scheinkman establish is that for each pair of
(q̃1, q̃2), the associated subgame has unique equilibrium revenues and they give for-
mulas for these revenues. They fix a pair of capacities (q̃1, q̃2) for the capacity-
constrained subgame and, consider the existence of a pure-strategy equilibrium in
such subgame, show, that an equilibrium exists if and only if the capacities are not
too high.9 The equilibria in this region are such that both firms charge the prices
at which demand is equal to aggregate capacity. Thus, both firms basically dump
their quantities in the market, in a manner analogous to Cournot behavior.

Kreps and Scheinkman also characterize the mixed-strategy equilibrium when
capacities are high.10 The profit of a firm with the highest capacity is equal to the
Stackelberg follower profit.

Further Kreps and Scheinkman analyze the prior choices of capacities. They
show that the Cournot quantities lead to price equilibrium in the pure-strategy
region, and that if one firm chooses its Cournot capacity the other firm also is best
off choosing its Cournot capacity. They also consider the equilibrium for the entire
game and prove, that there is a unique equilibrium outcome, namely the Cournot
outcome with p1 = p2 = P (q̃1 + q̃2).

As the results of Kreps and Scheinkman are based on the assumption that both
firms have symmetric capacity costs and zero production costs, it is not clear whether
these results hold with asymmetry in capacity costs or if firms face production costs.
Next we consider these two cases.

4.2.2.2 Case of asymmetric capacity costs

To analyze the case of asymmetric capacity costs let us use the same model and the
same assumptions as in the previous section, which are analogous to the model of
Kreps and Scheinkman. We also assume that the capacities are costly, but differently
from Kreps and Scheinkman, allow them to be asymmetric, so that bi(q̃i) is the cost
of firm i of installing the capacity level q̃i. Assumption 8 holds for both bi, i = 1, 2.
Let us make the following additional assumptions on demand:

Assumption 9. There exists some price p0 > 0, such as:{
D(p) > 0, if p < p0

D(p) = 0, if p ≥ p0
(4.2.2)

8For subgames where q̃1 = q̃2, the existence of a subgame equilibrium is established by Levitan
and Shubik (1972) in cases where demand is linear and marginal costs are constant. Also for the
case of linear demand and constant marginal costs, Dasgupta and Maskin (1986) establish the
existence of subgame equilibria for all pairs of q̃1 and q̃2, and their methodology applies to all cases
considered here.

9They should belong to some region just above the origin in the capacity space.
10Lemma 6, p. 332.
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Assumption 10. D(·) is continuous and strictly decreasing on the interval [0, p0)
and twice continuously differentiable on (0, p0). Furthermore, p 7→ pD(p) is strictly
concave on [0, p0).

Analogously to Kreps and Scheinkman let us show the capacity space and divide
it into three regions which are of interest in terms of a subgame equilibrium. The
results are illustrated in Figure 4.1, where Ri(·) are the corresponding Cournot best-
response functions, i = 1, 2; i 6= j and q̃∗ is equilibrium quantity of each player in
the Cournot game with zero costs.
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Figure 4.1: Capacity regions for the price subgame with zero costs

Definition 4.2.1. i) Let Region I = {(q̃1, q̃2) ∈ <2
+ : 0 ≤ q̃1 ≤ R1(q̃2),

0 ≤ q̃2 ≤ R2(q̃1)};

ii) Let Region IIA =
{

(q̃1, q̃2) ∈ <2
+, (q̃1, q̃2) /∈ III : q̃1 > R1(q̃2), q̃1 ≥ q̃2

}
;

Let Region IIB =
{

(q̃1, q̃2) ∈ <2
+, (q̃1, q̃2) /∈ III : q̃2 > R2(q̃1), q̃1 ≤ q̃2

}
;

iii) Let Region III =
{

(q̃1, q̃2) ∈ <2
+, q̃1 ≥ D(0), q̃2 ≥ D(0)

}
.

Region I: It is the pure-strategy region, where both capacities lie below the
best-response functions of firm’s rival. As proved by Kreps and Scheinkman, in the
equilibrium both firms name price p1 = p2 = P (q̃1 + q̃2).
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Region II A and II B: These are the mixed-strategy regions.
In Region III the subgame equilibrium is a Bertrand equilibrium with price

equals to marginal production cost for both firms, which in the considered case is
equal to zero.11

For the future analysis let us denote the expected revenue of firm i as r(q̃i):

r(q̃i) = Ri(q̃j)P (Ri(q̃j) + q̃j) (4.2.3)

In order to derive equilibrium profits for both firms we use some results of Kreps
and Scheinkman, provided by them in Lemmas 5 and 6:12

Lemma 5 of Kreps and Scheinkman
Suppose that either p1 > p2, or that p1 = p2 and p2 is not named with positive
probability. Then:

• (a) p1 = P (R(q̃2) + q̃2) and the equilibrium revenue of firm 1 is r(q̃2);

• (b) q̃1 > R(q̃2);

• (c) p
1

= p
2
, and neither is named with positive probability;

• (d) q̃1 ≥ q̃2;

• (e) The equilibrium revenue of firm 2 is uniquely determined by (q̃1, q̃2) and is
at least (q̃2/q̃1)r(q̃2) and at most r(q̃2).

Lemma 6 of Kreps and Scheinkman
If q̃1 ≥ q̃2 and q̃1 > R(q̃2), there is a (mixed strategy) equilibrium for the subgame in
which all the conditions and conclusions of Lemma 5 hold. Moreover, this equilib-
rium has the following properties. Each firm names prices according to continuous
and strictly increasing distribution functions over an (coincident) interval, except
that firm 1 names the uppermost price with positive probability whenever q̃1 > q̃2.
And if we let Ψi(p) be the probability distribution function for the strategy of firm i,
then Ψ1(p) ≤ Ψ2(p): firm 1’s strategy stochastically dominates the strategy of firm
2, with strict inequality if q̃1 > q̃2.

Using the results provided in the above Lemmas, in Theorem 4.2.1 we derive the
expected equilibrium profits of both firms depending on the regions the capacities
are lying in (illustrated in Figure 4.1), but for the case of asymmetric capacity costs.
The most interesting case is when both capacities lie in the mixed-strategy Region
II.13

11If mini q̃i ≥ D(0) (Region III), then as in the usual Bertrand game without capacity constraints,
p

i
= pi = 0, where pi is the supremum of the support of the prices named by firm i and p

i
is the

infimum of the support. And if mini q̃i = 0, there will be a monopoly case. Thus in future analysis
we consider the case where 0 < mini q̃i < D(0).

12pp. 331, 332.
13The detailed explanation of Theorem 4.2.1 is given in the Appendix A.2.
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Theorem 4.2.1. i) If both capacities lie in the Region I, then:

π∗i (q̃1, q̃2) = q̃iP (q̃1 + q̃2)− bi(q̃i), i = 1, 2 (4.2.4)

ii) • If both capacities lie in the Region II A, then:{
π∗1(q̃1, q̃2) = R1(q̃2)P (R1(q̃2) + q̃2)− b1(q̃1) = r(q̃2)− b1(q̃1)

π∗2(q̃1, q̃2) = pq̃2 − b2(q̃2),
(4.2.5)

where p is the smallest solution of p =
r(q̃2)

min
[
q̃1, D(p)

] .

• If both capacities lie in the Region II B, then:{
π∗1(q̃1, q̃2) = pq̃1 − b1(q̃1)

π∗2(q̃1, q̃2) = R2(q̃1)P (R2(q̃1) + q̃1)− b2(q̃2) = r(q̃1)− b2(q̃2),
(4.2.6)

where p is the smallest solution of p =
r(q̃1)

min
[
q̃2, D(p)

] .

iii) If capacities lie in Region III, then:

π∗1(q̃1, q̃2) = π∗2(q̃1, q̃2) = 0 (4.2.7)

Our Assumptions 7 and 8 on the demand and cost functions guarantee that the
related Cournot game has a unique equilibrium.

The aim of this section is to check if the results of Kreps and Scheinkman will
hold if firms face asymmetric capacity costs. For their results to hold, firms must
choose Cournot quantities in Region I and market price should be such that demand
is equal to aggregate capacities.

Therefore let us next assume that q̃1
∗ and q̃2

∗ are Cournot equilibrium capacities,
with capacity costs b1 and b2 by the respective firm. Further it is to prove that if
there is a unique subgame perfect equilibrium in this game, then the capacities are
equal to Cournot equilibrium quantities and lie in Region I.

Kreps and Scheinkman have found the unique Nash equilibrium in the price
competition subgame. In Theorem 4.2.1 we establish the equilibrium profits of both
firms which are the functions of the firms’ capacities. Hence, applying this theorem
it is important to consider the capacity choice of both firms.

1. Let us assume, that both firms choose capacities q̃1, q̃2 ∈ Region I, then ac-
cording to Theorem 4.2.1 (i), the equilibrium profit of firm i is: π∗i (q̃1, q̃2) =
q̃iP (q̃1 + q̃2)− bi(q̃i), i = 1, 2.

For the future analysis we make the following additional assumptions:

Assumption 11. Profit functions π∗i are concave in q̃i, i = 1, 2.
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Assumption 12. We denote Ri(q̃j|bi) = Rbi(q̃j) as the Cournot best-response
of player i given the capacity cost bi. It is straightforward, that Ri(q̃j) ≥ Rbi(q̃j)
for ∀q̃j as illustrated in Figure 4.2.
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Figure 4.2: Capacity regions for the price subgame with asymmetric capacity costs

If the profit is concave in capacity and both capacities belong to Region I,
then using Assumption 12 firm i’s profit, given q̃j, is increasing when capacity
q̃i gets closer to the Rbi(q̃j).

Hence, if (q̃1, q̃2) is an equilibrium, then the following equalities should hold:{
q̃1

!
= q̃1

∗

q̃2
!

= q̃2
∗

(4.2.8)

If equations (4.2.8) do not hold, then at least one of both firms can choose
other capacity inside of Region I and increase its profit.

Next let us check whether q̃1
∗ and q̃2

∗ are the unique equilibrium quantities
of the considered subgame. According to Figure 4.1, we consider two cases:
q̃i
∗ ≤ q̃∗ and q̃i

∗ > q̃∗, ∀i = 1, 2.
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In the first case if q̃1
∗ ≤ q̃∗ and q̃2

∗ ≤ q̃∗ it is straightforward that these Cournot
capacities (q̃1

∗, q̃2
∗) belong to an equilibrium in the pure-strategy Region I. If

one firm chooses its Cournot capacity, then the other firm is also best off
choosing its Cournot capacity.

Let us consider another case. Without loss of generality we assume that q̃1
∗ >

q̃∗, as we consider both capacities lying in Region I (shown in Figure 4.1) it is
obvious that q̃2

∗ < q̃∗. If q̃1
∗ > q̃∗ firm 2 has an incentive to change its capacity,

then q̃2 /∈ Region IIB, but q̃2 ∈ Region IIA is possible. If firm 2 chooses
a quantity that belongs to Region II A, then according to equation (4.2.5) in
Theorem 4.2.1 and Proposition 1 of Kreps and Scheinkman firm 2 will obtain
profit shown in equation (4.2.9):

π∗IIA2 (q̃1
∗, q̃2) = pq̃2 − b2(q̃2) =

r(q̃2)q̃2

q̃1
∗ − b2(q̃2) (4.2.9)

Since P is concave, the function p 7→ pD(p) is strictly concave wherever it is
positive. As p 7→ D(p) is decreasing every ray from the origin of the form
pq̃ crosses the graph of this function at most once. Using Figure 2 and the
proof of Lemma 6 (iii) of Kreps and Scheinkman the function p 7→ pD(p) is
maximized at P (R(0)), so the demand R(0) at price P (R(0)) is higher than q̃1

∗.
So the revenue function r(·) is first increasing where it satisfies r(q̃2) = pq̃1

∗

and decreasing where it satisfies r(q̃2) = pD(p).

Using this argument, the smallest solution of p =
r(q̃2)

min
[
q̃1
∗, D(p)

] from Theo-

rem 4.2.1 equation (4.2.5) is also the solution to r(q̃2) = pq̃1
∗.

Assuming that firm 2 chooses the quantity q̃2 ∈ Region II A, we consider
how its profit changes with increase of q̃2 for given q̃1. Therefore we take the
derivative of the profit of firm 2 in Region II A, depicted in equation (4.2.9)
with respect to q̃2:

∂π∗IIA2 (q̃1
∗, q̃2)

∂q̃2

=
r(q̃2) + q̃2r

′(q̃2)− q̃1
∗b′2(q̃2)

q̃1
∗ (4.2.10)

As the revenue function of firm i has a form r(q̃i) = Ri(q̃j)P (Ri(q̃j)+q̃j), where
Ri(·) is the corresponding Cournot best-response function, its derivative with
respect to q̃i is:

r′(q̃2) = R′(q̃2)P (R(q̃2) + q̃2) +R(q̃2)P ′(R(q̃2) + q̃2) + (R′(q̃2) + 1) (4.2.11)

= R′(q̃2) [P (R(q̃2) + q̃2) +R(q̃2)P ′(R(q̃2) + q̃2)] +R(q̃2)P ′(R(q̃2) + q̃2)

The first term is zero by the definition of R(q̃2), therefore we have:

r′(q̃2) = R(q̃2)P ′(R(q̃2) + q̃2) (4.2.12)
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Plugging r′(q̃2) into equation (4.2.10) we obtain:

∂π∗IIA2

∂q̃2

=
r(q̃2) + q̃2R(q̃2)P ′(R(q̃2) + q̃2)− q̃1

∗b′2(q̃2)

q̃1
∗ (4.2.13)

=
R(q̃2)P (R(q̃2) + q̃2) + q̃2R(q̃2)P ′(R(q̃2) + q̃2)− q̃1

∗b′2(q̃2)

q̃1
∗

According to our previous assumption if q̃1
∗ ≥ R(q̃2) then:

∂π∗IIA2

∂q̃2

(q̃1
∗, q̃2) ≤ r(q̃2) + q̃2r

′(q̃2)−R(q̃2)b′2(q̃2)

q̃1
∗ (4.2.14)

Further we plug equation (4.2.12) into (4.2.14) and obtain the following in-
equality:

∂π∗IIA2

∂q̃2

(q̃1
∗, q̃2) ≤ R(q̃2)P (R(q̃2) + q̃2) + q̃2R(q̃2)P ′(R(q̃2) + q̃2)−R(q̃2)b′2(q̃2)

q̃1
∗

(4.2.15)

⇐⇒ ∂π∗IIA2

∂q̃2

(q̃1
∗, q̃2) ≤ R(q̃2) [P (R(q̃2) + q̃2) + q̃2P

′(R(q̃2) + q̃2)− b′2(q̃2)]

q̃1
∗

In order to understand the sign of the left hand-side of inequality (4.2.15) we
analyze the fraction on the right hand-side. The derivative of Cournot profit
of firm 2 with respect to q̃2 is shown below:

∂π∗C2

∂q̃2

= P (q̃1 + q̃2) + q̃2P
′(q̃1 + q̃2)− b′2(q̃2) (4.2.16)

It is straightforward that equation (4.2.16) is not positive if q̃2 ≥ Rb2(q̃1).
Hence, if q̃2 ≥ Rb2(R(q̃2)) the right hand-side of inequality (4.2.15) is not
positive:

∂π∗IIA2

∂q̃2

(q̃1
∗, q̃2) ≤ 0 (4.2.17)

The inequality (4.2.17) means that the profit of firm 2 if its capacity q̃2 lies in
Region II A is increasing if the capacity becomes smaller. As the profit function
of firm 2 is continuous in its capacity the best response to q̃1

∗ ∈ Region I is
q̃2
∗ ∈ Region I.

Summarizing the above made analysis we have obtained the following prelim-
inary result:

Result 7. (q̃1
∗, q̃2

∗) ∈ Region I are the equilibrium quantities of the considered
subgame. Both firms prefer to sell everything and there is a market-clearing
price: p1 = p2 = P (q̃1

∗ + q̃2
∗).

Next it is necessary to check whether these equilibrium capacities are unique
in the underlying price subgame. Therefore we consider two cases, first when
both capacities belong to Region II A and then when they belong to Region
II B.
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2. Let us start with the Region II A. Suppose that firm 1 chose capacity q̃1

and firm 2 chose some capacity q̃2
′, so that (q̃1, q̃2

′) ∈ Region II A. From
equation (4.2.5) the profit of firm 1 is:

π∗1(q̃1, q̃2
′) = r(q̃2

′)− b1(q̃1) (4.2.18)

According to Assumption 8, as the cost function is strictly increasing in q̃1, the
profit of firm 1 in capacity Region II A is strictly decreasing in q̃1, moreover
it is increasing in q̃2

′. If in Region II A there exists an equilibrium, it should
lie close to or even on the upper frontier of Region II A, namely on the line
q̃1 = q̃2. It is obviously possible only if q̃2

′ > q̃∗. So if q̃2
′ ≤ q̃∗ there will be no

equilibrium in Region II A.

Applying Proposition 1 of Kreps and Scheinkman, if q̃2
′ > q̃∗, on the upper

frontier of Region II A, namely on the line q̃1 = q̃2, the highest profit of firm
1 (π∗IIA1 ) is equal to its lowest profit in Region II B (π∗IIB1 ):

π∗IIA1 (q̃1, q̃2
′) = r(q̃2

′)− b1(q̃1) = π∗IIB1 (q̃1, q̃2
′) =

q̃1

q̃2
′ r(q̃1)− b1(q̃1) (4.2.19)

Assume that for some small ε > 0 firm 1 will choose capacity q̃1 = q̃2
′−ε, so that

q̃2
′− ε > q̃∗ and (q̃2

′− ε, q̃2
′) ∈ Region II B, then according to equation (4.2.6)

the profit of firm 1 is:

π∗IIB1 (q̃2
′ − ε, q̃2

′) = p(q̃2
′ − ε)− b1(q̃2

′ − ε) (4.2.20)

On the lowest frontier of Region II B, namely on the line q̃1 = q̃2 the profit of
firm 1 is:

π∗IIB1 =
q̃2
′ − ε
q̃2
′ r(q̃2

′ − ε)− b1(q̃2
′ − ε) (4.2.21)

Let us consider p =
r(q̃2)

min[q̃1, D(p)]
. In Region II B, if q̃2 > q̃1 (in our case it is:

q̃2
′ > q̃2

′− ε, where ε is positive), then D(p) > q̃2
′− ε and firm 1’s equilibrium

revenue is p(q̃2
′− ε), but it is also equal to r(q̃2

′).14 So we obtain: p =
r(q̃2

′)

q̃2
′ − ε

.

If we plug it into equation (4.2.20), we see that the profit in equation (4.2.20)
is higher than in equation (4.2.21):

p(q̃2
′ − ε)− b1(q̃2

′ − ε) > q̃2
′ − ε
q̃2
′ r(q̃2

′ − ε)− b1(q̃2
′ − ε) (4.2.22)

This inequality means that firm 1 will rather move from the upper frontier of
Region II A, namely from the line q̃1 = q̃2 to the capacity Region II B, where
it will increase its profit and will be better off. So we can formulate the second
preliminary result of our analysis:

14Analogously in Kreps and Scheinkman, proof of Lemma 5 (d), (e), p. 332.
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Result 8. There is no equilibrium in the subgame with (q̃1, q̃2
′) ∈ Region II A.

3. Analyzing the case, where capacities of both firms lie in the Region II B and
using the analogous arguments as in case of Region II A, we obtain the same
result, namely that at least one of both firms could be better off by changing
its capacity and moving from the Region II B to the Region II A. That means
the following:

Result 9. There is no equilibrium for (q̃1
′, q̃2) ∈ Region II B.

The results of this section are summarized in the following proposition:

Proposition 4.2.1. In the capacity-constrained price game (with asymmetric capac-
ity costs) there exists a unique subgame perfect equilibrium outcome (in the two-stage
game) with (q̃1, q̃2) the resulting capacities lying in the pure-strategy Region I, de-
scribed in Definition 4.2.1, and they are equal to the Cournot quantities: q̃1 = q̃1

∗

and q̃2 = q̃2
∗.

Hence, considering the case of asymmetric capacity costs we can constitute the
following general result:

Result 10. Under the unchanged assumptions on the rationing rule, demand and
cost functions, the results of Kreps and Scheinkman hold also for the case of asym-
metric capacity costs.

In the next section we assume that both downstream firms face production costs.
The forthcoming analysis is very important in the context of the whole provided
work.

4.2.3 Price competition with asymmetric production costs

4.2.3.1 Theoretical framework and basic assumptions

As it has been already mentioned in the previous section, now we complete our
analysis assuming that both firms face production costs, moreover we allow them to
be asymmetric. As it was presented in the bargaining model in Chapter 2, before
entering the local market both firms bargained with the upstream supplier over the
wholesale prices. Therefore in this section the production costs are associated with
the above mentioned wholesale prices (w1, w2). Extending Chapter 2 we have shown
that if firm 1 has an option of backward integration it can exercise the bargaining
power on the supplier which is larger than the bargaining power of firm 2. We have
also shown how this advantage effects the bargaining result, namely that firm 1 can
negotiate better buying conditions for itself. This fact explains the asymmetry in
production costs. Applying the result obtained in Chapter 2 we make the following
statement for the current section: Allowing the asymmetry in the unit production
costs, for any possible pair of negotiated wholesale prices (w1, w2) the inequality
w1 < w2 holds.

Differently from Kreps and Scheinkman we assume in this section that there are
no costs of installing the capacity level, namely b(q̃i) = 0, i = 1, 2. Both firms have
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identical production functions. The inverse market demand and market demand
are denoted by P and D := P−1, which are strictly positive and twice continuously
differentiable. As in the previous model we assume the efficient rationing rule.

For the forthcoming analysis let us make the following assumption on the cost
functions:

Assumption 13. The cost functions Ci are convex and twice-continuously differ-
entiable, P (0) > C(0) > 0 and Ci(q̃i) 6= Cj(q̃j), i = 1, 2.

Ci(qi) =

{
wiqi, if qi ≤ q̃i

∞, if qi > q̃i
(4.2.23)

In this section the Assumption 9 on the existence of price level p0 > 0 holds.
It determines demand in the same way as it was described in the Assumption 10.
Each firm i produces goods at a constant unit cost 0 < wi < p0 up to a capacity
level q̃i > 0. On this stage we present the next additional assumption on demand:

Assumption 14. D′(p) + pD′′(p) < 0 holds on the interval (0, p0).

Assumption 14 provides that for any cost pairs (w1, w2) the Cournot best-
response function Ri( · |wi), with

Ri(qj|wi) = arg max
qi

(P (qi + qj)− wi) qi

will be well defined and strictly decreasing. Moreover, the related Cournot game
has a unique equilibrium (q̃i

∗(w), q̃j
∗(w)).

4.2.3.2 Basic notations

Applying equations (4.1.2) - (4.1.7), which determine demand functions, the profit
of firm i at price pi if the rival’s price is pj, is equal to:

πi(pi, pj|q̃i, q̃j) =


(pi − wi) min(D(pi), q̃i), if pi < pj

(pi − wi) min ((max(0, D(pi)− q̃j)) , q̃i) , if pi = pj; wi > wj

(pi − wi) min ((max(0, D(pi)) , q̃i) , if pi = pj; wi < wj

(pi − wi) min(q̃i,max(0, D(pi)− q̃j)), if pi > pj
(4.2.24)

If both prices are equal, we allow the low-cost firm to sell its capacity first.15

As πi( · |q̃i, q̃j)|{p|pi>pj} < πi( · |q̃i, q̃j)|{p|pi<pj}, which means that the profit of
firm i at price pi > pj is less than at price pi < pj, we denote the minmax profit of
firm i as:

πminmaxi = max
{p|pi>pj}

πi( · |q̃i, q̃j) (4.2.25)

15Deneckere and Kovenock (1989) show that equilibrium profits are unaffected by the tie breaking
rule, and that equilibrium distributions are altered only in the classical Bertrand region when the
low cost firm does not have a drastic cost advantage.
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Let p
i

be the lowest price at which firm i if pi < pj can still earn its minmax
profit level, so that:

p
i

= min
{
pi : πi( · |q̃i, q̃j)|{p|pi<pj} ≥ πminmaxi

}
(4.2.26)

This critical price p
i

depends on (q̃i, q̃j, wi, wj). Similar to Figure 2 of Kreps and
Scheinkman (1983), but for the case of asymmetric production costs, the profit func-
tions from equation (4.2.24) and critical prices from equation (4.2.26) are illustrated
in Figure 4.3.
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Figure 4.3: Determining the subgame equilibrium

4.2.3.3 Price-setting subgame

Let Si = [wi, p0] be a pure strategy set of firm i and let Σi be a corresponding set of
mixed strategies (the set of distribution functions Fi on Si) and πi is the expected
profit function of player i, whose domain can be extended in the natural way to
Σ1 × Σ2. According to Osborne and Pitchik (1986) if Fj ∈ Σj we have:16

πi(p, Fj) = πi(pi, pj){p|pi>pj}(Fj(p)− αj(p)) + πi(pi, pj){p|pi=pj}αj(p) +

+ πi(pi, pj){p|pi<pj}(1− Fj(p)), (4.2.27)

16See p. 242.
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where αj(p) is the size of atom (if it is present) in Fj at p. We denote πi(Fi, Fj) =∫ p0
wi
πi(p, Fj)dFi(p).

Let q̃ = (q̃1, q̃2) ∈ <2
+ be a profile of capacities and w = (w1, w2) ∈ <2

+ be
a profile of possible production costs, then for any quadruple of capacities and
costs (q̃1, q̃2, w1, w2) the price-setting subgame Γ(q̃, w) that firms face in the price
competition stage is of the normal form Γ(q̃, w) = {I, {Σi} , {πi(Fi, Fj)}}, with set
of players I = [1, 2], strategy set Σi and πi(Fi, Fj) are payoff functions, i, j ∈ I.

Analogously to Kreps and Scheinkman, who established that for each pair (q̃1, q̃2)
the associated subgame has unique expected equilibrium revenues, let us concentrate
on the subgame equilibrium profits of the above described game.

4.2.3.4 Subgame equilibrium profits

Dasgupta and Maskin (1986) proved in Theorem 5 that a (upper semi) continuous-
sum game in which individual utility functions satisfy a weak form of lower semi-
continuity possesses a mixed-strategy equilibrium.17 Considering our model
π1(p1, p2) +π2(p1, p2) is upper semi-continuous in (p1, p2) because the sum is contin-
uous at all off-diagonal points and the tie breaking rule which we assumed in section
4.1.3 minimizes the total cost of providing the good along the diagonal. The revenues
in our model are continuous by assumption, hence, when total profit approaches a
point on the diagonal it cannot jump down. Consequentially, we can apply this
theorem without any restriction and state the existence of a mixed-strategy equi-
librium in the price-setting subgame Γ(q̃, w). Using the results of Dasgupta and
Maskin (1986), the next step is to find the Nash equilibrium profits of the subgame
Γ(q̃, w) for all quadruples of (q̃1, q̃2, w1, w2).

Similar to the previous section the profits of both firms depend on the region in
which their capacities are lying in. To describe the structure of an equilibrium of
such subgame, let us divide the capacity space into three regions, as described in
Definition 4.2.2 and depicted in Figure 4.4.18,19

Definition 4.2.2. i) Let Region I = {(q̃1, q̃2) ∈ <2
+ : 0 ≤ q̃1 ≤ R1(q̃2|w1),

0 ≤ q̃2 ≤ R2(q̃1|w2)}, p = P (q̃1 + q̃2) = 1− q̃1 − q̃2.

ii) Let Region II =
{

(q̃1, q̃2) ∈ <2
+ : p = max {w1, w2}

}
.

iii) Let Region III = {<2
+\(I ∪ II), (q̃1, q̃2) ∈ Region III: q̃1 ≥ 0; q̃2 ≥ 0;

q̃1 > R1(q̃2|w1); q̃2 > R2(q̃1|w2)}.
17Theorem 5, p. 14.
18Figure 4.4 is analogous to Figure 2 by Deneckere and Kovenock (1996).
19We have also used Theorem 3 by Deneckere and Kovenock in which they proved for the case

c1 < c2 that:

i) If R1(0|c1) < D(c2), there exists a continuous function Θ : [0,∞) → [0, D(c1)] such that
p
2
> p

1
, whenever q̃2 > Θ(q̃1) and p

2
< p

1
, whenever q̃2 < Θ(q̃1) and (q̃1, q̃2) /∈ Region I.

Furthermore, the function Θ satisfies Θ(q̃1) = R2(q̃1|c2) for q̃1 ∈
[
0, q̃1C

]
, R2(q̃1|c2) <

Θ(q̃1) < q̃1 for q̃1 ∈ (q̃1C , D(c2)].

ii) If R1(0|c1) ≥ D(c2), then p
2
≥ p

1
whenever (q̃1, q̃1) /∈ Region I.
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Figure 4.4: Capacity regions for the price subgame, when w1 < w2

Next we consider the regions illustrated in Figure 4.4. The first capacity region,
Region I, lies below the both Cournot best-response functions and it is a pure-
strategy region, with each firm setting a price equal to the market clearing price.

Region II is the classical Bertrand region in which the low-cost firm has enough
capacity to drive the high-cost firm out of the market, and the high-cost firm is
sufficiently large that the low-cost firm finds it profitable to do so.20

Region III consists of two regions, namely with p
1
≤ p

2
and p

1
≥ p

2
.

On this stage we make the following propositions:

Proposition 4.2.2. At least one firm will earn its minmax profit.

Proof. Analogously to Kreps and Scheinkman (1983), let us make the following
notations: let si ∈ Si and sj ∈ Sj. We denote (Fi(p), Fj(p)) as a pair of equilibrium
price distributions, si as the supremum of the support of the equilibrium price
distributions named by firm i, that is si = inf {p : Fi(p) = 1} and si as the infimum

20According to Allen et al. (2000).
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of the support, that is si = sup {p : Fi(p) = 0}, i = 1, 2. Applying Assumption 9 it
is obvious that wi ≤ si ≤ si ≤ p0, i = 1, 2.

We have πi(Fi, Fj) ≥ πi(p, Fj) ≥ πi(p)|{p|pi>pj} ≥ 0 for all p ≥ 0 (p ∈ Si),
therefore πi(Fi, Fj) ≥ πminmaxi for i = 1, 2.

If si > sj or si = sj = s and si /∈ J(Fj), where J(Fj) is the set of atoms of F ,21

or in other words, firm j has no mass point at s, then πi(Fi, Fj) = πi(si, Fj). We
also have πi(si, Fj) = πi(si){p|pi>pj} ≤ πminmaxi . Summarizing the above mentioned
inequalities we get the following system:{

πi(Fi, Fj) ≥ πminmaxi

πi(Fi, Fj) = πi(si){p|pi>pj} ≤ πminmaxi

Hence, from these inequalities it follows that πi(Fi, Fj) = πi(si){p|pi>pj} = πminmaxi .
Now let us consider the case when si = sj = s and both firms have mass points

at s, then according to Lemma 2 of Osborne and Pitchik (1986) we state that
πi(si)|{p|pi<pj} = πi(si)|{p|pi=pj} = πi(si)|{p|pi>pj}, i = 1, 2 and therefore πi(Fi, Fj) =
πi(si, Fj) = πi(si)|{p|pi>pj}, so πi(si)|{p|pi>pj} = πminmaxi .

Using the above obtained results we can state the next proposition, which de-
termines the equilibrium profits of both firms depending on their capacities:

Proposition 4.2.3. The equilibrium profits of the price-setting subgame Γ(q̃, w) are
uniquely determined and given below:

i) If (q̃1, q̃2) ∈ Region I, then:

π∗i = (P (q̃1 + q̃2)− wi)q̃i, (4.2.28)

ii) If (q̃1, q̃2) ∈ Region II, then:

π∗i = max
p≤p

(p− wi)D(p), (4.2.29)

iii) If (q̃1, q̃2) ∈ Region III and p
1
≤ p

2
, then:{

π∗1 = (p
2
− w1) min(q̃1, D(p

2
))

π∗2 = maxp(p2 − w2) min(q̃2,max(0, D(p2)− q̃2)) = πminmax2

(4.2.30)

iv) If (q̃1, q̃2) ∈ Region III and p
1
≥ p

2
, then:{

π∗1 = maxp(p1 − w1) min(q̃1,max(0, D(p1)− q̃1)) = πminmax1

π∗2 = (p
1
− w2) min(q̃2, D(p

1
))

(4.2.31)

21Terminology used by Osborne and Pitchik (1986).
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Proof. We make a proof in several steps:

(a) Without loss of generality let us assume that p
1
< p

2
so that we are in the

mixed-strategy Region III. As it was proved in Proposition 4.2.2, firm 2, the
less efficient firm, lets itself be stochastically undercut and will set such price p

2

to earn at least its minmax profit level πminmax2 , described in equation (4.2.30).

Let pm1 be the price that maximizes the profit of firm 1 and assume that
pm1 > p

1
, then using inequality p

2
> p

1
firm 1 can guarantee itself profit higher

than its minmax profit: πm1 > πminmax1 and will never set price below p
1
.

Meanwhile, the lowest equilibrium distribution extends to p
2

and the profit of
the most efficient firm, firm 1, depends on price p

2
.

(b) If πminmax2 > 0 and p
2
> p

1
, then firm 1 earns at least π∗1(p

2
).

But if πminmax2 = 0, then according to equation (4.2.24) the profit of firm 1 is:

π∗1 = max
p∈[w1,w2]

[(p1 − w1) min(D(p1), q̃1)]

(c) The symmetric results appear in the case with p
1
≥ p

2
, so that firm 1, the less

efficient firm, earns its minmax profit, described in (4.2.31). The upper level
of the equilibrium distribution reaches price p

1
, so that equilibrium profit of

firm 2 depends on price p
1
.

Proposition 4.2.3 shows that in order to determine the equilibrium profits one
must know the values p

1
and p

2
.

4.2.3.5 Results

Using the propositions of Kreps and Scheinkman (1983) we obtain the following
results on the existence of the pure-strategy equilibrium for the case of asymmetric
production costs:

Proposition 4.2.4. Given the asymmetry in the unit production costs, the results
of Kreps and Scheinkman, obtained for the pure-strategy Region I, hold. There is
a unique Nash equilibrium in the price-setting subgame, with both firms name the
market-clearing price p1 = p2 = P (q̃1 + q̃2). Firms sell up to capacity and the profits
have also exact Cournot form.

Proof. In Region I q̃i ≤ Ri(q̃j) for i = 1, 2. Let us assume that pi < P (q̃1 + q̃2). In
this case the profit of firm i is equal to πi = q̃i(pi − wi). But if firm i charges price
pi = P (q̃1 + q̃2) its profit is πi = (P (q̃1 + q̃2) − wi)q̃i. So by price pi = P (q̃1 + q̃2)
firm i is better off than by pi < P (q̃1 + q̃2). Hence for each firm i, p

i
≥ P (q̃1 + q̃2),

which corresponds with the result of Kreps and Scheinkman. In Region I capacities
are so low, that both firms sell everything they can produce, so that there is a price
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that is adopted to clear the market. pi < pj is not feasible, because the low-price
firm will increase its price as long as it is capacity-constrained. So that

p
i

= p
j
≥ P (q̃1 + q̃2) (4.2.32)

Let us consider the case when pi = pj > P (q̃1 + q̃2) and, without loss of generality,
assume that q̃1 ≥ q̃2. If firm i charges price pi − ε, where ε is positive and small,
then firm i increases its profit and therefore will be better off. If ε is small, the loss
caused by the price decrease will be also small. That means, that each firm is better
off by decreasing its price by some small ε. Therefore, there is no equilibrium in
such case. Thus

pi = pj ≤ P (q̃1 + q̃2) (4.2.33)

There are no incentives for both firms to name lower prices, because they will
sell its full capacity at price P (q̃1 + q̃2). From inequalities (4.2.32) and (4.2.33) we
obtain p

i
= pi = P (q̃1 + q̃2), so p1 = p2 = P (q̃1 + q̃2). Consequently, if capacities

of both downstream firms are equal to Cournot capacities that result in Cournot
equilibrium price and in Cournot equilibrium profit.

Proposition 4.2.5. In the pure-strategy Region I, described in Definition 4.2.2,
when firms have asymmetric unit production cost, the price charged by firm i is
always pi ≥ P (Ri(q̃j) + q̃j).

Proof. As it has been already proved in the previous proposition when both capac-
ities belong to Region I pi < pj is not feasible, because in Region I capacities are so
low, that both firms sell everything they can produce, so that there is a price that is
adopted to clear the market. Assume that pi = pj < P (Ri(q̃j) + q̃j), then the arbi-
trary firm i, i = 1, 2 can raise its price by ε. As both firms are capacity constrained,
by naming a higher price p firm i would obtain the revenue (D(p)− q̃j)(p− wi), so
if qi = D(p)− q̃j the profit of firm i is:

πi = qi [P (q̃j + qi)− wi] (4.2.34)

As Region I is characterized by q̃i ≤ Ri(q̃j), the following inequality will hold:

qi [P (q̃j + qi)− wi] ≤ Ri(q̃j) [P (Ri(q̃j) + q̃j)− wi]

Equation (4.2.34) is maximized at qi = Ri(q̃j). Therefore pi = P (Ri(q̃j) + q̃j).

The next capacity area, Region II, is a Bertrand region, with price equal to
marginal production cost for both firms. If one of the firms has a cost advantage,
i.e. w1 < w2, then they both will charge price p = w2. There is no equilibrium if
both firms charge p1 > w2 and p2 > w2, because by reducing the price by small ε
each firm will be better off than its rival. If firm 2 charges price p2 < w2 it will
have negative profits. If firm 1 names price p1 ∈ [w1, w2) and if D(p) ≤ q̃1, it
satisfies the whole demand and makes a non-negative profit. By w1 < w2 the firm
1’s highest profit is (w2 − w1)D(w2). The equilibrium over the Region II is unique
only if w1 = w2.

Proposition 4.2.6 summarizes the results on the existence of the pure-strategy
equilibrium in Regions I and II.
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Proposition 4.2.6. Given the asymmetry in the unit production costs, w1 < w2,
and Assumptions 9, 10 on demand, a pure-strategy equilibrium in the price-setting
subgame exists only in capacity space Regions I and II, moreover:

i) If both capacities lie in Region I, then in a pure-strategy equilibrium, both firms
name price p1 = p2 = P (q̃1 + q̃2).

ii) If both capacities lie in Region II, then in any equilibrium the prices set by both
firms depend on the profit-maximizing price of the most efficient firm (of firm
1), denoted as pmax1 , moreover:

• If the profit-maximizing price of the most efficient firm is equal to or less
than the unit production costs of its rival, s.t. (pmax1 ≤ w2), then in any
equilibrium firm 1 gets its highest profit πmax1 = (pmax1 −w1) min(D(pmax1 ), q̃1)
by setting its price at level p1 = pmax1 and profit of firm 2 is π2 =
(p2 − w2)D(p2), where p2 ≥ w2.

• If the profit-maximizing price of the most efficient firm is larger than
the unit production costs of its rival, s.t. (pmax1 > w2), then in any
equilibrium both firms name prices p1 = p2 = w2, with resulting profits
π1 = (w2 − w1) min(D(w2), q̃1) and π2 = 0.

Proof. i) In Region I there occurs a pure-strategy equilibrium with both firms
name prices pi = pj = P (q̃1+q̃2), which has been already proved in Proposition
4.2.4.

ii) In Region II, described in Definition 4.2.2, p = max {w1, w2}. As we assumed,
that w1 < w2, then p

2
= w2 and p

1
≤ w2, and according to equation (4.2.24),

the profit of firm 1, if p1 ≤ w2 = p2, is π1 = (p1 − w1) min(D(p1), q̃1).

As pmax1 is the price, that maximizes the profit of firm 1, we consider two cases:

a) w1 ≤ pmax1 ≤ w2. Then firm 1 can achieve the highest possible profit, if it sells
first, π∗1 = (w2 −w1)D(w2) by setting the price pmax1 . If the capacity of firm 1
is not high enough to cover the whole market demand, q̃1 < D(w2), it will sell
everything up to its capacity and then consumers will buy by firm 2. In such
case firm 2 may set a price p2 ≥ w2 to make at least non-negative profit.

b) pmax1 > w2. In this case both firms will charge price p1 = p2 = w2. There will
be no equilibrium, if they both set prices p1 > w2 and p2 > w2, because by
reducing the price by some small ε, each of them will be better off than its
rival.

Remark 3. • There cannot be an equilibrium in which both firms set p1 and p2

strictly above w2;

• Firm 2 does not charge less than w2 not to make a negative profit;

• If firm 1 charges a price p1 = w2 − ε, where ε is small and positive, it could
guarantee itself the profit closed to the highest.
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It is also necessary to consider the case whether a pure-strategy equilibrium
exists outside of Region I ∪ II with p1 = p2. Assume that there exists a pure-
strategy equilibrium outside of Regions I and II, so that (q̃1, q̃2) /∈ (I ∪ II). As it
has been proved by Kreps and Scheinkman, in the mixed-strategy Region III, where
q̃i > Ri(q̃j) for at least one firm i, the highest capacity firm makes a profit equal to
its ”Stackelberg follower profit:”22 πi = Ri(q̃j)P (Ri(q̃j) + q̃j), so that

p
i
> P (q̃1 + q̃2) (4.2.35)

The region, which lies outside of Region II is characterized by q̃1 < D(w2) or by
q̃1 ≥ D(w2). The first case, where q̃1 < D(w2) means, that firm 1 cannot satisfy
the whole demand and so firm 2 will cover the rest, so that it could set the price
p

2
≥ w2 as we described earlier.
The second case, where q̃1 ≥ D(w2) means, that capacity of firm 1 is enough to

cover the whole demand and under the previous assumption that the low-cost firm
will sell its capacity first, firm 1 could set price p

1
≥ w2. Summarizing, we get the

following inequalities: 
p
i
> P (q̃1 + q̃2)

p
2
≥ w2

p
1
≥ w2

From these inequalities follows that pi ≥ max {P (q̃1 + q̃2), w2}, i = 1, 2. But in
such case there will be also no equilibrium, because either firm has an incentive to
decrease its price by some small ε and as a result to be better off.

4.3 Conclusion

In this chapter we have considered the behavior of two price competitors in the down-
stream market, where they both have simultaneously bargained with an upstream
supplier over the wholesale prices for some particular output quantities, which in
this chapter we identify with capacities; then firms have brought these capacities to
the local market.

The aim of the analysis is to determine the final prices that both downstream
firms should offer to the end consumers in order to earn equilibrium profits. There-
fore we have turned to the paper of Kreps and Scheinkman (1983) which is the most
relevant to the presented work. Discussing the situation when both capacity and
production are costly, they assume, that their analysis could be easily modified to
show, that the unique outcome will be Cournot outcome, computed by using the
sum of two cost functions. Deneckere and Kovenock (1996) consider the case when
both capacity and production are costly at the same time and they show that the
results of Kreps and Scheinkman do not hold at the price competition stage.

Similar to Kreps and Scheinkman and Deneckere and Kovenock we have exam-
ined the model of capacity choice followed by Bertrand-Edgeworth price competition,
but separately for the cases of costly capacity costs and production costs and have
come to the following results, which differ from the case of identical costs:

22The summarizing result of Kreps and Scheinkman for an equilibrium in mixed strategies.
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• The results of Kreps and Scheinkman continue to hold in case of asymmetric
capacity costs. In such case, in pure-strategy equilibrium both firms choose
their Cournot capacities and name the market-clearing price p1 = p2 = P (q̃1 +
q̃2).

• In the case when firms have asymmetric production costs, in the price com-
petition stage the results of Kreps and Scheinkman do not hold anymore. If
the asymmetry is sufficiently high, the more efficient firm has an incentive to
choose the capacity above its Cournot level, as it was shown in the classical
Bertrand Region II, even if the less efficient firm chooses its Cournot quan-
tity. The most efficient firm, which has low costs will choose high capacity
level and price its less efficient rival out of the market in the subsequent price
competition subgame.
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Chapter 5

Dynamic duopoly with sticky
prices and asymmetric production
costs

5.1 Introduction

5.1.1 Motivation

In Chapter 2 we have worked out the theoretical model which represents a non-
cooperative bargaining between the supplier and two downstream firms over the
wholesale prices, where results from the two-person cooperative axiomatic bargain-
ing games are used to define the payoffs of some of the terminal nodes of the extensive
game. Important assumption is that one downstream firm can integrate backwards
(to produce the input by itself instead of buying it from the supplier) and other firm
cannot. The role of this assumption seems to be crucial for the determination of the
firms’ actions depending on the obtained price offers.

Extending the model by the assumption that both downstream firms exercise
the bargaining power in negotiations with the upstream supplier which is justified
by the existence of the backward integration option, it has been shown that the
asymmetry in the bargaining weights of both firms leads to the asymmetry in their
wholesale prices and finally in concentration ratios in the local market.

In Chapter 4 we have described the behavior of both downstream firms under the
price competition. We have determined the final prices that both downstream firms
should offer to the end consumers in order to earn equilibrium profits. We have
extended the model of Kreps and Scheinkman (1983) to the cases of asymmetric
capacity costs and asymmetric production costs.

The current chapter introduces the alternative approach to the already presented
work. The outgoing point is the model described in Chapter 2, but we additionally
assume that by entering the local market both downstream firms face sticky market
prices and we consider the dynamic duopoly model. The aim of the current analysis
is to investigate how the changes in the price stickiness influence the equilibrium by
open-loop, feedback and closed-loop solutions and to compare the obtained results
with the static model of Cournot and perfect competition which were introduced in
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the previous chapters.

5.1.2 Literature overview and open questions

Nowdays there is an increasing interest in economics to solve problems using a
dynamic game theoretical setting; especially in the environmental economics it is a
very popular framework, for example, de Zeeuw and van der Ploeg (1991), Kaitala,
Pohjola and Tahvonen (1992), Tabellini (2001), Fershtman and Kamien (1987), Petit
(1989), Levine and Brociner (1994), van Aarle, Bovenberg and Raith (1995), Douven
and Engwerda (1995), van Aarle, Engwerda and Plasmans (2002).

There have been also a number of studies using the differential game theory to
analyze dynamic duopoly and oligopoly in a single market. Simaan and Takayama
(1978) present an application of differential game theory in the area of microeco-
nomics. They study a dynamic duopoly with sticky prices where two firms are
limited by a maximum production capacity, share the same market and try simulta-
neously but independently to maximize their profits over a certain planning horizon.
While the static duopoly theory does not address itself to the question of the pro-
cess in which changes in the price are brought about, but only compares the prices
before and after the change takes place, they use the dynamic market theory, which
allows the analysis of how the price changes with time and what trajectory it follows.
Simaan and Takayama derive the necessary conditions for a closed-loop Nash equi-
librium solution and also more specific results for the special case of linear demand
and quadratic cost functions.

The starting point of our research is the paper of Fershtman and Kamien (1987),
who study an infinite-horizon model of dynamic duopolistic competition under the
assumption that current price does not necessarily adjust instantaneously to its level
on a static demand function for that output. They assume that the evolution of
price over time is governed by a kinematic equation that specifies, for every given
level of output, its change as a function of the gap between its current level and the
price indicated by a static demand function. The main objective of their paper is
to investigate the relationship between the speed at which the price converges to its
value on the static demand function and the resultant stationary subgame perfect
Markov equilibrium price. Fershtman and Kamien (1987) study the interactions
between symmetric duopolists under open-loop and feedback (subgame perfect) in-
formation structures. They demonstrate that the static Cournot equilibrium price
is the limit of the open-loop Nash equilibrium price when the speed of adjustment
reaches infinity. This is not true for the feedback Nash equilibrium price. In that
case the Nash equilibrium price converges to a value below the static Cournot price.

In their next paper Fershtman and Kamien (1990) present a complete analysis
of the feedback Nash equilibrium of a finite-horizon linear quadratic differential
game with a control constraint. They demonstrate the relationship between the
”turnpike properties” of the finite-horizon equilibrium strategies and the infinite-
horizon equilibrium strategies. They also analyze a finite-horizon differential game
model of duopolistic competition through time under the assumption that prices
do not adjust immediately to their level on the demand function for each level of
output.
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The infinite-horizon dynamic duopoly model of Fershtman and Kamien (1987)
was generated by Dockner (1988) as an N -person nonzero-sum differential game. He
added to the cases treated in Fershtman and Kamien the one where the oligopolists
played under closed-loop but not subgame perfect information structure. His main
interest was on the relationship between the static competitive price and the price
determined as an asymptotic limit of oligopolistic competition over time when the
number of firms went to infinity. It is demonstrated that regardless of the strategy
spaces assumed (i.e., open-loop, feedback or closed-loop information structure) the
dynamic oligopoly price converges to the long-run competitive price (the one which
is equal to the minimum of average costs) as the number of firms goes to infinity. His
result allows an interpretation of the long-run competitive equilibrium as the limit
of dynamic oligopolistic competition and it is robust with respect to the information
structure assumed in the oligopoly case.

In his later paper Dockner (1992) explores the relationship between dynamic
oligopolistic competition and static conjectural variations equilibria. The capacity
adjustment cost model is used to study dynamic oligopolistic quantity competition
over an infinite horizon. It is shown that the stationary closed-loop equilibrium of
the dynamic capacity adjustment game coincides with static conjectural variations
equilibrium. Under the assumptions that the stationary state closed-loop equilib-
rium is stable, conjectural variations equilibrium is interpreted as the outcome of
dynamic strategic interactions.

In the empirical literature the model specification problem is solved using among
others the adoption of the general models nesting a broad set of potential behavioral
models. The analysis of the rice export market by Karp and Perloff (1989) is an ex-
ample of such approach. It nests four models: collusion, price taking, Nash-Cournot
open-loop, and Nash-Cournot with feedback. The use of nesting models does not
solve the model specification problem, since no framework may nest all possible al-
ternatives. Therefore the researchers must choose among alternative ”families” of
models. Moreover, the solution of the model may be quite complicated and may
require the introduction of simplifying assumptions in order to obtain an explicit
form of the structural equations for the econometric model. For example, Karp
and Perloff (1989) estimate the degree of competition among rice exporters using
a linear-quadratic dynamic oligopoly model in the open-loop and closed-loop strat-
egy spaces. They assume that China, Thailand and Pakistan are either acting as
price-takers, collusive, or Cornot-Nash game in their rice export. They consider
only some large exporting or importing countries and exclude other small trading
countries. However, in the international rice market, a small trading country may
produce a large quantity of rice in domestic production. These small trading coun-
tries may have a potential to compete with the major trading countries by changing
supply and demand flow pattern. Estimating the degree of competition among the
exporters the authors find that the rice export market is close to price taking but
with some degree of imperfect competition.

Reinganum and Stokey (1985) study oligopolistic resource extraction and demon-
strate the importance of the period of commitment in the choice of model strate-
gies, path or decision rule. Applying optimal control theory on a common property
aquifer model, they analyze both open-loop and feedback equilibria. They find that
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feedback equilibria lead to a more rapid extraction level compared to the open-loop
equilibria.

Vives and Jun (2004) compare steady states of open-loop and locally stable
Markov perfect equilibria (MPE) in a general symmetric differential game duopoly
model with costs of adjustment. They show that the strategic incentives at the MPE
depend on whether an increase in the state variable of a firm hurts or helps the rival
and on whether at the MPE there is intertemporal strategic substitutability or com-
plementarity. They also provide a full characterization in the linear-quadratic case.
They ascertain that with price competition and costly production adjustment, static
strategic complementarity turns into intertemporal strategic substitutability and the
MPE steady-state outcome is more competitive than static Bertrand competition.

Differential games belong to the subclass of dynamic games called state space
games, in which modeler introduces a set of state variables to describe the state of a
dynamic system at any time during play. The hypothesis is that the payoff-relevant
influence of past events is adequately summarized in the state variables. The choice
between discrete and continuous time often seems to be quite arbitrary. Discrete
time models involve the assumption that no decisions are made between the time
instants that define the periods. Differences between discrete-time and continuous
time models and open-loop and feedback models are well demonstrated by Karp and
Perloff (1993). They develop a feedback, oligopolistic dynamic game model that can
be used to estimate the degree of market power in markets with nonlinear adjustment
costs in output, investment, or prices. Their model nests various well-known market
structures in a larger family. It also provides a simple method for comparing open-
loop and feedback equilibrium for a given degree of market power. This model can
be used to analyze relatively easy the effects of increasing the number of firms and
the costs of adjustment on the equilibrium trajectory and steady state.

All the dynamic game models reviewed above are for a single market and are
simplified in order to obtain analytical or closed-form results. For example, demand
functions are assumed to be linear and cost functions are assumed to be quadratic
and symmetric. While these dynamic models serve to provide general qualitative
results, they do not provide the tools to study particular situations where it is too
complex to obtain analytical solutions. Moreover, the existing dynamic oligopoly
models do not consider the role of transportation costs as well as the different
demand functions or the different production costs at various market points. In this
regard, our model may be considered as a starting point for a more rigorous extension
of the existing dynamic oligopoly models and is an algorithm for studying more
complex market situations. In particular, we solve open-loop, feedback (subgame
perfect) and closed-loop decision problems.

5.1.3 Modeling strategy

Obviously, many strategic problems in economics are not properly modeled as static
games since firms can make decisions more than at one point of time. For example in
the Cournot duopoly game, firms need to choose their output levels independently
at each point of time T . But which planning horizon should the firm choose is still
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restrictive in the literature.1 Apart from the computational point of view that the
equilibrium actions in an infinite-planning horizon are much easier to implement
and to analyze than those for a finite-planning horizon, there is also at least another
reason from economics to consider an infinite-planning horizon. In economic growth
theory it is usually difficult to justify the assumption that a firm or government has
a finite-planning horizon T , why should it ignore profits earned after T , or utility of
generations alive beyond T .

In this chapter we study duopolistic competition between two firms, which pro-
duce the homogeneous goods through the time. The main objective is to analyze
the intertemporal interaction between both duopolists under the assumption that
the price of the product does not adjust instantaneously to the price indicated by its
demand function by the given output. For such analysis we use a differential game
framework and determine the open-loop, feedback and closed-loop Nash equilibria
of the described duopoly game.

In the existing literature on the differential games with sticky prices most authors
use the assumption provided first by Fershtman and Kamien (1987) that both firms
have identical production costs. Fershtman and Kamien consequently prove that in
such case the equilibrium quantities by open-loop and feedback solutions for both
firms will be symmetric. Differently from the existing literature we consider the
case of asymmetric production costs by both firms and investigate the influence of
the speed adjustment parameter as well as the discount rate on the obtained best-
response quantities. The main assumptions on the considered model are that the
demand is a linear function of price, total cost is a quadratic function of output and
there is no uncertainty in the model.

Our analysis starts with a brief review of the differential game approach and
follows with the introduction of the model, which will be studied by us, applying
open-loop, feedback and closed-loop Nash equilibrium solutions. We add to the
cases presented in Fershtman and Kamien the one where the oligopolists play under
closed-loop but not subgame perfect information structure. We also give economic
interpretations to the use of a particular information concept. At the same time
we analyze the impact of the speed adjustment parameter and the discount rate.
Finally, we follow the main object of this chapter and compare the obtained results
with the static model of Cournot and perfect competition analyzed in the previous
chapters and find the conditions under which the obtained equilibrium prices and
quantities in both dynamic and static models coincide.

5.2 Basic concepts

5.2.1 On the dynamic game theory

Dynamic game theory brings together four key features in economics; they are:
optimizing behavior, the presence of multiple agents/players, enduring consequences
of decisions and robustness with respect to variability in the environment. Dealing
with problems, which have these four features, the dynamic game theory splits the

1Engwerda (2005).
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modeling of the problem into three parts.
One part is the modeling of the environment in which the agents act. To obtain

a mathematical model of the agents’ environment one usually specifies a set of
differential or difference equations. These equations are assumed to capture the main
dynamical features of the environment. A characteristic property of this specification
is that these dynamic equations mostly contain a set of so-called ”input” functions.
These input functions model the effect of the actions taken by the agents on the
environment during the course of the game.2 A second part is the modeling of the
agents’ objectives. Usually they are formalized as cost functions which have to be
minimized. Since this minimization has to be performed subject to the specified
dynamic model of the environment, techniques developed in optimal control theory
play an important role in solving dynamic games, the theory of which arose from
the merging of static game theory and optimal control theory. The third modeling
part describes further reflection of such merging.

Most research is concentrated on the field of static game theory, where all possible
sequences of decisions of each player are set out against each other. Characteristic for
such game is that it takes place in one moment of time: all players make their choices
once and simultaneously, and subject to the choices made, each player receives his
payoff. In such formulation the important issues like the order of play in the decision
process, information available to the players at the time of their decisions, and the
evolution of the game are suppressed, and this is the reason why this branch of
game theory is usually classified as ”static”. In case the agents act in a dynamic
environment these issues are, however, crucial and need to be properly specified
before one can infer what the outcome of the game will be. This specification is the
third modeling part that characterizes the methodology of dynamic game theory.

5.2.2 On the differential game

A differential game is a dynamic game, which is played in continuous time. A linear
quadratic differential game studies situations involving two or more decision makers,
called the players in the game. These players often have partly conflicting interests
and make individual or collective decisions. In a linear differential game the basic
assumption is that all players can influence a number of variables which are crucial
in realizing their goals and that these variables change over time due to external
forces. These variables are called the state variables of the system. It is assumed
that the movement over time of these state variables can be described by a set of
linear differential equations in which the direct impact of the players’ actions is in
an additive linear way.

Consequently, the extent to which the players succeed in realizing their goals
depends on the actions of other players. Obviously, if one player has information
on the action that other player will take, he can incorporate this information into
the decision making about his own action. Therefore, information plays a crucial
role in the design of optimal actions for the players. So, summarizing, to model the
differential game it is necessary to introduce a set of variables to characterize the
state of the dynamical system at any instant of time during the game, as well as the

2More in Engwerda (2005).
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evolution of state variables over time, which are described by the set of differential
equations.

5.3 The model

5.3.1 Basic notations and assumptions

Our analysis is based on the model developed in the previous chapters, but we
extend it with some additional assumptions which are necessary in differential games’
context.

Hence, according to the model mentioned above, two downstream firms have
already negotiated their wholesale prices denoted as w1 and w2 for Cournot output
quantities denoted as q∗C1 and q∗C2 with the upstream supplier; the upstream supplier
had already produced these quantities and both firms bought them.

Now in the context of the dynamic system we consider both firms as players,
who play over time t, where t ∈ [0,∞). We define pi(t) as a state variable and qi(t)
as control variable for each player i.

As before whenever i and j appear in the same expression, it means that i, j ∈
{1, 2} and i 6= j.

On this stage let us make the following assumptions to describe the simple op-
timal control problem:3

Assumption 15. There exists set Q such that

q(t) ∈ Q(p(t), t),∀t. (5.3.1)

Assumption 16. There exists set P such that p(t) ∈ P , ∀t.

Assumption 17. The initial value of the state variables is known:
p(0) = (p1(0), p2(0)) = p0

p(0) = p0 ∈ P (5.3.2)

The dynamics of the state variable is described by the following equation:

∂pi(t)

∂t
≡ ṗi(t) = fi(p(t), q(t), t) (5.3.3)

where p(t) is a vector of state variables at time t, p(t) = (p1(t), p2(t)) and q(t) is
a vector of control variables at the same time t (players actions), q(t) = (q1(t), q2(t)).

The obtained equations (5.3.1) - (5.3.3) are the constraints of the optimal control
problem.

The main object of each player is to choose the control path q in an optimal
way. In other words to maximize the instantaneous payoff function over time, which

3More in Dockner (2000).
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depends not only on the choice of the player but also on his rival’s choice of action:

Fi ≡ Fi(p(t), q(t), t) (5.3.4)

Under the above assumptions we derive the first-order necessary conditions for the
basic dynamic optimization problem to find a control function qi(·) that maximizes
the payoff function of firm i over time:4

max
qi(·)

Ji(qi(·)) ≡
∫ ∞

0

e−rtFi(p(t), q(t), t)dt, r ≥ 0, (5.3.5)

where r ≥ 0 denotes the discount rate of future profits.
Subject to:
ṗi(t) = fi(p(t), q(t), t)
qi(t) ∈ Qi(p(t), t)
pi(0) = p0 ∈ P

Next let us introduce the Hamiltonian function H:

Definition 5.3.1. The Hamiltonian function of the dynamic optimization problem
is defined as

H(p, q, λ, t) = F (p, q, t) + λ(t)f(p, q, t), (5.3.6)

where λ(t) is a co-state variable and is often interpreted as a ”shadow prices” of
states and F is an instantaneous payoff function.

Theorem 5.3.1. Let (p∗, q∗) which are almost everywhere continuously differen-
tiable be an optimal solution of the dynamic optimization, then there exists a contin-
uous and piecewise continuously differentiable function λ(·) : [0, T ]→ <n satisfying:

H(p∗(t), q∗(t), λ(t), t) = max
q∈Q(p∗(t))

H(p∗(t), q, λ(t), t), ∀ t (5.3.7)

and at each point where Q(·) is continuous:

λ̇(t) = rλ(t)− ∂H(p∗, q∗, λ, t)

∂p
(5.3.8)

Now let us introduce the main assumption for this chapter:

Assumption 18. The market price is sticky.

Sticky is a term used in economics to describe a situation in which a variable is
resistant to change. Wages and prices can be sticky. For example, in the absence
of competition, firms rarely lower prices, even when production costs decrease (i.e.
supply increases) or demand drops. Instead, when production becomes cheaper,
firms take the difference as profit, and when demand decreases they are more likely
to hold prices constant, while cutting production, than to lower them. Therefore,
prices are sometimes observed to be sticky downward. Prices in an oligopoly can

4More precisely about control theoretic methods by infinite time horizon in Chapter 3 of Dockner
et al. (2000).
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often be considered as sticky-upward. The kinked demand curve, resulting in elastic
price elasticity of demand above the current market clearing price, and inelasticity
below it, requires firms to match price reductions of their competitors to maintain
market share.

Economists have tried to model sticky prices in different ways. Models with
sticky prices can be classified as either time-dependent, where firms change prices
with the passage of time and decide to change prices independently of the economic
environment, or state-dependent, where firms decide to change prices in response to
changes in the economic environment. The differences can be thought as differences
in a two-stage process: in time-dependent models, firms decide to change prices and
then evaluate market conditions; in state-dependent models, firms evaluate market
conditions and then decide how to respond. Section 5.9 explains more precisely the
role of the price stickiness for our whole analysis.

5.3.2 Modeling approach

In the previous section we have introduced all important functions in order to de-
scribe the dynamic system. Let us turn to our model and assume that demand is
linear in price and the game is played over an infinite interval of time. We denote
the output of each firm i as qi ≥ 0, i = 1, 2.

In the spirit of Fershtman and Kamien (1987)5 we define the cost functions as
quadratic in output, but allow them to be asymmetric for both downstream firms:

C(qi(t)) = wiqi(t) +
1

2
q2
i (t), (5.3.9)

where wi ∈ (0, a) is the wholesale price that downstream firm i pays to the supplier,
it is a fixed value that was negotiated as shown in Chapter 2 and qi(t) is the output
rate of firm i at time t.

In the analysis of the static model the commodity price p(t) in period t is related
to the industry output by continuous and differentiable inverse demand function,
which has the following linear form:

p(t) = a− b(q1(t) + q2(t)) a, b > 0 (5.3.10)

Let p̃(t) denote the price indicated by the inverse demand function for the given
level of output:

p̃(t) = a− (q1(t) + q2(t)), 6 a > 0 (const.) (5.3.11)

Additionally we denote p(t) as the current market price. Assuming that there is a
price stickiness in the model, the price p̃(t) will be different from the current price
level p(t). The key feature of the price stickiness is that market price does not adjust
instantaneously to the price indicated by the demand function.7 Using the model
of Simaan and Takayama (1978) and Fershtman and Kamien (1987) we present the

5See also Dockner et al (2000), pp. 267-273.
6b=1 is a usual assumption made to simplify the analysis.
7This is in contrast to the standard Cournot model where the market price adjusts instanta-

neously.
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change in price by the differential equation shown below, where the evolution of the
market price over time is a function of the difference between the current market
price and the price specified by the demand function for each level of industry output.

ṗ(t) =
∂p(t)

∂t
= s[p̃(t)− p(t)] = s[a− q1(t)− q2(t)− p(t)], (5.3.12)

p(0) = p0

where ṗ(t) is a state variable and s ∈ (0,∞) denotes the speed in which price
converges to its level on the demand function. For larger values of s the market price
adjusts along the demand function more quickly. In the limiting case s =∞ static
demand and dynamic demand coincide and yield the same price, i.e, lims→∞ p(t) =
a− q1(t)− q2(t).

Simaan and Takayama (1978) show that the dynamic demand function shown
in (5.3.12) has the same properties (locally) as the static one, i.e., an increase (de-
crease) in total market supply causes a decrease (increase) in the market price of
the commodity.

The instantaneous payoff function of firm i at time t is:

Fi(t) = qi(t)[p(t)− wi −
1

2
qi(t)] (5.3.13)

So under the above assumptions, if t ∈ [0,∞], the objective of each firm i is to
maximize:

Ji(qi, qj) =

∫ ∞
0

e−rt
[
p(t)qi(t)− wiqi(t)−

1

2
q2
i (t)

]
dt, r > 0, i = 1, 2 (5.3.14)

subject to:
ṗ(t) = s[p̃(t)− p(t)] = s[a− q1(t)− q2(t)− p(t)]
p(0) = p0

qi(t) ≥ 0

Hence, each firm i faces the following maximization problem:

max
qi(t)

Ji(qi, qj) =

∫ ∞
0

e−rtqi(t)

[
p(t)− wi −

1

2
qi(t)

]
dt, (5.3.15)

subject to:
ṗ(t) = s[p̃(t)− p(t)]
p(0) = p0

p(t) ≥ 0

In order to investigate the role of the speed of adjustment s, Fershtman and Kamien
(1987) solve (5.3.12) for p(t), substitute it into (5.3.14) and finally get the following
equation:

Ji(qi, qj) =

∫ ∞
0

e−rt
{

[a− q1(t)− q2(t)] qi(t)−
ṗ(t)qi(t)

s
− wiqi(t)−

1

2
qi(t)

2

}
dt

(5.3.16)
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From equation (5.3.16) it is obvious that firms face a downward sloping linear inverse
demand function but the decline in price along it, as a firms’ level of output increases,

is retarded when s is finite. But if s → ∞, the term
ṗ(t)qi(t)

s
vanishes and price

adjusts instantaneously along the demand function.8

There are two major strategies in the literature which are appropriate to solve
the problems given in (5.3.15). These are open-loop and feedback strategies, which
will be presented in the next sections. As we have assumed the linear quadratic
structure at the beginning of our analysis, it will be possible to obtain explicit
analytical results for both kinds of equilibrium strategies.

These strategies in the form of selecting the control variables q1 and q2 are most
commonly employed in the application of the theory of differential games. Open-
loop and feedback are terms which are used to distinguish between two different
information structures in games. Using the feedback strategies players can run their
play at time t relying on the history of play until that date, while open-loop strategies
are functions of the calendar time alone.

In order to choose the appropriate strategy one must determine the information
structure of the game. If the players never observe any other history than their
own, and they are not able to revise their strategies at any subsequent point in time
all strategies in such case are open-loop strategies and Nash equilibrium is in open-
loop strategy. Equilibrium in open-loop strategy is called open-loop equilibrium.
The Nash equilibrium open-loop strategies are relatively easy to determine as they
involve a straightforward application of the standard optimal control methods. The
choice of the equilibrium strategy will be discussed in Section 5.8.

5.4 Equilibria in static games

5.4.1 Preliminaries

Differently from the problems with a single decision maker there is no unique so-
lution concept for nonzero-sum differential games. One distinguishes, for example,
Nash and Stackelberg equilibrium concepts, depending on the players’ strategic in-
teractions. The information structure is very important by choosing the solution
concept in the oligopoly theory. In the context of our game, the choice of infor-
mation structure is more related to the concept of strategy spaces and differs from
what is known as the economics of information.

In the previous section we have already described the maximization problem
which is needed to be solved. We have also briefly discussed two strategies that
are mostly used in the literature to solve such problems. In order to analyze and
compare the results of the dynamic game which we shall obtain in the next sections
with the results of the static game, let us consider the last one more precisely.

On this stage let us turn to the static game of duopolistic competition. As a
point of reference we first compute the static Cournot oligopoly price and quantities
and then the static equilibrium quantities and price by perfect competition specified
for the cost and demand functions given in equations (5.3.9) and (5.3.11). For

8More precisely in Fershtman and Kamien (1987), p. 1153.
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our forthcoming analysis it is important to distinguish the cases of symmetric and
asymmetric production costs.

5.4.2 Symmetric production costs

Now let us consider the case of symmetric production costs wi = wj.

• By Cournot competition with N firms there are the following equilibrium
quantities and price:

q∗C =
a− w
N + 2

, p∗C =
2a+Nw

N + 2
(5.4.1)

For N = 2:

q∗C =
a− w

4
, p∗C =

a+ w

2
(5.4.2)

• By perfect competition with N firms there are the following equilibrium price
and quantities:

p∗perf =
a+Nw

N + 1
, q∗perf =

a− w
N + 1

(5.4.3)

The market price and each firm’s profit decrease with the number of firms. Further-
more, since the market price decreases with N , so does the aggregate profit. Indeed,
when the number of firms becomes very large (N → ∞), the market price tends
to the competitive price w. Thus, Cournot equilibrium with large number of firms
is approximately competitive. This is natural, because each firm has only a small
influence on the price and thus acts almost like a price-taker.

If N = 2 and both firms act like price-takers there are the following equilibrium
price and quantities:

p∗perf =
a+ 2w

3
, q∗perf =

a− w
3

(5.4.4)

5.4.3 Asymmetric production costs

In the case of asymmetric production costs wi 6= wj withN = 2 we have the following
equilibria

• By Cournot competition:

q∗Ci =
2a+ wj − 3wi

8
, p∗C =

2a+ wi + wj
4

(5.4.5)

• By perfect competition:

q∗perfi =
a+ wj − 2wi

3
, p∗perf =

a+ wi + wj
3

(5.4.6)

These results are important for our future analysis, as we shall compare them with
the results obtained from the analysis of the dynamic game.
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5.5 Strategy spaces in differential game theory

On this stage let us make some useful definitions of the strategy spaces for the
forthcoming analysis of the differential game defined below. The definitions are
partly taken from Fershtman and Kamien (1987) and Dockner et al (2000). Also
Basar and Olsder (1982) provide a detailed discussion of strategy spaces that are
frequently employed in economic applications of differential game theory.

For the rest analysis the superscript OL indicates the open-loop Nash equilib-
rium, F indicates the feedback and CL the closed-loop Nash equilibrium of the
relevant variables.

1) Open-loop strategy space

Definition 5.5.1. The open-loop strategy space for player i is given as

SOLi = {qi(t, p0)|qi(t, p0) is a piecewise continuous function of time t for all t ∈ [0,∞)} .

The open-loop strategies can be characterized as path strategies. Each player
chooses a path of action qi(t, p0) to which he commits himself at the outset of the
game. Nash equilibrium in such strategies is a pair of paths, such as each player’s
path is the best response to its rival’s path.

Definition 5.5.2. An open-loop Nash equilibrium for the above game is a pair of
open-loop strategies (q∗OL1 , q∗OL2 ) ∈ SOL1 × SOL2 such as for every qi ∈ SOLi :

J1(q∗OL1 , q∗OL2 ) ≥ J1(q1, q
∗OL
2 ) and J2(q∗OL1 , q∗OL2 ) ≥ J2(q∗OL1 , q2) (5.5.1)

Each firm i maximizes Ji(qi, qj) in equation (5.3.14), given qj(t). Hence, the
equilibrium in the market is a pair of the open-loop strategies, which simultaneously
solve two optimization problems - for player i and j.

It is well known that a Cournot-Nash equilibrium in open-loop strategies may be
dynamically inconsistent if one or several firms deviate from their equilibrium solu-
tion for some time.9 To avoid the possibility of dynamic inconsistency, a differential
game in the open-loop strategy space requires that the firms are obliged to use their
original path strategies over the entire planning horizon. However, this behavioral
restriction may give rise to an unrealistic representation of oligopolistic competition
in some industries.

2) Feedback and closed-loop strategy spaces

The class of strategies in which the control depends on the initial condition as well
as the state and time is called closed-loop.10

In economics a feedback Nash equilibrium is far more interesting and important
than an open-loop Nash equilibrium, since the latter requires precommitment, while

9More precisely in Reinganum and Stokey (1985).
10For a discussion see Basar and Oldser (1982) or Mehlmann (1988).
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the former does not. In differential games, assuming the existence and differentia-
bility of value functions, the derivation of a feedback equilibrium is facilitated by
solving the Hamilton-Jacobi equation with respect to the value functions. From a
practical point of view in many differential games it is very difficult to solve the
Hamilton-Jacobi equation, because, in general, it consists of a system of simulta-
neous partial differential equations. As a result, feedback equilibria are primarily
obtained in a special class of differential games so that one can ”guess” value func-
tions and feedback strategies that solve the equation.11

It is well known that a Cournot-Nash equilibrium in feedback strategies is dy-
namically consistent even if one or several firms do not use their equilibrium solution
for some time. A feedback Cournot-Nash equilibrium is said to be subgame perfect
because the decision rule of each firm is the optimal response to the decision rules
selected by the other players, when it is viewed from any intermediate time-state
pairs. It is, however, difficult to determine the feedback equilibria for general func-
tional forms.12 The property of being subgame perfect means that after each player
actions have caused the state of the system to evolve from its initial state to a new
state, the continuation of the game with this new state thought as the initial state
may be regarded as a subgame of the original game. A feedback strategy allows
the players to do their best in this subgame even if the initial state of the subgame
evolved through prior suboptimal actions. Thus, a feedback strategy is optimal not
only for the original game as specified by its initial conditions but also for every
subgame evolving from it.13

The difference between feedback and closed-loop decision rules lies in the fact
that closed-loop solutions depend on the initial state (price), while feedback solutions
do not. The following definitions of the strategy spaces are taken from Dockner
(1988).14

Definition 5.5.3. The feedback strategy space for player i is given as

SFi = {qi(t, p(t)) | qi(t, p(t)) is a piecewise continuous function of time t and

Lipschitz-continuous with respect to p(t) for all (t, p) ∈ [0,∞)×<} .

Definition 5.5.4. The closed-loop strategy space for player i is given as

SCLi = {qi(t, p(t), p0) | qi(t, p(t), p0) is a piecewise continuous function of time t and

Lipschitz-continuous with respect to p(t) for all (t, p) ∈ [0,∞)×<} .

Definition 5.5.5. A closed-loop Nash equilibrium is a pair of closed-loop strategies
(q∗CLi , q∗CLj ) ∈ SCLi × SCLj such as for every possible initial condition (p0, t0):

Ji(q
∗CL
i , q∗CLj ) ≥ Ji(qi, q

∗CL
j ),

for every qi ∈ SCLi .

Basar and Olsder (1982) give an explanation about the difference among these
equilibrium solutions.15

11More in Tsutsui and Mino (1990).
12More precisely in Reinganum and Stokey (1985).
13More in Kamien and Schwartz (1991), p. 275.
14p. 50.
15Basar and Olsder (1982), pp. 318-327, and Chapter 6.
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5.6 Equilibria in dynamic games

5.6.1 Open-loop information structure

5.6.1.1 Preliminaries

Considering our model let us first assume that the players have an open-loop in-
formation structure. That means that players must formulate their actions at the
moment the system starts to evolve and these actions cannot be changed once the
system is running. Therefore, the players have to optimize their performance based
on the information that they only know: the differential equation and its initial
state.

In Cournot differential game with sticky prices depending on whether the first
order condition on controls taken with respect to the output level of any given firm
contains the output of its rival or not one obtains either the instantaneous best-
response function or best-response at the steady state. An instantaneous reaction
function characterizes the optimal behavior of each player at any time during the
game, while with best-response at the steady state one only observes player i’s best
response at the steady state equilibrium.

In the forthcoming section we analyze the underlying model in order to find the
best-response functions in the open-loop game. To determine an open-loop Nash
equilibrium (q∗1(·), q∗2(·)) let us define the current value Hamiltonian.

The Hamiltonian function for each player i is:

Hi(t) =

{
qi(t)

[
p(t)− wi −

1

2
qi(t)

]
+ sλi(t)

[
a−

2∑
j=1

qj(t)− p(t)

]}
(5.6.1)

To find the best-response function let us consider the first-order derivative of (5.6.1)
with respect to qi(t) and obtain the first necessary condition for an open-loop equi-
librium:

∂Hi(t)

∂qi(t)
= p(t)− wi − qi(t)− λi(t)s

!
= 0 (5.6.2)

So the optimal output by the open-loop strategy for each firm i is:16,17

qi(t) =

{
p(t)− wi − λi(t)s, if p(t) > wi + λi(t)s

0, otherwise
(5.6.3)

Equation (5.6.3) states that each player determines his instantaneous production
rate according to the rule that marginal revenue equals marginal cost. In this dy-
namic setting, marginal revenue consists of two terms. The instantaneous marginal
revenue is p(t), and from this revenue one subtracts the product of the costate and
the adjustment speed parameter λi(t)s. This product represents the long-run effect

16p(t) and qi(t) are assumed to be non-negative.
17On the base of equation (5.6.3) it is not possible to create the best-response function of player

i at time t, so we need to consider the adjoint condition for the equilibrium, which is given in
equation (5.6.5).
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of a marginal change in the current production rate since the costate has the inter-
pretation of a shadow price (an imputed value) of the state variable. wi + qi(t) in
equation (5.6.3) is the instantaneous marginal cost.

The second condition for the equilibrium we obtain from the following equation:

λ̇(t) = rλ(t)− ∂H(p∗, q∗, λ, t)

∂p(t)
(5.6.4)

So that we obtain the following costate equations

−∂Hi(t)

∂p(t)
= λ̇i(t)− rλi(t) (5.6.5)

⇔ −qi(t) + λi(t)s = λ̇i(t)− rλi(t)

⇔ λ̇i(t) = −qi(t) + λi(t)s+ rλi(t)

⇔ λ̇i(t) = λi(t)(s+ r)− qi(t)

The transversality condition implies:

lim
t→∞

e−rtλi(t) = 0 (5.6.6)

Differentiating (5.6.2) with respect to t we obtain:(
∂Hi(t)

∂qi(t)

)
∂

∂t
=
∂p(t)

∂t
− ∂qi(t)

∂t
− s∂λi(t)

∂t
= 0 (5.6.7)

⇔ ṗ(t)− q̇i(t)− sλ̇i(t) = 0

⇔ q̇i(t) = ṗ(t)− sλ̇i(t)

Plugging it into equation (5.6.5) we get:

q̇i(t) = ṗ(t)− s [(r + s)λi(t)− qi(t)] (5.6.8)

Using the law of motion of the price ṗ = s [p̃(t)− p(t)] as well as p̃(t) = a−qi(t)−qj(t)
and sλi(t) = p(t)−wi−qi(t) which we obtained earlier and plugging these equations
into (5.6.8) yields:

q̇i(t) = s [a− qj(t)− p(t)]− (r + s) [p(t)− wi − qi(t)] (5.6.9)

The first and the second equations in (5.6.10) provide a system of three ordinary
differential equations, defined in the feasible region of the (p, q1, q2) space. At a
steady state market price p∗OLss we must have ṗ(t) = q̇i(t) = q̇j(t) = 0.

ṗ(t) = s [a− qi(t)− qj(t)− p(t)]
q̇i(t) = s [a− qj(t)− p(t)]︸ ︷︷ ︸

qi(t)

−(s+ r) [p(t)− wi − qi(t)]

ṗ(t) = q̇i(t) = q̇j(t) = 0

(5.6.10)
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Solving this system of equations yields:

2sqi(t) + rqi(t) = (s+ r)p(t)− wi(s+ r)

⇔ qi(t)(2s+ r) = (s+ r) [a− qi(t)− qj(t)− wi]
⇔ qi(t)(3s+ 2r) = (s+ r) [a− qj(t)− wi]

⇔ qBRi (t) =
(s+ r) [a− qj(t)− wi]

3s+ 2r
(5.6.11)

qBRi (t) is a best-response function of firm i at the open-loop equilibrium which has
the negative slope:

∂qBRi (t)

∂qj(t)
=
−(s+ r)

3s+ 2r
< 0, ∀s, r ≥ 0 (5.6.12)

From equation (5.6.12) it is obvious that the slope in absolute value is everywhere
decreasing in s.

5.6.1.2 Open-loop Nash equilibrium

As we have already mentioned at the beginning we are interested in equilibrium
results for cases of symmetric and asymmetric production costs. The first case,
namely w1 = w2 for the analogous game was investigated by Fershtman and Kamien
(1987). For our future analysis let us use their Theorem which is presented below:18

Theorem 5.6.1. There is a unique stationary open-loop Nash equilibrium for the
above game. The price at this equilibrium is:

p∗OLss =
3rp∗perf + 4sp∗C

4s+ 3r
(5.6.13)

and the firms’ strategies are given by

q∗OLss =
(a− w)(s+ r)

4s+ 3r
, if a ≥ w (5.6.14)

Assuming that both firms have identical cost Fershtman and Kamien (1987)
prove that the open-loop equilibrium strategies are symmetric, namely qi(t) =
qj(t) = q(t).19

In order to obtain an equilibrium price trajectory one must differentiate the dy-
namics ṗ(t) = s(a− [q1(t) + q2(t)]− p(t)) with respect to time and then substitute
into this expression the quadruple (λ(t), λ̇(t), q(t), q̇(t)) given by the necessary con-
ditions described above. The result is the following linear second order differential
equation for the state p(t), which the equilibrium price trajectory must satisfy

p̈(t) + (s− r)ṗ(t)− (s2 + 3s(s+ r))p(t) = −
[
s2a+ s(2w + a)(s+ r)

]
(5.6.15)

A particular solution of (5.6.15) is given by

p(t) =
− [s2a+ s(2w + a)(s+ r)]

−(s2 + 3s(s+ r))
,

18Theorem 1 of Fershtman and Kamien (1987), p. 1155.
19ibid., Appendix 1, p. 1162.
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after the simple algebraic manipulation it is clear that it is the steady state equilib-
rium price given in equation (5.6.13).

The characteristic equation associated with the homogeneous part of equation
(5.6.15) is given by

µ2 + (s− r)µ+ (−s2 − 3s(r + s)) = 0 (5.6.16)

It is straightforward that equation (5.6.16) possesses two real roots - one of them is
positive and one is negative. Taking the stable solution and using the initial price
p(0) = p0, the following price trajectory

p∗(t) = p∗OLss + (p0 − p∗OLss )ek1t, (5.6.17)

with

k1 = −
(s− r) +

√
(s− r)2 − 4(−s2 − 3s(r + s))

2

is the open-loop Nash equilibrium price trajectory. The price trajectory p∗(t) con-
verges to the steady state level p∗OLss for any value of the initial price p0. The steady
state is globally asymptotically stable.20

As we have already mentioned Fershtman and Kamien (1987) consider only the
case of symmetric production costs and basing on this statement they prove that
the firms’ strategies are also symmetric. In our model which was analyzed in Chap-
ter 2 the existence of the asymmetric bargaining power entails the asymmetry in
the production costs. In order to make our analysis complete we consider the case
of asymmetric production costs also in the dynamic games.

Thus considering the case of asymmetric production costs wi 6= wj we use equa-
tion (5.6.11). In such situation we cannot use the symmetry in firms’ strategies
proved by Fershtman and Kamien (1987). Therefore, we state the following propo-
sition:

Proposition 5.6.1. In the open-loop strategy if both firms have asymmetric produc-
tion costs there is a unique steady state open-loop Nash equilibrium with strategies
and price given below:

q∗OLi ss =
(s+ r) [(3s+ 2r)(a− wi)− (s+ r)(a− wj)]

(2s+ r)(4s+ 3r)
(5.6.18)

p∗OLss =
4sp∗C + 3rp∗perf

4s+ 3r
(5.6.19)

Proof. The proof follows from the Theorem 1 of Fershtman and Kamien (1987),
but for the case of asymmetric production costs which causes the asymmetry in the
firms’ strategies.

Hence, we obtain that the open-loop steady state equilibrium strategies are

q∗OLi ss =
(s+ r)(a− q∗OLj − wi)

3s+ 2r
i, j ∈ {1, 2} , i 6= j (5.6.20)

20More in Fershtman and Kamien (1987) p. 1156; Dockner (2000) pp. 269-270.
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After plugging q∗OLj ss into (5.6.20) we can find that firm i’s equilibrium level of
output is:

q∗OLi ss =
[(3s+ 2r)(a− wi)− (s+ r)(a− wj)] (s+ r)

(3s+ 2r)2 − (s+ r)2
(5.6.21)

Given the linear demand, the open-loop equilibrium price is p∗OLss = a− q∗OLi ss − q∗OLj ss .

Plugging q∗OLi ss and q∗OLj ss in the above equation we obtain the steady state equi-
librium price in open-loop strategy with asymmetric production costs:

p∗OLss =
s(2a+ wi + wj) + r(a+ wi + wj)

4s+ 3r
=

4sp∗C + 3rp∗perf

4s+ 3r
(5.6.22)

5.6.2 Feedback information structure

5.6.2.1 Preliminaries

In the previous section we applied the open-loop strategy to solve the problem
formulated in equation (5.3.15). In the forthcoming sections we consider first the
feedback and then present the closed-loop solution. We use the same model as in
the previous section but equilibrium strategies (q∗i , q

∗
j ) are defined on the state space

instead of time domain.
As it has been already mentioned before, the feedback strategies are functions of

the current price and they are subgame perfect. Feedback solutions satisfy a kind
of ”principle of optimality” and are found by using backward induction.21

5.6.2.2 Feedback (subgame perfect) Nash equilibrium

In this section we solve our problem using the HJB equations, which are given by

rV i(p) = max

{
(p− wi)qi −

1

2
q2
i + s

∂V i(p)

∂p

{
a−

2∑
j=1

qj(p)− p

}
| qi, qj ≥ 0

}
,

(5.6.23)
where i, j ∈ {1, 2} and i 6= j; V i(p) is the game value of player i associated with
the initial price p. Because of the stationarity, the value functions depend on p
only. Performing the maximization indicated in the HJB equation yields a unique
Markovian output strategy:

qi(p) =

{
0, if p ≤ wi + sV i

p (p) case A

p− wi − sV i
p (p), if p > wi + sV i

p (p) case B
(5.6.24)

Substituting from (5.6.24) into the term in curly brackets on the right-hand side of
the HJB equation yields the following differential equations for the value function:

A: rV i(p) = sV i
p (p)(a− p) (5.6.25)

21Dockner (1988), p. 54.
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B: rV i(p) = (p−wi)(p−wi−sV i
p )−1

2
(p−wi−sV i

p )2+sV i
p

[
a− 3p+ wi + wj + sV i

p + sV j
p

]
Starting with case (B) we conjecture that the quadratic value functions of the fol-
lowing form

V i(p) =
1

2
Kip

2 − Eip+ gi (5.6.26)

solve the given HJB equations. Here Ki, Ei and gi are constants to be determined.{
V i
p (p) = Kip− Ei
V j
p (p) = Kjp− Ej

(5.6.27)

Substituting the value functions given by (5.6.26), as well as their first order deriva-
tives, into the HJB equations in case (B) provides a set of conditions that must be
satisfied by three constants Ki, Ei and gi.

Substituting (5.6.27) into (5.6.25 case (B)) yields:

1

2
rKip

2 − rpEi + rqi = (p− wi − sKip+ sEi)(p− wi) (5.6.28)

−1

2
(p−wi−sKip+sEi)

2 +(sKip−sEi)(a−3p+wi+wj +sKip−sEi+sKjp−sEj)

After particular algebraic calculations we obtain the following equations:

1

2
rKip

2 − rpEi + rqi = (
1

2
− 3sKi + s2KiKj +

1

2
s2K2

i )p2 (5.6.29)

+[3sEi − s2KiEi − 2s2KiEj − wi + sKi(a+ wi + wj)]p

+
1

2
wi +

(
1

2
sEi + sEj − a− wi − wj

)
Ei

The requirement that these equations are satisfied for all values of p implies that

rKi = 1− 6sKi + 2s2KiKj + s2K2
i

⇔ s2K2
i + (2s2Kj − 6s− r)Ki + 1 = 0 (5.6.30)

Equating the coefficients of p in equation (5.6.29) we obtain the following expression
for Ei

−rEi = 3sEi − s2KiEi − 2s2KiEj − wi + sKia+ sKiwi + sKiwj, (5.6.31)

such that

Ei =
sKi(a+ wi + wj − 2sEj)− wi

s2Ki − 3s− r
(5.6.32)

Substituting the value of Ej into Ei given in equation (5.6.32) leads to the following
expression:

Ei =
2s2Kiwj − wi(s2Ki − 3s− r)− sKi(a+ wi + wj)(s

2Ki + 3s+ r)

(3s+ r + s2Ki)(3s+ r − 3s2Ki)
(5.6.33)
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Now let us turn back to equation (5.6.30). Rewriting it for K1 and K2 yields

s2K2
1 + 2s2K1K2 − 6sK1 − rK1 + 1 = 0 (5.6.34)

s2K2
2 + 2s2K1K2 − 6sK2 − rK2 + 1 = 0 (5.6.35)

Subtracting the second one from the first one yields

s2K2
1 − s2K2

2 − 6sK1 + 6sK2 − rK1 + rK2 = 0 (5.6.36)

such as
(K1 −K2)

[
s2(K1 +K2)− (6s+ r)

]
= 0 (5.6.37)

This equation implies that either K1 = K2, then by substitution into q∗i = p−wi −
sV i

p (p) yields to

q∗i = p− wi − s(Kp− Ei) = (1− sK)p+ sEi − wi

and equation (5.6.30) is of the following form

s2K2 + 2s2K2 − (6s+ r)K + 1 = 0 ⇒ 3s2K2 − (6s+ r)K + 1 = 0 (5.6.38)

Then solving this quadratic equation leads to

K =
(6s+ r)±

√
(6s+ r)2 − 12s2

6s2
(5.6.39)

Hence, we constitute a subgame perfect feedback Nash equilibrium for the considered
dynamic game with

q∗i = (1− sK)p+ (sEi − wi), (5.6.40)

where K and Ei are given in equations (5.6.39) and (5.6.33), respectively. In
Appendix A.3 we show that with K given in equation (5.6.39) with minus sign
the Nash equilibrium is asymptotically stable; we also show that with K1 6= K2,
s2(K1 +K2)− (6s+ r) = 0 the obtained equilibrium is not asymptotically stable.

Equation (5.6.40) shows the obtained output strategies of both firms. The results for
case (B) are valid only if the output is positive, namely if (1−sK)p+(sEi−wi) > 0,
which (analogous to Fershtman and Kamien (1987)) means that

p ≥ p̂ :=
wi − sEi
1− sK

(5.6.41)

From equations (5.3.12) and (5.6.40) the steady state feedback equilibrium price in
case (B) is

p∗Fss =
a− s(Ei + Ej) + wi + wj

3− 2sK
(5.6.42)

Let us now turn to the case (A) where p0 < p̂ and optimal outputs are zero. Dockner
(2000) shows that solving the HJB equation in case (A) shown in equation (5.6.25)
yields

V (p) = D0(a− p)−r/s, (5.6.43)
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where D0 is constant of integration. Let us define V̂ = V (p̂). Continuity of the
value function implies the boundary condition V̂ = D0(a − p̂)−r/s. Therefore for
case (A) we obtain the value function

V (p) = V̂

(
a− p̂
a− p

)r/s
for p ≤ p̂ (5.6.44)

Recall that we assumed a > wi, i = 1, 2. Exploiting this assumption one can show
that a > p̂ and, since the Nash equilibrium price is increasing over time, this price
remains in the interval [0, p̂] only for a finite period of time. At some instant of time,
the price will exceed the level p̂ and the strategy of zero output is switched to the
positive output strategy. This means that the only possible steady state is the one
given by (5.6.42). In this steady state production rates are positive.22

Summarizing the above obtained results and similar to the paper of Fershtman
and Kamien (1987) but with extension to the case of asymmetric production costs
we state the following theorem

Theorem 5.6.2.

q∗i (p) =

{
0, if p ≤ p̂,

(1− sK)p+ (sEi − wi), if p > p̂
(5.6.45)

K =
r + 6s−

√
(r + 6s)2 − 12s2

6s2
(5.6.46)

Ei =
2s2Kwj − wi(s2K − 3s− r)− sK(a+ wi + wj)(s

2K + 3s+ r)

(3s+ r + s2K)(3s+ r − 3s2K)
(5.6.47)

p̂ =
wi − sEi
1− sK

(5.6.48)

Then (q∗i (p), q
∗
j (p)) constitutes a global asymptotically stable feedback (subgame per-

fect) Nash equilibrium for the considered infinite horizon dynamic game.

Theorem 5.6.3. In the case of asymmetric production costs the steady state feedback
equilibrium price converges to a price

p∗Fss =
4p∗C + 3

√
2/3p∗perf

3
√

2/3 + 4
(5.6.49)

Proof. There is a steady state feedback Nash equilibrium price given by

p∗Fss =
a− s(Ei + Ej) + wi + wj

3− 2sK
(5.6.50)

22Precisely in Dockner (2000), Chapter 10.
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Analogous to Fershtman and Kamien (1987) let us make the following notations:
Let β = lims→∞ sK, αi = lims→∞ sEi and αj = lims→∞ sEj. Using equation (5.6.46)

yields that β = 1−
√

2/3. Similarly, from (5.6.47) we obtain

αi =
2βwj − βwi + 3wi − β(a+ wi + wj)(β + 3)

(3 + β)(3− 3β)
(5.6.51)

From equations (5.6.46) and (5.6.47) we obtain

lim
r→0

sK = β

lim
r→0

sEi = αi

lim
r→0

sEj = αj

Thus, as s→∞ or r → 0 the equilibrium price approaches

p∗Fss =
a− αi − αj + wi + wj

3− 2β
(5.6.52)

Substituting αi and αj into p∗Fss yields

p∗Fss =
(a+ wi + wj)(3− β)− (wi + wj)

3(1− β)(3− 2β)

After some transformations we obtain

p∗Fss =
(2a+ wi + wj) + (a+ wi + wj)(1− β)

3(1− β)(3− 2β)

Substituting the value of β into the above equation yields

p∗Fss =
4p∗C + 3

√
2/3p∗perf

3
√

2/3 + 4
(5.6.53)

5.6.3 Closed-loop information structure

The aim of this subsection is to answer the question of how do the results from
the previous section change if the firms play closed-loop but do deviate from the
subgame perfect equilibrium? To answer this question we consider a particular linear
affine closed-loop solution.23

The Hamiltonian function of firm i is the same as given by (5.6.1) with the same
initial and transversality conditions.

23Beside this particular closed-loop solution there exist uncountably many other closed-loop
solutions, i.e., Nash equilibria are characterized by informational non-uniqueness (see also Basar
and Olsder (1982)).
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To solve the optimization problem let us consider the following FOC and hence
we obtain the same result (5.6.2) as in the open-loop equilibrium:

∂Hi

∂qi
= p− wi − qi − λis

!
= 0 (5.6.54)

That yields to:

qCLi =

{
p− wi − λis, if p > wi + λis

0, otherwise
(5.6.55)

The kinematic equation for qCLi is the same as in the case of the open-loop strategy:

q̇i(t) = ṗ(t)− sλ̇i(t) (5.6.56)

Differently from the open-loop solution now by deriving the adjoint equations we
have to take into account the price dependency of the optimal strategies. The adjoint
conditions for the optimum, which characterize the interaction between both firms,
are shown below:

−∂Hi

∂p
− ∂Hi

∂qj

∂qCLj
∂p

= λ̇i − rλi, (5.6.57)

Taking the derivatives of Hi and qCLj and substituting them into (5.6.57) we obtain

−∂Hi

∂p
− sλi = λ̇i − rλi (5.6.58)

Substituting (5.6.58) into (5.6.57) leads to:

λ̇i = (2s+ r)λi − qi (5.6.59)

We plug equation (5.6.54) and the definition of ṗ(t) given in (5.3.12) into (5.6.56)
and obtain:

q̇i = (qi(t) + wi)(r + 2s)− p(t)(r + 3s)− sqj(t) (5.6.60)

Applying the stationary point feature ṗ(t) = q̇i(t) = q̇j(t) = 0:

qi(t) =
p(t)(r + 3s)− wi(r + 2s) + sqj(t)

r + 2s
(5.6.61)

⇔ qi =
(r + 2s)(a− wi − qj)

2r + 5s
After some particular algebraic manipulations for the case of asymmetric production
costs we obtain

q∗CLi ss =
(r + 2s) [(a− wi)(2r + 5s)− (r + 2s)(a− wj)]

(r + 3s)(3r + 7s)
(5.6.62)

p∗CLss =
a(r + 3s) + (r + 2s)(wi + wj)

3r + 7s
(5.6.63)

If the costs are symmetric, wi = wj, we obtain the following equilibrium quantities
and price:

q∗CL =
(a− w)(r + 2s)

3r + 7s
(5.6.64)

Applying that p∗CL = a− 2q∗CL we get

p∗CL =
(r + 2s)(a+ 2w) + sa

3r + 7s
=
sa+ 6rsp∗perf

3r + 7s
(5.6.65)
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5.7 Results

We have based our dynamic game on the assumption that the speed of adjustment
s is finite. This is the assumption that makes the game we consider different from
a repeated Cournot game in its continuous time version. When s goes to infinity
the dynamic structure disappears and the price jumps instantaneously to its level
on the demand function for each level of output. Thus, for s→∞ the game can be
viewed as a repeated Cournot game in its continuous time version. On this stage
let us examine the limits of the obtained open-loop equilibria.

Hence, using the results obtained in section 5.6.1 we may state the next propo-
sition:

Proposition 5.7.1. 1. By symmetric production costs

• If s → ∞ or r → 0 the open-loop steady state equilibrium price p∗OLss

and quantities q∗OLss converge to the static Cournot equilibrium price and
quantities.

• If s → 0 or r → ∞ the open-loop steady state equilibrium price and
quantities converge to the static competitive price and quantities.

2. By asymmetric production costs

• If s→∞ or r → 0 the open-loop steady state equilibrium quantities q∗OLi ss

and the static Cournot equilibrium quantities given in (5.4.6) coincide.
The steady state open-loop equilibrium price p∗OLss converge to the static
Cournot equilibrium price.

• If s→ 0 or r →∞ the open-loop steady state equilibrium quantities q∗OLi ss

converge to the static competitive quantities. The steady state open-loop
equilibrium price p∗OLss converge to the static competitive price.

Proof. 1. wi = wj:

•
lim
s→∞

p∗OLss = lim
r→0

p∗OLss =
a+ w

2
= p∗C (5.7.1)

•
lim
s→∞

q∗OLss = lim
r→0

q∗OLss =
a− w

4
= q∗C (5.7.2)

•
lim
s→0

p∗OLss = lim
r→∞

p∗OLss =
a+ 2w

3
= p∗perf (5.7.3)

•
lim
s→0

q∗OLss = lim
r→∞

q∗OLss =
a− w

3
= q∗perf (5.7.4)

2. wi 6= wj:

•
lim
s→∞

q∗OLi ss = lim
r→0

q∗OLi ss =
2a− 3wi + wj

8
= q∗Ci (5.7.5)
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•
lim
s→∞

p∗OLss = lim
r→0

p∗OLss =
2a+ wi + wj

4
= p∗C (5.7.6)

•
lim
s→0

q∗OLi ss = lim
r→∞

q∗OLi ss =
a− 2wi + wj

3
= q∗perfi (5.7.7)

•
lim
s→0

p∗OLss = lim
r→∞

p∗OLss =
a+ wi + wj

3
= p∗perf (5.7.8)

Using results obtained in Section 5.6.3 we can state the following proposition
examining the limits of the feedback equilibria.

Proposition 5.7.2. 1. If s → ∞ or r → 0 by both symmetric and asymmetric
production costs

a) The feedback (subgame perfect) steady state equilibrium price p∗Fss is less
than the static Cournot equilibrium price.

b) The feedback equilibrium strategies are

q∗Fi =
√

2/3p+ (αi − wi)

with αi given in equation (5.6.51)

2. If s→ 0 or r →∞ by both symmetric and asymmetric production costs

c) The feedback (subgame perfect) steady state equilibrium price p∗Fss con-
verges to the static competitive price p∗perf .

d) The feedback equilibrium strategies are

q∗Fi ss = p− wi

3. Both firms will decrease their output if price decreases.

Proof. 1. a)

lim
s→∞

p∗Fss = lim
r→0

p∗Fss =
p∗perf + 2

√
2/3

1 + 2
√

2/3
< p∗C if wi = wj

lim
s→∞

p∗Fss = lim
r→0

p∗Fss =
4p∗C + 3

√
2/3p∗perf

3
√

2/3 + 4
< p∗C if wi 6= wj

The proof follows from the proof of Theorem 5.6.3, where it can be easily
seen that the obtained price p∗Fss is a convex combination of the static
Cournot equilibrium price and the static competitive price and, therefore,
is below the static Cournot equilibrium price.

b) From equation (5.6.45) applying that limr→0 sEi = αi and β = 1−
√

2/3
the result stated above is straightforward.
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2. c) From equation (5.6.42) follows

lim
s→0

p∗Fss = lim
r→∞

p∗Fss =
a+ 2w

3
= p∗perf if wi = wj

lim
s→0

p∗Fss = lim
r→∞

p∗Fss =
a+ wi + wj

3
= p∗perf if wi 6= wj

d)
lim
s→0

q∗Fss = lim
r→∞

q∗Fss = p− w if wi = wj

lim
s→0

q∗Fi ss = lim
r→∞

q∗Fi ss = p− wi if wi 6= wj

3. The obtained in our analysis feedback equilibrium strategy is an increasing
linear function of the state variable, price:

q∗Fi =
√

2/3p+ (αi − wi), (5.7.9)

with αi given in equation (5.6.51).

And finally, using the results obtained in equations (5.6.64) and (5.6.65) we may
state the following proposition for the case when firms play closed-loop but deviate
from the subgame perfect equilibrium:

Proposition 5.7.3. 1. By symmetric production costs

• If s → 0 or r → ∞ the closed-loop steady state equilibrium price p∗CLss

and quantities q∗CLss coincide with the price and quantities by perfect com-
petition p∗perf and q∗perf , respectively.

• If s → ∞ or r → 0 the closed-loop steady state equilibrium price and
quantities are given by

q∗CLss =
2(a− w)

7

p∗CLss =
3a+ 4w

7

2. By asymmetric production costs

• If s → 0 or r → ∞ the closed-loop steady state equilibrium quantities
q∗CLi ss converge to the static competitive quantities. The closed-loop steady
state equilibrium price p∗CLss converge to the static competitive price.

• If s → ∞ or r → 0 the closed-loop steady state equilibrium quantities
q∗CLi ss and the steady state equilibrium price are given by

q∗CLi ss =
6a− 10wi + 4wj

21

p∗CLss =
3a+ 2wi + 2wj

7
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Proof. 1. wi = wj:

•
lim
s→0

p∗CLss = lim
r→∞

p∗CLss =
a+ 2w

3
= p∗perf (5.7.10)

•
lim
s→0

q∗CLss = lim
r→∞

q∗CLss =
a− w

3
= q∗perf (5.7.11)

•
lim
s→∞

p∗CLss = lim
r→0

p∗CLss =
3a+ 4w

7
(5.7.12)

•
lim
s→∞

q∗CLss = lim
r→0

q∗CLss =
2(a− w)

7
(5.7.13)

2. wi 6= wj:

•
lim
s→0

q∗CLi ss = lim
r→∞

q∗CLi ss =
a− 2wi + wj

3
= q∗perfi (5.7.14)

•
lim
s→0

p∗CLss = lim
r→∞

p∗CLss =
a+ wi + wj

3
= p∗perf (5.7.15)

•
lim
s→∞

q∗CLi ss = lim
r→0

q∗CLi ss =
6a− 10wi + 4wj

21
(5.7.16)

•
lim
s→∞

p∗CLss = lim
r→0

p∗CLss =
3a+ 2wi + 2wj

7
(5.7.17)

5.8 On use of open-loop, feedback and closed-loop

strategies

In the preceding analysis we have considered different types of strategies: strategies
where players base their actions purely on the initial state of the system and time
(open-loop strategies) and strategies where players base their actions on the current
state of the system (feedback and closed-loop strategies). The implementation of
the second type of strategies requires a full monitoring of the system. To implement
these strategies each player has to know the exact state of the system at each
point of time. On the other hand, an advantage of these strategies is that as far
as the commitment issue is concerned they are much less demanding. If, due to
some external causes, the state of the system changes during the game, this has
no consequences for the actions taken by the players. They are able to respond
to this disturbance in an optimal way, in contrast to the open-loop strategy which
implies that the players cannot adapt their actions during the game in order to
account for the unforeseen disturbance without breaking their commitment. Since
all players are confronted with this commitment promise, one might expect that
under such conditions the players will try to renegotiate on the agreed decisions. So
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open-loop strategies make sense particularly for those situations where the model is
quite robust or the players can commit themselves strongly.

Generally, since both rivals cannot react to each other policies, the economic
relevance of the open-loop results is mostly rather limited. However, as a bench-
mark to see how much both parties can gain by playing other strategies, it plays a
fundamental role.

A practical advantage of the open-loop strategy is that it is, usually, numerically
and analytically more tractable than the feedback strategy.24

The feedback solution is strongly time consistent and therefore subgame perfect,
while the open-loop solution is only weakly time-consistent, i.e., it is not subgame
perfect. Basar and Olsder (1982) give a clear explanation of the difference among
these equilibrium solutions.25

Mehlmann (1988) and Reinganum (1982) show that there exist classes of games
where the closed-loop and the open-loop solutions coincide.26 But in spite of the
circumstances when these two types of strategies coincide, where the actions taken
are identical at each point of time, in general they do not.

5.9 Conclusion

The presented chapter is an alternative approach to the previous chapters in which
we considered the bargaining between the upstream supplier and two downstream
firms in the intermediate market. When the bargaining is over, all players know
their wholesale prices and the output quantities were produced, we assume that
both downstream firms enter the local market, where in the Chapter 2 and 3 they
are involved into Cournot competition and in Chapter 4 they are price competitors.
We found the equilibrium prices and quantities for both downstream firms under
the considered arts of competition.

Basing on the interpretation of our basic model shown in Chapter 2 it is straight-
forward to assume that both downstream firms are retailers in the local market.
Therefore the consideration of the price stickiness in the market is of great eco-
nomic importance.

Many recent papers modeling business cycle fluctuations or analyzing monetary
policy assume that firms adjust their prices only infrequently.27 Considering the
papers with an empirical work, which measure the price stickiness, a large number
of them have shown that certain wholesale and retail prices often go unchanged for
many months.28

The real world is characterized by sticky prices in the sense that prices do not
respond rapidly to innovations in other variables. Intuitively, the absence of compe-

24Engwerda (2005), p. 114.
25Basar and Olsder (1982), pp. 318-327, and Chapter 6.
26Chapter 4 in Mehlmann (1988); see also Fershtman and Kamien (1987); Dockner et al. (2000),

Chapter 7.
27Goodfriend and King (1997), Rotemberg and Woodford (1997), Clarida, Gali, and Gertler

(1999), Chari, Kehoe, and McGrattan (2000), Erceg, Henderson, and Levin (2000), and Dotsey
and King (2001) represent only a few examples.

28Important references include Carlton (1986), Cecchetti (1986), Kashyap (1995), Levy et al.
(1997), Blinder et al. (1998), MacDonald and Aaronson (2001), and Kackmeister (2002).
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tition or its lower intensity lets the firms rarely lower prices, even when production
costs decrease or demand drops. When production becomes cheaper, firms may take
the difference as their profit.

As it has been already mentioned at the beginning we used the paper of Fer-
shtman and Kamien (1987) for our analysis in this chapter. Their results are very
important for current research, but unfortunately they cannot be implemented into
the work directly. These results were obtained under the basic assumption that both
firms had identical production costs. Fershtman and Kamien (1987) consequently
prove that in such case the equilibrium quantities by open-loop and feedback solu-
tions for both firms will be symmetric.

With the aim to extend our previous analysis we considered the case of asymmet-
ric production costs and examined the influence of the speed adjustment parameter
as well as the discount rate on the obtained output strategies, which to our knowl-
edge were not made in the existing literature.

The main object of this chapter is to investigate whether the equilibrium prices
and quantities under symmetric and asymmetric production costs converge in the
limits to the same point and to compare the obtained results with the static model
of Cournot and perfect competition analyzed in the previous chapters and to find
the conditions under which the obtained equilibrium prices and quantities in both
dynamic and static models coincide.

We solved our differential game for different information structures using Pon-
tryagins’s maximum principle and Bellman’s dynamic programming method. We
obtained the open-loop, feedback and closed-loop equilibrium solutions. Taking into
account, that comparing with the open-loop solution by the feedback and closed-loop
solutions player passes the own strategy on the rival’s behavior; and since the feed-
back strategy is independent of the initial price p0 it is subgame perfect in the sense
of Selten (1975) whereas the closed-loop and open-loop solutions do not in general
possess this property - the difference between all solutions becomes straightforward.

We have analyzed the underlying differential game of duopolistic competition
over time under the assumption that price does not adjust instantaneously to its
level on the demand function for each level of output. Then we have considered
the difference between the steady state open-loop, feedback and closed-loop Nash
equilibria of the game, in the limit, as price adjusts instantaneously.

For each solution we were mostly interested in the relation between the static
Cournot price, the competitive price and the steady state open-loop, feedback and
closed-loop prices when the speed of adjustment reaches infinity.

Proposition 5.7.2 shows that the feedback equilibrium strategy is an increasing
linear function of the state variable, price, and therefore each player will decrease
its output when price decreases.

As we know from Fershtman and Kamien (1987) if a firm ignores the reaction
of its rival to the change in price and simply makes the Cournot assumption that
its rival output will remain at its present level, then it will make its output decision
on the basis of the residual demand curve it faces. If, on the other hand, it takes
its rival reaction to a price change into account, it will know that as it expands
its output and causes prices to fall, its rival will contract his output. Thus, its
movement down its residual demand curve will be offset somewhat by an outward

101



shift of the residual demand curve as its rival contracts his output. This, of course,
will cause the firm to optimally expand its output beyond the optimal level when
its rival reaction to a price change is ignored. Hence, the profits are higher at the
steady state open-loop equilibrium than at the steady state closed-loop equilibrium.

If s→∞ then with both symmetric and asymmetric production costs the steady
state open-loop equilibrium price coincides with the static Cournot price and open-
loop equilibrium quantities coincide with static Cournot quantities.

Considering the feedback solutions if s→∞ then by both symmetric and asym-
metric production costs the feedback (subgame perfect) steady state equilibrium
price p∗Fss is lower than the static Cournot equilibrium price. The feedback equilib-
rium strategies are

q∗Fi =
√

2/3p+ (αi − wi), (5.9.1)

with αi given in equation (5.6.51).
If s → ∞ the closed-loop steady state equilibrium price and quantities for the

symmetric and asymmetric production costs are shown in Proposition 5.7.3.
From the proof of Proposition 5.7.1 it is obvious that for the case of symmetric

production costs if the price is infinitely sticky, s → 0, the open-loop steady state
equilibrium price and equilibrium quantities coincide with the price and quantities
of the static game with perfect competition. If production costs of both firms are
asymmetric, the open-loop steady state equilibrium price converges to the perfect
competitive price of the static game, and equilibrium output strategies also converge
to the perfect competitive of the static game, but differently from the previous case
they are asymmetric for both firms.

Considering the feedback strategies for symmetric and asymmetric production
costs, we have obtained that if s → 0, the feedback steady state equilibrium price
converges to the price of the static game with perfect competition (proof of Propo-
sition 5.7.2). The equilibrium strategies are q∗Fi = p− wi, i = 1, 2.

By closed-loop strategy29 if s→ 0 the closed-loop steady state equilibrium price
and quantities under symmetric and asymmetric production costs converge to the
price and quantities of the static game with perfect competition.

Hence, if the price is infinitely sticky, under open-loop and closed-loop strategies
both firms will sell at least perfect competitive quantities q∗perfi , i = 1, 2 and under
feedback strategy at least q∗Fi = p − wi > q∗perfi , i = 1, 2 setting at least the price
pperf to such an extent that the resulting equilibrium outputs are higher in the
feedback case.

The next result shows that for all positive levels of r and for any finite s, indepen-
dent on the symmetry or asymmetry in firms’ production costs the static Cournot
price p∗C is higher than the open-loop steady state equilibrium price, concerning the
output - under the same conditions on the s and r, the static Cournot output q∗Ci
is lower than the open-loop equilibrium output.

From our analysis it can be easily seen that the equilibrium output obtained
by the feedback solution is larger than under the open-loop solution, which can be
explained by the existing possibility for the player to react on the changing behavior
of his rival by feedback strategy.

29See Proposition 5.7.3.
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Hence, for our whole analysis, knowing that the production costs of both down-
stream firms differ, the results obtained in this chapter are very important. Compar-
ing with the static model, if after the bargaining both firms enter the local market
with Cournot quantities as it was modeled in Chapter 2 they both will be better
off in the dynamic model with sticky price if it is infinitely sticky, s → 0, playing
the feedback strategy, because they will sell higher output quantity than playing
open-loop or closed-loop strategies.

If in the local market the price converges instantaneously, s→∞, then under the
open-loop strategy both firms will sell at least Cournot quantities and will obtain
profit at least equal to Cournot profit in the static model. In the context of the whole
work that means that firm 2 will sell Cournot quantity and firm 1 may produce
additional output by itself and sell it in the local market. By the feedback solution
the steady state equilibrium price converges to a price below the static Cournot
price. Fershtman and Kamien (1987) explain this difference in a following way:
”An intuitive explanation for this difference is that in the feedback strategy, which is
subgame perfect, each duopolist knows that the loss in future profits from expansion
of current output will be shared by his rival, who will attempt to at least partially
offset it by contracting his output. Thus each duopolist will expand his current output
beyond the level that he would if he alone bore the full loss in future profits. On the
other hand, when the duopolists follow open-loop strategies their ability to shift some
of the loss in future profits from expansion of current output on their rival is limited
by a commitment to an output path at the outset. This shifting of the loss in future
profits on the rival persists when the price adjusts instantaneously for the stationary
state feedback strategies but vanishes for the stationary state open-loop strategies.”
If s→∞ the steady state closed-loop equilibrium price is also lower than the static
Cournot price, therefore both firms are better off playing the open-loop strategy.
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Appendix

A.1 Supplement to section 2.4.2

As we know from Section 2.4.2 the price for downstream firm 1 is a solution to the
first order condition of function (2.4.3):

∂U(w1, w2)

∂w1

π1(w1, w2) + U(w1, w2)
∂π1(w1, w2)

∂w1

= 0 (A.1.1)

Taking the first order derivative of function w
′
1(·) with respect to w2 we obtain the

following equation the sign of which we need to determine:

∂w
′
1(w2)

∂w2

=
∂2U(w1, w2)

∂w1∂w2

π1(w1, w2) +
∂U(w1, w2)

∂w1

∂π1(w1, w2)

∂w2

(A.1.2)

+
∂U(w1, w2)

∂w2

∂π1(w1, w2)

∂w1

+ U(w1, w2)
∂2π1(w1, w2)

∂w1∂w2

Rewriting the profit functions of both players (of the upstream supplier and down-
stream firm 1) using the purchased quantities and the wholesale prices we obtain
that the sign of the right hand-side of equation (A.1.2) is positive:

sign
∂w

′
1(w2)

∂w2

= sign (A + B + C +D)

where

A =

[
∂q1(w1, w2)

∂w2

+ w1
∂2q1(w1, w2)

∂w1∂w2

+ w2
∂2q2(w1, w2)

∂w1∂w2

+
∂q2(w1, w2)

∂w1

]
π1(w1, w2)

B =
∂U(w1, w2)

∂w1

∂π1(w1, w2)

∂w2

C =
∂U(w1, w2)

∂w2

∂π1(w1, w2)

∂w1

D = U(w1, w2)

[
(p− w1)

∂2q1(w1, w2)

∂w1∂w2

− ∂q1(w1, w2)

∂w2

]
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Applying that
∂qi(w1, w2)

∂wj
> 0,

∂πi(w1, w2)

∂wi
< 0,

∂πi(w1, w2)

∂wj
> 0,

∂U(w1, w2)

∂wi
>

0 for i = 1, 2 and
∂2qi(w1, w2)

∂w1∂w2

> 0 (because the higher values of wj make qi(w1, w2)

larger and therefore the increase in wi has a smaller negative effect on qi(w1, w2)
when wj is high) we obtain that A > 0; B > 0; C < 0; the sign of D is not clear,
but we assume that even if it is negative C +D does not dominate A+B.

A.2 Proof of Theorem 4.2.1

1. For Region II A:

According to Lemma 5 (a) of Kreps and Scheinkman (1983) p̄1 = P (R(q̃2)+ q̃2)
and the equilibrium revenue of firm 1 is r(q̃2). From the proof of part (d) and
(e) follows:

The equilibrium revenue of firm i must be p × D(p). One knows that: p <
p̄1 = P (R(q̃2) + q̃2)⇒ D(p) > D(P (q̃2 +R(q̃2)) = q̃2 +R(q̃2)⇒ D(p) > q̃2.

So in equilibrium firm 2 certainly gets pq̃2. Firm 1 will not get more than

pq̃1. From Lemma 5 (a): pq̃1 = r(q̃2), so that p =
r(q̃2)

q̃1

. Firm 2 will receive

pq̃2 =
r(q̃2)q̃2

q̃1

.

As it has been mentioned earlier, the revenue of firm i is r(q̃i) = Ri(q̃j)P (Ri(q̃j)+
q̃j), where Ri(q̃j) is the corresponding Cournot best-response function, but the
revenue could also be expressed in the following way:

p
i
D(p

i
) = r(q̃i) = max

p
p(D(p)− q̃j), (A.2.1)

where p
i

is the smallest solution to equation (A.2.1).

2. For Region II B:

Using analogous arguments as in the proof of Lemma 5 (a) of Kreps and
Scheinkman (1983) we obtain that p̄2 = P (R(q̃1) + q̃1) and the equilibrium
revenue of firm 2 is r(q̃1).
Analogous to the previous part we obtain the following expression: p < p̄2 =
P (R(q̃1) + q̃1)⇒ D(p) > D(P (q̃1 +R(q̃1)) = q̃1 +R(q̃1)⇒ D(p) > q̃1.

So in the equilibrium firm 1 certainly gets pq̃1. Firm 2 will not get more than
pq̃2, but we have already known that it is equal to r(q̃1), so that pq̃2 = r(q̃1)⇒

p =
r(q̃1)

q̃2

.

Firm 1 will then receive:
r(q̃1)q̃1

q̃2

.
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A.3 Supplement to proof of Theorem 5.6.2

If K1 6= K2 in equation (5.6.37) then we have

s2(K1 +K2) = r + 6s

Substituting from q∗i (p) = p−wi−sV i
p (p) for q∗i and q∗j into the differential equation

(5.3.12) that shows the change in price in the market with sticky prices we obtain:

ṗ(t) = s[a− q1(t)− q2(t)− p(t)]

⇒ ṗ(t) = s[a− (p− wi − sV i
p (p) + p− wj − sV j

p (p))− p(t)]

⇒ ṗ(t) = s[a− 3p+ wi + wj + s(Kip− Ei +Kjp− Ej)]

ṗ− sp [sKi + sKj − 3] = s [a+ wi + wj − sEi − sEj] (A.3.1)

The particular solution to this first order equation (A.3.1) is

p̄ =
a+ wi + wj − s(Ei + Ej)

3− s(Ki +Kj)
(A.3.2)

The solution to the homogeneous part of (A.3.1) is

p(t) = Ces[s(Ki+Kj)−3]t, (A.3.3)

where C is a constant of integration.

Finally, the complete solution of (A.3.1) is

p(t) = p̄+ (p0 − p̄)es[s(Ki+Kj)−3]t, (A.3.4)

where p(0) = p0 is employed to determine the constant of integration C.

For (A.3.4) to converge to p̄ as t → ∞, to be asymptotically stable, we need that
[s(Ki +Kj)− 3] < 0. Substituting s2(K1 + K2) = 6s + r into this inequality we
obtain

6 + r/s− 3 < 0⇒ r/s+ 3 < 0,

which is not possible because both r and s are nonnegative. That means that asym-
metric closed-loop equilibrium q∗1 6= q∗2 cannot be asymptotically stable.

Considering the case with Ki = Kj. The kinematic equation is

ṗ(t) = s[a− qi(t)− qj(t)− p(t)]

⇒ ṗ(t)− sp [2sK − 3] = s(a+ wi + wj − sEi − sEj)

p̄ =
a+ wi + wj − sEi − sEj

3− 2sK
(A.3.5)

p(t) = Ces[2sK−3]t (A.3.6)
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p(t) = p̄+ (p0 − p̄)es[2sK−3]t (A.3.7)

For (A.3.7) to converge to p̄ as t → ∞, to be asymptotically stable, we need that
s [2sK − 3] < 0⇒ K < 3

2
s.

Now let us consider equation (5.6.39) with positive sign

K =
(6s+ r) +

√
(6s+ r)2 − 12s2

6s2
(A.3.8)

After some algebraic exercises we obtain K > 3/2s. Taking the negative sign

K =
(6s+ r)−

√
(6s+ r)2 − 12s2

6s2
(A.3.9)

implies that K < 3/2s, which means that with this K the equilibrium is asymptot-
ically stable.
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