
Universität Bielefeld

Technische Fakultät

AG Praktische Informatik

Index-based algorithms for motif search and
their integration in a system for differential
genome analysis
Dissertation

Michael Beckstette

Index-based algorithms for motif search

and their integration in a system for

differential genome analysis

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

der Universität Bielefeld

vorgelegte

Dissertation

von

Michael Beckstette

Bielefeld, im Juni 2007

Group for Practical Computer Science

Faculty of Technology

Bielefeld University

D-33594 Bielefeld

Germany

mbeckste@TechFak.Uni-Bielefeld.DE

Genehmigte Dissertation zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

der Technischen Fakultät der Universität Bielefeld.

Vorgelegt am 27.06.2007 von Michael Beckstette,

verteidigt und genehmigt am 14.12.2007.

Gutachter:

Prof. Dr. Robert Giegerich, Universität Bielefeld

Prof. Dr. Stefan Kurtz, Universität Hamburg

Gedruckt auf alterungsbeständigem Papier nach ISO 9706.

The reasonable man adapts himself to the world; the unreasonable one

persists in trying to adapt the world to himself. Therefore, all progress

depends on the unreasonable man.

Georg Bernard Shaw, Irish playwright.

Acknowledgments

I thank my supervisor, Robert Giegerich, for providing me with an interesting research topic and

for his scientifically support throughout my time in the Practical Computer Science group. I really

enjoyed the uncomplicated atmosphere on M3 and being part of this group.

I thank Stefan Kurtz for arising my interest in sequence analysis and in suffix based index structures

in particular, and for many stimulating discussions and a productive collaboration throughout the

last years. I further appreciate his willingness to appraise this thesis.

In particular, I am thankful to Robert Homann for productive discussions and being a great col-

league over the years, and for tolerating smoking in the office. His excellent programming skills and

deep algorithmic knowledge were of inestimable value in the development of the PoSSuM software

distribution.

Special thanks go to Alexander Sczyrba for the daily coffee breaks, the joint work on the XenDB

project, and discussions about the question whether senior pole vaulting or handball is the more

ambitious sport. Unfortunately he is still wrong in this point.

I appreciate the financial support from Intervet Innovation GmbH for the Genlight project.

Finally, I thank my parents and family for their support during my studies in Bielefeld, and Anja

for her patience with me, and for motivating me to continue working towards my Ph.D. You became

an invaluable part of my life.

i

ii

List of own publications

Peer-reviewed publications

• Michael Beckstette, Robert Homann, Robert Giegerich, and Stefan Kurtz.

Fast index based algorithms and software for matching position specific scoring matrices. In BMC

Bioinformatics 2006, 7:389. (acquired “Highly accessed” designation from publisher).

• Alexander Sczyrba*, Michael Beckstette*, Ali H. Brivanlou, Robert Giegerich, and Curtis R. Alt-

mann.

XenDB: Full Length cDNA Prediction and Cross Species Mapping in Xenopus laevis. In BMC Ge-

nomics 2005, 6:123 (BMC Genomics Research Highlight September 2005)

• Michael Beckstette, Jens Mailänder, Richard Marhöfer, Alexander Sczyrba, Enno Ohlebusch,

Robert Giegerich, and Paul M. Selzer.

Genlight: An Interactive System for High-throughput Sequence Analysis and Comparative Genomics.

In Journal of Integrative Bioinformatics (JIB) 8, (1), 2004. This article also appeared in the Yearbook

Bioinformatics 2004, ISBN 3-88579-127-7, pages 79-94.

• Alexander Sczyrba, Michael Beckstette, Robert Giegerich, and Curtis R. Altmann.

Identification of 10,500 Xenopus laevis Full Length Clones through EST Clustering and Sequence

Analysis. In Proceedings of the German Conference on Bioinformatics GCB, 2004; GI-Edition, Lecture

Notes in Informatics, P-53, ISBN 3-88579-382-2.

• Michael Beckstette, Dirk Strothmann, Robert Homann, Robert Giegerich and Stefan Kurtz.

PoSSuMsearch: Fast and Sensitive Matching of Position Specific Scoring Matrices using Enhanced

Suffix Arrays. In Proceedings of the German Conference on Bioinformatics GCB, 2004; GI-Edition,

Lecture Notes in Informatics, P-53, pages 53-64, ISBN 3-88579-382-2.

• Michael Beckstette, Alexander Sczyrba, and Paul M. Selzer.

Genlight: An Interactive System for High-throughput Sequence Analysis and Comparative Genomics.

In Proceedings of the German Conference on Bioinformatics GCB, 2004; GI-Edition, Lecture Notes

in Informatics, P-53, pages 179-186, ISBN 3-88579-382-2.

• Calin O. Marian, Stefano J. Bordoli, Marion Goltz, Rachel A. Santarella, Leisa P. Jackson, Olga

Danilevskaya, Michael Beckstette, Robert Meeley, and Hank W. Bass.

The Maize Single myb histone 1 Gene, Smh1, Belongs to a Novel Gene Family and Encodes a Protein

That Binds Telomere DNA Repeats in Vitro. In Plant Physiol. 133: 1336-1350; 2003.

*) joint first authors

iii

Other publications

• Y. He, S. Qin, X.M. Pan, M. Beckstette, and R. Giegerich

Using protein secondary structure predicition to build structural template. In CASP6 method papers,

2004

• P. Martinez, K. Malde, M. Beckstette, and J. Baguna

The origin of bilateral animals. A multigene approach. In Comparative Biochemistry and Physiology.

Abstracts of the Society for Experimental Biology Annual Main Meeting. 141: S119-S120, 2005

iv

Contents

1 Introduction 1

1.1 The continuing challenge of biosequence analyis . 1

1.2 Structure of this thesis . 4

2 Modeling concepts for sequence motifs and consensi 7

2.1 Basic definitions and nomenclature . 7

2.2 Motifs, domains, and sequence families . 7

2.3 Motif finding . 11

2.4 Regular expressions as motif descriptors . 13

2.4.1 Consensus strings . 16

2.4.2 Prosite patterns: Regular expressions for protein family assignment 16

2.5 Position specific scoring matrices . 18

2.5.1 From alignment blocks to PSSMs . 20

2.5.2 Sequence weighting procedures . 25

2.5.3 Basic PSSM construction principles . 26

2.5.4 PSSMs based on odds ratios . 28

2.5.5 Average score methods . 29

2.5.6 Explicit log-odd score methods . 31

2.5.7 Construction of amino acid PSSMs in the BLOCKS database 33

2.5.8 Wu’s minimal risk scoring matrices . 34

2.5.9 Construction of nucleotide PSSMs in the TRANSFAC database 35

2.6 Gribskov’s profile model . 36

2.7 Hidden Markov models . 38

2.7.1 Foundations of hidden Markov model theory 38

2.7.2 Profile hidden Markov models . 42

2.7.3 Profile HMM collections for sequence annotation and classification 48

2.8 Concluding remarks on sequence motif models . 50

3 Fast algorithms for matching position specific scoring matrices 53

3.1 Introduction . 53

3.2 Pattern matching with PSSMs . 54

3.3 Improved running time through the usage of lookahead scoring 55

3.3.1 Permuted lookahead scoring . 57

3.4 PSSM searching using suffix trees . 58

3.4.1 Dorohonceanu’s algorithm . 60

3.5 PSSM searching using enhanced suffix arrays: The ESAsearch algorithm 62

v

Contents

3.5.1 Analysis . 66

3.6 Further performance improvements via alphabet transformations 70

3.6.1 Reduced amino acid alphabets . 73

3.7 A unifying view on SPsearch, LAsearch, and ESAsearch 75

3.8 Finding an appropriate threshold for PSSM searching 77

3.8.1 Probabilities and expectation values . 77

3.8.2 Calculation of exact PSSM score distributions 79

3.8.3 Evaluation with dynamic programming . 80

3.8.4 Restricted probability computation . 81

3.8.5 Lazy evaluation of the permuted matrix . 81

3.9 Threshold independent PSSM matching: The k-best algorithm 86

3.10 Implementation and computational results . 89

3.11 PoSSuM software distribution . 98

3.12 Discussion and concluding remarks . 102

4 PSSM family models for sequence family classification 105

4.1 Increasing the expressiveness of PSSM-based database searches 105

4.2 Using multiple ordered PSSMs for sequence classification 106

4.3 PSSM family models . 107

4.3.1 Computation of optimal PSSM chains . 111

4.4 Integration of PSSM family models into PoSSuMsearch 112

4.5 Performance of PSSM family models for protein family classification 113

4.5.1 Employed data set and evaluation scenarios 114

4.5.2 Model construction and scoring . 116

4.5.3 Performance evaluation and results . 117

4.5.4 The significance of PSSM chain scores . 123

4.6 Accelerating HMM based database searches with PSSM family models 124

4.6.1 Model specific trusted- and noise cutoffs . 127

4.6.2 PSfamSearch: Search space reduction with PSSM family models 127

4.6.3 Evaluation and computational results . 129

4.6.4 Cutoff calibration strategies . 130

4.7 Discussion and concluding remarks on performed experiments 137

4.7.1 Comparison of pHMMs and PSSM family models 139

5 Genlight - a system for interactive, high-throughput, differential genome analysis 141

5.1 Motivation . 141

5.1.1 Genome annotation systems: Related concepts with different focus 142

5.2 Requirement definitions and design goals . 143

5.3 System architecture and implementation . 144

5.4 Concepts and functionality . 145

5.4.1 The set oriented concept . 145

5.4.2 Operations on Seq-sets and Hit-sets . 146

5.4.3 Integrated sequence analysis methods . 147

5.4.4 Integrated protein domain and family databases 150

vi

Contents

5.4.5 Supported protein classification schemes . 152

5.4.6 Gene ontologies: a unifying vocabulary for cross database queries 156

5.4.7 User defined sequence databases . 157

5.4.8 Asynchronous distributed execution of sequence analysis tasks 157

5.5 Database schema . 158

5.5.1 The internal sequence identifier concept . 162

5.5.2 The handiness of the set oriented concept . 163

5.5.3 More complex queries using computed sequence attributes 166

5.5.4 Genlight as a data warehouse . 170

5.6 The Genlight user interface . 170

5.7 Genlight case studies . 178

5.7.1 Detection and analysis of the Smh gene family in maize 178

5.7.2 Analysis of Xenopus laevis expressed sequence tag clusters 179

5.7.3 Identification of potential drug targets in Helicobacter pylori 184

5.8 Concluding remarks on Genlight . 188

5.8.1 Potential future developments and system extensions 188

6 Conclusions and prospects 193

6.1 Concluding remarks . 193

6.2 Prospects . 195

A Appendix 197

A.1 The 20 letter amino acid alphabet . 197

A.2 PROSITE pattern entry . 198

A.3 PoSSuMsearch command line interface: Quick reference 198

A.4 The PoSSuM software distribution . 199

A.4.1 File formats . 199

A.4.2 PoSSuMsearch . 203

A.4.3 PoSSuMdist . 214

A.4.4 PoSSuMfreqs . 216

A.4.5 PSSM converters . 217

A.4.6 Using the PoSSuM software distribution . 218

A.4.7 Messages and warnings . 219

A.5 Predefined Hit-set filters in the Genlight system . 221

Bibliography 223

vii

Contents

viii

List of Figures

1.1 The rising number of completely sequenced genomes 3

2.1 Mayor subunit of bacterial DNA polymerase I . 9

2.2 Domain structure of RNA polymerase II . 10

2.3 Deterministic finite state automaton . 15

2.4 C2H2 type zinc finger . 19

2.5 3MATRIX visualization for a sequence motif described by a PSSM 21

2.6 Alignment block representing a conserved region of the CaMKII protein 23

2.7 Multiple alignment of σ32 transcription factors and corresponding PSSM 24

2.8 Simple PSSM based on absolute frequencies . 27

2.9 Gribskov profiles: PSSMs with position specific gap costs 36

2.10 The Genscan hidden Markov model . 39

2.11 Transition structure of a profile HMM . 43

2.12 Correspondence between PSSM and pHMM . 44

2.13 pHMM construction from multiple alignment . 45

2.14 A pHMM as a generative model . 47

3.1 PSSM of a zinc-finger motif with intermediate score thresholds 55

3.2 The operating mode of the SPsearch algorithm . 56

3.3 Suffix tree for string S = ACCCACAC$. 60

3.4 Using a suffix tree for searching with PSSMs . 61

3.5 Dorohonceanu’s PSSM searching algorithm . 62

3.6 Relationship between enhanced suffix array and suffix tree 63

3.7 Minimum size enhanced suffix arrays for worst case analysis 69

3.8 Number of ℓ-intervals for various reduced alphabets 71

3.9 PSSM alphabet transformation . 72

3.10 Schemes for amino acid alphabet reduction . 74

3.11 A unifying view of SPsearch,LAsearch, and ESAsearch 76

3.12 Empirical score distributions of different PSSMs from the BLOCKS database 77

3.13 The extreme value distribution compared to the gaussian normal distribution 78

3.14 Score distribution of TRANSFAC PSSM M00734 . 79

3.15 Score distribution of BLOCKS PSSM IPB003211A 80

3.16 Evaluation with dynamic programming . 82

3.17 Restricted probability computation . 83

3.18 Probability computation using lazy evaluation of the DP matrix 85

3.19 Intermediate threshold updates in the ESAsearchKb algorithm 87

ix

List of Figures

3.20 Behaviour of the threshold in ESAsearchKb and LAsearchKb 88

3.21 Effect of alphabet reduction on the running time of ESAsearch 92

3.22 The negative effect of alphabet reduction on the running time of LAsearch 93

3.23 Scaling behaviour of ESAsearch . 94

3.24 Scaling behaviour of LAsearch . 95

3.25 Running times of ESAsearch, LAsearch, SPsearch on nucleotide data 96

3.26 Running time of the multithreaded variant of PoSSuMsearch using multiple CPUs . 100

3.27 Running time of the multithreaded variant of PoSSuMdist using multiple CPUs . . . 101

4.1 Conserved order of PSSM matches inside a protein family 106

4.2 The effect of PSSM match chaining . 108

4.3 Chaining of PSSM matches . 110

4.4 Evaluation scenarios: Construction of training- and test-sets 115

4.5 Classification performance for very closely related sequences 118

4.6 Classification performance for closely related sequences 119

4.7 Classification performance for distantly related sequences 120

4.8 Running times of PoSSuMsearch using PSSM match chaining 121

4.9 Histograms of csc∗F ,S on random sequences of different lengths 123

4.10 Histogram of csc∗M,S on sequences of different lengths 125

4.11 Chain score distributions of two TIGRFAM PSSM family models 126

4.12 Search space reduction on Swiss-Prot by PSSM family model pre-filtering 128

4.13 Reduction of running time by PSSM family model based pre-filtering 129

4.14 Search space reduction achieved on UniProtKB/TrEMBL 134

4.15 A pHMM like view on PSSM family models . 140

5.1 A schematic overview of the Genlight system architecture 145

5.2 A bipartite graph as a model for a Hit-set . 146

5.3 Genlight’s operational model . 148

5.4 CDD matches visualized on MMDB structure model 152

5.5 Visualization of different database search results . 153

5.6 The COG functional protein classification schema integrated into Genlight 155

5.7 Virtual cluster management interface . 159

5.8 Scaling behavior of Genlights distributed computing approach 160

5.9 Genlights data model: Template instantiation . 161

5.10 Zoom-able synteny plot derived from Seq-sets and Hit-sets information 165

5.11 The data model of Seq-sets and analysis results . 167

5.12 Genlight’S project workspace overview . 172

5.13 The Hit-set viewer . 173

5.14 The Hit-set viewer . 174

5.15 Colored textual and graphical presentation of alignment information 175

5.16 Visualization of alignment information including potential open reading frames . . . 176

5.17 Visualization of PoSSuMsearch results and mapping to GO categories with Genlight . 177

5.18 Mapping of sequence features to structure models . 178

5.19 Genlight analyses results for ZmSMH1 . 180

x

List of Figures

5.20 Comparison of BLASTX and FASTY alignments . 182

5.21 Categorization of TCs in different full length categories 183

5.22 KOG based functional classification of X.laevis contig sequences 185

5.23 Database search results for FTSW HELPJ . 187

A.1 Example of a PROSITE pattern entry . 198

A.2 Search directions on nucleotide data supported by PoSSuMsearch 212

xi

List of Figures

xii

1 Introduction

1.1 The continuing challenge of biosequence analyis

Just about 50 years ago, Watson and Crick discovered with their pioneering work the double helix

structure of DNA [WC53], and only about 30 years ago, with the bacteriophage MS2, the first

genome of an organism was sequenced [FCD+76]. In these 50 years, several scientific findings rev-

olutionized our understanding of evolution and life, and new research disciplines like molecular

genetics and computational biology were constituted. In particular, research results from these two

interacting disciplines led to substantial scientific advances in the last decades. Table 1.1 on the

following page gives a time line of some of these major milestones and findings.

Computational biology generated new algorithms to address and solve biological problems. Among

the most prominent ones are database search methods that allow for the comparison of nucleic or

amino acid sequences with provision for evolutionary events like mutations, insertions and dele-

tions. With the availability of such methods, the field of comparative sequence analysis evolved

to the probably most successful and expanding discipline in computational biology. It became a

key discipline for the discovery and understanding of molecular mechanisms necessary for the ma-

chinery of an organism [RYW+00, EPC+00]. The foundations of this discipline go back to the

early 1970’s, when it was discovered [Fit70] that conservations in the nucleic acid sequence of

genes, and accordingly in the amino acid sequence of proteins, lead to a conserved secondary and

tertiary structure, and thus to a conserved (similar) function. Founded on this observation, the

comparison of sequences of molecules allows to deduce knowledge from one or several known se-

quence(s) to a new, uncharacterized sequence if the nucleic or amino acid sequence of the molecules

is conserved. This finding has not only become the groundwork for all of today’s pairwise sequence

comparison methods [NW70, SW81, LP85, AGM+90, AMS+97] commonly used for searching large

sequence databases, but also for several motif and domain databases that contain motif descriptors

of conserved (parts) of sequences, like regular expresions [NWB98], position specific scoring ma-

trices [GME87], or hidden Markov models [Edd98], and their model specific search routines. Such

collections of diagnostic signatures [WCF+98, HSL+04, HSW03, FMSB+06], which often describe

functionally relevant parts of a molecule, like protein domains, transcription factor binding sites in

DNA, or catalytic active sites, have become an invaluable part for homology based annotation and

classification of nucleic or amino acid sequences into functionally related groups or families.

Responsible for the abiding success of comparative sequence analysis were not only algorithmic

contributions, but also the progress in genome sequencing that generates an ever increasing amount

of sequence data available for comparative studies. This astonishing progress is reflected in the in-

creasing number of genomes sequenced in the last years. To give an example, the Genomes OnLine

Database (GOLD) [LTHK06] lists not less than 2120 fully sequenced genomes by April 2007, with

1

1 Introduction

Year Event

1953 Discovery of the structure of the DNA double helix [WC53]

1958 Discovery of the semi-conservative replication of DNA [MS58]

1965 The first theory of molecular evolution; the Molecular clock concept [ZP65]

1965 Atlas of Protein Sequences, the first protein database [DECS65]

1966 Encryption of the genetic code is completed; first codon decrypted in 1961 [MN61]

1970 Needleman-Wunsch algorithm for global protein sequence alignment [NW70]

1972 Development of recombinant DNA technology, which permits isolation of defined frag-

ments of DNA [CCBH73]

1975 Sanger DNA sequencing [SC75]

1976 Complete genome sequence of bacteriophage MS2 (3569bp) [FCD+76]

1977 Maxim-Gilbert DNA sequencing [MG77]

1981 Smith-Waterman algorithm for local protein sequence alignment [SW81]

1981 Human mitochondrial genome sequenced [ABB+81]

1981 The concept of a sequence motif [Doo81]

1982 Phage λ genome sequenced [SCH+82]

1982 First public GenBank release containing 606 sequences

1985 FASTP/FASTN sequence similarity search algorithms invented [LP85]

1987 First profile search algorithms [GME87]

1990 Introduction of the BLAST program (version 1) for fast sequence similarity search-

ing [AGM+90]

1993 Protein modeling with hidden Markov models [HKB+93, KMSH94]

1995 First bacterial genomes (Haemophilus influenzae and Mycoplasma genitalium) com-

pletely sequenced [FAW+95, FGW+95]

1996 First archeal genome completely sequenced (Methanococcus jannaschii) [BWO+96]

1996 First eukaryotic genome completely sequenced (Sacharomyces cerevisae) [GBB+96]

1997 Introduction of gapped BLAST and PsiBLAST [AMS+97]

1998 The first genome of a multicelluar organism is sequenced (Caenorhabditis ele-

gans) [Con98]

1999 The genome sequence of Drosophila melanogaster is sequenced [ACH+00]

2001 The draft sequence of the human genome becomes available [Con01]

2005 GenBank exceeds 100 gigabases

2005 454 Life Sciences announces massively parallel, high-throughput pyrosequencing ap-

proach [MEA+05]

Table 1.1: A brief time line of milestones in genomics and computational biology.

2

1.1 The continuing challenge of biosequence analyis

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
0

200

400

600

800

Year

#c
om

pl
et

el
y

se
qu

en
ce

d
ge

no
m

es

Figure 1.1: Number of completely sequenced genomes per year. For 2007, the data acqui-

sition period is January through April. Data source: Genomes OnLine Database

(http://www.genomesonline.org).

607 completed only in 2007 (see Figure 1.1). In addition, major nucleotide sequence databases like

GenBank continue to grow at an exponential rate, with a doubling of their number of bases ap-

proximately every 18 months [BKML+07]. Due to the dispersal of new high-throughput sequencing

technologies [MEA+05], which reduce the amount of time necessary to fully sequence the genome of

some species from years to days, these numbers will increase with an even faster rate in the future.

Another corollary of this technological progress in genome sequencing, however, is the fortification

of the gap between data generation and data analysis already observed today. More precisely, sev-

eral of today’s widely used sequence analysis programs, e.g., pairwise sequence comparison methods

for database searching, like BLAST [AMS+97] and FASTA [LP85] or search tools for conserved

sequence motifs, like MATCH [KGR+03], EMATRIX [WNB00], and the search tools from the HM-

Mer package [Edd98], are more and more faced with difficulties in processing these large amounts

of sequence data in reasonable time. Often this problem is alleviated by a massive increase of the

applied compute resources, like large cluster systems, though for some computational intensive

methods their application on complete genomes remains challenging even then. This problem is

mainly founded in the fact that most of today’s widely used sequence analysis methods show a

running time that is at least linear in the size of the search space (i.e., length of the processed

sequences) and hence their running times suffer from the exponentially growing sequence space.

Consequently, there is a strong need for new, efficient algorithms capable to handle tomorrows’s

large amounts of sequence data. Ideally one is interested in algorithms that show a running time

that is independent of the size of the searched sequence space.

A possible solution to this dilemma is offered by indexing of sequences with full text index data

structures like suffix trees [Wei73] or the more space efficient (enhanced) suffix arrays [MM90,

AKO04]. These data structures can be built in linear time and space from the sequences to be

searched with several algorithms [Wei73, McC76, Ukk95, KS03, KSPP03, KA03] and allow for very

efficient access to subwords. Hence they can be used to efficiently solve many problems in sequence

3

http://www.genomesonline.org

1 Introduction

analysis. Although it is folk knowledge since the middle of the 1980’s, that there are “myriads” of

possible applications of such data structures [Apo85], in particular in the analysis of huge amounts

of sequence data, they barely found their way in today’s widely used sequence analysis programs.

One of the main goals of this thesis is the utilization of full text index data structures for the

compute intensive searching with position specific scoring matrices (PSSMs for short), a well known

motif model with a variety of applications in sequence analysis [GME87]. For this purpose, we

developed and implemented new index-based algorithms for searching with PSSMs, which clearly

outperform existing methods in terms of running time. We also demonstrate how index based PSSM

searching in combination with a fragment chaining approach can be used for efficient protein family

classification, and for speeding up computation intensive database searching with hidden Markov

models. With the PoSSuM software distribution, we also provide implementations of the presented

algorithms in form of a flexible command line tool.

We further integrated PoSSuMsearch as a database search method in our integrated high-throughput

sequence analysis system Genlight, which is also a contribution of this work. Genlight offers an in-

teractive, biologist compatible, and user friendly environment for a variety of large-scale sequence

analysis tasks with a special focus on (differential) comparative genome analyses. It employs a set

oriented operational model, that allows to reuse generated results, and to perform complete anal-

ysis workflows in an interactive way. The system integrates several widely used sequence analysis

methods and databases in a common environment, and is capable to perform analyses on a com-

plete genome or proteome scale by employing a distributed client server approach, even for non

index-based analysis methods. We demonstrate the practical usability of Genlight with different

case studies in which the system was used and which lead to substantial new scientific findings.

1.2 Structure of this thesis

In this thesis, we present new efficient index-based algorithms for searching with PSSMs in large

sequence sets, and their integration into an interactive system capable for large-scale differential

comparative genome analyses.

In the following Chapter, we start with some introductory and motivating remarks on sequence

motifs and motif finding. We describe different modeling concepts for sequence motifs and consensi.

This includes regular expression based motif descriptors, PSSMs and their construction principles,

Gribskov profiles, and profile hidden Markov models. We discuss in detail strengths and weaknesses

of the different modeling concepts.

In Chapter 3, we make several new algorithmic contributions to the field of searching with PSSMs.

With algorithm ESAsearch and its variants we present new non-heuristic, index-based algorithms

for searching with PSSMs that achieve sublinear running time in the expected case and linear

running time in the worst case under certain assumptions. The variants include a version achieving

improved running time by operating on sequences recoded with a reduced alphabet, as well as a

version to determine the k best matching substrings for a PSSM efficiently, without a concrete

threshold specification. In various benchmark experiments for nucleotide as well as amino acid

sequences, we evaluate the performance of ESAsearch and its variants and compare our algorithms

with the best previous methods in terms of running time. We also address the problem of non-

4

1.2 Structure of this thesis

comparable PSSM-scores by developing a method based on dynamic programming that allows for

the efficient computation of a matrix similarity threshold for a PSSM, given an E-value or p-value.

In contrast to other methods, our algorithm, called LazyDistrib, employs lazy evaluation of the

dynamic programming matrix leading to superior running times. We further describe the PoSSuM

software distribution implementing our algorithms.

In Chapter 4, we introduce the concept of PSSM family models to increase the power of database

searches with PSSMs. We combine algorithm ESAsearch with an efficient fragment chaining algo-

rithm to search with PSSM family models and evaluate its performance for accurate protein family

classification. Therefore, we compare our approach with a state of the art hidden Markov model

based method and measure the classification performance for different evaluation scenarios in terms

of sensitivity and specificity. We further demonstrate the capabilities of PSSM family models to act

as efficient pre-filters allowing to speedup database searching with the compute intensive hidden

Markov models, as is implemented in the hmmsearch program, dramatically.

In Chapter 5, we describe the interactive high-throughput sequence analysis system Genlight. We

provide an in-depth report of the overall architecture, the different parts of the system, and elucidate

the system’s functionalities, including an overview of the integrated analysis methods and databases.

We further demonstrate the practical useability of our system with three case studies in which

Genlight was used, published in [MBG+03, BMM+04, SBB+].

In the last Chapter 6, we conclude with a review of the achieved results and discuss potential future

developments and extensions.

We round up this thesis with an appendix. It contains, in particular, a detailed manual for the

programs included in the PoSSuM software distribution.

5

1 Introduction

6

2 Modeling concepts for sequence motifs

and consensi

2.1 Basic definitions and nomenclature

We start with some basic definitions and notations used throughout this thesis. Some definitions

may be omitted here as they are introduced later where they are needed.

Definition 1 An alphabet A = {a0, a1, ..., ak} is a finite, non empty set. The elements of A are

characters.

Definition 2 A sequence or string S of length n over an alphabet A is the concatenation of n

characters of the alphabet. In particular ε denotes the empty string/sequence. By An we denote

the set of sequences of length n > 0 over A. The set of all possible sequences over an alphabet A
including the empty sequence ε is denoted by A∗. It holds: S ∈ An and An ⊂ A∗. A∗ :=

⋃
i≥0Ai

with A0 := {ε} and Ai+1 := {aw | a ∈ A, w ∈ Ai}. The set of non empty sequences over A is

denoted with A+ = A∗\{ε}. We write S as a sequence of symbols

S = s1s2s3...sn

Here si ∈ A is the i-th character of the sequence. We denote the i-th character also by S[i]. The

length of a sequence or string, denoted by |S|, is the number of characters in S.

Definition 3 If S = uvw for some (possibly empty) strings u,v,w ∈ A∗, then

• u is a prefix of S,

• v is a subword of S, and

• w is a suffix of S.

Definition 4 Let S ∈ A∗ be a sequence, then we denote the set of subwords of S of length m by

wordsm(S) := {w ∈ Am | w is a subword of S}.

2.2 Motifs, domains, and sequence families

While the number of different, naturally occurring proteins is huge, most of them can be grouped

into a limited number of families on the basis of similarities in their sequences. Proteins belonging

7

2 Modeling concepts for sequence motifs and consensi

to a particular family generally share functional attributes and in most cases are derived from an

evolutionary common ancestor. Throughout this work we use the term family for related nucleic

acid or protein sequences whose relationship extends over the entire molecule. This relationship may

be evolutionary, structural and/or functional. Examples for well known sequence families are the

bacterial 16s rRNAs, which build together with proteins the ribosomal complex and are involved in

its enzymatic activity, or the protein family of cytochrome C molecules. Cytochrome C is a highly

conserved protein across the spectrum of species, found in plants, animals, and many unicellular

organisms. The molecule has been studied for the glimpse it gives into evolutionary biology. E.g.,

both chickens and turkeys have the identical molecule (amino acid for amino acid) within their

mitochondria, whereas ducks possess molecules differing by one amino acid. Similarly, both humans

and chimpanzees have the identical molecule, while rhesus monkeys possess mitochondria differing

by one amino acid. Cytochrome C is involved in manifold reactions and pathways inside the cell. It

can catalyze several reactions such as hydroxylation and aromatic oxidation, and shows peroxidase

activity by oxidation of various electron donors. It is also an intermediate in apoptosis, a controlled

form of cell death used to kill cells in the process of development or in response to infection or DNA

damage.

It is apparent, when studying protein sequence families, that some regions have been more conserved

than others during evolution and in some cases the sequence of an unknown protein is too distantly

related to any known protein to detect its resemblance by overall sequence alignment, but it can be

identified by occurrences of conserved modules or particular residue types in its sequence. We call

such modules domains. They can be generally described as a family of subsequences occurring in

different contexts. In case of amino acid sequences, a domain may be defined as units of sequence

conservation or as units that independently fold into the same 3D structure. When analyzing pro-

teins, domains are omnipresent building blocks. Prominent examples of proteins that contain several

domains with different functionality as building blocks detectable by conservations on the amino

acid sequence level are the major subunit of bacterial DNA polymerase I, also known as Klenow

fragment. The Klenow fragment, which can be isolated by proteolysis from the DNA polymerase I

holoenzyme, consists of two domains, one with DNA dependent polymerization functionality and

one with 3’-5’ exonuclease activity for proofreading during DNA replication. See Figure 2.1 for

an example of this domain structure. The Klenow fragment has a wide range of applications in

molecular biology, like the synthesis of double-stranded DNA from single-stranded templates or

the production of blunt ends in double-stranded DNA molecules by digesting away protruding 3’

overhangs with its 3’-5’ exonuclease activity. Another example for typical multi domain proteins

are RNA polymerase II molecules, which catalyze the DNA dependent polymerization of RNA dur-

ing transcription. Since the revolutionary discovery of the structure of the yeast RNA polymerase

II [CBK01]1 it is known, that RNA polymerases are more complex, multi chain molecules with a

distinct quartery structure and single chains build up from multiple domains (see Figure 2.2).

For short subsequences of high sequence similarity (within a sequence family) we use the term motif.

These can be small protein domains, transcription factor binding sites in DNA, or the catalytic

active site of a family of enzymes. See Figure 2.2 for an example. These regions are generally

important for the function of the molecule like its binding properties or enzymatic activity and/or

1Very recently, in 2006, this discovery was honored with the award of the noble price in chemistry for Roger D.

Kornberg.

8

2.2 Motifs, domains, and sequence families

Figure 2.1: The two domains of the major subunit of bacterial DNA polymerase I. Domain structure

as detected by sequence conservation (top) and the corresponding 3D structure (bottom)

(complex with duplex DNA). The amino-terminal domain (red) has 3’-5’ exonuclease ac-

tivity for proofreading during replication whereas the carboxy-terminal domain (green)

is responsible for accurate replication of DNA. This Figure was generated using se-

quence analysis and sequence feature to structure mapping capabilities of the Genlight

system [BMM+04].

9

2 Modeling concepts for sequence motifs and consensi

Figure 2.2: Domain structure of the α-chain of RNA polymerase II determined by analysis of the

amino acid sequence (top) and domain information mapped on crystallographic 3D

structure [CBK01] (bottom). The catalytic active site (marked with green arrow) is

located in the center of the molecule at residue positions 478-485 in the second (green

marked) domain. It contains the conserved sequence motif NADFDGD (Asn-Ala-Asp-

Phe-Asp-Gly-Asp) [ZMD+96].

10

2.3 Motif finding

for the maintenance of its three-dimensional structure. E.g., transcription factor binding sites are

small conserved regions typically found upstream and close to the transcription start site of a

gene. Through binding of a transcription factor, which is a protein, specific for the binding site,

the expression of that gene is regulated by activating or inhibiting the transcription machinery.

Such motifs can be identified by analyzing the constant and variable properties of groups of similar

(sub)sequences. In case of proteins this often allows to derive a diagnostic signature for a family or

domain. This motif then distinguishes family members from all other unrelated proteins2.

The use of diagnostic sequence motifs to classify nucleic acid or amino acid sequences into function-

ally related groups/families and hence predict their function(s), has a long history in the analysis

of bio-molecular sequences and is an essential and commonly used technique today. We motivate

the importance of sequence motifs and their subsequently described motif descriptor models with a

citation from the mid-1980s of R.F. Doolittle, a well known expert in protein sequence analysis

”There are many short sequences that are often (but not always) diagnostics of certain binding

properties or active sites. These can be set into small subcollections and searched against your

sequence [Doo86].”

When dealing with sequence motifs, one basically faces two problems. The first, briefly described in

the following section, is the initial detection of a yet unknown motif in a set of given sequences and

the second is its representation with an adequate motif descriptor model that profiles the instances

of the motif in the set of sequences.

2.3 Motif finding

One scenario in which the problem of motif finding arises, is the discovery of binding sites of

regulatory elements like transcription factors. Consider a set of upstream regions of genes, putatively

co-regulated by a common transcription factor. Such genes can be determined from a microarray

experiment by selecting genes with a common expression pattern under the same conditions. Then,

all their upstream sequences should contain a common binding site for the transcription factor,

which has to be identified. Alternatively, if the transcription factor is already known, a popular,

applicable, experimental technique to confirm motif binding and determine protein-DNA interaction

is chromatin immunoprecipitation (ChIP). ChIP is also applicable on a large scale with its high-

throughput variant, called ChiP on chip [IHS+01, RRW+00]. In a ChIP experiment, DNA with

bound transcription factors is broken up into various small parts by shearing. With the help of an

antibody, specific to the putatively responsible transcription factor, antibody-transcription factor-

DNA complexes are precipitated. After washing out of the antibody and the transcription factor,

the selected small pieces of DNA can be amplified with PCR for subsequent sequencing. We end

up with a set of sequences containing the common binding site motif of the transcription factor.

However, ChIP is only an option if the precise transcription factor is known and a specific antibody

for it is available.

2Although in literature such signatures are also called patterns, in this thesis we use the term pattern only for

regular expression like motif descriptors, like the ones described in section 2.4.

11

2 Modeling concepts for sequence motifs and consensi

Through either microarray or ChIP based methods, we obtain a set of DNA sequences, which we

have reason to believe, respond to the same transcription factor. The problem of motif-finding is to

find the regulatory elements that these DNA sequences have in common. In other words, we want

to find subsequences, that are significantly over-represented in our set of sequences. More generally,

the problem of finding a motif can be abstracted to a search problem, that takes as input a set of

sequences with some kind of commonality, like predicted similar function, or structure, or a common

context like upstream regions of putatively co-regulated genes. Then, the output consists of a set

of relatively short subsequences of the input sequences and their description with a motif model.

In case of regulatory DNA motifs, these subsequences are typically 8-15bp long and although they

often have a constant size, since a constant-size transcription factor must bind to the motif, they are

highly variable. Consequently it is not sufficient to find an exact substring of some length common

to all sequences under consideration.

Computationally, the motif-finding problem may be viewed as one of multiple local alignment [HS99,

FHSW04]. Given a group of sequences that share a common biological property, multiple local

alignment methods attempt to locate and align similar subsequences, which may confer this property.

That is, given protein or DNA sequences, locate a region (i.e., a substring) of fixed length from each

sequence such that a score determined from the set of regions is optimized.

Beyond the discovery of transcription factor binding sites, there are numerous other applications

for motif finding. E.g., one could search for functional motifs at exon-intron boundaries, in 3’-

untranslated regions of localized RNAs, in 5’-untranslated regions of translationally regulated RNAs

or to find domains and motifs in sets of protein sequences.

Generally, we can formulate the motif finding problem as follows. Given a set of sequences L =

{S1, S2, . . . , Sl} with Si ∈ A∗ for all 1 ≤ i ≤ l, and a word length k > 0. For the sake of simplicity,

we assume here that a reasonable k is already known and hence take k as fixed, although in

practice this is often not the case. Let w∗ be a word with |w∗| = k, that has the best match to

the set of sequences L. We define best based on the Hamming distance, although other distances

are also possible. Let d(w, Si) denote the minimum Hamming distance between w and any word of

wordsk(Si). Further, we define the total distance between w and the set of sequences L as

D(w, L) :=

l∑

i=1

d(w, Si). (2.1)

Then the optimal solution to the motif finding problem is to find a w∗ ∈ Ak such that D(w∗, L) is

minimized. Here the word w∗ in combination with the distance measure D defines a motif (descrip-

tor) along with the set of its instances {w1, w2, . . . , wl | wi ∈ wordsk(Si)∧ 6 ∃ w∗′ ∈ Ak, w∗′ 6= w∗ :

D(w∗′, L) < D(w∗, L)}. In general a motif defines a set of words and can be derived from a set of

words, and it is noted in form of a motif descriptor.

The most obvious method to solve the motif finding problem would be simply to search exhaustively

through the set of all possible w ∈ Ak, to find the best match. Unfortunately this exhaustive search

is very expensive and often not feasible for problem sizes occurring in practice. Observe, that there

are |A|k words of length k. Taking the total length of all sequences as n =
∑l

i=1 |Si|, the running

time of the sketched algorithm is O
(
k · n · |A|k

)
, as each w must be checked against all O (n) words

in L and each check takes O (k) time. If we can assure, that the sequences in L are error free, the

running time can be reduced to O
(
k · n2

)
by checking only the O (n) words that actually occur in

12

2.4 Regular expressions as motif descriptors

L instead of all |A|k possible words of length k. However, this can lead to an overlooking of the

true w∗, since it may be the case that the best, or true, w∗ is one that is very close to a number of

words occurring in L, but not exactly equal to any of them.

In practice, the motif finding problem is usually either reduced to an enumeration and verifica-

tion problem or to a multiple alignment problem. Either class of problems has been shown to be

NP-Hard [WJ94, Bra94]. Therefore numerous different algorithms have been proposed, employing

various heuristics or ad hoc constraints to discover motifs efficiently [RHEC98, YTI+98, Kei02].

These methods can be subdivided into two broad categories based on the two major algorithmic

paradigms for motif finding. These are

• Combinatorial approaches. Programs like Consensus [HHS90] or Pratt [JCH95] belong to

this category.

• Probabilistic approaches. To this category belong methods based on Expectation Maxi-

mization (EM) [LR90], like MEME [BE95a, BE95b] and methods based on Gibbs sampling

techniques [LAB+93, NLL95], like AlignACE [HETC00] or MotifSampler [TLM+01].

Since a detailed description of all the different variants of these paradigms is not in the scope of

this thesis, we only give a brief overview over the most widely used tools (see Table 2.1) and refer

the reader in particular to [TLB+05, LT06]. These articles describe, compare and evaluate in terms

of prediction accuracy in detail different computational approaches for the prediction of regulatory

elements in nucleotide sequences. The described algorithmic ideas in these articles are in most cases

also applicable to amino acid sequences.

2.4 Regular expressions as motif descriptors

Once a motif has been derived from a set of related sequences, it must be described with some

kind of motif descriptor. A basic way to describe a sequence motif and historically one of the oldest

approximate pattern models in sequence analysis uses regular expressions. A regular expression,

often called a pattern, is an expression that describes a set of strings. They are usually used to give

a concise description of a set, without having to list all its elements. Motif descriptors in form of

regular expressions are used to describe amino acid (see Figure 2.4) as well as nucleotide motifs. A

well known example for a nucleotide motif describable with a regular expression is the TATA-box

found in the promotor region of many prokaryotic genes. The TATA-, often also called Pribnow-box,

is a conserved cis-regulatory element. It is the binding site of either transcription factors or histones

(binding of a transcription factor blocks binding of a histone and vice versa) and is involved in the

process of transcription by RNA polymerase. It has the consensus DNA sequence 5′ − TATAAT− 3′

but can vary slightly. E.g., TAAT, TATAT, and TAAAT can also be found. The set containing the four

strings TAAT, TATAT, TATAAT, and TAAAT can be described by the pattern TAT?AA?T or alternatively,

it is said that the pattern matches each of the four strings. Here the ’?’ indicates that there is zero

or one occurence of the preceeding expression. In most formalisms describing regular expressions,

the following operations for their construction are provided:

13

2 Modeling concepts for sequence motifs and consensi

Program Operating principle Algorithmic

paradigm

AlignAce [HETC00] Gibbs sampling algorithm that returns a series of motifs

as PSSMs that are overrepresented in the input set.

Probabilistic

Consensus [HS99] Models motifs using PSSMs, searching for the matrix

with maximum information content.

Combinatorial

MEME [BE95b] Optimizes the expectation value of a statistic related to

the information content of the motif.

Probabilistic

MotifSampler [TLM+01]Matrix-based, motif finding algorithm that extends

Gibbs sampling by modeling the background with a

higher order Markov model.

Probabilistic

Oligo/dyad-

analysis [HRCV00]

Detects overrepresented oligonucleotides and spaced mo-

tifs with dyad-analysis.

Probabilistic

Pratt [JCH95] Identifies conserved motifs in a set of unaligned protein

sequences. The method guarantees to find the highest

scoring motif in a user defined motif class, according to

a defined fitness measure.

Combinatorial

PROTOMAT [HH91] Detects series of overrepresented motifs in form of un-

gapped blocks in amino acid sequences by employing a

combinatorial algorithm[SAC90] as well as a modification

of Lawrence’s Gibbs sampler[LAB+93].

Combinatorial/

Probabilistic

QuickScore [RD04] Based on an exhaustive searching algorithm that esti-

mates probabilities of rare or frequent words in genomic

sequences.

Combinatorial

YMF [ST03] Uses an exhaustive search algorithm to find motifs with

the greatest z-score. Motifs are formulated as sequences

over the IUPAC alphabet

Combinatorial.

Table 2.1: Widely used motif finders and their operating principles.

• concatenation: A centered dot (·) or minus (-) concatenates two regular expressions. In

practice the concatenation operator is often not explicitly written, that is T− T = T · T = TT.

• alternation: A vertical bar separates alternatives. For example, TAA | TTA matches TAA or

TTA, which can commonly be shortened to T(A | T)A.

• grouping: Parentheses are used to define the scope and precedence of the operators. E.g.,

TAA | TTA and T(A | T)A are different patterns, but they both describe the same set of strings.

• quantification: A quantifier after a character or group specifies how often that preceding

expression is allowed to occur. The most common quantifiers are ?, +, and *. The question

mark indicates that there is zero or one occurrence of the previous expression. The plus sign

indicates that there is at least one occurrence of the preceding expression and the asterisk,

also called Kleene operator, indicates there are zero, one or any number of occurrences of the

preceding expression.

14

2.4 Regular expressions as motif descriptors

2 3
A

4T

5A

A 6A

7T

T

1
T

Figure 2.3: Deterministic finite state automaton (DFA) for regular expression TAT?AA?T, describing

the TATA-box motif found in many gene promotors. Here state 1 is the start state and

state 7 is the only accepting state.

These rules can be combined to form arbitrarily complex expressions, which again are regular

expressions. The set of strings matched by a regular expression R is also called the semantic or

language of R, denoted by L(R). Generally, we define the syntax of regular expressions and their

semantic as follows.

Definition 5 Let A be an alphabet. A regular expression and its associated language (semantic)

L over A is defined as follows.

• ǫ is a regular expression with L(ǫ) := {ǫ}.

• a is a regular expression for any a ∈ A with L(a) := {a}.

• If α and β are regular expressions, then α · β is a regular expression with L(α · β) := {uv|u ∈
L(α), v ∈ L(β)}.

• If α and β are regular expressions, then α | β is a regular expression with L(α | β) :=

L(α) ∪ L(β).

• If α is a regular expression, then (α) is a regular expression with L((α)) := L(α).

• If α is a regular expression, then α∗ is a regular expression with L(a∗) :=
⋃

i≥0 L(αi), where

L(α0) := {ǫ} and L(αi+1) := L(α · αi).

In the Chomsky hierarchy of formal languages, the class of languages describable by a regular

expression is called type-3 language, or regular language. It is a subset of type-2 context free

languages, type-1 context sensitive languages and type-0 unrestricted languages. Note that, regular

languages are exactly all languages that can be decided by a (deterministic and non-deterministic)

finite state automaton (DFA and NDFA for short).

A DFA takes in a string of input symbols. For each input symbol it will then transition to a

state given by following a transition function. While transitioning from state to state, symbols are

accepted or rejected. When all symbols are accepted and the current state is an accepting state, the

string is accepted. We define a DFA according to the following definition.

Definition 6 A deterministic finite state automaton (DFA) is a 5-tuple, (S,A, δ, s0, A) consisting

of

1. a finite set of states S,

15

2 Modeling concepts for sequence motifs and consensi

2. an alphabet A,

3. a transition function δ : S ×A → S,

4. a start state s0 ∈ S,

5. a set of accepting states A ⊆ S.

Let M = (S,A, δ, s0, A) be a DFA and T = t0t1 . . . tn be a string over A. M accepts or matches T

if and only if a sequence of states r0, r1, . . . rn exists in S satisfying the following conditions:

1. r0 = s0

2. ri+1 = δ(ri, ti), for i ∈ [0, n− 1]

3. rn ∈ A.

That is, for matching a pattern described by a regular expression we must construct the correspond-

ing DFA and process the sequence to be searched with the DFA. See Figure 2.3 for an example of

a DFA recognizing a simple sequence motif described by a regular expression.

In practice, different regular expression matching engines and tools utilizing them, like grep, awk ,

or Perl , use different flavors of regular expressions with varying syntaxes and in some cases different

semantics. An effort of standardization was undertaken by defining a POSIX 3 specification for

regular expressions. POSIX distills the various common flavors into just two classes, Basic Regular

Expressions (BREs), and Extended Regular Expressions (EREs). Fully POSIX-compliant tools use

one or both of the flavors.

2.4.1 Consensus strings

For the description of the consensus of a set of sequences, e.g. a multiple alignment of related

sequences, sometimes simple strings over extended alphabets are used. These alphabets contain

special letters, representing character classes and allow to describe equivocalities in a column of the

alignment. These letters may describe subsets of the alphabet, defined by a common property, e.g.

polarity or hydrophobicity in case of amino acids. See Table 2.2 for an example of a standardized

extended nucleotide alphabet. Obviously, these consensus strings are regular expression, since any

character class can be written as a sequence of alternations between its members.

2.4.2 Prosite patterns: Regular expressions for protein family assignment

A well known collection of diagnostic sequence patterns for protein family assignment is the PRO-

SITE database [HBB+06]. It contains in its latest release Rel 19.29 1331 documented patterns.

PROSITE patterns are manually curated and are derived with expert knowledge about groups or

families of sequences from multiple alignments. In particular, attention is drawn to the residues and

regions thought or proved to be important to the biological function of that group of proteins, since

they are often highly specific and hence discriminative descriptors. These biologically significant

regions are generally:

3POSIX = Portable Operating System Interface for Unix

16

2.4 Regular expressions as motif descriptors

Symbol Semantic Description

R A | G purine

Y C | T pyrimidine

W A | T weak hydrogen bond

S G | C strong hydrogen bond

M A | C amino group

K G | T keto group

H A | C | T not guanine

B G | C | T not adenine

V G | A | C not thymine

D G | A | T not cytosine

N G | A | T | C any

Table 2.2: IUPAC extended nucleotide alphabet

• Enzyme catalytic sites.

• Prosthetic group attachment sites (heme, pyridoxal-phosphate, biotin, etc.).

• Amino acids involved in binding a metal ion.

• Cysteines involved in disulphide bonds, since they are involved in and important for secondary

structure formation.

• Regions involved in binding a molecule (ADP/ATP, GDP/GTP, calcium, DNA, etc.) or an-

other protein.

If a pattern common to all sequences under consideration is found, e.g. with one of the motif finders

presented in Table 2.1, it is screened versus the SwissProt protein database, to make sure, that it

matches all other known members of this family and only this and hence makes a good discriminative

descriptor for the protein family under consideration.

PROSITE patterns are formulated as limited regular expressions, which represent a subset of the

class of full regular expressions. In contrast to full regular expressions, they contain no Kleene

operator, and alternations are only defined between strings of length 1 (single characters). These

limitations have almost no negative effect on their ability to describe biological sequence patterns

adequately, but allow the construction of easier matching engines and the use of fast bit-vector

algorithms, like SHIFT-AND [WM92] and/or SHIFT-OR [BYG89]. Even fast approximate match-

ing of these limited regular expressions (e.g. matching of regular expressions allowing errors) is

possible [Mye99].

The syntax of Prosite patterns

PROSITE uses the standard IUPAC one-letter code to represent the amino acids and established

widely accepted conventions for the notation of regular expression based patterns in computational

biology. The employed syntax, which is different from the standard POSIX notation for regular

expressions, is given in the Table 2.3.

17

2 Modeling concepts for sequence motifs and consensi

-N-P-Q- Each element in a pattern is separated from its neighbor by a -.

-N-X-Q- The symbol X is used for a position where any amino acid is accepted

N-[AST]-Q- Ambiguities are indicated by listing the acceptable amino acids for a given position

between square brackets, i.e. in this example Alanine, Serine and Threonine.

N-{MP}-Q- Curly brackets indicate residues that are not accepted in this position i.e. not Me-

thionine or Proline.

N-A(2,3)-Q- Repetition of an element of the pattern can be indicated by following that element

with a numerical value or a numerical range between parenthesis, i.e. in this example

N-A-A-Q and N-A-A-A-Q.

N-A(2,3)-Q> If a pattern is restricted to either the amino- or carboxy-terminal end of a sequence,

that pattern either starts with < or respectively ends with >.

. A period ends the pattern.

Table 2.3: Syntax of PROSITE patterns

The pattern describing the TATA-box element, as given before, can be written in PROSITE syntax

as T-A-T(0,1)-A-A(0,1)-T. Beyond the pattern definition, a PROSITE entry contains additional

annotation information about the sequence family characterized by the pattern, like a listing of

already known members of the family, active site position and many more. Figure A.1 on page 198

gives a concrete example of a PROSITE entry.

Although motif descriptors based on regular expressions are quite successful for protein function

prediction and family assignment [HB01], there are a number of protein families as well as functional

or structural domains that cannot be accurately detected using this kind of motif descriptors due

to their extreme sequence divergence. In such cases alternative, more flexible techniques are used

to build a model that describes a family of related sequences adequately. One of these modeling

concepts are position specific scoring matrices which are often better suited for motif description in

heterogeneous protein families than regular expressions.

2.5 Position specific scoring matrices

Position specific scoring matrices (PSSMs), often also called position-weight matrices (PWMs),

probabilistic patterns, or profiles, have a long history in sequence analysis (see [GME87]). They

are successfully used in nucleotide as well as in amino acid sequence analysis as approximate mo-

tif models, e.g. for the representation of transcription factor binding sites (TFBSs for short) or

conserved regions of proteins. In particular for modeling of short conserved regulatory motifs in

DNA, like TFBSs, PSSMs are the method of choice. This can also be seen in a comparison of 13

computational tools for TFBS prediction described in [TLB+05], where the majority of tools uses

PSSMs to describe the predicted motifs.

The primary intuition of a PSSM is that a multiple alignment of related sequences, which is normally

the building material for a PSSM, can reveal position-specific amino acid or nucleotide propensities.

If these information is properly deployed it should increase the sensitivity in a database search for

recognition of distant homologs. Many studies have shown that database searches using PSSMs as

queries are more effective at identifying distant protein relationships than are searches that use the

18

2.5 Position specific scoring matrices

(A)

ABC3G LAGLA/285-305 Cfs..CaekVaeflqenpHvnl..H

ABRU DROME/546-567 Cpk..CgkiYrsahtlrtHledk.H

ACE1 TRIRE/402-424 CrepgCtkeFkrpcdltkHekt..H

ACE2 SCHPO/475-495 Cdl..CkagFvrhhdlkrHlri..H

ACE2 YEAST/605-627 ClypnCnkvFkrrynirsHiqt..H

ADNP HUMAN/514-535 Cpy..CrstFndvekmaaHmrmv.H

ADNP MOUSE/233-254 Cpy..CrstFndvekmaaHmrmv.H

ADNP RAT/234-255 Cpy..CrstFndvekmaaHmrmv.H

ADR1 YEAST/106-126 Cev..CtraFarqehlkrHyrs..H

AEF1 DROME/270-290 Cvi..CkkqFrqsstlnnHiki..H

AEF1 DROME/242-262 Cnf..CpkhFrqlstlanHvki..H

AEGA ECOLI/15-37 Cha..CeiaCvmahndeqHvlsqhH

AIOL HUMAN/148-168 Cnq..CgasFtqkgnllrHikl..H

(B)

(C)

C2H2 type zinc finger

weblogo.berkeley.edu

0

1

2

3

4

b
it

s

N

1

C

2

N

P

3

Y

4 5 6

C

7

P

N

E

A

T

K

G

R

8

R

I

E

A
S
K

9 10

Y
V
C
F

11

T

V
K
A
R
N

12

S

M

E

Q
D
R

13 14

Y

L

G

C

S

H
E

15

Q

H

D
T
N
K

16

I
E
D
M
L

17

T

L

E

R

N

K

A

18

T

S

Q

P

K

N

R
A

19

H
20

Y

E

L
V
M

I

21

Q

N

L

E

K
R

22
D

T
S
L
M

I

23
Q

K

V

24 25

H
C

Figure 2.4: Multiple alignment of C2H2 type zinc finger domain sequences (A) and three dimensional

structure of C2H2 domain of the mouse protein Argenine N-Methyltransferase 3 (B).

Yellow marked part of structure corresponds to part of sequence shown in the multiple

alignment. As apparent in the sequence logo (C)[CHCB04], this domain family can be de-

scribed by the characteristic pattern C-x(2,4)-C-x(3)-[LIVMFYWC]-x(8)-H-x(3,5)-H

(PROSITE Accession: PS00028). Zinc finger domains have been found in numerous nu-

cleic acid binding proteins and for several members of this family zinc-dependent DNA

or RNA binding properties could be demonstrated, experimentally. The two conserved

cysteines and histidines of the C2H2 type at the extremities of the domain are involved

in the tetrahedral coordination of a zinc atom, when binding to DNA or RNA.

19

2 Modeling concepts for sequence motifs and consensi

information of a single sequence like standard pairwise sequence comparison methods. In sequence

analysis with PSSMs, the basis for comparison is not a general purpose substitution matrix like

BLOSUM [HH89], as in traditional pairwise sequence comparison [AGM+90], but also structural

information implicit in the multiple alignment of related sequences used for PSSM construction.

Unlike the pairwise alignment methods, intuitively, PSSMs use the fact that certain positions in a

family of related sequences are more conserved than other positions, due to their conformational or

structural relevance, and allow substitutions less readily in these conserved positions. The PSSM

model incorporates this position specific information and allows, if used in a database search sce-

nario, increased sensitivity and specificity, compared to pairwise sequence alignment methods that

use position independent general purpose scoring matrices like BLOSUM62 or PAM120. One pop-

ular program that makes use of PSSMs for database searching is the Position-Specific Iterated

BLAST (PSI-BLAST) program [AMS+97]. PSI-BLAST computes a PSSM from a set of homol-

ogous sequences and iteratively scans the database with the derived PSSM as a scoring matrix.

In each iteration the PSSM is recomputed based on the set of found sequences. A complementary

approach is used in the IMPALA software package [SWP+99]. IMPALA compares a single query

sequence with a database of PSI-BLAST generated PSSMs using a variant of the Smith-Waterman

algorithm [SW81] to compute an optimal alignment between a PSSM and a sequence.

In protein sequence analysis PSSMs often help to model and to identify structurally or functionally

important regions within a family of proteins, such as catalytic sites, substrate binding sites and

intermolecular interaction sites. Those regions are assumed to have a highly conserved tertiary struc-

ture to be biologically functional. Certain types of structural information, however, are not generally

captured by PSSM search methods and recent publications describe approaches to include available

structural information explicitly. The Structure-Based Alignment Tool (SALTO) [KTP+04] for ex-

ample aligns protein query sequences to PSSMs derived from NCBI’s conserved domain database

(CDD) [MBADS+05]. The algorithm uses additional rules to compute only alignments that are

consistent with the conserved regions of domain alignments from the CDD. A different more visual

approach to include structural information is used in the program 3MATRIX [BLB03]. 3MATRIX

combines sequence information determined by sequence searches with PSSMs and maps these on

structural models obtained from protein structure databases, like PDB (see Figure 2.5 for an exam-

ple). This allows to link sequence attributes like residue conservation with structural attributes, e.g.

solvent accessibility. Here again, the underlying idea is that conserved sequence motifs can be seen

as structural elements that may have the same local tertiary structure in whatever protein they

are found in. Hence linking three dimensional information from crystallographic experiments to

PSSMs may provide new insights in the potential functional or structural contributions of residues.

In [BLB03] the authors state that the structural environment of conserved residues described by a

PSSM allows one to better target them for further experiments, such as mutagenesis or drug design.

2.5.1 From alignment blocks to PSSMs

The prerequisite for the construction of a PSSM is the discovery of a motif shared by several or all

members inside a family of related sequences. As already described in section 2.3, this is a basic, but

challenging task. A special type of motif often described in literature is the block or alignment block.

An alignment block is (a part of) a gapless local multiple sequence alignment (see Figure 2.6 for an

20

2.5 Position specific scoring matrices

Figure 2.5: 3MATRIX visualization for a sequence motif described by a PSSM represent-

ing a glycine-rich cytoskeletal associating protein (CAP-Gly) domain (InterPro ID:

IPB000938) found in the PDB structure 1LPL, a CAP-Gly protein from Caenorhab-

ditis elegans. Different shades of blue in the left model (A) visualize different degrees

of sequence conservation. In the right model (B) amino acids are colored with a shade

of green determined by the relative solvent accessible surface area of the amino acid

at each motif position. The most solvent-exposed amino acids are also the most highly

conserved in this motif, which is an expected result for a motif known to represent a

protein-protein interaction domain. Figure taken from [BLB03].

example). The proper determination of characteristic, family specific alignment blocks, representing

functionally important and thus conserved regions of nucleotide or amino acid sequences, is the first

step in the PSSM construction process. Blocks can be carved out from fully-ungapped regions of

gap containing multiple global alignments constructed with standard multiple alignment programs,

like ClustalW [HTG+94], DCA [SMD98, Sto98] or T-Coffee [NHH00] or generated by using local

sequence alignment methods such as BLAST. Also some of the methods presented in section 2.3 on

page 11 for finding a localized region of sequence similarity in a set of sequences without first having

to produce an alignment can be used. An example for such ab initio motif discovery methods is

the CONSENSUS program [HS95] for the prediction of regulatory motifs. Other programs like the

PROTOMAT system [HH91] even allow the fully automated detection of ordered, characteristic sets

of alignment blocks from a family of related amino acid sequences. High quality multiple alignments,

usable to derive useful alignment blocks, as well as already derived PSSMs for database searching

are publicly available in several collections and databases. The following enumeration gives a brief

overview about the largest and most popular collections:

21

2 Modeling concepts for sequence motifs and consensi

• the BLOCKS database [HGPH00, HP99]

Contains groups of short multiple alignment blocks of conserved, characteristic protein se-

quences, e.g. catalytic domains and receptor sites;

• the eBLOCKS database [SLSB05, Gal05]

is a database of ungapped alignments of highly conserved regions among a protein family or

superfamily. eBLOCKS is automatically generated from all against all PSI-Blast searches in

the SwissProt database;

• the Pfam (ProteinFamilies) database [BBD+00]

Large collection of manually curated high quality, and automatically generated multiple align-

ments of protein families and inferred hidden Markov models;

• the TIGRFAMs protein family database

Manually curated multiple sequence alignments of protein families;

• the PRINTS database [AMG+06, ACF+00]

Database containing protein fingerprints in form of (ordered) sets of gapless multiple align-

ments and derived PSSMs;

• the PROSITE database [HBFB99]

Collection of PSSMs and regular expressions of characteristic protein sequence motifs;

• the HAMAP protein family database [GMR+03]

HAMAP is a collection of multiple alignments of orthologous microbial protein families, gen-

erated manually by expert curators. They are used for the high-quality automatic annotation

of microbial proteomes in the UniProtKB/SwissProt protein knowledge base;

• the PRODOM database [CGK99]

Database containing multiple alignments of protein domain families;

• the commercial TRANSFAC database [WCF+98]

on eukaryotic cis-acting regulatory DNA elements and trans-acting factors, containing infor-

mation on transcription factors, regulated genes, regulatory sites and binding sites of tran-

scription factors modeled as PSSMs;

• the JASPAR database [SAE+04]

is a freely available, high quality transcription factor binding profile database. It is a non-

redundant and curated collection of transcription factor DNA-binding preferences of multi

cellular organisms, modeled as position specific scoring matrices. All models in this database

are derived from published collections of experimentally defined transcription factor binding

sites.

We now render the concept of alignment blocks, PSSMs and their relationship more precisely.

Definition 7 An Alignment block A of length m is a set of l sequences of length m over alphabet

A. A is represented as an l×m matrix with elements ai,j ∈ A and 1 ≤ i ≤ l ∧ 1 ≤ j ≤ m, with ai,j

be the j-th character of the i-th sequence.

22

2.5 Position specific scoring matrices

Figure 2.6: Alignment block representing a part of the multifunctional calcium/calmodulin-

dependent protein kinase II (CaMKII), a kinase enriched in synapses. CaM kinases

belong to the family of Ser/Thr protein kinases and have an extremely wide tissue

distribution.

See Figure 2.6 for an example of an alignment block. A PSSM is an abstraction of an alignment

block of related sequences (see Figure 2.7 for an example) and can be defined as follows.

Definition 8 A PSSM M is a function M : [0, m−1]×A→ R, where m is the length of M andA is

a finite alphabet. In case of matrices over the nucleotide alphabet we define the reverse complement

M of the PSSM M as M(i, a) = M(m − 1 − i, a) for all i ∈ [0, m − 1] and a ∈ A = {A, C, G, T},
where a is the Watson Crick complement of nucleotide a. That is A = T , C = G, G = C, and

T = A.

Usually M and M are represented by an m× |A| matrix, as shown in Table 2.4.

Large collections of curated, high quality alignment blocks allow the identification and function

assignment of a sequence by comparing it against every alignment block. The first step for such a

comparison is the conversion of each block into a PSSM. Several methods for this conversion have

been developed [GME87, TAK94, TAK94, HH96, SKB+96, WNB99] over the last two decades. The

basic task when computing a PSSM from a given alignment block is to estimate the probabilities of

each amino acid or nucleotide appearing at each position of the alignment block and convert them

into a scoring system that discriminates best between true positive and true negative members of

the family represented by the alignment block. The scores in each row of a PSSM can be derived in

a number of ways, but are naturally based on the frequency distribution of the characters observed

in that position of the block, such that a nucleotide or amino acid that occurs more frequently

receives a higher score.

In the following paragraphs we describe some widely used PSSM construction methods and illustrate

the basic principles and underlying ideas. Since PSSMs are particularily used as motif descriptors

for protein families, most of the construction methods below were originally developed for amino

acid sequences.

23

2 Modeling concepts for sequence motifs and consensi

Sigma32 transcription factor. Position 11-20

weblogo.berkeley.edu

N

1

K
A
D
E

2

D

3

T

I
V
L

4

L
T
A
V

5

Q

6

R

I

H

E
D

7

V
A
T

8

Y

W

F
9

T

V

M

L

F
I

10
K
A
R

C

Figure 2.7: Multiple alignment of σ32 transcription factor sequences (top), corresponding PSSM

(center) and sequence logo based on relative frequencies (bottom) (representing block

from position 11 until position 20). Observe that high scoring values in the PSSM cor-

respond to highly conserved residues in the multiple alignment and larger character

symbols in the sequence logo.

24

2.5 Position specific scoring matrices

(A)denin (C)ytosin (G)uanin (T)hymin

28.50 256.54 85.51 28.50

28.62 47.70 47.70 9.54

45.54 45.54 45.54 500.92

320.83 0.00 71.29 106.94

47.29 15.76 15.76 31.53

41.34 13.78 41.34 96.46

32.95 8.24 32.95 41.19

21.28 21.27 148.95 106.40

9.54 28.62 47.70 47.70

(A)denin (C)ytosin (G)uanin (T)hymin

47.70 47.70 28.62 9.54

106.40 148.95 21.27 21.28

41.19 32.95 8.24 32.95

96.46 41.34 13.78 41.34

31.53 15.76 15.76 47.29

106.94 71.29 0.00 320.83

500.92 45.54 45.54 45.54

9.54 47.70 47.70 28.62

28.50 85.51 256.54 28.50

Table 2.4: A 9×4 PSSM M (left matrix) and its reverse complement M (right matrix) of length m =

9 over the nucleotide alphabet A = {A, C, G, T}, describing a transcription factor binding

site motif found in the promotor sequences of HOX A3 genes. HOX (homeobox) genes

and their regulation play a major role in developmental proliferation of cells. Example

taken from the TRANSFAC database.

2.5.2 Sequence weighting procedures

Families of sequences are almost always highly biased and this correlation should not be ignored

when aligning if it is sufficiently extensive. A typical protein family in sequence databases is a highly

non-random sample of sequences where organisms with a long-term research tradition like E.coli or

D.melanogaster, pathogens with medical impact like H.pylori, or economically relevant organisms

like S.cerevisae are heavily over-represented irrespective of their evolutionary role. Beside such issues

based on selection, statistical correlation between similar sequences may arise from their common

evolutionary origin or as a result of similar functional requirements.

For the construction of PSSMs which subsequently will be used as a motif descriptor in database

searches, it is common to find a group of sequences with a certain amount of diversity when con-

structing an alignment block. Some members of this group will be nearly identical, whereas others

may be as little as 20% identical, when aligned. Obviously, each of the nearly identical sequences

contributes much less information than each of the 20% identical sequences.

To compensate for over-representation among multiply aligned sequences which would lead to

PSSMs that inadequately model the underlying sequence families and that would overspecialize

to the over-represented sequences, various concepts of sequence weighting procedures have been de-

veloped. These methods give the outlier sequences, those that do not belong to the highly similar,

over-represented group, additional importance in the calculation of the PSSM values.

For the weighting, numerical coefficients (sequence weights) are associated with each sequence to

denote the degree of independence of this sequence from the others in the multiple alignment. For

example, low weights are given to sequences that are redundant and high weights to sequences

that are diverged. In its most drastic form, additional similar sequences are discarded from the

set of sequences to be aligned, i.e. they achieve a zero weight, and only highly different sequences

remain [NLLL97, HSHA92]. Other techniques use the full sequence information and can be roughly

25

2 Modeling concepts for sequence motifs and consensi

categorized in two classes, evolutionary tree-based and sequence distance-based methods. Tree based

approaches assume that the sequences in the set under consideration have a common evolutionary

origin and are a result of divergent evolution and that an evolutionary tree can be constructed from

sequence or additional information [THG94].

The distance-based methods [HH94, LXB94] avoid the problems of tree topology and even do

not require that the sequences are related at all. Sequence weights are calculated from a residue

similarity matrix, like PAM or BLOSUM or from the amino acid type diversity observed in each

column of the multiple alignment. For example in the method proposed in [HH94], for each position

in a sequence, a weight inversely proportional to the number of different amino acids in the column

and the number of times the amino acid of interest appears in the column, is computed. The weight

of a sequence is then the average of the weights in all positions, normalized to sum up to 1.

The approaches for sequence weighting described so far have in common, that a single sequence

weight is assigned to a sequence. Implicitly this means, that the evolutionary rate of residue changes

is believed to be equal in all positions of the sequence. In [SER+99] the authors introduce a sequence

distance-based approach that incorporates position-specific sequence weights. They describe that

their method based on position-specific independent counts, produces PSSMs, that are in many

cases more powerful in detecting members of protein fold families, than e.g. PSI-BLAST derived

PSSMs [AMS+97]. Although many different sequence weighting procedures are described in litera-

ture, it remains to be difficult to identify a single, best weighting method, since the choice of the

weighting method depends both on what the resulting PSSM will be used for and the particular

group of sequences being modeled.

Methods that determine a PSSM from a set of aligned sequences basically face two difficulties. First,

the problem of interdependence between sequences in the underlying alignment block (biased data),

and second, the problem how to derive a PSSM from an alignment block adequately, especially

when the number of aligned sequences is small. The first problem can be addressed with sequence

weighting procedures. Principles and approaches for the second problem will be presented in the

following. For the methods to be described, we assume that the sequences in the alignment block

are already weighted to compensate selection biases and potential redundancies.

2.5.3 Basic PSSM construction principles

The first step when generating a PSSM is to determine a matrix based on of absolute residue

frequencies. This is also fundamental for more complex PSSM generation methods. In literature

such counting matrices are often also called profiles, position frequency matrices (PFMs for short) or

simply count matrices. Although in literature some authors distinguish between counting matrices,

profiles, and PSSMs we use the generic term PSSM for all these types of matrices throughout this

work, since for the matching algorithms described in the next chapter, it is irrelevant how the matrix

values are determined and what their semantics are. However, we will see that some matrix value

determination principles are better suited for scoring in a database search scenario than others.

In a PSSM based on residue counts, each element in the matrix contains the number of occurrences

of a certain residue at a specific position in the alignment block. More precisely: Let A be an

26

2.5 Position specific scoring matrices

A :

2

6

6

6

6

6

6

6

6

4

1 2 3

G T A

A A A

T C C

G G G

C C T

3

7

7

7

7

7

7

7

7

5

MA =

2

6

4

1 1 2 1

1 2 1 1

2 1 1 1

3

7

5

Figure 2.8: Let A be an alignment block of 5 sequences of length 3 over the nucleotide alphabet

A = {A, C, G, T}. The PSSM M with mi,a = countA(i, a) based on absolute frequencies

frequency corresponding to A is shown on the right.

alignment block of l sequences of length m over alphabet A, denoted by S1, . . . , Sl, and δ(i, a, k), i ∈
[0, m− 1], a ∈ A, k ∈ [1, l] a Kronecker symbol, such that

δ(i, a, k) =

{
1, if Sk[i] = a,

0, otherwise.
(2.2)

Now let countA be a function [0, m− 1]×A → N defined as

countA(i, a) :=
l∑

k=1

δ(i, a, k) = |{S ∈ A | S[i] = a}|

Hence a PSSM M based on absolute frequencies (counts) is a m× |A| matrix with

mi,a = countA(i, a) (2.3)

See Figure 2.8 for an example of an alignment block over the nucleotide alphabet and the corre-

sponding PSSM based on absolute frequencies.

Absolute frequencies are easily converted to relative frequencies. That is, each element of the PSSM

contains the fraction of the total number of occurrences of a residue at a specific position in the

alignment block and the number of aligned sequences. Let l be the number of aligned sequences in

the alignment block, then a PSSM based on relative frequencies is a m× |A| matrix M with

mi,a =
countA(i, a)

l
(2.4)

In a database searching scenario, where a PSSM is used as a descriptor for a family of related

sequences, PSSMs based on residue counts or relative frequencies are not appropriate. Counts or

relative frequencies are an imperfect representation of a column in the alignment block since they do

not take the background residue frequencies into account. For an example, reconsider the alignment

block and derived PSSM given in Figure 2.8. Here m1,G = m2,C = m3,A holds and consequently,

when using this PSSM in a database search, a guanine in the first position achieves the same score

as a cytosine in the second and an adenine in the third position, although it is probably more

likely to see a cytosine just by chance than a guanine, since cytosine occurs more often in the

sequences to be searched than guanine. Further, the sequences included in the alignment block are

an incomplete sample of the full set of related sequences and hence the derived counts or frequencies

can be misleading and deviate significantly from the frequencies of the whole family. This leads to

27

2 Modeling concepts for sequence motifs and consensi

the basic problem of how to convert observed counts into true frequencies or scores, adequately.

The set of observed counts is finite and almost always contains zero counts for one or more amino

acids or nucleotides. However, zero frequencies are undesirable, because they may exclude true but

unusual members of a given family. Therefore, some methodology have to be used to estimate the

true frequencies at a position in the sequence based on the observed counts in the corresponding

column in the alignment block.

2.5.4 PSSMs based on odds ratios

Instead of using residue counts or relative frequencies one ideally would like to create an odds ratio

based score for each column in the alignment block. Residue counts can be converted to odds ratios

of probabilities that are expected to be observed [BH87, SH90]. Let qi,a be the unknown probability

for residue a occurring in column i of the alignment block and pa be the expected frequency of a in

a random sequence, which can be estimated from the overall (background) frequency of residue a in

a large sequence database. As the number of sequences l in the alignment block A grows, estimates

of qi,a should converge to the relative frequencies countA(i,a)
l

. Thus, for sufficiently large values of l,

we can estimate the odds ratio of residue a appearing in column i of the alignment block as

qi,a

pa

≈ countA(i, a)

l · pa

(2.5)

In [HWB90] these odds ratios are directly used as score values in a PSSM. That is, a PSSM based

on odd ratios is a m× |A| matrix M with

mi,a =
qi,a

pa

. (2.6)

To achieve a more convenient additive scoring system, some methods use log-odds ratios instead of

simple odds ratios [BH87, LAB+93]. In these methods a PSSM based on log-odd ratios is defined

as a m× |A| matrix M with

mi,a = log

(
qi,a

pa

)
. (2.7)

In this case the PSSM values mi,a are the log of the ratio of two probabilities - the probability that

symbol a occurs at position i in the family described by the PSSM and the probability that a occurs

at position i just by chance. pa is often also called the probability of the null model, or background

probability, since it expresses how likely it is to see symbol a by chance. Although log-odd ratios

provide a simple, additive scoring system that maximizes selectivity for observed residues, log-odd

ratio based PSSMs have some drawbacks:

• Residue similarity problem: They do not take conservative replacements of residues into

account and hence may fail to detect distantly related members of the family.

• Incomplete sample problem: There are often not enough sequences included in the align-

ment block A, making A an incomplete sample of the full set of related sequences. In practice,

the number of sequences needed to accurately estimate the expected amino acids at each po-

sition in a protein is often larger than the number typically available in an alignment block

28

2.5 Position specific scoring matrices

for most protein families. Moreover, it is prevalently the case that the available data is skewed

towards one or more subfamilies of the protein being modeled, such that a large fraction of

the sequences are highly redundant and minor variants of each other. In such a case countA(i,a)
l

is not an adequate estimate for qi,a. This problem is known as overfitting and a variety of

approaches commonly known as regularization have been developed to deal with it.

• Zero count problem: For a specific column i ∈ [0, m− 1], countA(i, a) = 0 often holds for

some a ∈ A, especially for relatively small values of l. This converts to odd ratios of zero. A

zero count might indicate that the residue cannot occur in position i, or, which is much more

likely in most cases, it is the consequence of insufficient knowledge about the true instances

of the model. That is, not enough truly related sequences are included in the alignment block

A. Additionally, in either case a technical problem arises with zero counts. countA(i, a) = 0

would lead to undefined values in the PSSM if scores based on logarithms are used, since

log(0) is undefined.

2.5.5 Average score methods

PSSMs based on simple odds ratios or log-odds ratios do not take similarities between certain

characters of the alphabet into account, for example a substitution of amino acid leucin by a

chemically similar one like isoleucin. PSSMs based on score averaging methods as firstly introduced

by Gribskov [GME87] and successfully used in [TAK94] address this issue by weighting residues with

a similarity score based on their biochemical properties. The entries of such a PSSM are calculated

by averaging scores from a substitution matrix like PAM or BLOSUM. An average is taken of all

pairwise scores obtained from the used substitution matrix for an aligned residue and each of the

residues seen in the column under consideration. Unobserved residues receive scores based on their

presumed association with the observed residues.

For a given |A|×|A| substitution matrix S, a PSSM M based on the average score method according

to [GME87] is a matrix with

mi,a =
∑

b∈A
wi,bsa,b, (2.8)

where sa,b denotes the similarity matrix score for residue a replacing residue b and wi,b is a weight

for the appearance of residue b in column i of the alignment block. For a simple average weighting

wi,b can be determined as

wi,b =
countA(i, b)

l
, (2.9)

and for logarithmic weighting as

wi,b = log

(
countA(i, b)

l

)
(2.10)

while setting countA(i, b) = 1 for any residue not appearing in column i. Consequently Gribskov’s

average PSSMs address the residue similarity problem and can deal with zero counts.

The major criticism on Equation (2.8) is, that it is purely heuristic and does not rely on any

statistical model of (protein) sequence family evolution. The notion of amino acid substitution

29

2 Modeling concepts for sequence motifs and consensi

matrices implicitly accepts that the mutation probabilities or in other words the evolutionary rates

are identical at every position of the protein family, an assumption which is somehow opposite to

the basic idea of a position specific scoring matrix.

Observe that the odds ratio score given in Equation (2.6) can also be interpreted as an average

score that uses a simple substitution matrix S with

sa,b =

{
1
pa

, if a = b,

0, otherwise.
(2.11)

Another approach to derive a PSSM based on average scores is described in [Alt91]. In this contri-

bution, the authors showed that any substitution matrix has a log-odds score interpretation. That

is, substitution scores can be interpreted as scaled log-odds with an implicit set of amino acid pair

substitution probabilities qa,b. More precisely,

sa,b =
1

λ
log

(
qa,b

papb

)
. (2.12)

Here 1
λ

is a scaling factor and pa and pb denote the background probabilities of residues a and b.

Thus Equation (2.8) can be rewritten as

mi,a =
1

λ

∑

b∈A
wi,b log

(
qa,b

papb

)
. (2.13)

and we notice that the average score is a weighted average of log-odds ratios. To explicitly retain a

log-odd interpretation, it can be considered to weight each odds ratio before taking the log [HH96]

as

mi,a = log

(∑

b∈A
wi,b

qa,b

papb

)
. (2.14)

A potential drawback of averaging methods is that they do not take the number of sequences in the

alignment block into account. When there are only few sequences and the actual distributions of

residues in a certain column are uncertain, they make sensitive PSSMs. However, with an increasing

number of sequences, averaging substitution values reduce PSSM specificity [HH96]. The average

PSSM method also does not adequately emphasize positions that are highly conserved. Consider,

for example, a residue that is absolutely conserved in every sequence in a family of 100 sequences.

Such a position is required, often participating in critical structures or functions such as the active

site of an enzyme. Using simple average weighting (Equation (2.9)), in a PSSM based on Gribskov’s

average score method such a column would result in a row of values identical to the corresponding

row for the conserved residue in the substitution matrix S (see Equation (2.8)). This inability to

properly model highly conserved residues was the motivation for a further refinement. In [GV96]

Gribskov and Veretnik introduced a new approach for the computation of a PSSM from a given

alignment block, called evolutionary profiles. One of their basic ideas is to take into account that

the amount of conservation among protein sequences varies widely from position to position. Thus

any position in a sequence should be allowed to evolve at its own evolutionary rate. This implies

modeling different positions in a sequence using different substitution matrices, each corresponding

to a rate of change at different evolutionary distances.

30

2.5 Position specific scoring matrices

2.5.6 Explicit log-odd score methods

Another widely used method to deviate a PSSM from a given alignment block is introduced in

[HH96]. This method, widely simply known as Henikoff’s method, is, in contrast to Gribskov’s aver-

age score method, explicitly based on log-odd scores. That is mi,a = log
(

qi,a

pa

)
with qi,a estimated

as

qi,a ≈
l

l + Bi

countA(i, a)

l
+

Bi

l + Bi

bi,a

Bi

. (2.15)

Before we describe this formula in more detail, reconsider that odd ratios equal to zero, caused by

zero residue frequencies countA(i,a)
l

used for the estimation of qi,a, have to be prevented, when using

log-odd scores. In Gribskov’s average score method with logarithmic weighting (see Equations (2.8)

and (2.10)) this was addressed by simply setting countA(i, a) = 1 for any residue not appearing

in column i. Alternatively, zero residue frequencies can be avoided by adding some kind of hypo-

thetical sequences to the alignment block. For each column i in the alignment block, this involves

adding pseudo-counts to the observed counts countA(i, a) based on some belief about the actual,

incompletely observed, distribution of residues in that column. This means that, even if a given

amino acid does not appear in a column of the alignment block, it is given a fake count. Fake counts

are also added for the amino acids which appear in the column, e.g. we add one to each count.

This is the simplest pseudo-count method also known as Laplace’s rule. When probabilities are

calculated, the fake counts are treated exactly like real observed counts. Thus, for simple Laplace

pseudo-counts, qi,a can be estimated as

qi,a ≈
countA(i, a) + 1

l + 1
(2.16)

for any a ∈ A. Though this is a very simple approach to avoid the zero count problem it has

some disadvantages and does not perform well in practice. In the following we will discuss more

sophisticated methods to choose the pseudo-count values Bi and bi,a.

In Henikoff’s method (Equation (2.15)), bi,a > 0 is the number of pseudo counts added to the

observed count of residue a in column i, and Bi =
∑

a∈A bi,a the total number of pseudo counts

added in column i. Both countA(i,a)
l

and
bi,a

Bi
are estimates for the probability qi,a of residue a

appearing in column i and Equation (2.15) expresses a weighted average between them. The relative

sizes of l and Bi balance, whether the observed counts dominate, when l is large with respect to

Bi or the pseudo-counts when Bi is large with respect to l. With the usage of pseudo-counts it is

guaranteed that qi,a > 0 holds for any i ∈ [0, m− 1] and a ∈ A. Consequently, well defined PSSM

scores can be computed as log-odd ratios according to Equation (2.7).

Another PSSM construction method explicitly based on log-odd scores is described in [LAB+93].

Here qi,a values are estimated as

qi,a ≈
countA(i, a) + Bi · pa

l + Bi

. (2.17)

That is, pseudo counts Bi are added to the observed counts countA(i, a) in proportion to the back-

ground probability pa for some residue a. This has the appealing feature, that qi,a is approximately

equal to the background probability pa if only a few sequences are available, i.e. all the real counts

are very small compared to Bi. At the other extreme, where many sequences are available, the

31

2 Modeling concepts for sequence motifs and consensi

effect of the added pseudo-counts becomes insignificant and qi,a is essentially equal to the relative

frequency countA(i,a)
l

.

Although, with adding pseudo-counts to observed counts the zero count problem and to some extent

the overfitting problem, since pseudo-counts can be used as regularizers, are addressed in general,

it remains open how to choose an adequate number of pseudo-counts.

Determination of pseudo counts

Several different methods for calculating pseudo counts have been proposed over the last decade.

In [LAB+93] bi,a is simply taken to be proportional to the overall frequency of residue a in a

sequence. That is bi,a = Bi · pa. A major criticism of this method is, that it does not take possible

constraints imposed by residues observed in a column into account. For example if a certain residue

a is observed, then the pseudo-count for residues b with high substitution probabilities pb,a (like

leucine-isoleucine mutations) should be higher than the background frequency pa would imply and

the pseudo-count for residues with low substitution probabilities should be less. This drawback was

the motivation for an improvement introduced in [TAK94]. More precisely, let pa,b be the probability

that residue b is substituted by residue a, then the pseudo-count bi,a can be calculated based on

residue substitution probabilities as

bi,a = Bi

∑

b∈A
pb,a. (2.18)

This approach takes residue similarities into account by adding substitution probabilities, but the

residues actually observed in a certain column are neglected. To take the observed residues into

account, the authors of [TAK94] propose to calculate bi,a as

bi,a = Bi ·
∑

b∈A

countA(i, b)

l

pb,a∑
b∈A pb,a

. (2.19)

A similar method using similarity scores instead of substitution probabilities was proposed in [Cla94].

Selecting the total number of pseudo-counts

So far, we described approaches for determination of pseudo counts bi,a that are added to the

observed count of residue a in column i of the alignment block, given the total number of pseudo

counts Bi. It remains open, how to adequately choose Bi. In literature, Bi is often estimated to be

some function of the number of sequences in the alignment block, independent of i. For example, in

[LAB+93, TAK94] the authors chose Bi ≈
√

l based on empirical estimations. In [HH96] the authors

report that this choice is not ideal, especially when the number of sequences in the alignment block

is small, since the number of pseudo-counts can never exceed the number of counts. They propose to

compute position-based pseudo counts Bi for each column i ∈ [0, m− 1], instead of using the same

number of pseudo-counts for all columns of the alignment block. The basis for their computation

of Bi is to take residue diversity into account. That is, a conserved column in the alignment block

requires fewer total pseudo counts than a diverse column. Let Ri be the number of observed different

residues in column i. Then the position specific number of pseudo counts Bi is computed as

Bi = γRi, (2.20)

32

2.5 Position specific scoring matrices

where γ is an empirically determined positive number. Since 1 ≤ Ri ≤ |A| holds, it follows that:

γ ≤ γ ·Ri ≤ min{γ · l, γ · |A|} (2.21)

Using position based pseudo-counts, Equation (2.15) can be rewritten as

qi,a ≈
l

l + γRi

countA(i, a)

l
+

γRi

l + γRi

bi,a

γRi

. (2.22)

Hence for position based pseudo-counts, pseudo-counts dominate observed counts, if l < γ · |A|
holds. For l > γ · |A| observed counts always dominate, regardless of Ri. As a consequence Equation

(2.15) tends to countA(i,a)
l

for larger values of l, as required. For a highly conserved column in the

alignment block, that is Ri = 1, observed counts dominate, if l > γ.

Pseudo-counts based on Dirichlet mixtures

Another sophisticated method to compute position specific pseudo-counts, similar in their general

form to the substitution probability method (see Equation (2.19)), is known as Dirichlet-mixtures.

The mixtures are created by statistical analysis of the distribution of amino acids at particular

positions in a large number of proteins. Rather than using pairwise residue substitution data,

probabilities qi,a are derived from mixtures of Dirichlet densities computed using prior informa-

tion [BHK+93, SKB+96]. Here a Dirichlet density is a probability density over all possible combina-

tions of amino acids appearing in a given position. It gives high probability to certain distributions

and low probability to others. For example, a particular Dirichlet density may give high proba-

bility to conserved distributions where a single amino acid predominates over all others. Another

possibility is a density where high probability is given to amino acids with a common identifying

feature, such as the subgroup of hydrophobic amino acids. Now, the idea is to incorporate such

prior information about residue distributions that typically occur in columns of multiple alignments

into the process of building a statistical model. In [SKB+96] the authors present a method to con-

dense the information in databases of multiple alignments into a mixture of Dirichlet densities over

amino acid distributions and to combine this prior information with the observed amino acid counts

countA(i, a), a ∈ A, to form more effective estimates of the expected distributions.

2.5.7 Construction of amino acid PSSMs in the BLOCKS database

PSSMs used in the BLOCKS database searching application BLIMPS [HHAP95] are based on log-

odd scores (see Equation (2.7)). Probabilities qi,a are estimated according to Equation (2.15) and

pseudo-counts bi,a based on substitution probabilities are computed using Equation (2.19). Position

based pseudo-counts Bi are determined using Equation (2.20). Hence a PSSM derived from an

alignment block A of length m of protein sequences, as used by the BLIMPS program, is a m× 20

matrix M with

mi,a = log

(
qi,a

pa

)
(2.23)

33

2 Modeling concepts for sequence motifs and consensi

with

qi,a =
l

l + γ · Ri

· countA(i, a)

l
+

γ ·Ri

l + γ ·Ri

·
γ ·Ri

∑
b∈A

countA(i,b)·pb,a

l·
P

c∈A
pc,a

γ ·Ri

=
countA(i, a)

l + γ · Ri

+
γ ·Ri

l + γ ·Ri

·
∑

b∈A

countA(i, b) · pb,a

l ·∑c∈A pc,a

(2.24)

(2.25)

2.5.8 Wu’s minimal risk scoring matrices

In [WNB99] a minimal-risk method for the estimation of frequencies of amino acids at a conserved

position in a protein family is introduced. The method finds the optimal weighting between a set

of observed amino acid counts and a set of pseudo-frequencies which represent prior information

about the frequencies, by computing the optimal number of pseudo-counts to add. Optimality is

defined by a criterion called risk, which is the expected distance between the estimated frequencies

and true population frequencies, determined from the background distribution of amino acids or

from applying a substitution matrix to the observed data. The optimal weighting is computed by

minimizing the risk, measured by either a squared-error or relative-entropy metric. The resulting

frequency estimates are then used to estimate the probabilities qi,a and minimal-risk PSSMs are

constructed based on log-odd scores, like the PSSMs used by BLIMPS described above (see Equation

(2.23)). The method is implemented in the program eMatrix-maker 4. Furthermore several databases

exist containing PSSMs constructed with the minimal-risk method, e.g. the databases eBLOCKS

[SLSB05] and eSIGNAL 5.

In the following, we describe the main ideas of minimal-risk PSSMs more precisely. Let
~̂
fi, i ∈

[0, m − 1] be a vector of dimension |A|, with f̂i,a = mi,a and mi,a defined according to Equation

(2.4), that denotes the observed frequencies of symbols a ∈ A in column i of the alignment block.

These frequencies are generated by some unknown true population frequencies ~fi, which should be

estimated by ~f∗
i as well as possible. Wu and coworkers propose to estimate an optimal f∗

i,a as a

weighted sum of the observed frequencies and pseudo-frequencies,

f∗
i,a(βi, λi,a) = (1 − βi)f̂i,a + βiλi,a. (2.26)

The βi values are weights and λi,a denote the pseudo-frequency of symbol a in column i of the

alignment block. The method allows to use background frequencies, as well as substitution pseudo-

frequencies for the determination of λi,a. That is

λi,a =

{
f(a), [Background frequencies]∑

b∈A Sa,b · f̂i,a [Substitution frequencies].
(2.27)

Here f(a) denotes the background frequency for symbol a and S is a |A| × |A| substitution matrix

containing residue similarity information, e.g. a PAM or BLOSUM matrix. Then, Sa,b represents

the conditional probability of seeing amino acid a given amino acid b. To solve Equation (2.26)

we have to compute a weight β, such that ~f∗
i approximates ~fi as well as possible. To estimate an

4http://brutlag.stanford.edu/ematrix-maker
5http://brutlag.stanford.edu/esignal/

34

http://brutlag.stanford.edu/ematrix-maker
http://brutlag.stanford.edu/esignal/

2.5 Position specific scoring matrices

optimal weight β, denoted by β∗, a criterion of optimality called risk is defined as the expected

distance between estimated frequencies ~f∗
i and the yet unknown true frequencies ~fi. For given

~̂
fi

and ~λi, we advocate to choose parameters that minimize the distance between ~f∗
i and ~fi. Distance

computation can be performed using a squared error metric or based on relative entropy, leading

to the following definitions of risk R:

R = E
(
| ~f∗

i − ~fi|2
)

=

{ ∑
a∈A E(f∗

i,a − fi,a)2 [Squared error]
∑

a∈A E
(
f∗

i,a log
(

f∗
i,a

fi,a

))
[Relative entropy].

(2.28)

Evaluation experiments performed in [WNB99] showed that PSSMs using the squared error metric

for frequency estimation perform better than PSSMs using the relative entropy metric. Hence we

restrict in the following on the first to explain the method. For the squared error metric, Wu and

coworkers showed that weight β∗
i is optimal, if the following two relationships between β∗

i and the

true frequencies ~fi hold.

β∗
i =

1−
P

a∈A
f2

i,a

1−
P

a∈A
f2

i,a+l
P

a∈A
(fi,a−f(a))2

[Background frequencies]
1−

P

a∈A
(Sa,afi,a+fi,a(fi,a−si,a))

1+
P

a∈A
[(l−1)(fi,a−si,a)2−2Sa,afi,a+

P

b∈A
S2

a,b
fi,b]

[Substitution frequencies]
(2.29)

where

si,a =
∑

b∈A
Sa,bfi,b (2.30)

For a detailed derivation of Equation (2.29) from Equation (2.28) see the Appendix in [WNB99].

The first case in Equation (2.29) describes the relationship when using background frequencies

as pseudo frequencies λi,a, the second case when using substitution frequencies. With Equation

(2.29) an initial estimate for the unknown frequencies ~fi can be used to achieve a better estimate.

More precisely, the initial estimate for ~fi serves as a starting point to determine (1) a weight β∗

using Equation (2.29) and (2) (more accurate) frequencies ~f∗
i by using β∗ in Equation (2.26). This

procedure may be applied iteratively, but when the number of sequences in the alignment block is

small, an iterative approach can lead to progressive overfitting and poor estimates. As an initial

estimate, Wu chose

fi,a =
countA(i, a)

l + B
+

B · λi,a

l + B
, a ∈ A. (2.31)

Here B denotes the total number of pseudo-counts to add and was chosen by Wu proportional to

the number of sequences l as B =
√

l.

Finally the score values of a minimum risk PSSM are computed as log-odd scores from the frequency

estimates as

mi,a = log

(
f∗

i,a

f(a)

)
, i ∈ [0, m− 1], a ∈ A. (2.32)

2.5.9 Construction of nucleotide PSSMs in the TRANSFAC database

As a final example of a construction method for PSSMs from a given alignment block we describe

the PSSM building process in the TRANSFAC database. In TRANSFAC the PSSMs represent-

ing transcription factor binding site motifs are generated based on weighted, relative frequencies

([KGR+03] and personal communication with A.Kel). Again, let f̂i,a = countA(i,a)
l

be the observed

35

2 Modeling concepts for sequence motifs and consensi

A A G A A - A

A T - A A T G

C T G - G - G

C C - A G T T

C C G - G - -

(A)denin (C)ytosin (G)uanin (T)hymin (-) gap

0.4 0.6 0 0 0

0.2 0.4 0 0.4 0

0 0 0.6 0 0.4

0.6 0 0 0 0.4

0.4 0 0.6 0 0

0 0 0 0.4 0.6

0.2 0 0.4 0.2 0.2

Figure 2.9: A multiple alignment of length seven of five nucleotide sequences (left) and a corre-

sponding PSSM, containing relative frequencies and position specific gap costs (right)

relative frequency of nucleotide a to occur in column i. Then a TRANSFAC PSSM of length m is

a m× |{A, C, G, T}| matrix M with

mi,a = I(i) · f̂i,a. (2.33)

Here the observed relative frequency f̂i,a is weighted with the information vector I(i) defined as

I(i) :=
∑

a∈Σ

f̂i,a · ln(|A| · f̂i,a). (2.34)

The information vector describes the conservation of the position i in a matrix. The intention here

is, that the multiplication of the frequencies with the information vector should result in a higher

acceptance of mismatches in less conserved regions, whereas mismatches in highly conserved regions

are very much discouraged. In [KGR+03] the authors claim, that this leads to a better performance

in recognition of transcription factor binding sites, compared with methods that do not use the

information vector [KKMBW99].

2.6 Gribskov’s profile model

Gribskov’s profile model, introduced and described in [GME87] and [GLE90], extends the concept

of PSSMs according to Definition 8 on page 23 by facilitating position-dependent penalties for

the modeling of insertions and deletions. The underlying idea is, that insertions and deletions in

multiple alignments of related sequences occur at different positions with different frequencies,

depending of the variability or degree of conservation at these positions. Accordingly, position

dependent insertion/deletion (gap) costs should be incorporated into the PSSM model. In Gribskov’s

profile model, an additional column in the matrix contains these information. See Figure 2.9 for an

example of a PSSM with position specific gap costs derived from a gap-containing multiple sequence

alignment. Observe, that in this model no difference is being made between insertion and deletion

costs, since an insertion in one sequence can be viewed as a deletion in another.

To use a Gribskov profile in a database search, sequences are aligned to the profile using dynamic

programming and the alignment is rated with a score. The general idea of the method is similar

to the alignment of two sequences and can be extended to the comparison of two profiles [Got93].

36

2.6 Gribskov’s profile model

In case of aligning a single sequence to a Gribskov profile, the profile is viewed as a string, where

each row represents a character. The objective is to compute an optimal alignment of the string

and the Gribskov profile where the score reflects how well the string fits the profile. We make this

more precise now.

Let M⊔ : [0, m − 1] × A⊔ → R, be a PSSM over a finite alphabet A⊔ = A ∪ {⊔} that includes

a special gap symbol ⊔. For an alignment of a sequence S = s0 . . . sn and a PSSM with position

specific gap costs M⊔, we need a scoring function that should express the aberration of a character

c ∈ A of S from the j-th row of M⊔, j ∈ [0, m − 1]. We assume that a pairwise scoring function

σ : A⊔ ×A⊔ → R for all characters in A⊔ exists. This can be based on normal PAM or BLOSUM

scoring matrices. Assume that M⊔ is based on relative frequencies, then we may choose the scoring

function

score(c, i) =
∑

c′∈A⊔

σ(c, c′)M⊔(c′, i), i ∈ [0, m− 1] (2.35)

to model a position dependent scoring. This function performs a weighted comparison of a character

c with the values of row i of M⊔ and with the characters occurring in column i of the multiple

alignment respectively. E.g., the score for matching character G to the second row of the profile

given in Figure 2.9 is score(G, 2) = 0.2·σ(G, A)+0.4·σ(G, C)+0.4·σ(G, T). The optimal alignment of

the sequence S and the PSSM with position specific gap costs M⊔ can now be computed by applying

dynamic programming. We denote the optimal alignment of the prefix s0, . . . , si of S and the j-

th row vector of M⊔, j ∈ [0, m − 1] with V (i, j). With the following recurrences for the dynamic

programming matrix

V (i,−1) =
∑

k≤i

σ(⊔, sk) · |A| ·M⊔(k,⊔)

V (−1, j) =
∑

k≤j

score(k,⊔)

V (i, j) = max

V (i− 1, j − 1) + score(j, si),

V (i− 1, j) + σ(si,⊔) · |A| ·M⊔(j,⊔),
V (i, j − 1) + score(j,⊔)

the optimal alignment between a sequence S of length n + 1 and a PSSM with position specific gap

costs M⊔ of length m can be calculated in O(|A⊔|mn) time and O(mn) space. Likewise for pairwise

sequence alignment, this algorithm can be extended to an algorithm using an affine gap-cost model

with the same time and space complexity.

In practice PSSMs with position specific gap costs are not prevalent. To our knowledge they are

only used as (additional) motif descriptors in the PROSITE [HBFB99] and HAMAP [GMR+03]

databases. In most situations where it is necessary to include gap information, due to practical con-

cerns, like the need to model longer or more variable parts of sequences, a different motif descriptor

model like the subsequently described (profile) hidden Markov models are used.

37

2 Modeling concepts for sequence motifs and consensi

2.7 Hidden Markov models

Originally developed and applied to problems in speech recognition in the late 1960’s and early

1970’s, hidden Markov models became very popular in bioinformatics in the late 1980’s and early

1990’s. Since then they have found many applications, e.g. gene prediction [BK97, Bur98], recog-

nition of transmembrane domains in proteins [KLvHS01] or protein family classification. They are

successfully used as sequence family models [BCD+04, HSW03] to reflect how the sequences of the

family relate by substitutions, insertions and deletions to the consensus sequence of the family. Since

HMMs are general probabilistic models with a wide range of possible application and not limited

to problems in bioinformatics, we start with a brief introduction of the underlying general theory,

before focusing on a special type of HMMs often used in sequence analysis.

2.7.1 Foundations of hidden Markov model theory

A hidden Markov model (HMM for short) λ over an alphabet A describes a probability distribution

over the set of finite words w ∈ A∗. Let P[w|λ] be the probability of w under the model λ. We callP[w|λ] the production probability of λ for the sequence w. An HMM can be used to characterize

a family of sequences by assigning a production probability to a sequence w screened versus the

model λ, giving a measure of how likely it its, that w belongs to the family described by λ. If the

production probability P[w|λ] is significant, w matches the model and can be seen as a new member

of the sequence family described by this HMM.

Similar to a Markov Model, an HMM consists of a set of states {S1, S2, . . . , SN} and transitions

connecting states. Each state has a local probability distribution, the state transition probabilities,

describing the probability of a certain state transition. Let st denote the state of an HMM λ at

point t. State transition probabilities for N states can be defined by a N ×N matrix A with

ai,j = P[st = Sj |st−1 = Si], i, j ∈ [1, N] (2.36)

expressing the probability for a transition from state Si at point t − 1 to state Sj at point t. For

the initialization of the stochastic process, we define starting probabilities πi for each state Si. The

resulting vector ~π is defined as

πi = P[s1 = Si], i ∈ [1, N]. (2.37)

The transition structure of a discrete HMM can be described as a directed graph with a node

for each state, and an edge between two nodes if the corresponding state transition probability is

non zero (see Figure 2.10). In contrast to a Markov model, in an HMM state transitions are not

directly observable, they are hidden. Observable is a sequence of characters generated by a sequence

of state transitions of the HMM. It is convenient to think of an HMM as a generative model that

generates a sequence of characters from an output alphabet Aǫ := A∪{ǫ}, resulting in a sequence of

observations w = w1, w2, . . . , wT , wi ∈ Aǫ with probability P[w|λ]. The process of state transitions

evolves in some dimension, often time, though not necessarily. The model is parametrized with state

transition probabilities governing the state at a time t+1, given that one knows the previous states

at time t. Markov assumptions are used to truncate the dependency of having to know the entire

history of states up to point t in order to assess the next state t + 1 such that only one step back is

38

2.7 Hidden Markov models

Figure 2.10: Different states and transitions in the Genscan hidden Markov model. Genscan is a

gene-prediction algorithm that, like other HMMs, models the transition probabilities

from one part (state) of a gene to another. Here each circle or square represents a

functional unit (a state) of a gene on its forward strand (for example Einit is the 5’

coding sequence (CDS) and Eterm is the 3’ CDS, and the arrows represent the transition

probability from one state to another). Figure adopted from Genscan manual.

required. A pass through the HMM continues from state to state according to the state transition

probabilities6. For each transition an HMM generates a character from the output alphabet Aǫ with

a certain state dependent probability, the symbol emission probability P[ot = wk|st = Sj], wk ∈ Aǫ,

resulting in a stream of emitted symbols (observations), as the process passes through the states.

If we have a finite alphabet of output symbols Aǫ and thus discrete symbol emission probabilities,

they can be described by an N × |Aǫ| matrix B with

bj,k = P[ot = wk|st = Sj], wk ∈ Aǫ, 1 ≤ j ≤ N, 1 ≤ k ≤ |Aǫ|P[ot = wk|st = Sj] denotes the probability of generating symbol wk ∈ Aǫ in state Sj at time t. A

state without a symbol emission probability distribution is called a silent state. Observe that this is

no restriction to the general concept of HMMs, in which a state has no special type and each state is

a symbol emitting state, since a silent state Sj can be seen as a symbol emitting state, emitting the

empty string ǫ with symbol emissions probability P[ot = ǫ|st = Sj] = 1 and P[ot = c|st = Sj] = 0

6Sometimes special start- and end states are used to define a start and end point for a pass through the model.

39

2 Modeling concepts for sequence motifs and consensi

for all other characters c ∈ A. An HMM λ with discrete probability distributions is well defined by

the triple

λ = (~π, A, B). (2.38)

When using HMMs there are the following three basic problems of interest:

1. The Evaluation Problem: Sometimes also called the likelihood problem. Given a HMM λ

and a sequence of observations w = w1, w2, . . . wT , wi ∈ Aǫ, what is the production probabilityP[w|λ] that w is generated by λ?

2. The Decoding Problem: Given model λ and a sequence of observations w = w1, w2, . . . , wT ,

wi ∈ Aǫ, what is the most likely state sequence q = q1, q2, . . . , qT with qi ∈ {S1, S2, . . . , SN}
across the model that generates the observed sequence w?

3. The Learning Problem: Given model λ and a sequence of observations w = w1, w2, . . . , wT ,

wi ∈ Aǫ, how should the model parameters (~π, A, B) be adjusted in order to maximize P[w|λ]?

To compute the production probability P[w|λ], we have to take all state sequences/paths q =

q1, q2, . . . , qT through λ into account that produce the sequence of observations w = w1, w2, . . . wT ,

wi ∈ Aǫ, and compute and add their probabilities. We denote the set of paths through λ producing

w by Qw and write P[w|λ] asP[w|λ] =
∑

q∈Qw

P[w, q|λ] =
∑

q∈Qw

πq1bq1,w1 · aq1,q2 · bq2,w2 · aq2,q3 · . . . · aqT−1,qT
· bqT ,wT

. (2.39)

Obviously, the number of paths increases exponentially with the length of the sequence of obser-

vations and a straightforward calculation of P[w|λ] leads to an algorithm, solving the evaluation

problem in O
(
2T ·NT

)
time, where 2T is the cost of computing the probability for a single path

and NT is the number of paths of length T . It is apparent, that this approach is infeasible in prac-

tice, even for moderate values of T . A more efficient approach makes use of dynamic programming

and calculates P[w|λ] in polynomial time. In particular this algorithm is known as the Forward

Algorithm. We make this now more precise. We define the problem of computing the probabilityP[w|λ] in terms of prefixes of the observed sequence. Let αt,i = P[w1, . . . , wt, st = Si|λ] denote the

probability of observing the partial observation sequence w1, . . . , wt and being in state Si at point

t. Then the following recurrences hold:

α1,j = πjbj,1 for any j ∈ [1, N]

αt+1,j =

(
N∑

i=1

αt,iai,j

)
bj,t+1 for any t ∈ [1, T − 1] ∧ j ∈ [1, N]P[w1, . . . , wT |λ] =

N∑

i=1

αT,i (2.40)

To determine P[w|λ] with the Forward Algorithm we calculate the values of O (N · T) cells of the

dynamic programming matrix, spending O (N) operations per cell. Hence the overall time complex-

ity is O
(
N2T

)
and the space complexity is O (N · T). In a similar way we can define a backward

recursion calculating P[w|λ]. This leads to the Backward Algorithm. Here we define the problem of

40

2.7 Hidden Markov models

computingP[w|λ] in terms of suffixes of the observed sequence. Let βt,i = P[wt+1, . . . , wT , st = Si|λ]

be the probability to observe the sequence wt+1, . . . , wT and being in state Si at point t. Then the

following recurrences can be used to compute P[w|λ] efficiently:

βT,j = 1 for any j ∈ [1, N]

βt,j =

N∑

i=1

βt+1,iaj,ibi,t+1 for any t ∈ [T − 1, 1] ∧ j ∈ [1, N]P[w1, . . . , wT |λ] =
N∑

i=1

πibi,1β1,i (2.41)

The complexity of the Backward Algorithm is again O
(
N2T

)
time and O (N · T) space. Further

on, we observe that with the definitions of α and β the following equation holds for arbitrary t.P[w1, . . . , wT |λ] =
N∑

i=1

αt,iβt,i (2.42)

With the Forward or Backward algorithm, we can compute the probability P[w|λ] that a sequence

of observations was produced by a given model λ and thus solving the evaluation problem. P[w|λ]

can be rewritten in terms of a score or p-value and can be used in HMM based protein family

classification to accept or not to accept the sequence of observations as a new member of the family

that was used to build the model.

The HMM decoding problem can be solved with an algorithm known as the Viterbi algorithm,

which again applies dynamic programming. It is similar to the Forward algorithm except that we

do not sum over the predecessor states at point t, but taking the maximum.

Let ǫt,j denote the highest probability that the partial observation sequence w1, . . . , wt and state

sequence ending in state j ∈ [1, N] up to point t. Then the Viterbi algorithm can be defined by the

following recurrences:

ǫ1,j = πjbj,1

ǫt+1,j = argmax
i∈[1,N]

{ǫt,iai,j}bj,t+1 (2.43)

If we store a pointer, pointing from ǫt+1,j back to the selected predecessor state ǫt,i which is the

state for which ǫt,i · ai,j , i ∈ [1, N], is maximal, we can calculate the most likely state sequence

recursively, starting with ǫT,j∗ and j∗ = argmax
1≤i≤N

{ǫT,i} and thus solving the decoding problem. Since

we calculate the values of O (N · T) cells of the DP matrix, spending O (N) operations per cell, the

overall time complexity of the Viterbi Algorithm is O
(
N2T

)
and the space complexity is O (N · T).

Here N denotes the number of states and T is the length of the emitted sequence.

To solve the learning problem, we must find for a given HMM λ with already defined topology and

observed data the model parameters (~π, A, B) that maximize P[w|λ]. There is no known optimal

analytical way of doing this. However, there exist algorithms that iteratively re-estimate the model

41

2 Modeling concepts for sequence motifs and consensi

from some arbitrary starting point which guarantee to find a local maximum. The most common

one is the Baum-Welch or forward-backward algorithm [Rab90], which is a version of the general

expectation maximization (EM) method often used in statistics. For an accurate estimation of the

model parameters a lot of training data is needed, making the training of the model a critical and

computationally expensive step. To give an example, consider an HMM over an alphabet containing

20 symbols, representing the 20 different naturally occurring amino acids. All emission probabilities

of all 20 amino acids have to be estimated in all emitting states. Especially in profile HMMs (a type

of an HMM with a special topology, described in the next section), in which each conserved position

in the sequence is modeled by a different emitting state, the number of estimated parameters can be

enormous. This phenomenon is related to overfitting, which occurs when there is not enough data

to obtain good estimates for the model parameters, and consequently the model will not generalize

adequately to new data.

2.7.2 Profile hidden Markov models

In particular successful in sequence analysis since the 1990’s is a special type of HMMs called

profile hidden Markov models (pHMMs for short). pHMMs were first introduced in [HKB+93] and

[KMSH94] and are simple types of hidden Markov models with a linear, left-to-right, repetitive

structure of states (see Figure 2.11 for an example), well suited to model multiple alignments and

probably the most popular application of hidden Markov models in computational biology. They

have been proved to be a powerful method in biological sequence analysis, especially successful in

performing sequence database searching and detecting remote homologies [Edd98, KBH98, MG02].

pHMMs are also common in speech recognition, where they are sometimes called time-dependent

HMMs or time-parametrized HMMs.

The prefix “profile” is used because pHMMs are similar to and address the same problem as the

formerly described PSSMs (often also called profiles). Likewise to PSSMs they are often derived

from multiple alignments of related sequences and capture position-specific information about how

conserved each column of the alignment is, and which residues are likely. pHMMs are general, statis-

tical models for any system that can be represented as a succession of transitions between discrete

states. As a model capturing the information of a protein family, the discrete states correspond to

the successive columns of a protein multiple sequence alignment. Although, in principle, pHMMs

can even be determined from unaligned sequences by successive rounds of optimization, in practice,

protein pHMMs are built from curated multiple sequence alignments, like the ones collected in the

PFAM [BBD+00] or TIGRFAM [HSW03] databases. For the construction of a pHMM usable as a

discriminative motif descriptor, we assume a given multiple alignment of a sequence family and a

derived consensus sequence. In contrast to general HMMs, pHMMs have basically three types of

states with associated special semantics: match (M), insert (I) and delete (D) states. Match and

insert states are symbol emitting states whereas the delete state is a silent state. Each of these

states models a position of the consensus sequence of the sequence family delineated by the mul-

tiple alignment, and describes how members of the family deviate from the consensus sequence at

that position. More precisely:

• The match state models that the generated character has evolved from the position in the

consensus sequence.

42

2.7 Hidden Markov models

Begin End0.3

0.4

0.3

0.49

0.5

0.46 0.015

0.48

0.06

0.48 0.48

0.37

0.46

0.015

0.97 0.97

0.46

0.06
0.06

0.49 0.48

0.015

0.46

0.05

0.015

0.46

0.73

1

0.7

0.3

A
0.75

I
0.5

E

H

0.05

0.4

Figure 2.11: The transition structure of a pHMM consisting of repeated elements of match (green

squares), insert (yellow diamonds) and silent delete (red circles) states. A pass through

the pHMM starts in a special start-state and continues from state to state according to

the state transition probabilities, until a special end-state is reached. State transition

probabilities are given as numbers next to the directed arcs. Symbol emissions and

their probabilities are given as letters and numbers inside the state symbols.

• The insert state models that the generated character has been inserted between two neigh-

boring positions in the consensus sequence.

• The self-loop on the insert state models that several consecutive characters can be inserted

between two positions of the consensus sequence.

• The delete state models that the position has been deleted from the consensus sequence.

A path through the model always starts from the begin/start state and ends with the end state.

Likewise to general HMMs, on the path through the model, state transitions occur with a certain

probability and in symbol emitting states, a symbol from the output alphabet is emitted with a

certain probability. To give an example, let q be the state sequence of the red marked path in Figure

2.11. Then q generates the sequence AIEH with probabilityP[w = AIEH, q|λ] = 0.3 · 0.75 · 0.97 · 0.5 · 0.015 · 0.05 · 0.046 · 0.4 · 0.7 = 1.0541E−6. (2.44)

That is, we compute P[w = AIEH, q|λ] as the product of the state transition probabilities and

the emission probabilities of the emitted symbol along the path through the model. Instead of

multiplying probabilities, in practice, often the log-odd scores are summed up.

The central part of a pHMM is a sequence of match states, corresponding to columns in the multiple

alignment. Each match state emits (aligns to) a single residue, with a probability score that is

determined by the frequency that residues have been observed in the corresponding column of

the multiple alignment. Each match state therefore has an assigned vector of |A| probabilities,

describing a probability distribution of the symbols of A. That is, in case of pHMMs, build from a

multiple alignment of amino acid sequences 20 probabilities for scoring the 20 amino acids. Observe

43

2 Modeling concepts for sequence motifs and consensi

G T A
A A A
T C C
G G G
C C T

0.2 0.2 0.4 0.2
0.2 0.4 0.2 0.2
0.4 0.2 0.2 0.2

A 0.4
C 0.2
G 0.2
T 0.2

A 0.4
C 0.2
G 0.2
T 0.2

A 0.2
C 0.4
G 0.2
T 0.2

A 0.2
C 0.4
G 0.2
T 0.2

A 0.2
C 0.2
G 0.4
T 0.2

A 0.2
C 0.2
G 0.4
T 0.2

ENDBEGIN

G T
A A
T C
G G G
C C T

G T A
A A A
T C C
G G G
C C T

 A
 A
 C

G G G
C C T

0.2 0.2 0.4 0.2
0.2 0.4 0.2 0.2
0.4 0.2 0.2 0.2

Multiple
Alignment: PSSM:

1 1 1 1

Corresponding HMM:

A C G T

M
1

M
2 M

3

Figure 2.12: A PSSM based on probability values can be seen as a pHMM consisting of a linear

sequence of match states with state transition probabilities of 1 between them. In this

view, each match state corresponds to a column in the multiple alignment and hence a

row in the PSSM. It emits a symbol from the output alphabet with a certain probability.

That is, the symbol emission probability distribution of a match state corresponds to

the distribution of scores or rather probabilities in a row of the PSSM.

that the meaning of this probability vector is similar to the meaning of a row vector in a PSSM.

More over, if the PSSM contains probability values, then they are equivalent. Hence a PSSM is

essentially equivalent to a pHMM composed only of match states (see Figure 2.12) and can be seen

as a method that looks for ungapped alignments to a consensus of a multiple alignment7. If we

extend this perception to PSSMs that include position specific gap costs, like the Gribskov PSSMs

described in section 2.6, the position specific gap costs correspond to transition probabilities for

moving to an insert or delete state.

The main difference between Gribskov’s PSSMs with position specific gap costs and a pHMM is that

the PSSM model requires the transition from a match state to an insert state and the transition

from a match state to a delete state to have both the same probability. This is dispositional in the

sense, that an insertion in one sequence can be seen as a deletion in another. In contrast to the

basic PSSM model as defined in Definition 8, a pHMM is capable of modeling alignments including

insertions and deletions (with the insert and delete states mentioned above), which allows the more

adequate description of much longer and more variable parts of conserved sequences like complete

conserved domains or complete sequences, rather than just a relatively small ungapped motif.

pHMM construction from a multiple alignment

For the construction process of a pHMM from a given multiple alignment two important decisions

must be taken into account:

7In [Edd98] the author makes the distinction between pHMMs, which he calls profile models and motif HMMs which

are built of linear sets of match states and are essentially PSSMs.

44

2.7 Hidden Markov models

Begin End

A - - - K

A D - - R

A D - - R

S D - - K

A E L G R

A - - - K

A D - - R

A D - - R

S D - - K

A E L G R

A - - - K

A D - - R

A D - - R

S D - - K

A E L G R

A - - - K

A D - - R

A D - - R

S D - - K

A E L G R

M
1

M
2

M
3

Multiple alignment:

a possible corresponding pHMM:

I
2

D
2

Figure 2.13: A possible pHMM for the given multiple alignment. The three match states M1, M2, M3

correspond to the green marked columns in the alignment. The third and fourth column

are treated as insertions between M2 and M3 and are modeled with the insert state

I2. The delete state D2 allows to skip state M2.

• The topology and model length. That is, we have to decide, which columns of the multiple

alignment must be assigned to match states and which must be modeled with insertion states.

A rule of thumb used in practice is to consider columns with more than half gap characters

as highly variable regions that should be modeled with insertion states. See Figure 2.13 for

an example.

• The model parameters. Reconsider that an HMM λ with a discrete probability distribution

is well defined by the triple (~π, A, B) (see Equation (2.38)). Initial probabilities ~π, transition

probabilities A, and emission probabilities B can be estimated from the multiple alignment.

For this estimation, again pseudo-count methods are used to avoid problems caused by zero

character frequencies and to adequately estimate character distributions.

In the following we describe the structure of a pHMM as introduced in [HKB+93] and [KMSH94].

Assume that the linear sequence of match states is defined e.g. by selecting those columns of the

multiple alignment that contain less than half gap characters. The next step is to deal with insertions

and deletions. Since insertions, i.e. portions of a sequence that do not match anything in the model,

can potentially occur at any position, we add an insert state to each match state. Deletions, i.e.

segments of the multiple alignment and match states that are not matched by a sequence scored with

the model, are handled with delete states. We associate a delete state with each match state. This

allows to skip match states. Additionally we add an insert state before the first match state to allow

to skip prefixes of the sequence before entering the first match state. We call a group of match, insert,

and delete states at the same consensus position in the alignment a node, and the model length is

the number of nodes between the begin and the end state. Finally we end for the multiple alignment

given in Figure 2.13 with the pHMM architecture given in Figure 2.11. Following the propposed

architecture of [KMSH94] leads to generalized models, where in principle an insertion or deletion

45

2 Modeling concepts for sequence motifs and consensi

can occur at any position in a sequence evaluated or generated with the pHMM. A slightly different

pHMM topology often used in practice to model families of related sequences, is the so called PLAN

7 architecture, developed by Eddy [Edd98] and implemented in the HMMER software package8. It

is somewhat more complex, but much more flexible than the original pHMM architecture introduced

by Krogh and coworkers in [KMSH94]. Unlike Krogh’s pHMM architecture, PLAN 7 has no state

transitions from delete to insert states and from insert to delete states. Additional special states in

the PLAN 7 architecture even allow the construction of local alignments. Alignments can be local

with respect to sequence (i.e. allowing a match to the model anywhere within a longer sequence),

as well as with respect to the model (i.e. allowing fragments of the model to match the sequence).

Multiple hit alignments, for instance to model repetitive protein domains, are also possible. For a

detailed description of the PLAN7 architecture, see the HMMER manual.

Once the structure of the pHMM is determined, the model parameters, like transition and symbol

emission probabilities have to be estimated from the multiple alignment. This is analogous to solving

the formerly described learning problem. For the estimation of symbol emission probabilities from

sample counts in the multiple alignment, the same or similar methods as the described methods for

PSSM score estimation are used.

Observe that a pHMM defines a discrete probability distribution over the whole space of sequences

or words from A∗ respectively. Accordingly, the objective of the construction and training process

is to control the shape of that distribution by associating the peaks of the function around members

of the sequence family represented by the multiple alignment. That means, that the model, which

describes the consensus sequence for the family, not the sequence of any particular member, should

discriminate between true and false family members as well as possible. As already stated, there is

no analytical, optimal way of doing this, but in practice, iterative methods like the Baum-Welch or

forward-backward algorithm [Rab90] can be used for this task. For a detailed description of prob-

ability estimation methods and optimal model construction in the context of pHMMs see sections

5.6 and 5.7 of [DEK98].

Sequence alignment and database searching with pHMMs

The most important application of a pHMM representing a family of sequences is finding new

sequences in a database that show a high similarity to the members of this family. Given a database

of sequences and a pHMM, the sequences can be aligned to the model. Here the pHMM can be seen

as a generative model and a sequence is viewed as a sequence of observations (emitted symbols).

As shown in Figure 2.14, in a pHMM one sequence of observations can be generated by different

hidden state sequences. If we want to align a sequence w ∈ A∗ to an already trained model λ, we are

interested in the most probable sequence of hidden state transitions that generates this sequence

of observations. Thus, when aligning w to λ, a sequence of match, insert, and delete states will be

obtained. The determination of the best (most likely) sequence of state transitions is essentially equal

to solving the HMM decoding problem which can be solved with the Viterbi algorithm in O
(
N2 · T

)

time and O (N · T) space, applying dynamic programming. Here N denotes the length of w and T

is the number of states in λ. Finally, an ordered score can be determined from the comparison of

the probability of the most likely state sequence to the probability of random sequences.

8http://hmmer.wustl.edu/

46

http://hmmer.wustl.edu/

2.7 Hidden Markov models

A - - - - K

A - D - - R

A - D - - R

S - D - - K

A - E L G R

A I E - - H

- - K

- - R

- - R

- - K

L G R

A - -

A - D

A - D

S - D

A - E

A - -

A - D

A - D

S - D

A - E

A - - - K

A D - - R

A D - - R

S D - - K

A E L G R

A I - E H

- K

- R

- R

- K

G R

A - -

A D -

A D -

S D -

A E L

A - -

A D -

A D -

S D -

A E L

Multiple alignment:

Begin End

A - - - - K

A D - - - R

A D - - - R

S D - - - K

A E L G - R

- A I E H -

- - K

- - R

- - R

- - K

G - R

A - -

A D -

A D -

S D -

A E L

A - -

A D -

A D -

S D -

A E L

Multiple alignment:

Begin End

Multiple alignment:

Begin End

State Sequence:
Begin,M

1
,M

2
,I

2
,M

3
,End

State Sequence:
Begin,D

1
,M

2
,I

2
,I

2
,I

2
,D

3
,End

State Sequence:
Begin,M

1
,I

1
,M

2
,M

3
,End

M
1

M
2

M
3

I
0

I
1

I
2

I
3

D
3

D
2

D
1

D
1

D
1

D
2

D
2

D
3

D
3

I
0

I
0

I
1

I
1

I
2

I
2

I
3

I
3

M
1

M
1

M
2

M
2

M
3

M
3

Figure 2.14: A pHMM can be seen as a process, that generates a sequence of characters with a cer-

tain probability, by emitting symbols in the symbol emitting match and insert states.

Different paths through the model can generate the same sequence with different prob-

abilities. In this example three possible paths and their state sequences to generate the

sequence AIEH are shown. The three match states M1,M2, and M3 correspond to the

green marked columns in the multiple alignment. In each example, the visited states

on the path are marked red.

47

2 Modeling concepts for sequence motifs and consensi

Name (Release) #Models URL

Pfam (20.0) 8,296 http://www.sanger.ac.uk/Software/Pfam/

TIGRFAM (6.0) 2,946 http://www.tigr.org/TIGRFAMs/

SMART (5.0) 725 http://smart.embl-heidelberg.de/

SUPERFAMILY (1.69) 4,894 http://supfam.org/SUPERFAMILY/

CATH (3.0) 23,876 http://www.cathdb.info/

PANTHER (6.0) 36,298 http://www.pantherdb.org/

Table 2.5: Major existing pHMM collections

In a database search scenario with a pHMM λ, we can ask alternatively to the computation of the

most probable state path, how likely is it that a certain sequence w ∈ A∗ is generated by λ. That

is, we have to compute the production probability P[w|λ]. Since there can be more than one path

through λ that generates w (see Figure 2.14), we have to take all paths into account that generate

w (see Equation (2.39)). Observe that this is equivalent to solving the HMM evaluation problem

and can be accomplished with the Forward algorithm in O
(
N2 · T

)
time and O (N · T) space.

2.7.3 Profile HMM collections for sequence annotation and classification

Profile HMMs are especially successful for modeling of protein families and there is an increasing

number of publicly available collections of such family models, see Table 2.5. A common aspect of

all of these collections is, that they use the pHMM topology and model notations of the HMMER

package [Edd98], such that they are compatible to and can be searched with the pHMM search

software of the same name. Overall, it can be said that the HMMER software package has established

a de facto standard in this field. In the following we give a brief overview of the most widely used

collections of pHMMs, suitable for sequence annotation and protein family classification.

Pfam database

Pfam [BCD+04] is a large manually curated collection of multiple sequence alignments and derived

pHMMs covering many common protein domains and families. Genome projects, including both the

human and fly, have used Pfam extensively for large scale functional annotation of genomic data.

Each curated family in Pfam is represented by a seed and full alignment. The seed contains rep-

resentative members of the family, while the full alignment contains all members of the family as

detected with a pHMM constructed from the seed alignment. Such full alignments can be large, with

the top 20 families containing over 2500 sequences each. The majority of known protein sequences

come from just a few thousand protein families.

TIGRFAM database

The Institute for Genomic Research protein families database (TIGRFAM) [HSW03] is likewise to

Pfam a collection of curated multiple sequence alignments (seed alignments) for protein families and

48

http://www.sanger.ac.uk/Software/Pfam/
http://www.tigr.org/TIGRFAMs/
http://smart.embl-heidelberg.de/
http://supfam.org/SUPERFAMILY/
http://www.cathdb.info/
http://www.pantherdb.org/

2.7 Hidden Markov models

pHMMs built from the seeds. TIGRFAM contains predominantly equivalogs (functionally defined

subfamilies). Protein family descriptions for use in protein annotation, including trusted score cutoff

and noise cutoff values accompany each model. Proteins that score above the trusted cutoffs are

believed to reside within the family and those falling below the noise cutoffs are believed to reside

outside the family. The margin of error with respect to presence or absence of a protein within a

TIGRFAM family is represented by the score range between noise and trusted cutoffs. Additionally

the TIGRFAM database provides functional classification information in form of roles, in which

models are classified, and cross referencing to the Gene Ontology classification system [Con06].

SMART database

The Simple Modular Architecture Research Tool (SMART) [LCP+06] can be used for the identi-

fication and annotation of genetically mobile domains and the analysis of domain architectures. It

contains pHMMs for more than 500 domain families found in signaling, extracellular and chromatin-

associated proteins. The domain models are extensively annotated with respect to phyletic distri-

butions, functional class, tertiary structures and functionally important residues.

SUPERFAMILY database

The SUPERFAMILY database [GKHC01] provides structural (and hence implied functional) as-

signments to amino acid sequences at the protein superfamily level. It is a library of pHMMs

representing 1539 protein superfamilies. Superfamilies are defined according to the structural clas-

sification of proteins database (SCOP) [AHB+04]. Each superfamily is represented by a group of

pHMMs.

CATH Protein structure classification database

CATH [PTS+05] is a multi level hierarchical classification system, that classifies protein domain

structures at four major levels, Class(C), Architecture(A), Topology(T), and Homologous superfam-

ily (H). The level of homologous superfamilies groups together protein domains which are thought

to share a common ancestor and can therefore be described as homologous. Similarities are iden-

tified either by high sequence identity or structure comparison. From multiple alignments of the

homologous superfamilies pHMMs are constructed, such that each superfamily is represented by

multiple pHMMs.

PANTHER classification system

The PRotein ANalysis THrough Evolutionary Relationships (PANTHER) classification system

[MLUL+05] classifies proteins according to families and subfamilies. PANTHER defines families

as groups of evolutionary related proteins and subfamilies as related proteins that also have the

same function. Information about family and subfamily affiliations are derived from clustering of

the UniProt protein database, using a BLAST-based similarity score. Each protein family is repre-

sented by a phylogenetic tree defining its subfamilies. Families and subfamilies are also represented

by pHMMs and associated with functional ontology terms. For several families and subfamilies

49

2 Modeling concepts for sequence motifs and consensi

additional information and associated data such as detailed biochemical interactions in canonical

pathways are available.

2.8 Concluding remarks on sequence motif models

The different concepts for motif modeling presented in this chapter all have different advantages

and disadvantages, making it difficult to choose one single method as best for all kinds of possible

applications. See Table 2.6 for an overview of the advantages and disadvantages of the described

motif models.

Advantages Disadvantages

Regular expressions

• easy to use due to the availability of efficient

search engines

• fast to match

• discrete motif descriptor

• no scoring system, only binary response

PSSMs

• provide a scoring system

• needs less sequences for model construction

than a pHMM

• efficient to match using index structures

• matching is computationally more expen-

sive than for regular expressions

• limited expressiveness due to missing inser-

tion and deletion model

Gribskov profiles

• provide a scoring system

• position specific insertion/deletion model

• not very common in practice

• lack of publicly available models

• tools for profile construction and search-

ing were not further developed in the last

decade and are poorly conceived

profile HMMs

• full probabilistic model

• provide a scoring system based on proba-

bilistic theory

• insertion and deletion model

• very sensitive

• widely used

• matching is very time consuming and hence

it is difficult to use pHMMs on a large-scale

• proper model training may become time

consuming and challenging

• a lot of sequences are needed to train a

model adequately and to avoid overfitting

Table 2.6: Advantages and disadvantages of different motif modeling concepts.

Discrete sequence motif descriptors, such as consensus strings or regular expression based patterns

are relatively easy to search, and standardized searching engines are available. Searching with these

motif descriptors is relatively fast, since with a single mismatch parts of the text to be searched can

50

2.8 Concluding remarks on sequence motif models

be skipped. Their severe drawback is, that they do not include a scoring system and give only a

binary response. As a consequence they are often an inadequate concept to describe biological motifs.

In contrast to regular expressions, PSSMs provide a kind of similarity score and increased sensitivity

although searching with PSSMs is more complex and computationally expensive. Compared to

pHMMs much less (aligned) sequences are needed to derive a meaningful PSSM which is definitely

an advantage in practice, when modeling protein families with only a few number of known members.

Another advantage of PSSMs is that they are a well studied, accepted and common motif model

in sequence analysis and thus various publicly available resources of curated alignment blocks and

already derived PSSMs exist. One severe drawback of PSSMs is, that they are fixed length motifs,

which lack of an adequate insertion and deletion model. Hence their capabilities especially for

modeling of longer regions is limited. This disadvantage is partially balanced in Gribskov’s profile

model, which extends the basic PSSM model by position specific gap costs. However, the pitfall with

Gribskov profiles in practice is simply the nonexistence of publicly available models. Additionally

the programs to build profiles from existing multiple alignments and to search with them are not

very handy to use and were not further developed in the last decade.

The most successful motif model in computational biology are pHMMs. They are based on a fully

probabilistic model and are capable to model insertions and deletions. Further on, they yield to be

the most sensitive of the introduced motif models so far. The price to be paid when using pHMMs

is an increased complexity and higher computational effort when building the model. To build a

pHMM that achieves good classification accuracy, a lot of model parameters have to be trained

properly. Consequently much more sequences are needed for an adequate training of a pHMM,

compared to a PSSM, in order to avoid overfitting problems. Another problem, especially occurring

when using pHMMs on a larger scale, are the running times of the Viterbi and Forward algorithms.

These may make searching with pHMMs a time consuming process in practice. Especially in the

absence of large cluster systems, searching with large collections of pHMMs on complete proteomes

can become an infeasible task.

In the following chapters, we will focus on the efficient searching of PSSM based motif models. We

will see, that some of the disadvantages of PSSMs compared to pHMMs, like the lack to model

insertions and deletions, can be compensated, making PSSMs almost as sensitive as pHMMs and

that the use of suffix based full text index structures lead to fast PSSM searching algorithms, that

are well suited for large-scale PSSM matching tasks.

51

2 Modeling concepts for sequence motifs and consensi

52

3 Fast algorithms for matching position

specific scoring matrices

3.1 Introduction

As stated in the former chapter, PSSMs are a well known and successfully used concept for approx-

imate motif modeling in sequence analysis. When searching with PSSMs in nucleotide or amino

acid sequences, a high PSSM-score in some region of a sequence often indicates a possible biological

relationship of this sequence to the family or motif characterized by the PSSM. There are sev-

eral databases utilizing PSSMs for function assignment and annotation, e.g., PROSITE [HSL+04],

PRINTS [ABF+03], BLOCKS [HGPH00], EMATRIX [WNB99], JASPAR [SAE+04], or TRANS-

FAC [MFG+03]. In addition, recently developed modeling concepts for more complex complete regu-

latory modules consisting of several transcription factor binding site, like the multiple-feature based

approach of [PSTB05], also use PSSMs as atomic motif descriptors. While there are manifold ap-

plications that employs PSSMs and PSSM containing databases are constantly improved, there are

only few improvements in the programs searching with PSSMs. E.g., the programs FingerPrintScan

[SFA99], BLIMPS [HGPH00], MatInspector [QFWW95], and the method of [PSTB05] still use a

straightforward O (mn)-time algorithm to search a PSSM of length m in a sequence of length n.

In [RJS02] the authors presented a method based on Fourier transformation. A different method

introduced in [FB05] employs data compression. To the best of our knowledge there is no software

available implementing these two methods. The most advanced program in the field of searching

with PSSMs is EMATRIX [WNB00], which incorporates a technique called lookahead scoring. The

lookahead scoring technique is also employed in the suffix tree based method of [DNM00]. This

method performs a limited depth first traversal of the suffix tree of the set of target sequences. This

search updates PSSM-scores along the edges of the suffix tree. Lookahead scoring allows to skip

subtrees of the suffix tree that do not contain any matches to the PSSM. Unfortunately, the method

of [DNM00] has not found its way into a widely available and robust software system. A method

for the detection of transcription factor binding sites modelled with PSSMs utilizing suffix trees but

no lookahead scoring was very recently described in [SSZ07]. In [Gon04], the development of new,

more efficient algorithms for searching with PSSMs is considered an important problem, which still

needs better solutions.

In this chapter, we briefly recall existing methods for searching with PSSMs and present a new, non-

heuristic algorithm. With any non-heuristic PSSM searching algorithm, the performance in terms

of sensitivity and specificity solely depends on the used PSSM and threshold, i.e. given a PSSM

and threshold, all these algorithms give exactly the same results. For the generation of PSSMs from

aligned sequences, numerous different methods were described in literature over the last decades

53

3 Fast algorithms for matching position specific scoring matrices

[GME87, TAK94, HH96, WNB99, KGR+03]. Some of them were already described in detail in

section 2.5. The algorithms presented in this chapter can deal with all these types of PSSMs, since

rather than improving PSSMs, we focus on improvements in terms of time and space efficiency when

searching with PSSMs, independently of their underlying generation method. The overall structure

of our proposed new search algorithm is similar to the method of [DNM00]. However, instead of

suffix trees we use enhanced suffix arrays, a data structure which is as powerful as suffix trees

(cf. [AKO04]) but provides several advantages over suffix trees, which make them more suitable for

searching with PSSMs.

One of our algorithmic contributions is a new technique that allows to skip parts of the enhanced

suffix array containing no matches to the PSSM. Due to the skipping, our algorithm achieves an

expected running time that is sublinear in the size of the search space (i.e., the size of the nucleotide

or protein database). As a consequence, our algorithm scales very well for large data sizes.

Since the running time of our algorithm increases with the size of the underlying alphabet, we devel-

oped a filtering technique, utilizing alphabet reduction, that achieves better performance especially

on sequences/PSSMs over the amino acid alphabet.

When searching with a PSSM, it is important to determine a suitable threshold for a PSSM-match.

Usually, the user prefers to specify a significance threshold (i.e., an E-value or a p-value) which has

to be transformed into an absolute score threshold for the PSSM under consideration. This can be

done by computing the score distribution of the PSSM, using well-known dynamic programming

(DP, for short) methods, e.g., [Sta89, WNB00, Rah03, RMV03]. Unfortunately, these methods are

not fast enough for large PSSMs. For this reason, we have developed a new, lazy evaluation algorithm

that only computes a small fraction of the complete score distribution. Our algorithm speeds up

the computation of the threshold by factor of at least 3, compared to standard DP methods. This

makes our algorithm applicable for on-the-fly computations of the score thresholds.

3.2 Pattern matching with PSSMs

Recall, that a PSSM is an abstraction of a multiple alignment of related sequences and can be

defined as a function M : [0, m−1]×A→ R, where m is the length of M and A is a finite alphabet.

We represent M by an m × |A| matrix, in which each row reflects the frequency of occurrence of

each amino acid or nucleotide at the corresponding position of the underlying alignment. See Figure

3.1 for an example.

From now on, let M be a PSSM of length m and let w[i] denote the character of w at position i

for 0 ≤ i < m. Further on, w[i..j] denotes the substring of w starting at position i and ending at

position j. We define sc (w, M) :=
∑m−1

i=0 M(i, w[i]) for a sequence w ∈ Am of length m. sc (w, M)

is the match score of w w.r.t. M . The score range of a PSSM is the interval [scmin(M), scmax(M)]

with scmin(M) :=
∑m−1

i=0 min{M(i, a) | a ∈ A} and scmax(M) :=
∑m−1

i=0 max{M(i, a) | a ∈ A}. We

define the PSSM matching problem as follows:

Definition 9 Given a sequence S of length n over alphabet A, a PSSM M of length m and a score

threshold th, the PSSM matching problem is to find all positions j ∈ [0, n − m] in S and their

assigned match scores, such that sc (S[j..j + m− 1], M) ≥ th holds.

54

3.3 Improved running time through the usage of lookahead scoring

A C D E F G H I K L M N P Q R S T V W Y thd σd

-19 92 -45 -49 -30 -36 -38 -12 -41 -21 -22 -40 -46 -44 -44 -30 -25 16 -35 -34 2 398

5 -17 17 22 -28 -15 -7 -23 -8 -27 -21 26 18 -7 -13 -9 9 -19 -33 -25 24 376

7 -8 -29 -28 2 -25 -10 25 -23 -4 -5 -25 -32 -26 -25 -18 13 22 -11 36 60 340

-29 99 -55 -61 -42 -45 -47 -31 -52 -34 -36 -49 -56 -55 -55 -38 -35 -29 -44 -46 159 241

-14 -22 14 22 -28 9 -8 -26 15 -27 -20 -7 -26 -3 31 -13 5 -23 -30 -24 181 219

-25 -34 -25 -16 -37 -30 -15 -36 45 -34 -26 -18 -35 -9 49 -25 -26 -33 -39 -31 230 170

7 -8 -25 -24 -19 -23 -22 4 -15 -10 -8 -19 -29 -21 11 -13 31 31 -31 -22 261 139

-34 -27 -44 -43 60 -41 -8 -16 -38 -14 -17 -39 -51 -40 -36 -39 -35 -21 -1 56 317 83

7 40 -16 -14 -9 -14 -6 -17 14 -20 -15 -10 -24 -11 12 15 9 -13 -16 20 357 43

-7 43 16 -7 -27 -15 -9 -24 -5 -26 -18 -6 -25 25 13 25 -8 -21 -30 -24 400 0

Figure 3.1: Amino acid PSSM of length m = 10 of a zinc-finger motif. If the score threshold is

th = 400, then only substrings beginning with C or V can match the PSSM, because all

other amino acids score below the intermediate threshold th0 = 2. That is, lookahead

scoring will skip over all substrings starting with amino acids different from cysteine (C)

and valine (V).

A simple algorithm for the PSSM matching problem slides along the sequence and computes

sc (w, M) for each w = S[j..j + m − 1], j ∈ [0, n − m]. See Algorithm 1 and Figure 3.2 for an

example. The running time of this algorithm is O (mn). It is used e.g., in the programs Finger-

PrintScan [SFA99], BLIMPS [HGPH00], MatInspector [QFWW95], and MATCH [KGR+03].

Algorithm 1: SPsearch

input : A sequence S = s0 . . . sn−1, a PSSM M of length m and a threshold th

output: All matching positions of M in S and their associated matchscores

for j ← 0 to n−m do1

score←− sc(S[j..j + m− 1], M) ;2

if score ≥ th then3

print ”match at position j with score: score”;4

end5

end6

3.3 Improved running time through the usage of lookahead

scoring

In [WNB00], lookahead scoring is introduced to improve the simple algorithm. Lookahead scoring

allows to stop the calculation of sc (w, M) when it is clear that the given overall score threshold

th cannot be achieved. To be more precise, we define pfxscd(w, M) :=
∑d

h=0 M(h, w[h]), maxd :=

max{M(d, a) | a ∈ A}, and σd :=
∑m−1

h=d+1 maxh for any d ∈ [0, m − 1]. pfxscd(w, M) is the prefix

score of depth d. σd is the maximal score that can be achieved in the last m− d− 1 positions of the

PSSM. Let thd := th−σd be the intermediate threshold at position d. The correctness of lookahead

scoring, not shown in [WNB00], is implied by the following Lemma:

55

3 Fast algorithms for matching position specific scoring matrices

A G C T T G C A G C

A C G T

1 1 2 1

1 2 1 1

2 1 1 1

1+1+1
2+1+1

2+1+2

1+1+1
1+1+1

1+1+1

0 1 2 3 4 5 6 7 8 9

th=5

Figure 3.2: A straightforward solution for the PSSM searching problem is the SPsearch algorithm,

which uses a sliding window technique. All subwords of the sequence of the PSSM length

are scored completely according to the corresponding matrix values. If the score is equal

to or exceeds the given threshold th, a match is reported at the starting position of

the currently scored subword. In this example the given threshold is th = 5. Matching

subwords are marked green, mismatching subwords are marked red.

Lemma 1 The following statements are equivalent:

(1) pfxscd(w, M) ≥ thd for all d ∈ [0, m− 1],

(2) sc (w, M) ≥ th.

Proof: (1)⇒(2): Suppose that (1) holds. Then σm−1 =
∑m−1

h=m maxh = 0 and

sc (w, M) =
m−1∑

h=0

M(h, w[h]) = pfxscm−1(w, M) ≥ thm−1 = th − σm−1 = th.

(2)⇒(1): Suppose that (2) holds. Let d ∈ [0, m− 1]. Then

sc (w, M) =

m−1∑

h=0

M(h, w[h]) =

d∑

h=0

M(h, w[h]) +

m−1∑

h=d+1

M(h, w[h])

= pfxscd(w, M) +

m−1∑

h=d+1

M(h, w[h])

Hence sc (w, M) ≥ th implies pfxscd(w, M) +
∑m−1

h=d+1 M(h, w[h]) ≥ th. Since M(h, w[h]) ≤ maxh

for h ∈ [0, m− 1], we conclude

m−1∑

h=d+1

M(h, w[h]) ≤
m−1∑

h=d+1

maxh = σd

and hence

pfxscd(w, M) ≥ th −
m−1∑

h=d+1

M(h, w[h]) ≥ th − σd = thd.

�

56

3.3 Improved running time through the usage of lookahead scoring

The Lemma suggests a necessary condition for a PSSM-match which can easily be exploited: When

computing sc (w, M) by scanning w from left to right, one checks for d = 0, 1, . . . , m − 1, if the

intermediate threshold thd is achieved. If not, the computation can be stopped. See Figure 3.1 for

an example of intermediate thresholds and their implications. A pseudocode formulation of the

lookahead scoring algorithm (herein after called LAsearch) is given in Algorithm 2.

Algorithm 2: LAsearch

input : A sequence S = s0 . . . sn−1, a PSSM M of length m, a threshold th

output: All matching positions of M in S and their associated matchscores

for d← 0 to m− 1 do1

thd ←− th−
∑m−1

h=d+1 max{M(h, a) | a ∈ A} ;2

/* calculate the intermediate thresholds thd = th− σd */

end3

for j ← 0 to n−m do4

score←− 0 ;5

for d← 0 to m− 1 do6

score←− score + M(d, S[j + d]);7

/* score = pfxscd−1(S[j..j + d− 1], M) + M(d, S[j + d]) */

;8

if score < thd then9

break; //terminate when we miss an intermediate threshold10

end11

end12

if score ≥ th then13

print ”match at position j with score: score”;14

end15

end16

If we assume that the row maxima of M can be determined in O(1) time, such that the a priori

calculation of the vector of intermediate thresholds can be accomplished in O (m) time instead of

O (m|A|), LAsearch runs in O (kn + m) time, where k is the average number of PSSM-positions per

sequence position actually evaluated. In the worst case, k ∈ O (m), which leads to the worst case

running time of O (mn), not better than the simple algorithm. However, k is expected to be much

smaller than m, leading to considerable speedups in practice. In the best case, exact one character

of each subword of length m of S has to be scored leading to O (m + n) running time.

3.3.1 Permuted lookahead scoring

The authors of [WNB00] also suggest a variant of (sequential) lookahead scoring, called permuted

lookahead scoring, which indeed does not affect the worst case running time but can lead to an

additional speedup in practice. The basic idea is to evaluate the PSSM in a permuted order with

the aim to increase the likelihood of falling short of an intermediate threshold early. Lookahead

scoring accesses the values of the PSSM sequentially from position 1 up to m. See interior loop

57

3 Fast algorithms for matching position specific scoring matrices

in Algorithm 2. However we can score the characters of a given subword w of length m in any

order. Wu and coworkers suppose to reorder the rows of the PSSM according to the difference

Di = |Ei − Mi| between the expected score Ei =
∑

a∈A M(i, a)f(a), i ∈ [0, m − 1] and the

maximum score Mi = max{M(i, a) | a ∈ A} of a row i, starting with the largest difference. Here

f(a) denotes the background probability of symbol a. Hence we can determine a priori a permutation

π = (π0, . . . , πm−1) of the rows of M such that Dπi
≥ Dπj

holds, for any pair i, j ∈ [0, m− 1], i < j

and where πi indicates the position to be evaluated in step i. That is, the intermediate thresholds

are computed according to the order given by π as

thd = th−
m−1∑

h=d+1

max{M(πh, a) | a ∈ A} for any d ∈ [0, m− 1]. (3.1)

Analogous to the calculation of pfxsc for sequential lookahead scoring, we compute a partial score,

scoring d characters of w in the order given by π. Let

prtscd(sj . . . sj+m−1, M) :=
d∑

i=0

M(πd, S[j + πd]). (3.2)

The substitution of the computation of function pfxsc by prtsc and the corresponding changes

in the calculation of the intermediate thresholds lead to the permuted lookahead scoring variant

for searching with PSSMs, shown in Algorithm 3. For the performance improvement of permuted

lookahead scoring over sequential lookahead scoring achievable in practice, speedups between 5.8

and 20.6 %, depending on the stringency of th are reported in [WNB00]. Although this improvement

is significant, we will see that the use of suffix based index structures in combination with sequential

lookahead scoring lead to much higher performance improvements.

3.4 PSSM searching using suffix trees

Although the LAsearch and permuted LAsearch lead to a considerable speedup in practice, the

benefit in times of exponentially increasing sequence databases is limited. The severe drawback

of these techniques is, that the improvement does not affect the (exponentially increasing) search

space and hence the running time is still linear in the size of the search space (i.e. length of the

sequences to be searched). In analogy to traditional string matching, the improvements introduced

by lookahead scoring can be compared to pattern preprocessing methods like the Knuth-Morris-

Pratt [KMP77] or Boyer-Moore [BM77] algorithm that slide along the text to be searched and which

running time is dominated by the text length. What we are really interested in, is an algorithm that

runs independent of the sequence length n. This can be achieved with an indexing of the search

space.

In the SPsearch as well as LAsearch algorithm, we observe that common prefixes of subwords are re-

scored again and again when sliding along the sequence. We can avoid this by indexing all subwords

based on their prefixes. A powerful index data structure known since the early seventies [Wei73]

that became quite popular in the last years, with a wide range of possible applications [Apo85] in

computational biology (cf. [Gus97]) is the suffix tree, which is well suited for our problem. A suffix

tree is a Trie-like or PATRICIA-like [Mor68] data structure that exposes the internal structure of

58

3.4 PSSM searching using suffix trees

Algorithm 3: permuted LAsearch

input : A sequence S = s0 . . . sn−1, a PSSM M of length m, a threshold th

output: All matching positions of M in S and their associated matchscores

compute permutation π = π0, . . . πm−1 of M such that Dπi
≥ Dπj

for any i < j, i, j ∈ [0, m− 1];1

for d← 0 to m− 1 do2

thd ←− th−∑m−1
h=d+1 max{M(πh, a) | a ∈ A} ;3

/* calculate the intermediate thresholds in the permuted order */

end4

for j ← 0 to n−m do5

score←− 0 ;6

for d← 0 to m− 1 do7

score←− score + M(πd, S[j + πd]);8

/* score = prtscd−1(S[j..j + m− 1], M) + M(πd, S[j + πd]) */

;9

if score < thd then10

break; //terminate when we miss an intermediate threshold11

end12

end13

if score ≥ th then14

print ”match at position j with score: score”;15

end16

end17

59

3 Fast algorithms for matching position specific scoring matrices

$

C
A

$
A

C

$

C
C
A
C
A
C
$

C

$

A

C
C

C
A
C
A
C
$

A

C

A

C

$

A

C

$

$

0

123

4

5

6 7

8

Figure 3.3: The suffix tree for the string S = ACCCACAC$. Internal nodes are marked green,

leaves are marked red. Observe that the concatenation of the edge labels on a path

starting at the root node and ending at leave with leave number i results in the suffix

of S starting at position i.

the underlying string in a deep way by containing all subwords of the string and allowing a very

efficient access. More precisely:

Definition 10 Suffix tree

The suffix tree T for a string S$ of length n is a rooted directed tree with exactly n leaves numbered

0 to n−1. Each internal node, excluding the root node, has at least two child nodes and each edge is

labeled with a nonempty substring of S. No two edges out of a node can have edge-labels beginning

with the same character. The key feature of the suffix tree is that for any leaf i ∈ [0, n − 1], the

outcome of the concatenation of the edge-labels on the path from the root to leaf i exactly spells

out the suffix of S that starts at position i.

The suffix tree can be constructed in linear time and space with several algorithms [Wei73, McC76,

Ukk95]. Once constructed, it can be used to efficiently solve a wide range of string processing

problems, e.g the exact matching of a pattern of length m in O(m) time. Figure 3.3 gives an

example of a suffix tree.

3.4.1 Dorohonceanu’s algorithm

In [DNM00] the authors describe the usage of suffix trees to speed up the searching with PSSMs.

Their non persistent implementation of suffix trees needs 17 byte space per input character on

average. The basic idea of their method is to perform a limited depth first traversal of the suffix

tree of the set of target sequences. In the traversal of the tree they update PSSM-scores along the

edges and make use of the fact, that for a PSSM of length m all subwords of length m which have to

be investigated are represented in the suffix tree up to depth m. If and only if the overall threshold

th is reached or exceeded at depth m, the matching positions of the PSSM can be retrieved by

60

3.4 PSSM searching using suffix trees

S = A C C C A C A C $

Pos:0 1 2 3 4 5 6 7 8

A C G T

1 2 2 1

1 2 1 1

2 1 1 1

$
C
A

$
A

C

$

C
C
A
C
A
C
$

$

A

C
C

C
A
C
A
C
$

A

C

A

C

$

A

C

$

$

1
2C

2+22+1

2+2+1

2+2+2

-inf

-inf

0

123

4

5

6 7

8

1+2

1+2+1

1+2+2
-inf

2+1+1

Figure 3.4: Using a suffix tree for searching with PSSMs. To score all subwords of the PSSM length

m (m = 3 in this example), we have to perform a depth first traversal up to depth 3

(green marked part of the tree). This is a direct adaptation of the SPsearch algorithm

described in Algorithm 1.

enumerating the leaf numbers in the subtree below. As we have already seen in the description of

the lookahead scoring method, it is not necessary to score all subwords of length m completely, if

an overall threshold th is given. Again we can use intermediate thresholds as early stop criterias for

the subword scoring. For PSSM searching using suffix trees this means, that we essentially do not

have to traverse the tree up to depth m completely (see Figure 3.4), when incorporating lookahead

scoring. Lookahead scoring allows to skip subtrees of the suffix tree that do not contain any matches

to the PSSM, by checking the intermediate thresholds while the traversal (see Figure 3.5 for an

example). Suffix trees are also employed for searching with PSSMs in the very recently published

STORM program [SSZ07]. STORM uses McCreight’s algorihtm [McC76] for the construction of a

non persistent suffix tree.

Analysis

The complexity analysis for Dorohonceanu’s algorithm, not given in [DNM00], follows the same

argumentations and leads to the same results as the analysis of the ESAsearch algorithm presented

below. To avoid redundancies, we analyze the complexity of Dorohonceanu’s algorithm together

with the complexity of ESAsearch in section 3.5.1 on page 66.

61

3 Fast algorithms for matching position specific scoring matrices

S = A C C C A C A C $

Pos:0 1 2 3 4 5 6 7 8

A C G T th

1 2 2 1 2

1 2 1 1 4

2 1 1 1 6

$
C
A

$
A

C

$

C
C
A
C
A
C
$

$

A

C
C

C
A
C
A
C
$

A

C

A

C

$

A

C

$

$

1

2C

2+22+1

2+2+1

2+2+2

-inf

-inf

-inf

0

123

4

5

6 7

8

Figure 3.5: By incorporating lookahead scoring we can limit the depth first traversal of the suffix

tree. Observe that, in contrast to the traversal shown in Figure 3.4, now subtrees can

be skipped, if an intermediate threshold is missed. In this example we used an overall

threshold of th = 6.

3.5 PSSM searching using enhanced suffix arrays: The

ESAsearch algorithm

As demonstrated in [DNM00], a suffix tree is a powerful data structure, even for PSSM searching

and its usage can lead to remarkable speedups, especially when the sequence space to be searched

is large. Unfortunately, the method of [DNM00] has not found its way into a widely available and

robust software system. Further on, an enhanced suffix array, a data structure as powerful as a suffix

tree, provides several additional advantages over suffix trees, making it more suitable for searching

with PSSMs:

• While suffix trees require about 12n bytes in the best available implementation (cf. [Kur99]),

the enhanced suffix array used for searching with PSSMs only needs 9n bytes of space.

• While the suffix tree is usually only computed in main memory, the enhanced suffix array is

computed once and stored on file. Whenever a PSSM is to be searched, the enhanced suffix

array is mapped into main memory which requires no extra time.

• While the depth first traversal of the suffix tree suffers from the poor locality behavior of the

data structure (cf. [GK95]), the enhanced suffix array provides optimal locality, because when

searching with PSSMs it is sequentially scanned from left to right.

62

3.5 PSSM searching using enhanced suffix arrays: The ESAsearch algorithm

 i suf[i] lcp[i] skp[i] Ssuf[i]

 0 1 12 aaaaccacac$
 1 2 3 2 aaaccacac$
 2 3 2 3 aaccacac$
 3 7 1 6 acac$
 4 4 2 6 accacac$
 5 9 2 6 ac$
 6 0 0 12 caaaaccacac$
 7 6 2 9 cacac$
 8 8 3 9 cac$
 9 5 1 11 ccacac$
10 10 1 11 c$
11 11 0 12 $

 accacac$
 ccacac$

 ccacac$
 ac$
 cacac$
 $
 aaaaccacac$
 ac$
 $

 cacac$
 $

$

a

a

a
a

c c

c

Figure 3.6: The enhanced suffix array consisting of tables suf, lcp, skp (left) and the suffix tree

(right) for sequence S = caaaaccacac. Some skp entries are shown in the tree as red

arrows: If skp[i] = j, then an arrow points from row i to row j. For clarity, suffixes

corresponding to suf[i] are given in table Ssuf[i].

The generic name enhanced suffix array, introduced in [AKO02] stands for a family of data struc-

tures, extending a suffix array with additional information. Suffix arrays are a well known data

structure in literature. They were introduced in 1993 by Manber and Myers [MM93] and indepen-

dently by Gonnet et al. under the name PAT array [GBYS92]. The enhanced suffix array for a given

sequence S of length n consists of three tables suf, lcp, and skp. Let $ be a symbol in A, larger than

all other symbols, which does not occur in S. suf is a table of integers in the range 0 to n, specifying

the lexicographic ordering of the n + 1 suffixes of the string S$. That is, Ssuf[0], Ssuf[1], . . . , Ssuf[n]

is the sequence of suffixes of S$ in ascending lexicographic order, where Si = S[i..n− 1]$ denotes

the i-th nonempty suffix of the string S$, for i ∈ [0, n]. See Figure 3.6 for an example. Given a

suffix tree, suf can be constructed in O (n) time by a depth-first traversal of the tree. Recently

published algorithms (cf. [KS03, KSPP03, KA03]) even allow a direct construction of suf in O (n)

time, without first constructing a suffix tree. Table suf requires 4n bytes.

lcp is a table in the range 0 to n such that lcp[0] := 0 and lcp[i] is the length of the longest common

prefix of Ssuf[i−1] and Ssuf[i], for i ∈ [1, n]. See Figure 3.6 for an example. Table lcp can be computed

in linear time given table suf [KLA+01]. In practice PSSMs are used to model relatively short, local

motifs and hence do not exceed length 255. For searching with PSSMs we therefore do not access

values in table lcp larger than 255, and hence we can store lcp in n bytes.

skp is a table in the range 0 to n such that skp[i] := min({n+1}∪{j ∈ [i+1, n] | lcp[i] > lcp[j]}). In

terms of suffix trees, skp[i] denotes the lexicographically next leaf that does not occur in the subtree

below the branching node corresponding to the longest common prefix of Ssuf[i−1] and Ssuf[i]. Figure

3.6 shows this relation. Table skp can be computed in O (n) time given suf and lcp. For the algorithm

to be described we assume that the enhanced suffix array for S has been precomputed.

63

3 Fast algorithms for matching position specific scoring matrices

In a suffix tree, all substrings of S of a fixed length m can be scored with a PSSM by a depth first

traversal of the tree. Using lookahead scoring, one can skip certain subtrees that do not contain

matches to the PSSM. Since suffix trees have several disadvantages (see the introduction), we

use enhanced suffix arrays to search PSSMs. Like in other algorithms on enhanced suffix arrays

(cf. [AKO04]), one simulates a depth first traversal of the suffix tree by processing the arrays suf

and lcp from left to right. To incorporate lookahead scoring while searching we must be able to skip

certain ranges of suffixes in suf. To facilitate this, we use table skp. We will now make this more

precise.

For i ∈ [0, n], let vi = Ssuf[i], li = min{m, |vi|} − 1, and di = max({−1} ∪ {d ∈ [0, li] | pfxscd(vi, M)

≥ thd}). That is, di is the last position in the suffix vi to be scored when scoring vi from left

to right, since at position di + 1 we fall short intermediate threshold thdi+1. Now observe that

di = m−1⇔ pfxscm−1(vi, M) ≥ thm−1 ⇔ sc (vi, M) ≥ th. Hence, M matches at position j = suf[i]

if and only if di = m − 1. Thus, to solve the PSSM searching problem, it suffices to compute all

i ∈ [0, n] satisfying di = m− 1. We compute di along with Ci[d] = pfxscd(vi, M) for any d ∈ [0, di].

d0 and C0 are easily determined in O (m) time. Now let i ∈ [1, n] and suppose that di−1 and Ci−1[d]

are determined for d ∈ [0, di−1]. Since vi−1 and vi have a common prefix of length lcp[i], we have

Ci[d] = Ci−1[d] for all d ∈ [0, lcp[i]− 1]. Consider the following cases:

• If di−1 + 1 ≥ lcp[i], then compute Ci[d] for d ≥ lcp[i] while d ≤ li and Ci[d] ≥ thd. We obtain

di = d.

• If di−1 + 1 < lcp[i], then let j be the minimum value in the range [i + 1, n + 1] such that all

suffixes vi, vi+1, . . . , vj−1 have a common prefix of length di−1+1 with vi−1. Due to the common

prefix we have pfxscd(vi−1, M) = pfxscd(vr, M) for all d ∈ [0, di−1 +1] and r ∈ [i, j−1]. Hence

di−1 = dr for r ∈ [i, j − 1]. If di−1 = m − 1, then there are PSSM matches at all positions

suf[r] for r ∈ [i, j − 1]. If di−1 < m − 1, then there are no PSSM matches at any of these

positions. That is, we can directly proceed with index j. We obtain j by following a chain of

entries in table skp: compute a sequence of values j0 = i, j1 = skp[j0], . . . , jk = skp[jk−1] such

that di−1 + 1 < lcp[j1], . . . , di−1 + 1 < lcp[jk−1], and di−1 + 1 ≥ lcp[jk]. Then j = jk.

These case distinctions lead to the program ESAsearch (see Algorithm 4 and Function skipchain).

We illustrate the ideas of algorithm ESAsearch, formally described above, with the following exam-

ple. Let M be a PSSM of length m = 2 over alphabet A = {a, c} with M(0, a) = 1, M(0, c) = 3,

M(1, a) = 3, and M(1, c) = 2. For a given threshold of th = 6 we obtain intermediate thresholds

th0 = 3 and th1 = 6. To search with M in the enhanced suffix array for sequence S = caaaaccacac

as given in Figure 3.6, we start processing the enhanced suffix array suf top down by scoring the first

suffix Ssuf[0] = aaaaccacac$ with M from left to right. For the first character of Ssuf[0] we obtain

a score of pfxsc0(Ssuf[0], M) = M(0, a) = 1 which is below the first intermediate threshold th0 = 3.

Hence we set d0 = −1 and notice that we can skip all suffixes of S that start with character ’a’.

Further on, with a lookup in lcp[1] = 3 we find that Ssuf[1] and Ssuf[0] share a common prefix of length

3 and d0 + 1 = −1 + 1 < lcp[1] = 3 (second case described above). The next suffix that may match

M with th = 6 is Ssuf[6] = caaaaccacac$. Suffixes Ssuf[1], Ssuf[2], . . . Ssuf[5] can be skipped since they

all share a common prefix with Ssuf[0] of at least length 1. That is, they begin all with character

’a’ and would also miss the first intermediate threshold th0 = 3 when scored. We find Ssuf[6] by

64

3.5 PSSM searching using enhanced suffix arrays: The ESAsearch algorithm

Algorithm 4: ESAsearch

input : An enhanced suffix array for the sequence S$ consisting of the tables suf, lcp and skp, a

PSSM M of length m, and a threshold th.

output: All matching positions of M in S and their associated matchscores

for d← 0 to m− 1 do1

thd ←− th−∑m−1
h=d+1 max{M(h, a) | a ∈ A} ;2

/* calculate the intermediate thresholds thd = th− σd */

end3

depth← 0;4

i← 0;5

while i < n do6

if n−m < suf[i] then7

while (n−m < suf[i]) ∧ (i < n) do8

i← i + 1;9

depth← min{depth, lcp[i]};10

end11

if i ≥ n then return ;12

end13

if depth = 0 then score← 0 else score← C[depth− 1];14

d← depth− 1;15

do16

d← d + 1;17

score← score + M(d, Ssuf[i]+d);18

C[d]← score;19

while (d < m− 1) ∧ (score ≥ thd);20

if (d = m− 1) ∧ (score ≥ th) then21

print”match at position suf[i] with score: score”;22

while i < n do23

i← i + 1;24

if lcp[i] ≥ m then print”match at position suf[i] with score: score” else break;25

end26

else27

i← skipchain(lcp, skp, n, i, d);28

end29

depth← lcp[i];30

end31

65

3 Fast algorithms for matching position specific scoring matrices

Function skipchain(lcp, skp, n, s, d)

input : Tables lcp and skp of an enhanced suffix array, |S| denoted with n,an index i of the i-th

smallest suffix, and depth d from where to start skipping.

output: An index j of the j-th smallest suffix with j > i.

begin1

if i < n then2

j ← i + 1 ;3

while (j ≤ n) ∧ (lcp[j] > d) do4

j ← skp[j] + 1 ;5

end6

else7

j ← n ;8

end9

return j ;10

end11

following a chain of entries in table skp: skp[1] = 2, skp[2] = 3, and skp[3] = 6. When scoring Ssuf[6]

we compute pfxsc0(Ssuf[6], M) = M(0, c) = 3 and pfxsc1(Ssuf[6], M) = M(0, c) + M(1, a) = 6 and

store them for reuse in C[0] and C[1]. Since d6 = 1 = m − 1 = 1 holds, we report suf[6] = 0 with

score sc
(
Ssuf[6], M

)
= pfxsc1(Ssuf[6], M) = 6 as a matching position. With lookups in lcp[7] = 2

and lcp[8] = 3 we notice that Ssuf[7] and Ssuf[8] share a common prefix of at least two characters

with Ssuf[6]. Hence we report suf[7] = 6 and suf[8] = 8 with score C[1] = 6 as further matching

positions. We proceed with the scoring of Ssuf[9]. Since lcp[9] = 1 holds, we obtain the score for the

first character ’c’ from array C with pfxsc0(Ssuf[9], M) = C[0]. After scoring the second character

of Ssuf[9], pfxsc1(Ssuf[9], M) = 5 < th1 = 6 holds and we miss the second intermediate threshold

and continue with the next suffix. The last two suffixes Ssuf[10] and Ssuf[11] in suf do not have to

be considered since their lengths are smaller than m = 2 (not counting the sentinel character $)

and therefore they cannot match M . We end up with matching positions 0, 6, and 8 of M in S

with match score 6. To find these matches, we processed the enhanced suffix array suf top down

and scored suffixes from left to right, facilitating the additional information given in tables lcp and

skp to avoid re-scoring of characters of common prefixes of suffixes and to skip suffixes that cannot

match M for the given threshold.

3.5.1 Analysis

The Ci arrays can be stored in a single O (m) space array C as any step i only needs the Ci specific

to that step. Ci solely depends on Ci−1, and Ci[0..d− 1] = Ci−1[0..d− 1] holds for a certain d < m,

i.e., the first d entries in Ci are known from the previous step, and thus C can be organized as a

stack. No other space (apart from the space for the enhanced suffix array) depending on input size

is required for ESAsearch, leading to an O (m) space complexity.

The worst case for ESAsearch occurs, if th ≤ scmin(M) (M matches at each position in S), and no

suffix of S shares a common prefix with any other suffix. In this case lookahead scoring does not

66

3.5 PSSM searching using enhanced suffix arrays: The ESAsearch algorithm

give any speedup and every suffix must be read up to depth m, leading to an O (nm) worst case

time complexity. This is not worse but also not better than the complexity for LAsearch. Next we

show that, independent of the chosen threshold th, the overall worst case running time boundary

for ESAsearch drops to O (n + m) under the assumption that

n ≥ |A|m + m− 1 (3.3)

holds.

The shorter the common prefixes of the neighboring suffixes, the slower ESAsearch runs. Thus to

analyze the worst case, we have to consider sequences containing as many different substrings of

some length q as possible. Observe that a sequence can contain at most |A|q different substrings of

length q > 0, independent of its length. To analyze the behavior of ESAsearch on such a sequence,

we introduce the concept of suffix-intervals on enhanced suffix arrays, similar to lcp-intervals as

used in [AKO04].

Definition 11 An interval [i, j], 0 ≤ i ≤ j ≤ n, is a suffix-interval with offset ℓ ∈ {0, . . . , n}, or

ℓ-suffix-interval, denoted ℓ– [i, j], if the following three conditions hold:

1. lcp[i] < ℓ

2. lcp[j + 1] < ℓ

3. lcp[k] ≥ ℓ for all k ∈ {x | i + 1 ≤ x ≤ j}

An lcp-interval, or ℓ-interval, with lcp-value ℓ ∈ {0, . . . , n} is a suffix-interval ℓ– [i, j] with i < j and

lcp[k] = ℓ for at least one k ∈ {i + 1, . . . , j}.

Every lcp-interval ℓ– [i, j] of an enhanced suffix array for text S corresponds to an internal node v in

a suffix tree for S, and the length of the string spelled out by the edge labels on the path from the

root node to v is equal to ℓ. Leaves are represented as singleton intervals, ℓ– [i, j] with i = j. We say

that suffix-interval ℓ– [i, j] embeds suffix-interval ℓ+– [k, l], if and only if ℓ+ > ℓ, i ≤ k < l ≤ j, and

if there is no suffix-interval ℓ′– [r, s] with ℓ < ℓ′ < ℓ+ and i ≤ r ≤ k < l ≤ s ≤ j. As an example for

ℓ-suffix-intervals, consider the enhanced suffix array given in Figure 3.6. [0, 5] is a 1-suffix-interval,

because lcp[0] = 0 < 1, lcp[5+1] = 0 < 1, and lcp[k] ≥ 1, for all k, 1 ≤ k ≤ 5. Suffix-interval 2– [3, 5]

is embedded in 1– [0, 5], but 3– [0, 1] is not.

Consider an enhanced suffix array of a sequence which contains all possible substrings of length

q. There are |A| 1-suffix-intervals, |A|2 2-suffix-intervals, and so on. Consequently, up to depth q,

there are a total of

Eq =

q∑

i=1

|A|i =
|A|q+1 − |A|
|A| − 1

(3.4)

ℓ-suffix-intervals (1 ≤ ℓ ≤ q). This corresponds to the number of internal nodes and leaves in

a suffix tree, which is atomic up to at least depth q under our assumptions. Note that due to

this correspondence, statements on the complexity of ESAsearch also hold for the complexity of

Dorohonceanu’s suffix tree based PSSM searching algorithm described in section 3.4.1 on page 60.

Since we are considering sequences that contain all possible substrings of length q, there are |A|d
d-suffix-intervals at any depth d, 1 ≤ d ≤ q. Let d– [i, j] be a d-suffix-interval. We know that

67

3 Fast algorithms for matching position specific scoring matrices

pfxscd (vi, M) is a partial sum of pfxscq (vi, M), and because vi[0..d − 1] = vi+1[0..d − 1] = . . . =

vj [0..d − 1], pfxscd (vi, M) is also a partial sum of pfxscq (vk, M) for i ≤ k ≤ j. That is, after

ESAsearch has calculated pfxscd (vi, M) at depth d, at any suffix-interval (d + 1) – [r, s] embedded

in d– [i, j] it suffices to only calculate the “rest” of pfxscq (vk, M). At any depth d, the algorithm

calculates pfxscd+1 (vr, M) = pfxscd (vi, M) + M(d, vr[d]), meaning that all prefix scores at depth

d+1 in a d-suffix-interval can be computed from the prefix scores at depth d by |A| matrix look-ups

and additions as there are |A| embedded (d + 1)-suffix-intervals. There are |A|d d-suffix-intervals at

depth d. Hence, it takes ESAsearch a total of |A|d · |A| matrix look-ups and additions to advance

from depth d to d+1, and thus we conclude that the algorithm requires a total of O (Eq) operations

to compute all scores for all substrings of length q.

Suppose that ESAsearch has read suffix vi in some step up to depth q − 1 such that character

vi[q − 1] is the last one read. If lcp[i + 1] ≥ q holds, then the algorithm has found a suffix-interval

q– [i, j] with a yet unknown right boundary j, otherwise j = i. ESAsearch reports all suf[k] with

k ∈ [i, j] as matching positions by scanning over table lcp starting at position i until lcp[k] < lcp[i]

(such that it finds j = k− 1), and continues with suffix vk at depth lcp[k]. Hence processing such a

suffix-interval requires one matrix look-up and addition to compute the score, and j − i + 1 steps

to report all matches and find suffix vk. Since suffix-intervals do not overlap, the total length of

all suffix-intervals at depth q can be at most n, so the total time spent on reporting matches is

bounded by n.

There are three cases to consider when determining the time required for calculating the match

scores for a PSSM of length m. Let p := m− q.

1. If p = 0 (⇒ m = q), then the time required to calculate all match scores is in O (Eq) as

discussed above.

2. If p < 0 (⇒ m < q), then none of the m-suffix-intervals are singletons since we assumed that

the sequence under consideration contains all possible substrings of length q, i.e., there must

be suffixes sharing a common prefix of length m, and the time required to calculate all match

scores is in O (Em).

3. If p > 0 (⇒ m > q), then every m-suffix-interval can be a singleton, and all prefix scores for

the PSSM prefix of length q are calculated in O (Eq) time. However, the remaining scores for

the pending substrings of length p must be computed for every suffix longer than q, taking

O (np) additional time, and leading to a total O (Eq + np) worst case time complexity for

computing all match scores.

Note that a text containing |A|q different substrings must have a certain length, which must be

at least |A|q. In fact, a minimum length text that contains all strings of length q has length n =

|A|q+q−1. It represents a de Bruijn sequence [dB46] without wrap-around, i.e., a de Bruijn sequence

with its first q − 1 characters concatenated to its end. Since a de Bruijn sequence without wrap-

around represents the minimum length worst case, we infer from Equation (3.4) that Eq ∈ O (n).

Hence, if m = q, then it takes O (n) time to calculate all match scores. If m < q, then Em < Eq

and thus it takes sublinear time. If m > q, it takes O (n + np) time.

68

3.5 PSSM searching using enhanced suffix arrays: The ESAsearch algorithm

i suf[i] lcp[i] Ssuf[i]

0 5 0 aaccgtcttggc$

1 6 1 accgtcttggc$

2 1 1 agataaccgtcttggc$

3 3 1 ataaccgtcttggc$

4 0 0 cagataaccgtcttggc$

5 7 1 ccgtcttggc$

6 8 1 cgtcttggc$

7 11 1 cttggc$

8 16 1 c$

9 2 0 gataaccgtcttggc$

10 15 1 gc$

11 14 1 ggc$

12 9 1 gtcttggc$

13 4 0 taaccgtcttggc$

14 10 1 tcttggc$

15 13 1 tggc$

16 12 1 ttggc$

17 17 0 $

i suf[i] lcp[i] Tsuf[i]

0 2 0 aaacaccc$

1 3 2 aacaccc$

2 4 1 acaccc$

3 6 2 accc$

4 1 0 caaacaccc$

5 5 2 caccc$

6 0 1 ccaaacaccc$

7 7 2 ccc$

8 8 2 cc$

9 9 1 c$

10 10 0 $

Figure 3.7: Minimum sized enhanced suffix arrays for worst case analysis. Enhanced suffix arrays for

text S = cagataaccgtcttggc, consisting of all strings of length m = 2 over an alphabet

of size 4 (left), and T = ccaaacaccc, consisting of all strings of length m = 3 over an

alphabet of size 2 (right). S and T are both de Bruijn sequences without wrap-around

for the given alphabets.

We summarize the worst case running time of ESAsearch for preprocessing a PSSM M of length

m, searching with M , and reporting all matches with their match scores, as

O (n + n ·max {0, p}+ m) .

Hence, the worst case running time is O (n + m) for p ≤ 0, implying that this time complexity holds

for any PSSM of length m and threshold on any text of length n ≥ |A|m + m− 1, as already stated

in Inequality (3.3).

In practice, large numbers of suffixes can be skipped if the threshold is stringent enough, leading

to a total running time sublinear in the size of the text, regardless of the relation between n

and m. ESAsearch reads a suffix up to depth m unless an intermediate score falls short of an

intermediate threshold, and skips intervals with the same or greater lcp if this happens. Right

boundaries of skipped suffix-intervals are found quickly by following the chain of skip-values (see

function skipchain). It are these jumps that make ESAsearch superior in terms of running time

to LAsearch in practice. The best case is indeed O (|A|) which occurs whenever there is no score in

the first row of the PSSM that is greater than th0.

See Figure 3.7 for examples of enhanced suffix arrays, constructed from texts S and T that consist

of all strings of a certain length m over some alphabet. In these enhanced suffix arrays no suffix

shares a prefix of length m with any other suffix, forcing ESAsearch to compute scores for each

suffix. But with the intermediate scores available while processing the suffixes, it takes exactly Em

steps to compute the scores, as can be figured out by manually applying ESAsearch to the depicted

69

3 Fast algorithms for matching position specific scoring matrices

enhanced suffix arrays. For S, exactly 43−4
4−1 = 20, for T , exactly 24−2

2−1 = 14 operations are needed

to compute all |A|m ≤ n−m + 1 possible scores (and to find all matches since S and T are both

de Bruijn sequences without wrap-around). Only a single match is reported per matching substring,

leading to Em ∈ O (n) operations to be performed during the search phase.

3.6 Further performance improvements via alphabet

transformations

Inequality (3.3) provides the necessary condition for O (n + m) worst case running time. We now

assume that m in Inequality (3.3) identifies not the length of a PSSM, but the threshold dependent

expected reading depth for some PSSM. We denote this expected depth by m∗(th) ≤ m and continue

denoting the PSSM’s length by m. As seen before, for PSSMs with length m, such that p =

m −m∗(th), the worst case running time is O (n + n ·max {0, p}+ m), but the expected running

time is O (n + m), as on average we expect p ≤ 0.

Inequality (3.3) with m substituted by m∗(th) implies log|A| (n) ≥ m∗(th). That is, to achieve linear

worst case running time for the amino acid alphabet, m∗(th) needs to be very small. For instance,

if n = 207, then the search time is guaranteed to be linear in n only for PSSMs with a maximum

length of 7, and expected to be linear for PSSMs with expected reading depth of 7. Observe that

for |A| = 4, m∗(th) needs to be smaller or equal to 15 to achieve linear or sublinear running times.

This provides the motivation to reduce the alphabet size by transforming A into a reduced size Â
such that |Â| < |A|.

In practice, for reasonably chosen thresholds th, the performance of ESAsearch mainly depends on

the fact that often large ranges of suffixes in the enhanced suffix array can be skipped. This is always

the case if we drop below an intermediate threshold while calculating a prefix’ score, and if that

prefix is a common prefix of other suffixes. In terms of lcp-intervals, this means that we can skip

all ℓ-intervals with ℓ ≥ m∗(th) on average. In contrast to suffix-intervals, whose total count is in

O
(
n2
)
, size and number of lcp-intervals depend on |A|, as illustrated in Figure 3.8. We observe that

smaller alphabet sizes imply (1) larger ℓ-intervals, and (2) an increasing number of ℓ-intervals for

larger values of ℓ. Thus, by using reduced alphabets, we expect to skip larger and touch fewer lcp-

intervals under the assumption that the average reading depth remains unchanged. Consequently,

we expect to end up with an improved performance of ESAsearch. This raises the question for a

proper reduction strategy for larger alphabets like the amino acid alphabet, and how this strategy

can be incorporated into ESAsearch.

We now describe how to take advantage of reduced alphabets as fast filters in the ESAsearch

algorithm. Let A = {a0, a1, . . . , ak} and Â = {b0, b1, . . . , bl} be two alphabets, and Φ : A → Â a

surjective function that maps a character a ∈ A to a character b ∈ Â. We call Φ−1(b) the character

class corresponding to b. For a sequence S = s1s2 . . . sn ∈ An we denote the transformed sequence

with Ŝ = Φ(s1)Φ(s2) . . . Φ(sn) ∈ Ân. Along with the transformation of the sequence, we transform

a PSSM such that we have a one to one relationship between the columns in the PSSM and the

characters in Â. We define the transformed PSSM M̂ of M as follows:

70

3.6 Further performance improvements via alphabet transformations

Figure 3.8: Numbers of ℓ-intervals for ℓ ∈ [1, 20] of different length for various reduced alphabets.

We built the enhanced suffix array with sequences from the RCSB protein data bank

(PDB) (total sequence length 4,264,239 bytes). The used reduced amino acid alphabets

are given in Figure 3.10. Note that we limited the interval lengths in the figures to 5,000

to prevent distortion.

71

3 Fast algorithms for matching position specific scoring matrices

(A)denin (C)ytosin (G)uanin (T)hymin

28.50 256.54 85.51 28.50

28.62 47.70 47.70 9.54

45.54 45.54 45.54 500.92

320.83 0.00 71.29 106.94

47.29 15.76 15.76 31.53

41.34 13.78 41.34 96.46

32.95 8.24 32.95 41.19

21.28 21.27 148.95 106.40

9.54 28.62 47.70 47.70

(P)urine P(Y)rimidine

85.51 256.54

47.70 47.70

45.54 500.92

320.83 106.94

47.29 31.53

41.34 96.46

32.95 41.19

148.95 106.40

47.70 47.70

Figure 3.9: PSSM alphabet transformation. In the left PSSM M we used the normal four letter nu-

cleotide alphabet A = {A, C, G, T} to describe a transcription factor binding site found

in Hox A3 gene promotors. In the right PSSM M̂ we used a reduced two letter alphabet

Â = {P, Y } that differs only between purine (adenine or guanine) and pyrimidine (cy-

tosine or thymine) nucleotides. Hence we have two character classes: Φ−1(P) = {A, G}
and Φ−1(Y) = {C, T }. Consequently M̂(i, P) = max{M(i, a) | a ∈ {A, G}} and

M̂(i, Y) = max{M(i, a) | a ∈ {C, T }} for all i ∈ [0, 8]

Definition 12 Let M be a PSSM of length m over alphabet A, and Φ : A → Â a surjective

function. The transformed PSSM M̂ is defined as a function M̂ : [0, m− 1]× Â → R with

M̂(i, b) := max
{
M(i, a) | a ∈ Φ−1(b)

}
. (3.5)

Figure 3.9 gives an example of the relationship between M and M̂ . Ŝ can be easily determined from

S in O (n) time, M̂ in O (|A|m) time, given M . We define the set of matches to M on S and M̂ on

Ŝ, respectively, as

MS := {j ∈ [0, n−m] | sc (S[j..j + m− 1], M) ≥ th}
M̂S :=

{
j ∈ [0, n−m] | sc

(
Ŝ[j..j + m− 1], M̂

)
≥ th

}
.

Now observe that we can use matches of M̂ on Ŝ, for the computation of matches of M on S, since

MS ⊆ M̂S. We prove that MS ⊆ M̂S holds for all th ∈ [scmin(M), scmax(M)] by proving the more

general statement given in the following Lemma.

Lemma 2 sc (w, M) ≤ sc
(
ŵ, M̂

)
holds for all w ∈ Am.

Proof:

sc (w, M) =

m−1∑

i=0

M(i, w[i]) ≤
m−1∑

i=0

max
{
M(i, a) | a ∈ Φ−1(Φ(w[i]))

}

=

m−1∑

i=0

M̂(i, Φ(w[i])) = sc
(
ŵ, M̂

)
.

�

72

3.6 Further performance improvements via alphabet transformations

Thus the following implications follow directly

• sc (w, M) ≥ th⇒ sc
(
ŵ, M̂

)
≥ th

• i ∈MS ⇒ i ∈ M̂S

and we conclude: MS ⊆ M̂S holds for th ∈ [scmin(M), scmax(M)].

Hence we can search with M̂ in Ŝ for prefiltering of matches to M in S, profiting of longer and

larger ℓ-intervals in Ŝ by extending algorithm ESAsearch as follows:

(1) Transform S into Ŝ and build the enhanced suffix array for Ŝ;

(2) Construct M̂ from M ;

(3) Compute M̂S by searching with M̂ on the enhanced suffix array of Ŝ using ESAsearch;

(4) For each i ∈ M̂S re-score match with σ = sc (S[i..i + m− 1], M), and report i and σ if and

only if σ ≥ th.

As a further consequence of Definition 12 the maximum score values in each row of M and M̂ and

thus the intermediate thresholds remain unchanged in the transformation process. Unfortunately the

necessary PSSM transformation accompanying alphabet size reduction affects the expected reading

depth m∗(th) in such a way that it increases with more degraded alphabets, and therefore reduces the

expected performance improvement. Due to maximization according to Equation (3.5) the matrix

values in M̂ increase and we expect a decreased probability of falling short of an intermediate

threshold early. Observe that there is a trade-off between increased expected reading depth and

increased lcp-interval sizes at low reading depths. Therefore it is desirable to minimize the effect of

maximization by grouping PSSM columns with similar score values, i.e., highly correlated columns.

Since PSSMs reflect the properties of the underlying multiple alignment, we expect correlations of

PSSM columns according to biologically motivated symbol similarities. Hence character correlation

is the motivation for our alphabet reduction strategy.

3.6.1 Reduced amino acid alphabets

It is well known that various of the naturally occurring amino acids share certain similarities, like

similar physiochemical properties. Accordingly, the complexity of protein sequences can be reduced

by sorting these amino acids with similarities into groups and deriving a transformed, reduced

alphabet [LFWW03]. These reduced alphabets contain symbols that represent a specific character

class of the original alphabet.

Since PSSMs and the sequences to be searched have to be encoded over the same alphabet, we are

more interested in a single reduced alphabet suitable for all PSSMs under consideration, than in

PSSM-specific reduced alphabets. The latter implies an unacceptable overhead of index generation

for sequences over PSSM-specific alphabets, even though it may result in a lower expected reading

depth. The basis for our reduction of the 20-letter amino acid alphabet to smaller alphabets are

73

3 Fast algorithms for matching position specific scoring matrices

|A|
L V I M C A G S T P F Y W E D N Q K R H 20

LVIM C A G S T P FY W E D N Q KR H 15

LVIM C A G ST P FYW EDNQ KR H 10

LVIMC AG ST P FYW EDNQ KR H 8

LVIMC AGST P FYW EDNQ KRH 6

LVIMC AGSTP FYW EDNQ KRH 5

LVIMC AGSTP FYW EDNQKRH 4

LVIMCAGSTP FYW EDNQKRH 3

LVIMCAGSTPFYW EDNQKRH 2

Figure 3.10: Reduction of the amino acid alphabet into smaller groups. Amino acid pairs are it-

eratively grouped together based on ther correlations ca,b (see Equation (3.6) for the

definition of ca,b), starting with the most correlated pairs, until al amino acids are

divided into the desired number of groups. Here we used BLOSUM50 similarities for

the determination of ca,b. Observe that, hydrophobic amino acids, especially (LVIM)

and (FYW) are conserved in many reduced alphabets. The same is true for the polar

(ST), (EDNQ), and (KR) groups. The smallest alphabet contains two groups that can

be categorized broadly as hydrophobic/small (LVIMCAGSTPFYW) and hydrophilic

(EDNQKRH).

74

3.7 A unifying view on SPsearch, LAsearch, and ESAsearch

correlations indicated by the BLOSUM similarity matrix as described in [MWL00]. That is, amino

acid pairs with high similarity scores are grouped together (see Figure 3.10 for an example). Let a

and b be two amino acids and Y a 20× 20 score matrix, then a measure of amino acid correlation

ca,b between a and b can be defined as

ca,b :=

∑20
i=1 Ya,iYb,i(∑20

i=1 Y 2
a,i

)(∑20
i=1 Y 2

b,i

) (3.6)

and amino acid pairs can be iteratively grouped together according to their correlations, starting

with the most correlated pairs, until all the amino acids are divided into the desired number of

groups.

3.7 A unifying view on SPsearch, LAsearch, and ESAsearch

In the following, we recapitulary take a unifying view on algorithms SPsearch, LAsearch, and

ESAsearch focussing on similarities and differences. For the considered example given in Figure

3.11, let M be a PSSM of length m = 3 over the nucleotide alphabet A = {A, C, G, T} with

M(i, A) = 2, M(i, C) = 3, M(i, G) = 4, and M(i, T) = 5 for any i ∈ [0, 2] and th = 12 a

given threshold. We obtain intermediate thresholds of th0 = 2, th1 = 7, and th2 = th = 12.

The sequence of length n = 21, to be scanned for matches of M is denoted with S and given as

S = ACCCACCGTACGTAACACTGA. With W (S$) = {w|S$ = vw ∧ |w| ≥ m ∧ v, w ∈ A∗ ∧ $ /∈ A} we

denote the set of suffixes of S$ with a length of at least m. All three algorithms find all positions

j ∈ [0, n−m] in S and their assigned match scores, such that sc (S[j..j + m− 1], M) ≥ th holds. To

do so, SPsearch and LAsearch slide along the sequence, calculate sc (w, M) for each w ∈ wordsm(S),

and report positions j ∈ [0, |S| − 1] for which sc (S[j..j + m− 1], M) ≥ th holds. This is equal to

scoring the first m characters of each element of W (S$). Since the order in which suffixes of S are

scored is neither relevant for SPsearch nor LAsearch, both algorithms can be viewed as operating

on the suffix array suf of S$. See (A) and (B) in Figure 3.11 for an example. Characters that

have to be scored are marked red in this Figure. Characters, whose scoring is avoided when using

lookahead scoring by falling short of an intermediate threshold are marked green. For th = 12

the only matching substrings of S are CGT and CTG occuring at text positions 6, 10, and 17. By

incorporating information from table lcp we can reuse prefix scores of suffixes with common prefixes

and avoid additional character scorings. lcp[i] gives us the length of the common prefix of suffixes

suf[i− 1] and suf[i]. For an example, see the blue marked characters in section (C) in Figure 3.11.

Facilitating information stored in table skp allows to directly skip ranges of suffixes for which no

characters need to be scored and hence avoids to check the values in table lcp for suffixes in this

ranges. This leads to algorithm ESAsearch and is shown in section (D) of Figure 3.11 by the yellow

marked parts of the suffix array. Entries in table skp give the index position of the next suffix in suf

to be considered.

By using lookahead scoring and information from tables lcp and skp, the total number of scored

characters in this example can be reduced from 57 (SPsearch see (A)) to 19 (ESAsearch see (D)).

75

3 Fast algorithms for matching position specific scoring matrices

(A): SPsearch

i suf[i] Ssuf[i]

0 13 AACACTGA

1 14 ACACTGA

2 0 ACCCACCGTACGTAACACTGA

3 4 ACCGTACGTAACACTGA

4 9 ACGTAACACTGA

5 16 ACTGA

6 20 A

7 3 CACCGTACGTAACACTGA

8 15 CACTGA

9 2 CCACCGTACGTAACACTGA

10 1 CCCACCGTACGTAACACTGA

11 5 CCGTACGTAACACTGA

12 10 CGTAACACTGA

13 6 CGTACGTAACACTGA

14 17 CTGA

15 19 GA

16 11 GTAACACTGA

17 7 GTACGTAACACTGA

18 12 TAACACTGA

19 8 TACGTAACACTGA

20 18 TGA

(B): LAsearch

i suf[i] Ssuf[i]

0 13 AACACTGA

1 14 ACACTGA

2 0 ACCCACCGTACGTAACACTGA

3 4 ACCGTACGTAACACTGA

4 9 ACGTAACACTGA

5 16 ACTGA

6 20 A

7 3 CACCGTACGTAACACTGA

8 15 CACTGA

9 2 CCACCGTACGTAACACTGA

10 1 CCCACCGTACGTAACACTGA

11 5 CCGTACGTAACACTGA

12 10 CGTAACACTGA

13 6 CGTACGTAACACTGA

14 17 CTGA

15 19 GA

16 11 GTAACACTGA

17 7 GTACGTAACACTGA

18 12 TAACACTGA

19 8 TACGTAACACTGA

20 18 TGA

(C): LAsearch using lcp information

i suf[i] lcp[i] Ssuf[i]

0 13 0 AACACTGA

1 14 1 ACACTGA

2 0 2 ACCCACCGTACGTAACACTGA

3 4 3 ACCGTACGTAACACTGA

4 9 2 ACGTAACACTGA

5 16 2 ACTGA

6 20 1 A

7 3 0 CACCGTACGTAACACTGA

8 15 3 CACTGA

9 2 1 CCACCGTACGTAACACTGA

10 1 2 CCCACCGTACGTAACACTGA

11 5 2 CCGTACGTAACACTGA

12 10 1 CGTAACACTGA

13 6 4 CGTACGTAACACTGA

14 17 1 CTGA

15 19 0 GA

16 11 1 GTAACACTGA

17 7 3 GTACGTAACACTGA

18 12 0 TAACACTGA

19 8 2 TACGTAACACTGA

20 18 1 TGA

(D): ESAsearch

i suf[i] lcp[i] skp[i] Ssuf[i]

0 13 0 21 AACACTGA

1 14 1 6 ACACTGA

2 0 2 5 ACCCACCGTACGTAACACTGA

3 4 3 3 ACCGTACGTAACACTGA

4 9 2 5 ACGTAACACTGA

5 16 2 5 ACTGA

6 20 1 6 A

7 3 0 21 CACCGTACGTAACACTGA

8 15 3 8 CACTGA

9 2 1 14 CCACCGTACGTAACACTGA

10 1 2 11 CCCACCGTACGTAACACTGA

11 5 2 11 CCGTACGTAACACTGA

12 10 1 14 CGTAACACTGA

13 6 4 13 CGTACGTAACACTGA

14 17 1 14 CTGA

15 19 0 21 GA

16 11 1 17 GTAACACTGA

17 7 3 17 GTACGTAACACTGA

18 12 0 21 TAACACTGA

19 8 2 19 TACGTAACACTGA

20 18 1 20 TGA

Figure 3.11: Algorithms SPsearch (A), LAsearch (B), LAsearch facilitating information from ta-

ble lcp (C), and ESAsearch (D) in comparison. For a detailed explanation of color

semantics, used PSSM, and threshold th, see text.

76

3.8 Finding an appropriate threshold for PSSM searching

−1000 −500 0 500 1000
0

1

2

3

4

5

6

7

8

9
x 10

−3 Empirical score and cumulative score distributions of different BLOCKS PSSMs

score S

P
(X

=
S

)

IPB001073A
IPB002876A
IPB002859A
IPB002816A

−1000 −500 0 500 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

score S

P
(X

 ≥
 S

)

IPB001073A
IPB002876A
IPB002859A
IPB002816A

Figure 3.12: Empirical score (P[sc (w, M) = x], see left) and cumulative score (P[sc (w, M) ≥ x], see

right) distributions of different PSSMs from the PRINTS database. For the distribu-

tions, we searched with the PSSMs in the protein data bank (PDB) and sampled their

match scores. Observe that for different PSSMs a fixed score cutoff (x-axis) corresponds

to different probability values (y-axis).

3.8 Finding an appropriate threshold for PSSM searching

3.8.1 Probabilities and expectation values

The results of PSSM searches strongly depend on the choice of an appropriate threshold value th.

A small threshold may produce a large number of false positive matches without any biological

meaning, whereas meaningful matches may not be found if the threshold is too stringent. PSSM-

scores are not equally distributed and thus scores of two different PSSMs are not comparable. This

is even true for PSSMs taken from the same collection (see Figure 3.12).

It is therefore desirable to let the user define a significance threshold instead. The expected number

of matches in a given random sequence database (E-value) is a widely accepted measure of the

significance. We can compute the E-value for a known background distribution and length of the

database by exhaustive enumeration of all substrings. However, the time complexity of such a

computation is O (|A|mm) for a PSSM of length m. If the values in M are integers within a

certain range [rmin, rmax] of size R = rmax − rmin + 1, then dynamic programming (DP) methods

(cf. [Sta89, WNB00, Rah03]) allow to compute the probability distribution (and hence the E-value)

in O
(
m2R|A|

)
time.

In practice the probability distribution is often not exactly, or completely calculated due to concerns

of speed. E.g., in the EMATRIX system [WNB00] score thresholds are calculated and stored for

probability values in the interval π = 10−1, 10−2, . . . , 10−40 only. Consequently, the user can only

specify one of these p-value cutoffs. For the calculation of the p-value from a determined match

score, EMATRIX uses log-linear interpolation on the stored thresholds. A different, commonly

used strategy to derive a continuous distribution function uses the extreme value distribution with

77

3 Fast algorithms for matching position specific scoring matrices

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

P
(X

=
x)

Standard extreme value distribution compared to standard normal distribution

Figure 3.13: The standard extreme value distribution p(x) = e−x−e−x

(red) compared to the stan-

dard normal distribution p(x) = 1√
2π

e
−x2

2 (green).

estimated paramters λ and u (see Equation (3.7)) as an approximation [Cas88, EKM97, GW94] of

high scoring matches. The extreme value distribution describes the limit distribution of suitably

normalized maxima and is somewhat like a normal distribution, but with a positively skewed tail (see

Figure 3.13). It is defined by the probability density function p(x) = e−x−e−x

, and the probability

that a random variable X exceeds x is P[X ≥ x] = 1− e−e−x

.

To use this distribution for sequence alignment scores, it has to be normalized such that the prob-

ability of a random score S exceeding x can be written asP[S ≥ x] = 1− e−e−λ(x−u)

, (3.7)

where parameter λ is also called the decay, or scale parameter, and u is called the mode.

Even though it is widely accepted that high-scoring local alignment score distributions of the popular

position independent scoring systems PAM and BLOSUM can be well approximated by an extreme

value distribution, this cannot be generalized for arbitrary PSSMs.

To check whether an extreme value distribution is a suitable approximation for the distribution of

PSSM match scores, we sampled the match scores of PSSMs arbitrarily chosen from the TRANSFAC

and BLOCKS database. We randomly shuffled 1000 human promotor sequences of length 1200,

taken from the database of transcriptional start sites (DBTSS) and 1000 protein sequences of

length 365 (= average sequence length in Uniprot-Swissprot), respectively, preserving their mono-

symbol composition. From the derived random PSSM match scores we took the best score for each

sequence and calculated the empirical cumulative distribution function. If the match scores S are

extreme value distributed, an X-Y plot with X = S and Y = ln(− ln(S)) should appear linear, since

78

3.8 Finding an appropriate threshold for PSSM searching

1 2 3

x 10
4

0

50

100

150

200

250

score S

F
re

qu
en

cy

1 2 3

x 10
4

0

0.2

0.4

0.6

0.8

1

score S

P
(X

<
=

S
)

Score distribution of TRANSFAC PSSM M00734

1 2 3

x 10
4

−6

−5

−4

−3

−2

−1

0

1

2

score S

lo
g(

−
lo

g(
P

(X
<

=
S

))
)

1.5 2

x 10
4

0.001
0.003
0.01
0.02
0.05
0.10

0.25

0.50

0.75

0.90
0.95
0.98
0.99

0.997
0.999

score S

P
(X

<
=

S
)

Normal Probability Plot

Figure 3.14: Histogram, cumulative score distribution function, X-Y plot, and normal probability

plot of TRANSFAC PSSM M00734 (PSSM length m = 9).

ln
(
− ln

(
e−e−λ(x−u)

))
= −λ(x − u) holds. For the TRANSFAC PSSM shown in Figure 3.14, the

X-Y plot clearly indicates that an extreme value distribution is not an appropriate approximation.

For PSSM IPB003211A (see Figure 3.15) from the BLOCKS database, it seems as if the score

distribution can be approximated quite well with an extreme value distribution. However, we then

still have the problem of adequate parameter estimation for the distribution function.

Since we do not make any assumptions about the used PSSMs in our algorithm, neither about the

type of scores, nor the score range, a proper approximation of the score distribution of arbitrary

PSSMs is not possible, without time consuming simulations. That is why we are more interested

in an exact solution and thus we focus on the efficient computation of an exact discrete score

distribution.

3.8.2 Calculation of exact PSSM score distributions

While recent publications [Rah03, WNB00] focus on the computation of the complete probability

distribution, what is required specifically for PSSM matching, is computing a partial cumulative

distribution corresponding to an E-value resp. p-value specified by the user. Therefore, we have

developed a new “lazy” method to efficiently compute only a small fraction of the complete distri-

bution.

We formulate the problem we solve w.r.t. E-values and p-values: Given a user specified E-value η,

find the minimum threshold TminE(η, M), such that the expected number of matches of M in a

random sequence of given length is at most η. Given a user specified p-value π, find the minimum

threshold TminP(π, M), such that the probability that M matches a random string of length m

is at most π. The threshold TminE(η, M) can be computed from TminP(π, M) according to the

equation

TminE(π · (n−m + 1), M) = TminP(π, M). (3.8)

Hence we restrict on computing TminP(π, M).

79

3 Fast algorithms for matching position specific scoring matrices

−500 0 500
0

50

100

150

200

250

300

score S

F
re

qu
en

cy

−500 0 500
0

0.2

0.4

0.6

0.8

1

score S
P

(X
<

=
S

)

Score distribution of BLOCKS PSSM IPB003211A

−500 0 500
−7

−6

−5

−4

−3

−2

−1

0

1

2

score S

lo
g(

−
lo

g(
P

(X
<

=
S

))
)

−100 0 100200

0.001
0.003
0.01
0.02
0.05
0.10

0.25

0.50

0.75

0.90
0.95
0.98
0.99

0.997
0.999

score S

P
(X

<
=

S
)

Normal Probability Plot

Figure 3.15: Histogram, cumulative score distribution, X-Y plot, and normal probability plot of

a PSSM taken from the BLOCKS database (Accession: IPB003211A; PSSM length

m = 40), describing the UreI protein of Helicobacter pylori, a proton gated urea channel

[WESS00].

Since all strings of length m have a score between scmin(M) and scmax(M), we conclude

TminP(1, M) = scmin(M) and TminP(0, M) > scmax(M).

To explain our lazy evaluation method, we first consider existing methods based on DP.

3.8.3 Evaluation with dynamic programming

We assume that at each position in sequence S, the symbols occur independently, with probabil-

ity f(a) = (1/n) · | {i ∈ [0, n− 1] | S[i] = a} |. Thus a substring w of length m in S occurs with

probability
∏m−1

i=0 f(w[i]) and the probability of observing the event sc (w, M) = t isP[sc (w, M) = t] =
∑

w∈Am:sc(w,M)=t

m−1∏

i=0

f(w[i]). (3.9)

We obtain TminP(π, M) by a look-up in the distribution:

TminP(π, M) = min{t | scmin(M) ≤ t ≤ scmax(M),P[sc (w, M) ≥ t] ≤ π}. (3.10)

If the values in the PSSM M are integers in a range of width R, dynamic programming allows to

efficiently compute the probability distribution. The dynamic programming aspect becomes more

obvious by introducing for each k ∈ [0, m − 1] the prefix PSSM Mk : [0, k] × A → N defined by

Mk(j, a) = M(j, a) for j ∈ [0, k] and a ∈ A.

80

3.8 Finding an appropriate threshold for PSSM searching

Corresponding distributions Qk(t) for k ∈ [0, m− 1] and t ∈ [scmin(Mk), scmax(Mk)], and Q−1(t),

are defined by

Q−1(t) :=

1 if t = 0

0 otherwise

Qk(t) :=
∑

a∈A
Qk−1(t−M(k, a))f(a) (3.11)

We have P[sc (w, M) = t] = Qm−1(t). The algorithm computing Qk determines a set of probability

distributions for M0, . . . , Mk. Qk is evaluated in O (scmax(M)|A|) time from Qk−1, summing up to

O (scmax(M)|A|m) total time. See Figure 3.16 for an example.

If we allow for floating point scores that are rounded to ǫ decimal places, the time and space

requirement increases by a factor of 10ǫ. Conversely, if all integer scores share a greatest common

divisor z, the matrix should be canceled down by z.

3.8.4 Restricted probability computation

In order to find TminP(π, M) it is not necessary to compute the whole codomain of the distribution

function Q = Qm−1. We propose a new method only computing a partial distribution by summing

over the probabilities for decreasing threshold values scmax(M), scmax(M) − 1, . . ., until the given

p-value π is exceeded (see Figures 3.16, 3.17).

In step d we compute Q(scmax(M)− d) where all intermediate scores contributing to scmax(M)− d

have to be considered. In analogy to lookahead scoring, in each row j of M we avoid all intermediate

scores below the intermediate threshold thj because they do not contribute to Q(scmax(M) − d).

The algorithm stops if the cumulated probability for threshold scmax(M) − d exceeds the given

p-value π and we obtain TminP(π, M) = scmax(M)− d + 1.

3.8.5 Lazy evaluation of the permuted matrix

The restricted computation strategy performs best if there are only few iterations (i.e., TminP(π, M)

is close to scmax(M)) and in each iteration step the computation of Qk(t) can be skipped in an early

stage, i.e., for small values of k. The latter occurs to be more likely if the first rows of M contain

strongly discriminative values leading to the exclusion of the small values by comparison with the

intermediate thresholds. An example of this situation is given in Figure 3.1. Since Qk(t) is invariant

to the permutation of the rows of M , we can sort the rows of M such that the most discriminative

rows come first. We found that the difference between the largest two values of a row is a suitable

measure for the level of discrimination since a larger difference increases the probability to remain

below the intermediate threshold. Since the rows of M are scanned several times, we save time by

initially sorting each row in order of descending score.

We divide the computation steps where the step d computes Q(scmax(M)− d): In step d = 0 only

the maximal scores maxi, i ∈ [0, m− 1] in each row have to be evaluated.

In step d > 0 all scores M(i, a) ≥ maxi−d may contribute to Q(scmax(M) − d). Since in general

a score value M(i, a) ≥ maxi−d also gives contribution to Q(scmax(M) − l) for l > d, we can

81

3 Fast algorithms for matching position specific scoring matrices

Q-1

Q0

Q1

Q2

11 910 8 7 6 5 4 3 2 1 0

1

1
4

1
16

1
64

A

G

G

PSSM: A C G T

4 3 1 2

1 2 4 1

2 2 3 2

Step d=0 : t=11
A C G T

4 3 1 2

1 2 4 1

2 2 3 2

cumulated
probabilities

1
64

(A)

tQ k

Q-1

Q0

Q1

Q2

11 910 8 7 6 5 4 3 2 1 0

1

1
4

1
16

1
64

C

G

A,C,T

PSSM: A C G T

4 3 1 2

1 2 4 1

2 2 3 2

A C G T

4 3 1 2

1 2 4 1

2 2 3 2

A,C,T

Step d=1: t=10

1
4

1
16

1
16

G

cumulated
probabilities

1
64

5
64

(B)

t
Q k

Q-1

Q0

Q1

Q2

11 910 8 7 6 5 4 3 2 1 0

1

1
4

1
16

1
64

T

G

A,C,T

PSSM: A C G T

4 3 1 2

1 2 4 1

2 2 3 2

A C G T

4 3 1 2

1 2 4 1

2 2 3 2

A,C,TA,C,TA,C,TA,C,TA,C,TA,C,T

Step d=2: t= 9

1
4

1
16

1
16

G

1
4

1
8

C

5
64

cumulated
probabilities

1
64

5
64

5
32

(C)

t
Q k

Figure 3.16: The simple DP scheme computes all probability vectors Q0, Q1, Q2 completely within the

green marked area, corresponding to score ranges of prefix PSSMs Mk. In contrast to the

simple scheme, the restricted probability computation method computes only the upper end

of the probability distribution until the given p-value threshold is exceeded, omitting parts of

the green area. In this example we show how to compute the score threshold TminP(π, M)

for PSSM M of length m = 3 and a score range of [4, 11] corresponding to a given p-value

threshold of π = 1
8
. For simplicity we assume a uniform character distribution of f(A) =

f(C) = f(G) = f(T) = 1
4
. Cells of the matrix that are computed in the step actually

under consideration are marked red. In step d = 0, see (A), the algorithm computes Q2(11)

recursively for all paths through M that achieve a score of 11, i.e. Q2(11) = Q1(8) · f(G),

Q1(8) = Q0(4) ·f(G), Q0(4) = Q−1(0) ·f(A) = 1 · 1
4
, since AGG is the only path achieving score

11. It follows Q2(11) = 1
64

. In step d = 1 all paths achieving a score of 11−d = 10 to determine

Q2(10) are computed, see (B). We conclude Q2(10) = 1
16

. In this step, DP allows to reuse value

Q1(8) without recomputation. In step d = 2, see (C) values Q1(7) and Q0(3) can be reused to

compute Q2(9) = 5
64

. In step d = 2 the cumulated probability Q2(11) + Q2(10) + Q2(9) = 5
32

exceeds the given p-value threshold of π = 1
8
, and the restricted probability computation

method skips the rest of the computation. We obtain a score threshold of th = 10 correponding

to the given p-value threshold π = 1
8
.

82

3.8 Finding an appropriate threshold for PSSM searching

200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(X

≥S
)

Computation of the restricted cumulative probability distribution

Score(S)scmin(M) scmax(M)TminP(π, M)

π = 0.3

Figure 3.17: Computation of the partial cumulative distribution function. Observe that in order

to determine TminP(π, M) for π = 0.3 we do not have to calculate the complete

distribution in the score range [scmin(M), scmax(M)]. It is sufficient to calculate only

the upper end (green area) starting with scmax(M) until P[X ≥ S] ≥ π.

83

3 Fast algorithms for matching position specific scoring matrices

save time by storing Qi(maxi−l) for l > d, in step d in a buffer and reusing the buffer in steps

d + 1, d + 2, This allows for the computation of Qk(scmax(M) − d) only based on the buffer

and scores M(i, a) = maxi−d while scores M(i, a) > maxi−d, i ∈ [0, m− 1], can be omitted. We

therefore have developed an algorithm LazyDistrib employing lazy evaluation of the distribution.

That is, given a threshold th, the algorithm only evaluates parts of the DP vectors necessary to

determine Qk(th) and simultaneously saves sub-results concerned with score th in an additional

buffer matrix Pbuf (instead of recomputing them later, see Figure 3.18). This is described by the

following recurrence:

Qk(th− d) = Pbuf k(th− d) +
∑

a∈A:M(k,a)≥maxk −d

Qk−1(th− d−M(k, a))f(a)

Pbuf k(th− d) :=
∑

a∈A:M(k,a)<maxk −d

Qk−1(th− d−M(k, a))f(a) (3.12)

In the present implementation, the algorithm assumes independently distributed symbols. The algo-

rithm can be extended to an order d-Markov model (w.r.t. the background alphabet distribution).

This increases the computation time by a factor of |A|d.

The modus operandi of algorithm LazyDistrib

We illustrate the underlying ideas of algorithm LazyDistrib with Figure 3.18. In the example given

in this Figure, we use the same PSSM M , character distribution, and p-value threshold π = 1
8

as in Figure 3.16. However, in each row of the PSSM the scores are sorted in descending order,

and the rows are sorted with the most discriminant row coming first (see coloured PSSMs for this

relationship). Observe that the LazyDistrib algorithm evaluates the DP vectors non-recursively top-

down. Cells computed in the actual step are marked red. In step d = 0 the algorithm computes

Q2(11) by evaluating paths through the PSSM contributing to Q2(11), which is in this example

only the high scoring path GGA. Intermediate results of Q0(4), Q1(7), and Q2(11) are collected

in buffers Pbuf 0(4), Pbuf 1(7), and Pbuf 2(11) first, and finally copied to the correponding cells

in Q. See (A) for the situation after step d = 0 has been completed. In step d = 1, see (B),

the algorithm computes Q2(10), starting in row k = 1 with the determination of Pbuf 1(6) and

Q1(6). That is, Q1(6) = Pbuf 1(6) = Q0(4) · f(A) + Q0(4) · f(C) + Q0(4) · f(T) = 3
16 . Analogously

Q2(10) and Pbuf 2(10) are computed based on Q1(7) and Q1(6). Additionally Pbuf 2(9) is filled for

further reuse in subsequent steps d + 1,d + 2, We compute Pbuf 2(9) = Q1(6) · f(C) = 3
64 . The

algorithm can directly start in row k = 1 with the computation of Q1(6) instead of Q0(3) since

a score of 3 cannot be achieved by the first prefix PSSM M0. Only score 4 of M0 contributes to

Q2(10), scores 2 and 1 do not. In step d = 2, see (C), the algorithm computes Q2(9), starting

in row k = 0. Pbuf 2(9) is computed reusing the partial sum calculated in previous steps, such

that Pbuf 2(9) = 3
64 + Q1(7) · f(T) + Pbuf 1(5) · f(A) = 5

64 , and then copied to Q2(9). Pbuf 1(4),

Pbuf 2(8), and Pbuf 2(7) are filled based on Pbuf 0(2), Q1(6), Pbuf 1(5), and Q1(5) for further reuse.

After step d = 2 the rest of the computation can be skipped since the cumulated probability

Q2(11) + Q2(10) + Q2(9) = 5
32 exceeds the given p-value π = 1

8 and we obtain a score threshold of

th = 10 corresponding to π.

84

3.8 Finding an appropriate threshold for PSSM searching

A C G T

4 3 1 2

1 2 4 1

2 2 3 2

4
G
 2

C
 1

A
 1

T

3
G
 2

A
 2

C
 2

T

4
A
 3

C
 2

T
 1

G

11 910 8 7 6 5 4 3 2 1 0

Q -1

Q
0
 | Pbuf

0

Q
1
 | Pbuf

1

Q
2
 | Pbuf

2

1

1
4

1
4

1
16

1
64

1
64

1
16

G

PSSM:

A

cumulated
probabilities

1
64

Step d=0 : t=11

t
Q

k
 |Pbuf

k

(A) Q
k
(t) Pbuf

k
(t)

permuted/sorted PSSM:

G

11 910 8 7 6 5 4 3 2 1 0

Q -1

Q
0
 | Pbuf

0

Q
1
 | Pbuf

1

Q
2
 | Pbuf

2

1

1
4

1
64

1
16

A,C,T

C

cumulated
probabilities

1
64

t
Q

k
 |Pbuf

k

(B)

3
16

3
16

1
16

1
16

3
64

A

C

5
64

Step d=1 : t=10

11 910 8 7 6 5 4 3 2 1 0

Q -1

Q
0
 | Pbuf

0

Q
1
 | Pbuf

1

Q
2
 | Pbuf

2

1

1
4

1
64

1
16

C

cumulated
probabilities

1
64

t
Q

k
 |Pbuf

k

(C)

3
16

1
16

5
64

5
64

1
4

1
4

1
16

1
16

3
16

A,C,T

G

5
64

1
16

1
64

T
C

ATT

5
32

Step d=2: t=9

Figure 3.18: Probability computation using lazy evaluation of the DP matrix. For a detailed expla-

nation, see example given in section 3.8.5 on the facing page.

85

3 Fast algorithms for matching position specific scoring matrices

3.9 Threshold independent PSSM matching: The k-best

algorithm

In some application scenarios it is even difficult to specify a meaningful significance threshold for

the search with PSSMs that differs appropriately between true positive and true negative matches.

This is in particular true for relatively short PSSMs of low significance, like PSSMs representing

transcription factor binding site motifs where the signal-to-noise ratio is very low. In such cases it

is desirable to efficiently determine the, say, k best hits of a PSSM in a sequence without specifying

a cutoff for their match score, E-value or p-value. Here k best means the k highest scoring PSSM

matches. We now render this more precisely.

Definition 13 Let M be a PSSM of length m, T a text of length n, k ≥ 0 the number of best

matches to be computed. Further, V = (S0, p0), (S1, p1), . . . , (Si, pi), . . . , (Sn−m+1, pn−m+1) denotes

a sequence of score, position pairs for each of the potential matching positions of M in T , with

Si = sc (T [pi..pi + m− 1], M) and pi ∈ [0, m − n + 1]. We define a permutation π : {0, 1, . . . , n −
m + 1} → {0, 1, . . . , n − m + 1} with π(i) < π(j) ⇔ Si ≤ Sj and denote the inverse of π by

π−1. Then the k-best matching problem is to determine a sequence MS of length k with MS =

(Sπ−1(0), pπ−1(0)), (Sπ−1(1), pπ−1(1)), . . . , (Sπ−1(k−1), pπ−1(k−1)).

As a straightforward solution we could use the minimal possible score of the PSSM M under

consideration as the threshold th. That is, th = scmin(M). This guarantees to find all possible

matches of M in S and no match which probably belongs to the k-best matches is missed. After the

searching phase, the resulting matches then have to be sorted in descending order of their match

score and finally the first k hits are reported.

Although with this approach, we find the k best PSSM matches, if S contains at least k subwords

of length m, it is inapplicable in practice, especially for longer sequences. Using th = scmin(M) has

the corollary that sc (w, M) ≥ th holds for all w ∈ wordsm(S). Thus, n −m + 1 matches have to

be stored and sorted after the searching phase. A more severe drawback is, that for th = scmin(M)

we cannot make use of lookahead scoring, because according to Lemma 1 on page 55 the following

implication holds:

sc (w, M) ≥ th for all w ∈ wordsm(S)

⇒ pfxscd(w, M) ≥ thd for all d ∈ [0, m− 1] ∧ w ∈ wordsm(S).

Hence we have to score each of the O (n) subwords w ∈ wordsm(S) completely which takes O (m)

time, leading to a time complexity of O(mn) independent of k and we obtain no benefit from

lookahead scoring.

To compute the k best matches of a PSSM more efficiently, we propose two new algorithms named

ESAsearchKb and LAsearchKb, that dynamically adjust the used cutoff th while searching. Both

are variants of the former described ESAsearch and LAsearch algorithms respectively. ESAsearchKb

traverses an enhanced suffix array of the set of target sequences top down like ESAsearch whereas

LAsearchKb operates on the concatenated target sequences and processes them from left to right.

Both algorithms update th based on the match scores of PSSM matches found so far while processing.

86

3.9 Threshold independent PSSM matching: The k-best algorithm

0 0.5 1 1.5 2 2.5 3

x 10
4

0

20

40

60

80

100

120

140
Number of intermediate threshold vector updates for different BLOCKS PSSMs

Blocks Matrix No.

#u
pd

at
es

k=10
 y mean
 y std

0 0.5 1 1.5 2 2.5 3

x 10
4

0

100

200

300

400

500

600

700

800
Number of intermediate threshold vector updates for different BLOCKS PSSMs

Blocks Matrix No.

#u
pd

at
es

k=1000
 y mean
 y std

Figure 3.19: Number of intermediate threshold updates for different PSSMs from the BLOCKS

database when using ESAsearchKb for values of k = 10 and k = 1, 000. The mean

(62.93 for k = 10 and 416.11 for k = 1, 000) and the standard deviation (13.87 for

k = 10 and 124.2 for k = 1, 000) are shown in green and purple.

The algorithms start, with th = scmin(M) until k matches to M are found. For simplicity we explain

the algorithms in terms of sets, instead of using sequences as in Definition 13. We denote the set of

match scores of matches found by MS , analogously. Along with MS we store the matching positions

corresponding to the members of MS and update this list accordingly to updates of MS . Once

k matches are found and |MS | = k holds, ESAsearchKb and LAsearchKb determine the minimal

matchscore sccurmin(MS) = min{MS} in MS to update the threshold th. Both algorithms continue

searching with th = sccurmin. To use lookahead scoring, we additionally have to update the vector

of intermediate thresholds, based on the new value of th. This can be done in O(m) time if we

determine and store the maximum values maxd = max{M(d, a) | a ∈ A} of each row in M a priori.

For each subsequent matching substring w we check sc (w, M) > th1 and update MS if necessary,

by

1. removal of the lowest match score sccurmin(MS) from MS and

2. insertion of the new match score sc (w, M).

From the updated set of match scores, we again determine sccurmin(MS) to update th. We apply

this procedure whenever we find a new PSSM match with sc (w, M) > th, until we have processed

our enhanced suffix array, or in case of LAsearchKb, the text, completely. Finally we sort the match

scores included in MS and report them and their corresponding matching positions.

Whenever we update th we have to recompute sccurmin(MS). Consequently the determination of

sccurmin(MS) is a critical point for the performance of both algorithms. To determine sccurmin(MS)

efficiently, we could use a binary search tree as the data structure for the organisation of MS. This

would allow us to retrieve sccurmin(MS) in O (log(k)) time, where k = |MS| and log(k) is the

1Observe that we have to perform this check, because sc (w, M) can also be equal to th.

87

3 Fast algorithms for matching position specific scoring matrices

-1500

-1000

-500

0

500

1000

1500

2000

1 10 100 1000 10000 100000 1e+06 1e+07

T
hr

es
ho

ld
 th

log(i)

Used thresholds at sutab position i

ESAsearchkb k=1

-1500

-1000

-500

0

500

1000

1500

2000

1 10 100 1000 10000 100000 1e+06 1e+07

T
hr

es
ho

ld
 th

log(i)

Used thresholds at sutab position i

ESAsearchkb k=1
ESAsearchkb k=5

-1500

-1000

-500

0

500

1000

1500

2000

1 10 100 1000 10000 100000 1e+06 1e+07

T
hr

es
ho

ld
 th

log(i)

Used thresholds at sutab position i

ESAsearchkb k=1
ESAsearchkb k=5

ESAsearchkb k=10

-1500

-1000

-500

0

500

1000

1500

2000

1 10 100 1000 10000 100000 1e+06 1e+07

T
hr

es
ho

ld
 th

log(i)

Used thresholds at sutab position i

ESAsearchkb k=1
ESAsearchkb k=5

ESAsearchkb k=10
ESAsearchkb k=100

-1500

-1000

-500

0

500

1000

1500

2000

1 10 100 1000 10000 100000 1e+06 1e+07

T
hr

es
ho

ld
 th

log(i)

Used thresholds at sutab position i

ESAsearchkb k=1
ESAsearchkb k=5

ESAsearchkb k=10
ESAsearchkb k=100

ESAsearchkb k=1000

-1500

-1000

-500

0

500

1000

1500

2000

1 10 100 1000 10000 100000 1e+06 1e+07

T
hr

es
ho

ld
 th

log(i)

Used thresholds at sequence position i

LAsearchkb k=1

-1500

-1000

-500

0

500

1000

1500

2000

1 10 100 1000 10000 100000 1e+06 1e+07

T
hr

es
ho

ld
 th

log(i)

Used thresholds at sequence position i

LAsearchkb k=1
LAsearchkb k=1

-1500

-1000

-500

0

500

1000

1500

2000

1 10 100 1000 10000 100000 1e+06 1e+07

T
hr

es
ho

ld
 th

log(i)

Used thresholds at sequence position i

LAsearchkb k=1
LAsearchkb k=1

LAsearchkb k=10

-1500

-1000

-500

0

500

1000

1500

2000

1 10 100 1000 10000 100000 1e+06 1e+07

T
hr

es
ho

ld
 th

log(i)

Used thresholds at sequence position i

LAsearchkb k=1
LAsearchkb k=1

LAsearchkb k=10
LAsearchkb k=100

-1500

-1000

-500

0

500

1000

1500

2000

1 10 100 1000 10000 100000 1e+06 1e+07

T
hr

es
ho

ld
 th

log(i)

Used thresholds at sequence position i

LAsearchkb k=1
LAsearchkb k=1

LAsearchkb k=10
LAsearchkb k=100

LAsearchkb k=1000

Figure 3.20: Increase of th , when processing the suffixes of S in the lexicographical order of the

suffix array suf (left) and in the order of there occurence in S for different values of k

and an arbitrarily chosen PSSM from the BLOCKS database (Accession: IPB001140A).

The enhanced suffix array was built from protein sequences from the PDB database.

height of the tree. Thus this operation would be fast if the height of the tree is small. The drawback

of using normal unbalanced binary search trees is, that they can degenerate. In such a case their

performance may be not better than with a plain linked list.

A more appropriate data structure for our problem is a red-black tree. A red-black tree is a balanced

binary search tree with one extra bit of storage per node, its color, which can be either red or black.

By constraining the way that nodes may be colored on any path from the root to a leaf, red-

black trees ensure that no path is more than twice as long as any other, so the tree is approximately

balanced. It can be shown that a red-black tree with n internal nodes has height at most 2 log(n+1)

(c.f. [TLRS01]), hence red-black trees make good search trees and are well suited for our problem

to determine sccurmin(MS) efficiently. By using red-black trees we can guarantee to perform this

operation in O (log(n)) time. The same is true for node-insertion and -deletion operations. Tree-

rebalancing operations, which are necessary after insert or delete operations to guarantee that the

red-black tree properties are not violated, can also be accomplished in O (log(n)) time. Hence red-

black trees fit our requirements and we use them for the organization of the set of matches MS .

Both proposed algorithms - ESAsearchKb and LAsearchKb - perform best, if the determined thresh-

old th = sccurmin(MS) quickly increases, while processing the enhanced suffix array top down and

the concatenated sequences from left to right respectively. A higher threshold increases the like-

lihood of falling short of an intermediate threshold early, resulting in less scored characters and

increased overall performance. For ESAsearchKb, in turn, this increases the likelihood to make use

of common prefixes of suffixes and skip larger parts of the suffix array suf.

The increase of th while searching is influenced by k and the distribution of high PSSM scores in

the text and in the enhanced suffix array respectively. The distribution in turn obviously depends

strongly on the PSSM under consideration. As shown in Figure 3.19, the number of necessary

threshold updates can strongly vary between different PSSMs. This is especially true for larger

values of k.

88

3.10 Implementation and computational results

For an example of the concrete changes of th for an arbitrarily chosen PSSM when searching with

ESAsearchKb and LAsearchKb see Figure 3.20. Observe, that the different order in which suffixes

are scored in ESAsearchKb and LAsearchKb has only marginal influence on the changes of th

while processing, apparent by the similar shape of the graphs in Figure 3.20. We performed further

analyses on the influences of different values of k on the number of threshold updates, number of

touched suffixes when using ESAsearchKb and total running time (see Experiment 9 in the next

section).

3.10 Implementation and computational results

We implemented SPsearch, LAsearch, LAsearchKb, ESAsearch, ESAsearchKb, and LazyDistrib in

C. SPsearch, LAsearch and ESAsearch are capable to handle reduced alphabets. The program was

compiled with the GNU C compiler (version 3.1, optimization option -O3). All measurements were

performed on a 8 CPU Sun UltraSparc III computer running at 900MHz, with 64GB main memory

(using only one CPU and a small fraction of the memory). Enhanced suffix arrays were constructed

with the program mkvtree, see [Kur05b].

We performed nine experiments comparing different programs for searching PSSMs. Table 3.1 gives

more details on the experimental input for Experiments 1-6. Results are given in Table 3.2 (Exp.

1-5) and Figures 3.21 and 3.22 (Exp. 6). For Experiment 7, see Figures 3.23 and 3.24. Figure 3.25

gives the results of Experiment 8. Results of Experiment 9 are given in Table 3.3.

In these experiments ESAsearch performed very well, especially on nucleotide PSSMs, see Exper-

iments 2, 4, and 8. It is faster than MatInspector by a factor between 63 and 1,037, depending

on the stringency of the given thresholds. The commercial advancement of MatInspector , called

MATCH , was not available for our comparisons, but based on [MFG+03] we presume a running

time comparable to MatInspector . Compared to LAsearch, ESAsearch is faster by a factor between

17 (MSS=0.80) and 196 (MSS=0.95) (see Experiment 2). On larger nucleotide sequences (see Ex-

periment 4) the speedup factors increase, ranging from 58 (MSS=0.85) to 275 (MSS=0.95). See

Table 3.1 for the definition of MSS. In the experiments using protein PSSMs, ESAsearch is faster

than the method of [DNM00] by a factor between 1.5 and 1.8 (see Experiment 1). This is due

to the better locality behavior of the enhanced suffix array compared to a suffix tree. For larger

p-values LAsearch performs slightly better than ESAsearch. Increasing the stringency, the perfor-

mance of ESAsearch increases, resulting in a speedup of factor 1.5 for a p-value of 10−40. We explain

this behavior by the larger alphabet size, resulting in shorter common prefixes and therefore smaller

skipped areas of the enhanced suffix array. With increasing stringency of the threshold, the expected

reading depth decreases, resulting in larger skipped areas of the enhanced suffix array. Compared

to the FingerPrintScan program, ESAsearch achieves a speedup factor between 3.8 and 470, see

Experiment 3. In comparison to Blimps , the PSSM-searching program of the BLOCKS database,

ESAsearch is faster by a factor of 23 (see Experiment 5) for the chosen threshold. In Experiment 6

(see Figures 3.21 and 3.22), we measured the influence of alphabet reductions on the running time of

ESAsearch and LAsearch when using protein PSSMs. Compared to the performance of ESAsearch

operating on the normal 20 letter amino acid alphabet a speedup up to factor 2 can be achieved

when using a 4 letter alphabet and a p-value cutoff of 10−20. Observe that, when using LAsearch

89

3 Fast algorithms for matching position specific scoring matrices

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

searched sequences 59,021 30,964 19,111 1 (H.s. Chr. 6) 19,111 19,111

total length 20.2 MB 37.2 MB 4.3 MB 162.9 MB 4.3 MB 4.3 MB

sequence source see [DNM00] DBTSS 5.1 RCSB PDB Sanger V1.4 RCSB PDB RCSB PDB

sequence type/PSSM type protein DNA protein DNA protein protein

PSSMs 4,034 220 11,411 577 28,337 11,411

PSSM source see [DNM00] MatInspector PRINTS 38 TRANSFAC Prof. 6.2 BLOCKS 14.1 PRINTS 38

avg. length of PSSMs 29.74 14.21 17.32 13.33 26.3 17.37

index construction (sec) 41 146 10.2 586 10.2 10.2

mdc (sec) 1960 − 1486 − 11871 1486

MatInspector ×

FingerPrintScan ×

Blimps ×

DN00 ×

LAsearch × × × × × ×

ESAsearch × × × × × ×

ESAsearch (reduced A) ×

LAsearch (reduced A) ×

Table 3.1: Performed experiments and experimental input. Overview of the sequences and PSSMs

used in the performed experiments. For the experiments that use p-value or E-value cut-

offs, we precomputed the cumulative score distributions and stored them on file. mdc

is the time needed for this task. In Experiment 1 we measured the running time of the

Java-program from [DNM00], referred to by DN00 . We ran DN00 with a maximum of

2 GB memory assigned to the Java virtual machine. DN00 constructs the suffix tree

in main memory and then performs the searches. For a fair comparison, we therefore

measured the total running time, and the time for matching the PSSMs (without suf-

fix tree construction). For Experiment 2, we implemented the matrix similarity scoring

scheme (MSS) of MatInspector and matched the PSSMs against both strands of the DNA

sequences with different MSS cutoff values. The MSS of PSSM M of length m and a se-

quence w ∈ Am is defined as MSS = sc(w,M)−scmin(M)
scmax(M)−scmin(M) and hence given an MSS cutoff

value, the threshold th is determined as th = MSS·(scmax(M)−scmin(M))+scmin(M). In

literature the MSS is sometimes also called functional depth of a PSSM [BT04]. Instead

of using the reverse strand we use the reverse complement M of the PSSM M , defined

by M(i, a) = M(m − 1 − i, a) for all i ∈ [0, m − 1] and a ∈ A, where a is the Watson

Crick complement of nucleotide a. This allows to use the same enhanced suffix array for

both strands. In Experiment 5 we used a PERL-based wrapper for the Blimps program

shipped with the BLIMPS distribution to do bulk sequence searches. The overhead for

the PERL interpreter call was found to be negligible. For Experiment 6 we used the

reduced alphabets given in Figure 3.10. The last seven rows show which programs were

used in which experiment.

90

3.10 Implementation and computational results

Experiment 1: 4,034 PSSMs in 20.2 MB protein sequences

p-value DN00 DN00 LAsearch ESAsearch

(total time) (search) +41 sec.

10−10 65,808 64,939 39,839 41,813

10−20 38,773 37,706 23,786 24,378

10−30 21,449 20,362 14,111 13,084

10−40 9,606 8,533 8,067 5,374

Experiment 2: 220 PSSMs in 37.2 MB DNA

MSS MatInspector LAsearch ESAsearch

+32 sec.

0.80 12,773 3,605 202

0.85 12,567 3,189 108

0.90 12,487 2,818 53

0.95 12,445 2,356 12

1.00 12,429 885 1

Experiment 3: 11,411 PSSMs in 4.3 MB protein sequences

E-value FingerPrintScan LAsearch ESAsearch

+10.2 sec.

10−10 4,733 3,423 1,244

10−20 4,710 486 52

10−30 4,706 27 10

Experiment 4: 577 PSSMs in 162.9 MB DNA

MSS LAsearch ESAsearch

+586 sec.

0.85 18,446 318

0.90 16,376 150

0.95 13,764 50

1.00 5,294 1

Experiment 5: 28,337 PSSMs in 4.3 MB protein sequences

raw-th Blimps LAsearch ESAsearch

+10.2 sec.

945 271:30:16 16:03:12 11:35:58

Table 3.2: Results of Experiments 1-5. Experiment 1: Running times in seconds of the different

PSSM searching methods at different levels of stringency, when searching for 4,034 amino

acid PSSMs in 59,021 sequences (21.2 MB) from SwissProt. These are the same PSSMs

and sequences used in the experiments of [DNM00]. Experiment 2: Running times in

seconds of MatInspector , LAsearch, and ESAsearch, when searching 220 PSSMs on both

strands of 37.2 MB DNA sequence data at different matrix similarity score (MSS) cutoffs.

Experiment 3: Running times in seconds of FingerPrintScan, LAsearch, and ESAsearch

when searching all 11,411 PSSMs from the PRINTS database in the RCSB protein data

bank (PDB) for different E-values. Experiment 4: Running times in seconds of LAsearch

and ESAsearch when searching 577 PSSMs in H. sapiens chr. 6 at different matrix similar-

ity score (MSS) cutoffs. Experiment 5: Running times in hh:mm:ss of Blimps , LAsearch,

and ESAsearch when searching all 28,337 PSSMs from the BLOCKS database in PDB.

We used a raw score threshold of 945 as suggested in the Blimps documentation for

searching large databases. For each experiment, the additional time needed for the con-

struction of the enhanced suffix array is shown in the head of the ESAsearch column.

91

3 Fast algorithms for matching position specific scoring matrices

The influence of alphabet reduction on the running time of ESAsearch

Alphabet size

−
lo

g 10
 p

−
va

lu
e

20 15 10 8 6 5 4 3 2

40

35

30

25

20

15

10

5
−50%

0%

50%

100%

150%

Figure 3.21: Experiment 6: Relative deviations of running time of ESAsearch when using reduced

alphabets at different levels of stringency. We measured the relative percentage devi-

ation with respect to the running time when using the standard 20 letter amino acid

alphabet (= 0%). We searched with 11,411 PSSMs from the PRINTS database (Rel. 38)

in the RCSB Protein Data Bank (PDB) with a total sequence length of 4.3 MB. In

this example, the maximum performance improvement is achieved for an alphabet of

size 4 and a p-value cutoff of π = 10−20.

92

3.10 Implementation and computational results

The influence of alphabet reduction on the running time of LAsearch

Alphabetsize

−
lo

g 10
 P

−
va

lu
e

20 15 10 8 6 5 4 3 2

40

35

30

25

20

15

10

5

0 %

+20%

+40%

+60%

+80%

+100%

+120%

+140%

+160%

+180%

+200%

Figure 3.22: Experiment 6: Relative deviations of running time of LAsearch when using reduced

alphabets at different levels of stringency. The experimental input and setup was the

same as in Figure 3.21. For LAsearch alphabet reduction has a negative effect on the

running time, indicated by brighter colors.

93

3 Fast algorithms for matching position specific scoring matrices

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160

R
un

ni
ng

 ti
m

e
[s

ec
]

Search space [MB]

Scaling behaviour of ESAsearch

ESAsearch MSS=0.95
ESAsearch MSS=0.90
ESAsearch MSS=0.85

Figure 3.23: Experiment 7: Scaling behavior of ESAsearch when searching with 577 TRANSFAC

PSSMs on subsets of human chromosome 6 of different sizes and with different matrix

similarity cutoff values (MSS). The subsets are prefixes of human chromosome 6 of

length 2k for k = 0, 1, 2, . . . , 7.

94

3.10 Implementation and computational results

0

5000

10000

15000

20000

0 20 40 60 80 100 120 140 160

R
un

ni
ng

 ti
m

e
[s

ec
]

Search space [MB]

Scaling behaviour of LAsearch

LAsearch MSS=1.00
LAsearch MSS=0.95
LAsearch MSS=0.90
LAsearch MSS=0.85

Figure 3.24: Experiment 7: Scaling behavior of LAsearch when searching with 577 TRANSFAC

PSSMs on subsets of human chromosome 6 of different sizes and with different matrix

similarity cutoff values (MSS). The subsets are prefixes of human chromosome 6 of

length 2k for k = 0, 1, 2, . . . , 7.

95

3 Fast algorithms for matching position specific scoring matrices

ESAsearch
LAsearch

SPsearch

1.0
0.95

0.9
0.85

0.8
0.75

0.7
0.65

0.6

0

2000

4000

6000

8000

used Algorithm

Matrix similarity score (MSS)

T
ot

al
 r

un
ni

ng
 ti

m
e

[s
ec

]

0.1 sec.

 7,128.1 sec.

861.5 sec. 7,134.6 sec.

 4,891.6 sec

 957.6 sec.

Figure 3.25: Experiment 8: Running times of ESAsearch, LAsearch and SPsearch when searching

with 577 TRANSFAC PSSMs in the database of transcriptional start sites (DBTSS Rel.

4.0) containing 23,410 human and mouse promotor sequences with a total sequence

length of 27MB. Measurements were performed for different matrix similarity score

values (MSS), representing different levels of stringency.

96

3.10 Implementation and computational results

(A) 577 TRANSFAC PSSMs in 27MB nucleotide sequences (DBTSS Rel 4.0):

ESAsearchKb

k #th updates #touched suffixes (%) running time [sec] speedup over LAsearchKb

1 24,115 (41.8;33.1) 43,883 (0.15) 20.7 65

10 54,391 (94.3;92.5) 111,252 (0.39) 46.5 36

100 244,261 (423.3;497.7) 227,208 (0.80) 93.7 23

1000 1,415,292 (2452.8;3,132.0) 474,184 (1.68) 210.8 13

LAsearchKb

k #th updates running time [sec]

1 10,249 (17.8;5.0) 1351.6

10 66,257 (114.8;36.2) 1710.5

100 506,606 (878.0;363.7) 2160.0

1000 3,451,915 (5,982.5;3,518.0) 2754.4

(B) 28,337 BLOCKS PSSMs in 4.3 MB protein sequences (PDB):

ESAsearchKb

k #th updates #touched suffixes (%) running time [min] speedup over LAsearchKb

1 522,918 (18.4;4.6) 1,609,021 (37.3) 452.6 1.36

10 1,783,023 (62.9;13.9) 1,956,327 (45.88) 588.9 1.26

100 6,628,970 (233.9;54.6) 2,079,215 (48.76) 649.0 1.33

1,000 11,789,765 (416.1;124.2) 2,149,793 (50.41) 723.9 1.31

LAsearchKb

k #th updates running time [min]

1 479,614 (16.9;3.8) 616.5

10 1,563,197 (55.1;9.6) 747.5

100 8,306,508 (293.1;66.8) 869

1,000 11,526,692 (406.8;118.6) 947

Table 3.3: Experiment 9: Measurements of the influence of different values of k on the

number of threshold updates, number of touched suffixes, and the total running

time for ESAsearchKb and LAsearchKb. We performed experiments on nucleotide

PSSMs/sequences (see (A)) as well as on amino acid PSSMs/sequences (see (B)). We

counted the total number of threshold updates for all PSSMs and calculated the mean

and the standard deviation (values are given in brackets). Column #touched suffixes gives

the number of suffixes on average (total number divided by number of used PSSMs) for

which ESAsearchKb has to score at least one new character. The percentage value of all

suffixes is given in brackets. For ESAsearchKb, the last column shows the speedup of

ESAsearchKb over LAsearchKb for the same value of k. For algorithm LAsearchKb the

number of touched suffixes is not shown, since LAsearchKb processes always the complete

sequence, independent of the value of k.

97

3 Fast algorithms for matching position specific scoring matrices

(see Figure 3.22), alphabet reduction has a negative effect upto 4 times on the running time and

hence using alphabet reduction in combination with algorithm LAsearch makes no sense in practice.

This is due to the increased expected reading depth m∗(th) for degraded alphabets, which is for

LAsearch not counterbalanced by increased lcp-interval sizes, since no enhanced suffix array is used

in this algorithm. Experiment 7 (see Figures 3.23 and 3.24) shows that the expected running time

of ESAsearch is sublinear, whereas LAsearch runs in linear time. In Experiment 8, we compared

the running times of ESAsearch and LAsearch with our own implementation of SPsearch. This

experiment shows that the SPsearch algorithm, running in O (nm) time, although still widely used,

is definitly inappropriate for larger PSSM matching tasks. In Experiment 9 we investigated the

influences of different values of k on the number of threshold updates, number of touched suffixes

when using ESAsearchKb and total running time (see Table 3.3). Here ESAsearchKb achieves a

speedup of factor 13 (for k = 1000) upto 65 (for k = 1) over LAsearchKb on nucleotide PSSMs and

a speedup of factor 1.3 on amino acid PSSMs. It has been shaped out in practice, that ESAsearchKb

and LAsearchKb are especially useful when searching for transcription factor binding site motifs

in large data sets, since it is difficult to specify a reasonable p-value or E-value cutoff for these

short motifs of low significance. In a final experiment, we compared algorithm LazyDistrib with the

DP-algorithm computing the complete distribution. LazyDistrib shows a speedup factor between 3

and 330 on our test set, depending on the stringency of the threshold (see Table 3.4).

We also note, that motivated by the first description of the LazyDistrib algorithm in [BSH+04], in

[MG06] the authors reimplemented LazyDistrib in the functional programming language Haskell,

taking advantage of the built-in non strictness of the language. Whereas in our implementation in

C some effort has to be spend on the simulation of laziness in an eager language, in Haskell this has

not be adressed explicitly, since lazy evaluation is a built-in concept of the programming language.

Accordingly, algorithm LazyDistrib can be formulated in Haskell on less than a page, while the C

implementation consists of some hundred lines of code. Also remarkable, for an implementation in

a functional programming language, is the reported speedup in [MG06]. The authors report for a

test set containing a small fraction of PSSMs from the PRINTS database a speedup factor between

4.3 for a p-value of 10−10 and 172 for a p-value of 10−30 over the DP-algorithm computing the

complete distribution. Though, this is in the same range as the speedup of our implementation of

LazyDistrib with hand-coded laziness (see Table 3.4), the absolute running times differ significantly.

E.g to compute a score threshold corresponding to a P-value cutoff of π = 10−10 for 1, 000 PRINTS

PSSMs, Malde and coworkers report a running time of 306 seconds using a 1.13 GHz system. The

C implementation of LazyDistrib needs 485.3 seconds for all 11, 411 PRINTS PSSMs for the same

p-value cutoff on a 900 MHz system.

3.11 PoSSuM software distribution

Our software tool PoSSuMsearch implements all algorithms and ideas presented in this work, namely

SPsearch, LAsearch, ESAsearch and LazyDistrib. A user can search for PSSMs in enhanced suffix

arrays built by mkvtree from the Vmatch package, as well as on plain sequence data in Fasta,

GenBank, EMBL, or Swiss-Prot format. The search algorithm can be chosen from the command line.

98

3.11 PoSSuM software distribution

p-value simple DP LazyDistrib speedup factor

10−10 1,486 485.8 3

10−20 1,486 92.5 95

10−30 1,486 8.9 166

10−40 1,486 4.5 330

Table 3.4: Running times in seconds when computing score thresholds for all 11,411 PSSMs from the

PRINTS database (Rel. 38), given different p-values. Running times given in this table

are measurements performed with improved versions of the simple DP and LazyDistrib

algorithms and thus are much lower than the times given in [BSH+04].

PSSMs are specified in a simple plain text format, where one file may contain multiple PSSMs. See

Example in section A.4.1 on page 201. The alphabet a PSSM refers to, and alphabet character to

PSSM column assignments can be specified on a per-PSSM basis for most flexible alphabet support.

All implemented algorithms, except the k-best variants, support alphabet transformations. PSSMs

can contain integer as well as floating point scores. To prevent rounding errors for integer based

PSSMs, PoSSuMsearch uses integer arithmetics for these, resulting in an additional speedup on

most CPU architectures. Searching on the reverse strand of nucleotide sequences is implemented by

PSSM transformation according to Watson-Crick base pairing (see Definition 8 on page 23). Hence

it is sufficient to build the enhanced suffix array for one strand only. This can then be used to search

both strands.

The cutoff can be specified as p-value, E-value, MSS (matrix similarity score), or raw score threshold.

If only the best matches with the highest scores need to be known, then PoSSuMsearch can be asked

to report only the k highest scoring matches without even specifying an explicit cutoff. To do so,

the search algorithms (ESAsearchKb and LAsearchKb variants) dynamically adapt the threshold

during the search. When using p- or E-values, the score threshold is determined by either the

new lazy dynamic programming algorithm (LazyDistrib), or read from file that stores the complete

precalculated probability distribution. Background distributions can be specified arbitrarily by the

user, or determined from a given sequence database. We provide a tool, PoSSuMdist , to generate a

compressed file containing the complete precalculated probability distribution for a set of PSSMs.

PSSM matches can be sorted by specifying a list of sort keys, like p-value, match score, sequence

number, and so on. The output formats of PoSSuMsearch print out all available information about

a match, either in a human readable format, tab delimited, or in machine readable, XML-based

CisML [HW04]. PoSSuMsearch as well as PoSSuMdist support multi-threading for a further reduc-

tion of running time on multi CPU machines. See Figures 3.26 and 3.27 for the additional speedup

that can be achieved when facilitating multiple CPUs.

The PoSSuM software distribution includes the searching tool PoSSuMsearch itself, and additional

tools to determine character frequencies from sequence data, for probability distribution calculation,

and PSSM format converters for TRANSFAC , BLOCKS , PRINTS , and EMATRIX style PSSMs.

See Table 3.5 for a list of included programs. Detailed descriptions of the programs included in

PoSSuM software distribution, their command line interfaces, and used file- and output formats are

given in the Appendix A.4 on page 199.

99

3 Fast algorithms for matching position specific scoring matrices

−45

−40

−35

−30

−25

−20

1

2

3

4

5

6

0

2000

4000

6000

8000

10000

Number of used CPUs

log(p−value)

T
ot

al
 r

un
ni

ng
 ti

m
e

[s
ec

]

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

9434 sec

1684 sec

1112 sec

230 sec

Figure 3.26: Scaling behaviour of the multithreaded version of PoSSuMsearch operating in

ESAsearch mode. We measured the running time in seconds needed for searching

with 24,291 protein PSSMs with an average length of 26.57 taken from the BLOCKS

database (Rel. 13.0) in the RCSB protein data bank (PDB) containing 19,111 sequences

with a total length of 4.3 MB. Measurements were performed for different p-value cut-

offs and used numbers of CPUs.

100

3.11 PoSSuM software distribution

1 2 3 4 5 6 7
0

2000

4000

6000

8000

10000

12000

14000

16000

Number of used Threads

T
ot

al
 r

un
ni

ng
 ti

m
e

[s
ec

]

Scaling behaviour of the multithreaded variant of possumdist

Figure 3.27: Scaling behaviour of the multithreaded variant of PoSSuMdist . We measured the time

needed for the calculation of complete score distributions and their persistent, com-

pressed storage. We used 28,333 protein PSSMs from the BLOCKS datbase (Rel. 14.1)

with an average length of 26.3 using different numbers of CPUs.

101

3 Fast algorithms for matching position specific scoring matrices

Program Description

PoSSuMsearch Searching tool, that implements ESAsearch, LAsearch, SPsearch,

ESAsearchKb, LAsearchKb, and LazyDistrib algorithms.

PoSSuMdist Generates a compressed file containing the complete precalculated

probability distribution for a set of PSSMs.

PoSSuMfreq Utility program to calculate character frequencies from given se-

quence data, usable for LazyDistrib and PoSSuMdist .

transfac2gen Converts PSSMs from TRANSFAC format into PoSSuMsearch

compatible format.

prints2gen Converts PSSMs from PRINTS format into PoSSuMsearch com-

patible format.

ematrix2gen Converts PSSMs from EMATRIX format into PoSSuMsearch

compatible format.

cdd2gen Converts CDD and PsiBlast checkpoint file PSSMs into PoSSuM-

search format.

mkvtree Program from the Vmatch package of S.Kurtz to build enhanced

suffix arrays.

Table 3.5: Programs included in the PoSSuM software distribution.

3.12 Discussion and concluding remarks

We presented in this chapter a new non-heuristic algorithm, called ESAsearch, to efficiently find

matches of PSSMs in large databases. Our approach preprocesses the search space, e.g., a complete

genome or a set of protein sequences, and builds an enhanced suffix array that is stored on file.

This allows the searching of a database with a PSSM in sublinear expected time. Our analysis of

ESAsearch revealed sublinear runtime in the expected case, and linear runtime in the worst case

for sequences not shorter than |A|m + m − 1, where m is the length of the PSSM and A a finite

alphabet. The enhanced suffix array, on which the method is based, requires only 9n bytes. This is

a space reduction of more than 45 percent compared to the 17n bytes implementation of [DNM00].

For a summarization of the time and space complexities of ESAsearch, LAsearch, and SPsearch see

Table 3.6.

Since ESAsearch benefits from small alphabets, we presented a variant operating on sequences

recoded according to a reduced alphabet. We also addressed the problem of non-comparable PSSM-

scores by developing a method which allows the efficient computation of a matrix similarity threshold

for a PSSM, given an E-value or a p-value. Our method is based on dynamic programming and,

in contrast to other methods, it employs lazy evaluation of the dynamic programming matrix. For

application scenarios, where it is difficult to specify a meaningful PSSM score cutoff, we developed

variants of ESAsearch and LAsearch, that adjust dynamically the threshold th while searching and

report the k - best matches of a PSSM without the need for the user to specify a cutoff value.

We evaluated algorithm ESAsearch with nucleotide PSSMs and with amino acid PSSMs. We per-

formed various experiments in which, compared to the best previous methods, ESAsearch shows

102

3.12 Discussion and concluding remarks

speedups of a factor between 17 and 275 for nucleotide PSSMs, and speedups up to factor 1.8 for

amino acid PSSMs. Comparisons with the most widely used programs even show speedups by a

factor of at least 3.8. Alphabet reduction yields an additional speedup factor of 2 on amino acid

sequences compared to results achieved with the 20 symbol standard alphabet. The lazy evaluation

method is also much faster than previous methods, with speedups of a factor between 3 and 330.

This new algorithm for accurate on-the-fly calculations of thresholds has the potential to replace

formerly used approximation approaches.

Beyond the algorithmic contributions, we provide with the PoSSuM software distribution, a robust,

well documented, and easy to use software package, implementing the ideas and algorithms presented

in this chapter. The PoSSuM software distribution has already been successfully used in a large-scale

study for the structural analysis of the core promoter in mammalian and plant genomes [FSD+05]

and it constitutes the fundamental search engine for transcription factor binding site PSSMs in the

CoryneRegNet software system for the reconstruction and comparison of transcriptional regulatory

networks in prokaryotes [BBC+06, BRT06]. Further, PoSSuMsearch is integrated into the Genlight

system [BMM+04] as a screening method for amino acid PSSMs from the PRINTS and BLOCKS

databases.

103

3 Fast algorithms for matching position specific scoring matrices

Implementations Time complexity Space complexity Comment

Algorithm: SPsearch

Matinspector ,

MATCH , Fin-

gerPrintScan,

Blocksearch,

BLIMPS ,

PoSSuMsearch

O (nm) O (n + m) O (nm) running time in the

best-, average-, and worst case.

Algorithm: LAsearch

EMATRIX ,

PoSSuMsearch

O (kn) O (n + m) The worst case running time

is O (nm), since in the worst

case k ∈ O (m). In practice, k

is expected to be much smaller

than m, leading to considerable

speedups. In the best case, ex-

act one character of each sub-

word of length m of S has to

be scored leading to O (n + m)

running time.

Algorithm: ESAsearch

PoSSuMsearch O (n + n ·max {0, p}+ m) O (9n + m) The worst case running time is

O (n + m), since p ≤ 0 holds

for any PSSM of length m and

threshold on any text of length

n ≥ |A|m + m − 1. In practice,

large numbers of suffixes can be

skipped if the threshold is strin-

gent enough, leading to a total

running time sublinear in the

size of the text, regardless of the

relation between n and m.

Table 3.6: Summary of the time and space complexities of SPsearch, LAsearch, and ESAsearch

when searching with a PSSM of length m in a text S of length n over alphabet A.

104

4 PSSM family models for sequence family

classification

4.1 Increasing the expressiveness of PSSM-based database

searches

We have seen, that searching with PSSMs in combination with enhanced suffix arrays is very

efficient and lead to algorithms with superior performance compared to existing methods. However,

compared to other approximate motif description models, PSSMs have the severe drawback, that

they are fixed length motifs, build from gapless (parts of) multiple alignments, that do not allow

for possible gaps. Consequently, one single insertion or deletion in the sequence to be searched with

a PSSM, can yield to a misleading overlooking (false negatives) of the motif represented by the

PSSM. Hence, PSSMs are often only used to represent short highly conserved regions of nucleotide

or amino acid sequences or regions that have a constant length, like transcription factor binding

sites. Though, using only short PSSMs can increase the sensitivity in a database search, specificity

decreases, since the significance of a PSSM match is correlated with its length (see Equation (3.9)).

Accordingly, biological relevant matches of short PSSMs are difficult and sometimes impossible to

distinguish from spurious ones and the explanatory power of a single short PSSM match is limited,

in particular in larger data sets. This is a known problem e.g., in the field of transcription factor

binding site prediction on whole genomes or chromosomes (see [RMV03]).

Alternatively, we could use a different motif model, e.g., one that allows for gaps, like Gribskov’s

PSSMs with position specific gap costs (see section 2.6 on page 36) or profile hidden Markov

models (see section 2.7.2 on page 42). These types of models are less vulnerable to insertions

and deletions caused by evolutionary mutation events and thus can be used to describe longer

regions of sequences. On the downside, incorporation of gaps is computationally expensive and it is

unclear how to efficiently use enhanced suffix arrays when allowing gaps. Further on, it is unknown,

how to calculate exact statistics necessary to address the significance of matches of such models

that incorporate gaps. They are based on approximations and empirically determined parameters

[ABOH01, YH01].

Instead of using a completely different motif model, we propose to increase the power of PSSM based

motif searches by using chains of multiple ordered PSSMs as a descriptor for a family of related

sequences. The method, to be described, is a combination of the ESAsearch algorithm for fast PSSM

matching with an efficient chaining algorithm incorporating ordering information of PSSMs and is

in particular applicable for protein family classification and detection of distant homologies.

105

4 PSSM family models for sequence family classification

Figure 4.1: Conserved order of matches of a protein fingerprint describing the CagA exotoxin of

the human pathogen Helicobacter pylori (PRINTS-ID: TYPE4SSCAGA), a well known

virulence factor linked to the more severe forms of gastric ulcers and duodendal cancers

caused by some strains of H.pylori. The PRINTS fingerprint representing the CagA

family contains eleven PSSMs in a defined order. The group positions, shown in red in

this figure, specify the order of PSSM motif occurrences in the alignment of the CagA

family sequences from left to right. Figure taken from the Genlight system.

4.2 Using multiple ordered PSSMs for sequence classification

Sequence families can often be characterized by more than one motif derived from different conserved

regions of the sequence. Reconsider that these motifs can be determined in a local multiple alignment

of the family sequences or from gapless blocks, excised from a gap containing multiple alignment.

We assume that the ordering of these motifs is evolutionary conserved and that family members

will contain some or all the motifs, usually with a highly conserved ordering. For an example of

order conservation see Figure 4.1. In this example the CagA exotoxin protein family is represented

by eleven PSSMs determined from the multiple alignment of the family members. Observe that

the order of PSSMs matches is conserved when they were screened versus a new member of the

modeled family like the CAG HELPJ protein sequence used in this example. This observation

motivates an extension of our PSSM searching algorithms by incorporating ordering information of

multiple PSSMs derived from a family of related sequences. Instead of single PSSM matches, our

algorithm reports chains of PSSM matches that occur in a conserved order. Compared to approaches

using a single motif only, with the incorporation of multiple PSSMs representing multiple conserved

motifs of a sequence family in a specific order, the diagnostic power in a database search scenario like

protein family classification, can be increased. See Figure 4.2 for the effect of using chains of multiple

ordered PSSMs compared to single PSSMs. When reporting single high scoring PSSM matches only,

we obtain multiple false positive hits, caused by the limited significance and explanatory power of

short PSSMs and it remains difficult to confidently classify the sequence to a certain family based

on these single PSSM matches (Figure 4.2 (A)). Hence, an effective search algorithm therefore has

to take the cooccurrence and order of matching PSSMs of the same family into account and must

106

4.3 PSSM family models

define a rankable score for the chain of matches. This increases the specificity of the database search

and may reduce the number of false positive matches dramatically. In the example given in Figure

4.2 (B)) all false positive matches are eliminated. Here the top scoring chains are all true positives

and exactly describe the five catalytic domains of the ARO multi domain protein of bakers yeast

(S.cerevisae).

As apparent from Figure 4.2, by facilitating a set of multiple ordered PSSMs to describe a family of

related sequences and by reporting of results with preserved ordering only, we can counterbalance

the lack of specificity of short PSSMs. That is, we benefit of the increased sensitivity of short

PSSMs, without losing specificity as it is the case when using single short PSSMs. Ordered sets of

motifs adaptable for deviations of PSSMs, sometimes also called fingerprints, are available in form

of alignment blocks in several database. The PRINTS [ACF+00] and BLOCKS/BLOCKS+ databases

[HGPH00, HP99] are two examples of large collections of such fingerprints representing specific

protein families. BLOCKS for instance contains in its current release (Rel 14.3 April 2007) 29,068

PSSMs describing 5,900 protein families. In addition, ordered sets of alignment blocks which may

serve as input for the construction of multiple ordered PSSMs can be easily excised from multiple

alignments of related sequences. Hence, basically all protein family collections like Pfam [FMSB+06],

TIGRFAM [HSW03], Smart [LCP+06], etc., which offer manually curated, high quality alignments

of protein family members are applicable for deviation of multiple, ordered PSSMs constituting a

descriptor for these families.

4.3 PSSM family models

From now on, we employ the term PSSM family model for an ordered set of PSSMs used as a

descriptor for a family of related sequences. More precisely, let A = A1, A2, . . . , AL be a sequence of

L non-overlapping alignment blocks. These alignment blocks are excised from a multiple alignment

and the sequence A1, A2, . . . , AL reflects their order of occurrence in the alignment. See Figure 4.3

(A) for an example. We denote the start and end position of Ai, i ∈ [1,L] in the multiple alignment

by li and ri, li ≤ ri, and define a binary ordering relation ⊳ on A, such that Ai ⊳ Aj , i, j ∈ [1,L] if

and only if ri < lj . Then we define a PSSM family model as follows.

Definition 14 Let A = A1, A2, . . . , AL be an ordered sequence of non-overlapping alignment blocks

satisfying Ai ⊳ Aj for all i, j ∈ [1, L]∧ i < j. A PSSM family modelM of length L is a sequence of

L PSSMs M = M1, M2, . . . , ML where Mi denotes the PSSM deviated from Ai, i ∈ [1, L].

Let (l, i, j) denote a match to PSSM Ml, l ∈ [1,L], i ≤ j, of length ml = j − i + 1 in a sequence

S of length n. It holds sc (S[i..j], Ml) ≥ thl, where thl is the threshold used for searching with Ml.

Then the set containing all matches of all L PSSMs ofM in S is defined as

MSM,S := {(l, i, j) | l ∈ [1,L] ∧ i, j ∈ [0, n− 1] ∧ sc (S[i..j], Ml) ≥ thl}. (4.1)

For any tuple h = (l, i, j) ∈ MSM,S we employ the notation h.l := l, h.i := i, and h.j := j to

identify the components of h.

Definition 15 Let ≪ be a binary ordering relation on MSM,S such that (lr, ir, jr)≪ (ls, is, js) if

and only if lr < ls and jr < is. A match to a PSSM family model M of length L is a sequence of

107

4 PSSM family models for sequence family classification

(A) Reporting single PSSM matches

(B) Reporting of high-scoring chains only

Figure 4.2: Screening of the ARO protein from yeast vs. the BLOCKS database. ARO is a pentafunc-

tional protein that catalyzes five of seven steps in the chorismate biosynthesis pathway.

Observe that when using single PSSMs, a lot of unrelated, spurious matches are found

(A), whereas when using multiple ordered PSSMs and reporting high-scoring chains

with preserved order only (B), the number of false positive matches is strongly reduced

and each of the five domains of the ARO protein is correctly identified. For a detailed

definition of high-scoring chains and chain scores, see corresponding text.

108

4.3 PSSM family models

matches (or chain for short) CM,S = h1, h2, . . . , hk such that hi ∈MSM,S for 1 ≤ i ≤ k, and k ≤ L,

and hi ≪ hi+1, and hi.l < hi+1.l for 1 ≤ i < k. We call CM,S a collinear, non-overlapping sequence,

or chain, of length k and hi, i ∈ [1, k], a member or fragment of CM,S.

To incorporate a measure of match quality into PSSM family models, we compute the chain score

of a chain. It is based on fragment scores assigned to each element of MSM,S , expressing their

quality. More precisely, let fsc be a function, that assigns a positive score to each fragment hi ∈
MSM,S , 1 ≤ i ≤ k, in chain CM,S . This can be for example the p-value of hi or its match score

sc (S[hi.i..hi.j], Mhi.l)
1. We define the chain score for chain CM,S = h1, h2, . . . , hk as

csc (CM,S) :=

k∑

i=1

fsc(hi). (4.2)

In the context of protein family classification, a sequence is searched with several PSSM family

models, derived from multiple alignments representing different protein families. The classification

into a certain family should be based on the quality of the best match of a sequence to the corre-

sponding family model. Hence the first objective is to determine the best chain of PSSM matches

in a sequence S for a given family model M. This is stated in the following problem definition.

Definition 16 Given a PSSM family model M = M1, M2, . . .ML of length L, a sequence S of

length n, L thresholds th1, th2, . . . , thL used for searching with the PSSMs ofM in S, and the set of

PSSM matches MSM,S defined according to Equation (4.1) with their associated fragment scores,

the PSSM chaining problem is to determine a chain C∗M,S such that csc
(
C∗M,S

)
is maximal among

all possible chains. We call such a chain an optimal chain and denote its score with

csc∗M,S := csc
(
C∗M,S

)
= max{csc (CM,S) | CM,S is a chain forM on S}. (4.3)

With the definition of optimal chains and their chain scores we introduce a quantifiable, rankable

criteria of match quality to our PSSM family model concept that allows to use PSSM family models

for sequence classification. More precisely, let S be a sequence and F = {M1,M2, . . . ,MT } be a

collection of T PSSM family models, representing T distinct protein families. Further, let csc∗F ,S :=

max{csc∗Mi,S | Mi ∈ F} be the maximal score of all optimal chains in S over all family models

in F , then we classify S into the family represented by M ∈ F if and only if csc∗F ,S = csc∗M,S .

That is, we classify the sequence under consideration into the family whose family model generates

the highest scoring optimal chain. In practice it is often useful to employ a threshold constraint,

like a minimal neccessary chain length, as a lower boundary for classification. That is, sequences

not satisfying this constraint are rejected.

Since the PSSM chaining problem is a variation of the more general multi-dimensional fragment

chaining problem (c.f. [AO03b, AO03a, AO05]) we solve the PSSM chaining problem by utilizing

algorithms from this field. In the following we briefly reconsider the main ideas of existing solutions.

We roughly follow with our description an introduction to two dimensional fragment chaining, given

in [Kur05a] adapted to our concrete problem of finding an optimal match to a PSSM family model.

1Observe, that for a PSSM M that may generate non-positive match scores, i.e., scmin(M) ≤ 0, these scores can be

easily shifted to non-negative scores by adding scmin(M).

109

4 PSSM family models for sequence family classification

A
1

A
2

A
3

A
4

A
5

l
1

r
1 l

2
r

2

M
2

M
1

M
5

M
4

M
2

M
4

M
5

M
3

S

M
1

M
2

M
3

M
4

M
5

positions0

A)

B) C)

l
3

r
3 l

4
r

4 l
5

r
5

i j

i j

n0

(1, i, j)

Figure 4.3: (A) Non-overlapping alignment blocks (cyan), excised from ungapped regions of a

multiple alignment. Since li ≤ ri < lj ≤ rj for all i, j ∈ [1, 5] ∧ i < j holds,

A = A1, A2, A3, A4, A5 is an ordered sequence of non overlapping alignment blocks

suitable to construct a PSSM family model M = M1, M2, M3, M4, M5. (B) Matches of

Mi, i ∈ [1, 5], on sequence S, sorted in ascending order of their matching positions. (C)

Graph based representation of the matches of Mi, i ∈ [1, 5]. An optimal chain of collinear

non-overlapping matches is determined, by computing an optimal path in the directed,

acyclic graph. Observe that not all edges in the graph are shown in this example and

that the optimal chain (indicated here by their red marked members) is not necessarily

the longest possible chain.

110

4.3 PSSM family models

4.3.1 Computation of optimal PSSM chains

The problem of computing an optimal chain of PSSM matches can be solved with a well known

graph-based algorithm described in [VA89], which is also used in the first version of the multiple

genome alignment tool MGA [HKO02]. Adopted to the PSSM chaining problem, the ideas of the

algorithm are as follows. Let G = (V, E) be a directed, weighted, acyclic graph, where each vertex

v ∈ V represents an element of MSM,S and E is a set of weighted, directed edges. There is an edge

pointing from vertex u to vertex v with score (weight) fsc(v) if and only if u≪ v. See part (C) of

Figure 4.3 for an example of such a graph. That is, there is an edge in G pointing from u to v if and

only if u and v are collinear w.r.t. their matching positions in sequence S (see part (B) in Figure

4.3) and the positions of their corresponding PSSMs in the PSSM family model M (see part (A)

in Figure 4.3). Hence all paths through G represent valid chains CM,S according to Definition 15

and therefore matches to M. An optimal chain corresponds to a path of maximal score. Since G

is acyclic we can compute them as follows. Let csc∗ (v) be the maximum score of all chains ending

with fragment v. As all fragment scores are positive, the following recurrence for the computation

of csc∗ (v) holds:

csc∗ (v) = fsc(v) + max({0} ∪ {csc∗ (u) |u≪ v}). (4.4)

By utilizing dynamic programming, we can compute an optimal chain C∗M,S and its chain score

csc∗M,S in O (|V |+ |E|) time. Let K = |MSM,S |, then G contains K vertices connected by a

maximum of
∑K

i=1 i = K2+K
2 edges. Hence the time complexity can be rewritten as O

(
K2
)

and the

algorithm computing an optimal chain from K PSSM matches has a run time that is quadratic in

the number of PSSM matches and takes O (K) space. In [AO05] the authors present an optimization

that improves the O
(
K2
)

time bound to O (K · log K) by considering the geometric nature of the

problem. In the following, we briefly describe the main ideas of their algorithm. To compute csc∗ (v)

according to Equation (4.4) we have to maximize the score over all u ∈ MSM,S satisfying u ≪ v.

Reconsider, that for any two PSSM matches u, v ∈MSM,S ,

u = (lr, ir, jr)≪ v = (ls, is, js)⇔ lr < ls ∧ jr < is. (4.5)

Furthermore in geometric terms, a PSSM match v = (ls, is, js) ∈ MSM,S can be viewed as a line

in a two dimensional space starting at position (is, ls) and ending at position (js, ls) (see Figure

4.3 part (C)). Hence to determine csc∗ (v) we have to maximize over all PSSM matches in the

rectangle defined by the lower left corner point (0, 0) and the upper right corner point (js, ls), which

is basically a two dimensional search problem. In [AO05] the authors show that this two dimensional

search problem can be reduced to a one dimensional search problem by processing the elements of

MSM,S in ascending order with respect to their matching positions in the sequence S or in the

order of PSSMs as defined by M. Hence, an efficient organization of the elements of MSM,S is

advantageous and allows to reach the O (K · log K) time bound. This can be accomplished by using

balanced binary search trees, for instance AVL- or Red-Black-Trees for the organization of MSM,S .

For a more detailed description of the algorithm see [AO03b, AO05].

111

4 PSSM family models for sequence family classification

Analysis of ESAsearch with fragment chaining

Given a PSSM family modelM = M1, M2, . . . , ML consisting of L PSSMs of lengths m1, m2, . . . , mL

and a sequence of length n. Let m∗ = max{m1, m2, . . . , mL} denote the length of the longest PSSM

inM and K the total number of matches of all PSSMs Mi, i ∈ [1, L]. Then the time complexity for

the combined algorithm composed of ESAsearch for PSSM match determination and the fragment

chaining approach of [AO05] is O (L · (n + m∗ + K · log K)). Although in practice K is much smaller

than n, in the worst case K ∈ O (n) holds, leading to a total worst case time complexity of

O (n + m∗ + n · log n) . (4.6)

This time complexity holds for any PSSM of length m∗ and threshold on any text of length n ≥
|A|m∗

+ m∗ − 1.

4.4 Integration of PSSM family models into PoSSuMsearch

To incorporate our concept of PSSM family models, we extended our search tool PoSSuMsearch by

integrating the fragment chaining algorithm of [AO05] for chaining of matches to PSSMs.

In the first phase, PoSSuMsearch computes single PSSM matches for the PSSMs of a family model

using algorithms ESAsearch, LAsearch, or even SPsearch, depending on the user’s choice. In the sec-

ond phase PSSM matches obtained in phase one and their ordering information are used to compute

optimal chains of PSSM matches according to the order given in the family model. To formulate

these orders, we augmented the PSSM file format to support grouping and ordering information

for PSSMs enabling the description of PSSM family models. With these models PoSSuMsearch

can compute and report for each sequence S and family model M the optimal chain C∗M,S and its

chain score csc∗M,S . We added two modes of operation to PoSSuMsearch, namely pssmsearch and

seqclass with the following semantics.

• Mode pssmsearch allows sequence classification based on a, typically small, library of PSSM

family models. This mode requires a numeric argument k. Per family model the (up to) k best

matching sequences are reported.

• Mode seqclass allows sequence classification based on a, typically large, library of PSSM family

models. With user specified numeric argument k, per sequence the (up to) k best matching

PSSM family models are reported.

Hence mode pssmsearch mimics the modus operandi of program hmmsearch, whereas mode seqclass

is comparable to program hmmpfam. To further integrate PSSM family models into PoSSuM-

search seamlessly, we added additional filtering constraints like minimal (relative) chain length,

output formats and sort keys operating on chains and there attributes instead of single PSSM

matches. Graphical result visualization and a web user interface is available inside the Genlight sys-

tem [BMM+04, BSS04] where PoSSuMsearch with PSSM match chaining is used as an integrated

search method for the BLOCKS and PRINTS databases. For examples of visualized PoSSuMsearch

results see Figure 4.2 on page 108.

112

4.5 Performance of PSSM family models for protein family classification

4.5 Performance of PSSM family models for protein family

classification

Detection of protein families in large databases is one of the principal research objectives in struc-

tural and functional genomics. Protein family classification can significantly contribute to the de-

lineation of functional diversity of homologous proteins, the prediction of function based on domain

architecture or the presence of sequence motifs as well as comparative genomics, providing valuable

evolutionary insights.

To evaluate the suitability of PoSSuMsearch employing PSSM family models for fast and accurate

protein family classification, we rigorously tested and validated our method in several database

search scenarios. Therefore, we carried out extensive database searches with a large collection of

protein families focusing on the ability to discriminate between homologs and non-homologs. For the

experiments described in this chapter, we always used PoSSuMsearch operating in pssmsearch mode

with algorithm ESAsearch for PSSM matching. For simplicity we refer to it as just PoSSuMsearch

without mentioning each time that we use ESAsearch and chaining of PSSM matches.

To evaluate a database search method like PoSSuMsearch, we have to determine its sensitivity

and specificity since the overall performance or quality of a method is always a combination of its

sensitivity, also called coverage, and its specificity. One defines a method’s sensitivity as its ability

to detect as many true positive relationships (true members of the family described by the PSSM

family model) and thus generate as few false negative results (erroneously missed members) as

possible. Analogical, the specificity of a method is defined as its ability to select only sequences

with a true relationship and thus to generate as few false positives (erroneously found members)

as possible. We measured the performance of PoSSuMsearch in terms of sensitivity, specificity and

running time and compared the results with a hidden Markov model based state-of-the-art ap-

proach. Database searches using profile hidden Markov model based approaches (c.f. [DEK98]) are

yield to be very sensitive and specific [RV01]. Hence a performance evaluation assessing sensitivity

and specificity of our PSSM family model based approach compared with a hidden Markov model

based method is a meaningful and ambitious benchmark. We chose as a representative of methods

employing HMMs the widely used hmmsearch program [Edd98] from Sean Eddy’s HMMER pack-

age version 2.3.2. For the conducted experiments, we used the database search method evaluation

framework PHASE4 [Reh02]. The method-independent state of truth essential for the expressive-

ness of the evaluation experiments is defined by sequences with known relationships taken from

the SCOP (Structural Classification of Proteins) database [AHB+04] release 1.53. SCOP is a multi

level hierarchy of protein sequences taken from the RCSB protein data bank (PDB). Thus, all se-

quences included in SCOP have a known tertiary structure and they can be classified into families

based on their structural similarities, instead of sequence similarities. The classification hierarchy

was constructed manually by expert knowledge and comparisons of structures and reflects both,

structural and evolutionary relatedness of proteins. This unique feature makes the SCOP database

a frequently used benchmark data set for database search methods [BCH98, KBH98]. Inside SCOP,

families are organized into certain superfamilies, which again are members of certain folds. Families,

superfamilies, and folds also constitute the three major levels of the hierarchy. For theses levels the

following characteristics are assumed to be true:

113

4 PSSM family models for sequence family classification

Evaluation Scenario Description

Experiment 1:

Very close relationship

(family half one model)

For each superfamily: For each family, half of its sequences are

chosen as test sequences, and the remaining ones are chosen as

training sequences. The sequences of the surrounding superfamily

are ignored in the evaluation.

Experiment 2:

Close relationship (family

halves one model)

For each superfamily, half of the sequences of each of its fami-

lies are chosen as training sequences and the remaining ones are

chosen as test sequences.

Experiment 3:

Distant relationship

(distant family one model)

From a superfamily, each family in turn is chosen to provide the

test sequences. The remaining families within that superfamily

provide the training sequences.

Table 4.1: Evaluation scenarios used in the performed experiments to assess method sensitivity and

specificity.

• Family

Members of a family have a clear evolutionary relationship and hence a common or similar

structure and function. Generally, this means that pairwise residue identities between proteins

inside a family are 30% and greater. However, in some cases similar functions and structures

provide definitive evidence of common descent in the absence of high sequence identity, e.g.

many globins form a family although some members have sequence identities of less than 15%.

• Superfamily

Members of a superfamily have probably a common evolutionary origin. Superfamilies contain

proteins that have low pairwise sequence identities, but whose structural and functional fea-

tures suggest that a common evolutionary origin and common function is probable. Examples

for members that form a superfamily are actin, the ATPase domain of heat shock proteins,

and hexakinase.

• Fold

Proteins are defined as having a common fold if they have the same major secondary struc-

tures (alpha helices and beta sheets) in the same arrangement and with the same topological

connections. Proteins placed together in the same fold category may not have a common

evolutionary origin or function.

4.5.1 Employed data set and evaluation scenarios

To minimize the influence of redundancies, which are abundant in the SCOP database, on the results

of our experiments we used the non-redundant PDB90 subset2 of SCOP (Rel. 1.53). This subset

consists of a total of 4,861 amino acid sequences classified into 1,358 families and 853 superfamilies.

We performed three experiments with different evaluation scenarios to test our method’s ability to

detect (1) very close relationships, (2) close relationships, and (3) distant relationships. In these

experiments we separated the SCOP sequences into different training- and test-sets. Table 4.1 and

2Subset of SCOP/PDB sequences with pairwise homology of less or equal 90 percent.

114

4.5 Performance of PSSM family models for protein family classification

(A)

(B)

(C)

SCOP protein universe

Superfamily

Family

One model One test set

Training sequences

Test sequences

SCOP protein universe

Superfamily

Family

One model One test set

Training sequences

Test sequences

SCOP protein universe

Superfamily

Family

One model

Training sequences

Test sequences

One test set

Figure 4.4: Construction of trainings- and test-sets for (A) very close relationships (family half one

model scenario), (B) close relationships (family halves one model scenario), and (C)

distant relationships (distant family one model scenario).

115

4 PSSM family models for sequence family classification

Figure 4.4 give more details on the construction process of training- and test-sets in the different

evaluation scenarios. Since some superfamilies in SCOP contain only one family and some families

consist only of very few member sequences, we employed the following constraints when selecting

superfamilies and families for evaluation. Only superfamilies are selected that are comprised of at

least two families. From these superfamilies, families were chosen to be test families, if both the

family itself and the remainder of the superfamily contained at least 5 sequences each. Concrete

numbers of resulting trainings/test sets in the different evaluation scenarios are given in the captions

of the result figures shown in section 4.5.3 on the facing page. Note that training sequences are always

ignored in the evaluation.

4.5.2 Model construction and scoring

From each training set we constructed a PSSM family model for use with PoSSuMsearch and

a profile hidden Markov model for hmmsearch respectively. With these models, we subsequently

search the sequences in the corresponding test set. Both model types are derived from a multiple

alignment, which we compute from each training set using CLUSTALW [HTG+94] with default

parameters. For deviation of calibrated profile hidden Markov models, we applied the programs

hmmbuild and hmmcalibrate from the HMMER package. To construct PSSM family models, we

first excised all ungapped blocks of length 6-12 from the multiple alignments retaining their order

and deviated from the blocks PSSMs based on simple log-odds ratios according to Equation (2.7) in

section 2.5.4 on page 28. For this, we estimated residue probabilities of observing a certain residue

in a column of the alignment block from relative frequencies.

To score potential matches to a PSSM family model derived from a training set, we use PoSSuM-

search operating in pssmsearch mode. More precisely, let M be a PSSM family model of some

training set and let DB denote the set of all sequences in PDB90, then we compute csc∗M,S =

csc (C∗M,S) for each S ∈ DB .

For the computation of high-scoring chains in our experiments, we define the fragment score for a

match h = (l, i, j) of PSSM Ml, l ∈ [1, L], of length ml = j − i + 1 in a sequence S of length n as

fsc(h) =
− ln(1− (1− π(h))n−ml+1)

ln(n)
. (4.7)

Here π(h) denotes the probability for the event that PSSM Ml matches a random sequence of length

ml with at least score sc (S[i..j], Ml) by chance. Observe that π(h) can efficiently be determined in

an exact manner with algorithm LazyDistrib described in section 3.8.5 on page 81. Thus, (1−π(h))

is the probability for the complementary event, that Ml does not match such a random sequence,

and (1−π(h))n−ml+1 is the probability that there is no match in n−ml +1 sequences of length ml,

corresponding to the number of possible different matching positions of Ml in a sequence of length n.

Conversely, 1−(1−π(h))n−ml+1 is the probability for the event, that there is at least one in n−ml+1

random sequences of length ml that matches Ml with a score of at least sc (S[i..j], Ml). Since the

fragment chaining algorithm computes chain scores by adding fragment scores (see Equation (4.2)),

we take the logarithm to archive multiplication of probabilities 1−(1−π(h))n−ml+1. These strongly

depend on the sequence length n, therefore we divide them by ln(n) for compensation.

116

4.5 Performance of PSSM family models for protein family classification

With fragment scores based on exact p-values according to Equation (4.7), we define the chain score

of some chain CM,S = h1, h2, . . . , hk of length k as

csc (C) =

k∑

i=1

fsc(hi). (4.8)

Models constructed from training sets as described in section 4.5.1 on page 114 and Figure 4.4

on page 115, served as input for database searches with hmmsearch running in domain mode and

PoSSuMsearch. For each model, we searched with both programs in the PDB90 for sequences of the

test-set corresponding to the used model. In these searches thresholds were set in a very relaxed way

that resulted in reporting all sequences, irrespective of their score. More precisely, for hmmsearch

we chose an E-value cutoff of 10 and for PoSSuMsearch we chose a single PSSM p-value cutoff of

0.1. Matches to a model were sorted in descending order of their achieved method specific score.

As method specific scores we use for PoSSuMsearch given a family model M the best chain score

csc∗M,S for a certain sequence S, computed according to Equation (4.8) and (4.7) respectively.

Matches reported by hmmsearch were ranked by sequence classification score, the default result

ranking score of hmmsearch. The sequence classification score, also called overall model score, is a

log-odds score defined as

schmm = log2

(P[S|λ]P[S|null]

)
. (4.9)

Here P[S|λ] denotes the production probability that sequence S is generated by model λ andP[S|null] is the probability that S is generated by the null or background model expressing the

probability of seeing S just by chance.

Finally, we obtain for each training set and model type (pHMM as well as PSSM family model) a list

of matching sequences sorted in descending order of the method specific score and thus descending

match quality. These lists of results are the foundation for the subsequent evaluation.

4.5.3 Performance evaluation and results

Assessment of sensitivity and specificity

To assess the sensitivity and specificity of our PSSM family model approach and to compare the

classification accuracy with hmmsearch we process the lists of results computed by each method

for each model top down, counting true- and false positive matches. This is feasible, since (true)

family- and superfamily memberships are known from the SCOP classification. To provide an overall

assessment of the methods’ performances, we determined the percentage true positive value in

all test sets (also called the coverage) for different counts of false positives and plotted the false

positive counts versus the average percent coverage for the three different evaluation scenarios (see

Figures 4.5, 4.6, and 4.7). This is a widely used method to measure the sensitivity and specificity of

database search methods [ADRF04]. The resulting graphs (see Figures 4.5, 4.6, 4.7) describe how

many percent true positives (y-axis) a method detects, if a certain number of false positives (x-axis)

is accepted. In particular the percentage true positive value for 50 accepted false positives (FP50

value for short) is a commonly used value to characterize a database search method’s performance

in terms of sensitivity and specificity.

117

4 PSSM family models for sequence family classification

 30

 40

 50

 60

 70

 80

 90

 100

 0 25 50 75 100 125 150 175 200

av
er

ag
e

pe
rc

en
t c

ov
er

ag
e

#false positives

Very close relationships

 possumsearch
 hmmsearch

Figure 4.5: Experiment 1: Very close relationships (family half one model evaluation scenario). Clas-

sification performance of PoSSuMsearch and hmmsearch when detecting very closely re-

lated sequences. We used 258 models built from training sets representing 258 different

protein families. The number of false positives is given on the x-axis, the y-axis gives

the average percentage true positives. For details on training- and test-set generation

see corresponding text.

In our experiments PoSSuMsearch reached an FP50 value of 88.6% when applied to very closely

related proteins (Experiment 1, see Figure 4.5), 79.8% for closely related sequences (Experiment

2, see Figure 4.6), and 45.3% for distantly related sequences (Experiment 3, see Figure 4.7). For

hmmsearch we achieved FP50 values reaching from 91.8% (very close relationships, see Figure 4.5

over 84.2% (close relationships, see Figure 4.6) down to 46.9% (distant relationships, see Figure

4.7). For a summary of detection rates for different numbers of allowed false positives see Table 4.2.

Running time and scalability

In a fourth experiment, we measured the running times and scaling behavior of PoSSuMsearch using

PSSM family models and compared them to the hidden Markov model based hmmsearch program.

To analyze the fraction of the total running time spent for chaining of PSSM matches, we also

measured the running time of PoSSuMsearch without chaining for the same experimental setup.

118

4.5 Performance of PSSM family models for protein family classification

 30

 40

 50

 60

 70

 80

 90

 100

 0 25 50 75 100 125 150 175 200

av
er

ag
e

pe
rc

en
t c

ov
er

ag
e

#false positives

Close relationships

 possumsearch
 hmmsearch

Figure 4.6: Experiment 2: Close relationships (family halves one model evaluation scenario). Clas-

sification performance of PoSSuMsearch and hmmsearch when detecting closely related

sequences. We used 179 models made from the trainings sets in this experiment. For

details on training- and test-set generation see corresponding text.

Evaluation scenario PoSSuMsearch using PSSM family models hmmsearch

FP0 FP25 FP50 FP0 FP25 FP50

Very close relationships 81.8% 86.9% 88.6% 87.3% 91.0% 91.8%

Close relationships 71.1% 78.6% 79.8% 77.7% 82.9% 84.2%

Distant relationships 35.0% 41.7% 45.3% 36.1% 43.9% 46.9%

Table 4.2: Average true positive detection rates of PoSSuMsearch using PSSM family models and

hmmsearch for different numbers of allowed false positives (FP).

119

4 PSSM family models for sequence family classification

 30

 40

 50

 60

 70

 80

 90

 100

 0 25 50 75 100 125 150 175 200

av
er

ag
e

pe
rc

en
t c

ov
er

ag
e

#false positives

Distant relationships

 possumsearch
 hmmsearch

Figure 4.7: Experiment 3: Distant relationships (distant family one evaluation scenario). Classifi-

cation performance of PoSSuMsearch and hmmsearch when detecting distantly related

sequences. We used 320 models in this experiment. For details on training- and test-set

generation see corresponding text.

120

4.5 Performance of PSSM family models for protein family classification

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50 60 70 80

R
un

ni
ng

 ti
m

e
[s

ec
]

Searched sequence space [MB]

Running time and scaling behaviour of possumsearch (ESAsearch) using PSSM family models

possumsearch (ESAsearch)

 0

 5000

 10000

 15000

 20000

 0 10 20 30 40 50 60 70 80

R
un

ni
ng

 ti
m

e
[s

ec
]

Searched sequence space [MB]

Running time and scaling behaviour of possumsearch (LAsearch) using PSSM family models

possumsearch (LAsearch)

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 10 20 30 40 50 60 70 80

R
un

ni
ng

 ti
m

e
[s

ec
]

Searched sequence space [MB]

Running time and scaling behaviour of hmmsearch using profile hidden Markov models

hmmsearch

Figure 4.8: Experiment 4: Running times in seconds and scaling behavior of PoSSuMsearch op-

erating in ESAsearch (top), LAsearch mode (center) and hmmsearch (bottom) when

searching with 100 PSSM family models and profile hidden Markov models respectively,

representing the first 100 protein families in PFAM on subsets of Swiss-Prot of different

sizes.

121

4 PSSM family models for sequence family classification

For our experiment, we constructed PSSM family models for the first 100 protein families listed

in Pfam (Rel. 21.0) [FMSB+06]. We excised alignment blocks of length 5-8 from the Pfam-seed

alignments of these families and deviated PSSMs as described in section 4.5.2. This resulted in

100 PSSM family models consisting of 2,038 single PSSMs with an average length of 7.8. Along

with the construction of PSSM family models we generated from the same seed alignments 100

pHMMs using hmmbuild . That is, we obtained 100 PSSM family models and pHMMs describing

the first 100 Pfam protein families. We applied these models to PoSSuMsearch and hmmsearch

respectively and measured the running time needed for searching on subsets of different sizes of

the Swiss-Prot database (UniProtKB/Swiss-Prot Rel. 49.2) containing 212,425 amino acid sequences

with a total sequence length of 78MB. For hmmsearch we used a moderately chosen E-value cutoff

of 10−5. Reconsider, that the running time of PoSSuMsearch depends on the stringency of the used

cutoff, in particular when using algorithms ESAsearch or LAsearch. Hence for a fair comparison

of running times of both methods, the cutoff for PoSSuMsearch has to be adjusted appropriately.

Regrettably, E-values or p-values of different database search methods are in the majority of cases

not comparable. In case of PoSSuMsearch with fragment chaining, this remains even more difficult

due to the lack of accurate statistics for high-scoring PSSM chains3. However, manual inspection of

results obtained for different levels of stringency revealed that for the majority of tested families a

single PSSM p-value cutoff of π = 10−4 underestimates the level of stringency of hmmsearch using

an E-value cutoff of 10−5. That is, PoSSuMsearch operates less stringent than hmmsearch and is

not favored in terms of running time by operating on a higher level of stringency. Hence, we chose

for our benchmark experiments a p-value cutoff of π = 10−4 for searching with PSSM family models

using PoSSuMsearch.

Measurements were performed on a 8 CPU Sun UltraSparc III computer with a CPU clock speed

of 900MHz and 64GB main memory (using only one CPU and a small fraction of the memory). We

measured the running times for hmmsearch and PoSSuMsearch operating in ESAsearch mode as

well as in LAsearch mode (see Figure 4.8). Both PoSSuMsearch variants employ the fast chaining

algorithm of [AO05] on the obtained PSSM matches to compute for each PSSM family model high-

scoring chains. In this experiment PoSSuMsearch performed very well. Running times were in the

range between 73 seconds for a 1MB subset of Swiss-Prot up to 2.2 ·103 seconds for the whole 78MB

when employing PoSSuMsearch operating in ESAsearch mode and between 73.1 seconds (1MB)

and 1.59 · 104 seconds (78MB) when using LAsearch. To accomplish the same task with hmmsearch

utilizing 100 pHMMs built from the same seed alignments it took between 4.89 · 103 seconds (1MB)

and 3.82·105 seconds (78MB) (see Figure 4.8). That is, PoSSuMsearch applying ESAsearch achieved

speedup factors between 67 and 171 over hmmsearch and between 2.9 and 7.2 over PoSSuMsearch

operating in LAsearch mode.

In our experiment hmmsearch shows a running time linear in the size of the searched sequence

space (see Figure 4.8). This is an expected behavior induced by the applied Forward algorithm

(see Equation (2.40)). By contrast, PoSSuMsearch operating in ESAsearch mode and employing

chaining on the obtained PSSM matches shows clearly sublinear running time. We further found,

that the overall running time is dominated by the time that algorithm ESAsearch needs to find

matches for the PSSMs belonging to a family model. For example from the 2,178 seconds needed

3We will address the problem of score statistics of high-scoring PSSM chains in section 4.5.4 on the next page.

122

4.5 Performance of PSSM family models for protein family classification

0

500

1000

1500

2000

2500

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

F
re

qu
en

cy

chain score

Chain score distribution (chain length > 1)

’n=182’
’n=365’
’n=730’

’n=1460’
’n=2920’
’n=5840’

Figure 4.9: Histograms of csc∗F ,S on 106 random sequences of constant lengths n ∈
{182, 365, 730, 1460, 2920, 5840} . The used collection of PSSM family models F con-

tains 5,732 family models taken from BLOCKS Rel. 14.1.

by PoSSuMsearch to apply the 100 PSSM family models to the whole Swiss-Prot only 325 seconds

(14.9%) were spent on chaining of PSSM matches.

4.5.4 The significance of PSSM chain scores

Although chain scores computed according to Equation (4.8) and (4.7) abstract from the underlying

PSSM raw scores by using p-values and give a good rankable score, it is preferable to have a p-value

or E-value as a measure of significance for a chain of PSSM matches. Such a p-value corresponding

to a chain score csc (CM,S) should express the probability of obtaining a match to the PSSM family

modelM of at least score csc (CM,S) in a random sequence. This would allow more meaningful user

specified p-value or E-value cutoffs instead of raw chain score cutoffs.

To define a meaningful p-value and hence to assess the significance of PSSM chain scores, we have

to compute or at least approximate properly the chain score distribution. In literature very little is

known about approximations of combined score distributions like our chain scores. In [BG98b] and

[BG98a] the authors propose an intuitive method, implemented in the search tool MAST (Motif

Alignment and Search Tool), for combining sources of evidence (matches of multiple motifs char-

acterizing a sequence family) that yields a p-value for the complete evidence (membership of a

sequence to this family). They use the product of p-values of single motif matches to derive a com-

bined p-value. This is basically similar to our definition of chain scores according to Equation (4.8)

and (4.7) except that we take the sequence length n into account and add logarithms of probabilities

instead of multiplying probabilities. However, in contrast to our PSSM family models, the method

of [BG98b] does not take the order of match occurrences into account and it reveals unclear how this

123

4 PSSM family models for sequence family classification

additional constraint influences the distribution of chain scores and the accuracy of the combined

p-values4.

To get an idea of the shape of this distribution, we sampled scores of high scoring chains on a

large data set of random data. In this experiment, we used the chain score function as defined in

Equation (4.8) and (4.7). To analyze potential dependencies of the chain score on the length of the

matched sequence, we generated sets of 106 random sequences each, for different sequence lengths.

As lengths we chose multiples of the average sequence length in Swiss-Prot determined as navg = 365,

namely 182, 365, 730, 1460, 2920, and 5840, resembling the length spectrum of proteins. In these

random data sets we retained the relative amino acid frequencies of Swiss-Prot. We searched with

5,732 PSSM family models (|F| = 5, 732) taken from the BLOCKS database (Rel. 14.1) consisting

of 28,333 single PSSMs with an average length of 26.3 on our data sets of random sequences using

PoSSuMsearch operating in seqclass mode for k = 1 and a relaxed p-value cutoff for a single PSSM

match of 10−2. That is, we computed the chain score of a match to a PSSM family model and

tabulated for each of our random sequences S score csc∗F ,S, the score of the highest scoring chain

of all family models. For these scores we calculated the distribution. See Figure 4.9 for the results

of our sampling experiments. Although we already tried to compensate for dependencies of chain

scores on the length n of the matched sequence by division by ln(n) (see Equation (4.7)), such an

dependency still exists. This is in particular apparent in the histogram shown in Figure 4.10. For

this Figure we sampled chain scores csc∗M,S for two PSSM family models describing two TIGRFAM

protein families and containing a different number of PSSMs of length 6 to 10 on two sets of 106

random sequences of length 184 and 1472 respectively . We notice that the distribution of high

chain scores depends on the sequence length and it is much more likely to achieve a high chain score

in a longer sequence than in a shorter one. Also the number of PSSMs in a family model seems to

influence the chain score, such that models consisting of a higher number of single PSSMs incline to

achieve higher chain scores. For an example see the blue and red histogram in Figure 4.10. A more

detailed analysis of the distribution of high PSSM chain scores (see Figure 4.11) revealed a further

interesting aspect. As indicated by the X-Y plots in Figure 4.11, distributions of high PSSM chain

scores derived from a single PSSM family model can be approximated quite well with an extreme

value distribution. This may lead in the future, if an acceptable length normalization of chain scores

can be found, to an approximation of the chain score distribution on a per model basis and in turn

to reliable statistics with p-values and E-values corresponding to chain scores.

4.6 Accelerating HMM based database searches with PSSM

family models

Profile hidden Markov models (pHMMs) are currently the most popular modeling concept for pro-

tein families. They provide very sensitive family descriptors, and sequence database searching with

models from major pHMM collections has become a standard task in today’s sequence analyses and

genome annotation pipelines. On the downside, database searching for pHMMs with programs like

hmmsearch or hmmpfam is computationally expensive. The application of the programs to com-

4Interestingly, incorporation of match order is mentioned as a promising constraint to increase specificity in the

outlook of [BG98b].

124

4.6 Accelerating HMM based database searches with PSSM family models

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5 Chainscore Distributions

Chainscore

F
re

qu
en

cy

TIGR00004 (I−PSP) 15 PSSMs, n=184
TIGR00004 (I−PSP) 15 PSSMs, n=1472
TIGR00001 (riL35) 8 PSSMs, n=184
TIGR00001 (riL35) 8 PSSMs, n=1472

Figure 4.10: Histogram of csc∗M,S for two PSSM family models containing a different number of

single PSSMs on 106 random sequences of lengths 184 and 1472. The two investigated

PSSM family models describe TIGRFAM protein families TIGR00001 (modeled with 8

single PSSMs) and TIGR00004 (modeled with 15 single PSSMs).

125

4 PSSM family models for sequence family classification

0 2000 4000 6000
0

0.2

0.4

0.6

0.8

1

score S

P
(X

<
=

S
)

Chainscore distribution for TIGR00001/riL35, n=184

0 2000 4000 6000
−14

−12

−10

−8

−6

−4

−2

0

2

4

score S

lo
g(

−
lo

g(
P

(X
<

=
S

))
)

0 2000 4000

0.001
0.003
0.01 0.02
0.05
0.10
0.25
0.50
0.75
0.90
0.95
0.98 0.99

0.997
0.999

score S

P
(X

<
=

S
)

Normal Probability Plot

0 2000 4000 6000
0

0.2

0.4

0.6

0.8

1

score S

P
(X

<
=

S
)

Chainscore distribution for TIGR00004/I−PSP, n=184

0 2000 4000 6000
−14

−12

−10

−8

−6

−4

−2

0

2

4

score S

lo
g(

−
lo

g(
P

(X
<

=
S

))
)

0 2000 4000 6000

0.001
0.003
0.01 0.02
0.05
0.10
0.25
0.50
0.75
0.90
0.95
0.98 0.99

0.997
0.999

score S
P

(X
<

=
S

)

Normal Probability Plot

0 2000 4000
0

0.2

0.4

0.6

0.8

1

score S

P
(X

<
=

S
)

Chainscore distribution for TIGR00001/riL35, n=1472

0 2000 4000
−14

−12

−10

−8

−6

−4

−2

0

2

4

score S

lo
g(

−
lo

g(
P

(X
<

=
S

))
)

0 2000 4000

0.001
0.003
0.01 0.02
0.05
0.10
0.25
0.50
0.75
0.90
0.95
0.98 0.99

0.997
0.999

score S

P
(X

<
=

S
)

Normal Probability Plot

0 2000 4000
0

0.2

0.4

0.6

0.8

1

score S

P
(X

<
=

S
)

Chainscore distribution for TIGR00004/I−PSP, n=1472

0 2000 4000
−14

−12

−10

−8

−6

−4

−2

0

2

4

score S

lo
g(

−
lo

g(
P

(X
<

=
S

))
)

0 2000 4000

0.001
0.003
0.01 0.02
0.05
0.10
0.25
0.50
0.75
0.90
0.95
0.98 0.99

0.997
0.999

score S

P
(X

<
=

S
)

Normal Probability Plot

Figure 4.11: Cumulative chain score distributions, X-Y plots, and normal probability plots of PSSM

family models for two TIGRFAM families (TIGR00001 and TIGR00004) for two different

sequence lengths 184 and 1472. Color assignments are the same as in Figure 4.10.

126

4.6 Accelerating HMM based database searches with PSSM family models

plete proteomes, or even whole protein databases like Swiss-Prot or UniProtKB/TrEMBL, demands

massive amounts of compute resources or highly specialized hardware [Tim06].

We propose a new method to speed up hmmsearch. Our approach employs the simpler PSSM family

models and fast PSSM matching using algorithm ESAsearch to filter the search space for subsequent

database searches with pHMMs corresponding to this families.

4.6.1 Model specific trusted- and noise cutoffs

Accompanied to the traditional user defined E-value cutoffs to control the significance level of a

database search, major protein family databases use additional cutoffs to judge between true positive

and false positive matches. For instance pHMMs of protein families from the Pfam or TIGRFAM

databases contain additional trusted- and noise-cutoffs. These cutoffs, set with expert knowledge

of the modeled family by the database curators, are used by programs from the HMMER package

as cutoff values for the sequence classification score (see Equation (4.9)) for searches on a defined

significance level. The trusted cutoff is the lowest score for sequences included in the protein family

described by the model. Hence, it is assumed as a lower score boundary for true members of the

family and is therefore often used in automatic annotation pipelines of genome annotation systems.

Contrary, the noise cutoff is the highest score known so far of a sequence not belonging to the

family. For this reason it can be seen as an upper score boundary for sequences assumed not to

belonging to the family. This cutoff is often used for manual searches with increased sensitivity.

The range between both cutoffs marks a gray zone in which the obtained matches require manual

inspection. Using predefined trusted- or noise cutoffs recorded in the model entries, searches with

different levels of stringency and in contrast to E-value cutoffs independent from the size of the

searched sequence space can be performed.

In the following, we demonstrate that even in the absence of accurate statistics and significance

values for PSSM chain scores, we can map trusted and noise cutoffs to single PoSSuMsearch PSSM

p-value cutoffs, allowing PoSSuMsearch and hmmsearch to operate on a similar level of sensitiv-

ity. This permits to use PoSSuMsearch as a pre-filter for search space reduction for the compute

intensive hidden Markov model based hmmsearch. The intention behind this filtering and search

space reduction approach with PSSM family models is an expected reduction of overall running

time of the combined approach consisting of PoSSuMsearch and subsequent hmmsearch over direct

hmmsearch. To achieve this, we propose the subsequently described procedure.

4.6.2 PSfamSearch: Search space reduction with PSSM family models

We start by searching with a pHMM representing a protein family in a large protein database like

Swiss-Prot using hmmsearch with the model’s trusted cutoffs and tabulate all matching sequences.

From the seed alignment of the employed pHMM we construct a PSSM family model as described in

section 4.5.2 and use this family model to iteratively search Swiss-Prot using PoSSuMsearch. In each

iteration we relax the p-value cutoff until we find all sequences also detected by hmmsearch using the

models trusted cutoff (TC) and noise cutoff (NC) respectively. With this procedure we determine

p-value cutoffs denoted by πTC and πNC corresponding to the pHMMs trusted cutoff and noise

cutoff in terms of sensitivity. That is, we operate with PoSSuMsearch and our calibrated PSSM

127

4 PSSM family models for sequence family classification

10
0

10
1

10
2

10
3

10
4

10
5

riL35

ribS16

cop−IBP

l−PSP

RluA_subfam

mraW

Tigr00007

infA

ribL28

TatD

YbaK_EbsC

ribL29

taut

arsC

ackA

cmk

panC

prfA

prfB

rpiA

#seqs total

T
IG

R
F

A
M

 fa
m

ily

#seqs passing Possumsearch filtering

Search space reduction through PSSM family model prefiltering

trusted cutoffs

noise cutoffs

Figure 4.12: Search space reduction through PSSM family model pre-filtering. We measured the

number of sequences passing pre-filtering of the search space with PoSSuMsearch using

PSSM family models (x-axis, logscale). p-value cutoffs are adjusted to find at least the

same matches as hmmsearch using trusted- and noise cutoffs for the first 20 protein

families of the TIGRFAM database (Rel. 6.0). The red bar shows the total number of

sequences in the used Swiss-Prot release 51.7 (259,034 protein sequences with a total

length of ∼ 122MB) needed to be searched by direct hmmsearch without filtering.

family model on the same level of sensitivity as hmmsearch employing the pHMM, but with possibly

reduced specificity. Observe that the set of matching sequences detected by PoSSuMsearch using

cutoff πTC or πNC may be a super-set of the set of sequences detected by hmmsearch employing the

pHMMs trusted- and noise cutoff. However, since we are interested in using PSSM family models

searched with PoSSuMsearch as a pre-filter for search space reduction for hmmsearch, sensitivity

is more important than specificity. Once πTC and πNC are computed on a large protein database

like Swiss-Prot, they can be stored together with the PSSM family model on file for reuse. That

is, for further searches with hmmsearch using the model’s trusted- or noise cutoff we can use

PoSSuMsearch using cutoff πTC or πNC as a filter and apply the compute intensive hmmsearch

only on sequences that contain matching chains to the PSSM family model. Sequences that contain

no matching chains are thus filtered out. Since sequences containing matching chains constitute

only a small fraction of all sequences to be searched and since PoSSuMsearch is much faster than

hmmsearch, we expect a reduced overall running time.

From now on we use the term PSfamSearch to denote the combined approach consisting of PoS-

SuMsearch using PSSM family models for pre-filtering and subsequent application of hmmsearch

on the filtered sequence set.

128

4.6 Accelerating HMM based database searches with PSSM family models

0 200 400 600 800 1000 1200 1400 1600

PSfamSearch (π
TC

)

PSfamSearch (π
NC

)

hmmsearch (Noise cutoffs)

hmmsearch (Trusted cutoffs)

A
lg

o
ri

th
m

 (
cu

to
ff

 le
v

e
l)

Running time [min]

1400.2 min

1400.5 min

30.6 min

10.1 min

Figure 4.13: Running time reduction by PSSM family model based pre-filtering. We measured the

total running time in minutes needed to search with models representing the first 20

protein families in TIGRFAM, in the complete Swiss-Prot database (Rel. 51.7) for direct

hmmsearch (red bars) and the family model filtering approach with PoSSuMsearch

(yellow and green bars) for the two different significance levels given by trusted- and

noise cutoffs.

4.6.3 Evaluation and computational results

We tested PSfamSearch with the first 20 out of 2,946 pHMMs of the TIGRFAM database (Rel. 6.0)

on the complete Swiss-Prot database (Rel. 51.7, ∼ 122MB protein sequence data). We determined

PoSSuMsearch p-value cutoffs corresponding to hmmsearch trusted cutoffs as well as noise cutoffs

with the iterative procedure described above. We measured the search space reduction (see Figure

4.12) and the total running times needed by PSfamSearch and compared them with hmmsearch

operating on the unfiltered data set (see Figure 4.13). Running times for the filtered approach are

total running times including times needed for search space reduction with PoSSuMsearch and

subsequent application of hmmsearch on the filtered filtered sequence space. In these experiments

PSSM family model based filtering reduces the search space and hence the overall running time dra-

matically. For example, for TIGRFAM family YbaK EbsC (TIGRFAM Accession: TIGR00011) only

5 sequences remain after the filtering step and are handed over to hmmsearch to score them instead

of all 259, 034 Swiss-Prot sequences without filtering. Filtering with p-value cutoffs corresponding

to the less stringent noise cutoffs revealed in the worst case (family ril35, TIGRFAM Accession:

TIGR00001) even still a search space reduction of ∼ 50%.

The overall running time needed for searching is reduced from 1, 400.2 minutes required by standard

hmmsearch to only 10.1 minutes for PSfamSearch when using trusted cutoffs. This is a speedup of

factor 138. Using noise cutoffs the achieved speedup factor is still ∼ 45.

We explicitly note, that we obtain with PSfamSearch and direct hmmsearch operating on the full

sequence set, exactly the same results. Hence, PoSSuMsearch works in this scenario as a perfect,

lossless filter. This is not too surprising, since thresholds were trained/adjusted on the same set of

129

4 PSSM family models for sequence family classification

sequences that was searched afterwards employing these thresholds. This raises the question, how

well the calibrated p-value cutoffs generalize to sequences not included in the training set used for

threshold determination.

4.6.4 Cutoff calibration strategies

The determination of a proper family specific p-value cutoff is crucial for the sensitivity as well as

speedup of PSfamSearch. A too stringent cutoff results in too radical search space reduction which

in turn has the effect, that PSfamSearch misses to many matches. Contrary, a too relaxed cutoff

affects the obtained speedup factor negatively due to insufficient reduction of the search space. In

the following we investigate and evaluate three different strategies for cutoff calibration. Namely,

• cutoff calibration based on family seeds,

• cutoff calibration based on hmmsearch matches obtained on a smaller sample set (Swiss-Prot),

• cutoff calibration based on UniProtKB/TrEMBL results with training- and test-set separation.

Cutoff calibration based on family seeds

To employ family seeds for the calibration of p-value cutoffs, we derived PSSM family models from

the families’ seed alignments and adjusted the p-value cutoffs for PoSSuMsearch so that all members

of the seed alignment of a protein family were found by the model. Subsequently, we used these

calibrated cutoffs on the UniProtKB/TrEMBL database (Rel. 35.0) containing 3,874,166 protein

sequences comprising 1,260,291,226 amino acids with PSfamSearch and compared the achieved

results with direct hmmsearch using the models trusted cutoffs. Detailed results for the first 20

TIGRFAM protein families are given in Table 4.3. In this experiment, direct hmmsearch returned

for all 20 families a total of 7, 588 matches scoring above the trusted cutoff. Using PSfamSearch we

obtained 7, 005 matches also detected by direct hmmsearch and missed 583. Although on average

overall tested TIGRFAM families, PSfamSearch using p-value cutoffs trained on family seeds returned

88.86% of all direct hmmsearch results, for some diverse families the determined cutoffs were too

stringent. An example for such a family is cop-IBP. For this family PSfamSearch missed with the

determined cutoff of 0.00021 more than 96% (207 of 214) of the sequences detected by hmmsearch.

The same problem arose for family taut for which more than 47% (80 of 168) of the hmmsearch

matches were missed. We identified for this behavior the following two main reasons:

• Some protein families are too diverse to be represented properly by a single seed alignment.

These families are defined by trusted cutoffs much lower than the scores obtained for the

seed sequences. Hence, the sequences included in the seed alignment are not a representative

sample for the family and thus inappropriate for cutoff calibration.

• Some seed alignments sometimes simply does not contain enough sequences for a proper

representation of the family. Such an example is family cop-IBP for which the seed alignment

contains 4 sequences only.

We conclude that family seeds are not well suited for p-value cutoff calibration.

130

4
.6

A
ccelera

tin
g

H
M

M
b
a
sed

d
a
ta

b
a
se

sea
rch

es
w

ith
P

S
S
M

fa
m

ily
m

o
d
els

TIGRFAM

family

#matches

(hmmsearch

using TC)

#seqs in red.

space

% of total seq.

space

#matches in

red. space

matches in

red. space[%]
#missed missed[%]

PoSSuMsearch

Cutoff πTC

#seed

seqs.

riL35 242 51,842 1.33815 241 99.59 1 0.41 2.65E-004 24

ribS16 328 310 0.00800 310 94.51 18 5.49 2.44E-006 20

cop-IBP 214 8 0.00021 7 3.27 207 96.73 1.25E-006 4

I-PSP 517 520 0.01342 470 90.91 47 9.09 1.25E-006 19

RluA subfam 1,038 1748 0.04512 1033 99.52 5 0.48 3.81E-006 16

mraW 349 343 0.00885 337 96.56 12 3.44 1.00E-007 8

Tigr0007 223 287 0.00741 223 100 0 0 1.25E-006 23

infA 327 380 0.00981 298 91.13 29 8.87 1.82E-005 13

ribL28 372 16,278 0.42017 355 95.43 17 4.57 1.69E-004 22

TatD 563 856 0.02210 558 99.11 5 0.89 1.95E-006 18

Ybak EbsC 255 297 0.00767 249 97.65 6 2.35 3.05E-006 17

ribL29 487 28,883 0.74553 451 92.61 36 7.39 1.69E-004 27

taut 168 88 0.00227 88 52.38 80 47.62 3.81E-006 6

arsC 302 233 0.00601 231 76.49 71 23.51 1.00E-007 6

ackA 438 438 0.01131 415 94.75 23 5.25 1.00E-008 8

cmk 344 362 0.00934 342 99.42 2 0.58 1.25E-006 8

panC 358 374 0.00965 344 96.09 14 3.91 1.00E-008 5

prfA 244 609 0.01572 244 100 0 0 1.00E-008 11

prfB 472 697 0.01799 469 99.36 3 0.64 1.00E-008 6

rpiA 347 348 0.00898 340 97.98 7 2.02 1.25E-006 23

Avg: 379.4 5,245.05 0.14 350.25 88.86 29.15 11.16 3.38E-005 14.2

Table 4.3: Results of PoSSuMsearch cutoff calibration based on seed alignment members for first 20 TIGRFAM models. Detection rates measured

on UniProtKB/TrEMBL.

1
3
1

4 PSSM family models for sequence family classification

Cutoff calibration based on Swiss-Prot matches

As a second strategy for cutoff calibration, we analyzed the usability of cutoffs determined from a

relatively large training set. Therefore, we determined PoSSuMsearch p-value cutoffs corresponding

to hmmsearch trusted cutoffs on the Swiss-Prot database for the first 20 protein families listed

in TIGRFAM. With these cutoffs we searched in the complete UniProtKB/TrEMBL database (Rel.

35.0) and compared the results of PSfamSearch with direct hmmsearch using trusted cutoffs. Direct

hmmsearch returned for all 20 families a total of 7, 588 matches scoring above the trusted cutoff.

Using PSfamSearch we obtained 7, 487 matches also detected by direct hmmsearch. That is, our

filtering approach returned 98.67% of the results detected by direct hmmsearch, but in a fraction

of running time. See Table 4.4 for the detailed results.

The fact that PSfamSearch missed a few matches (2.13%) is caused by the incomplete representation

of some of the families in Swiss-Prot, making it impossible to derive a meaningful cutoff for the

whole family based on Swiss-Prot sequences only. This is in particular true for family cop-IBP. For

this family PSfamSearch missed 51 out of 214 (23.83%) hmmsearch matches with the employed

p-value cutoff. We further note, that the majority of matches missed by PSfamSearch achieved an

hmmsearch sequence classification score near the trusted cutoff boundaries. That is, caused by the

incomplete representation of some families in Swiss-Prot, p-value cutoffs for PoSSuMsearch were

chosen too stringently. Another disadvantage of using hmmsearch matches for a pHMM obtained

on Swiss-Prot for cutoff calibration is, that it reveals still unclear how well the determined cutoff

can be generalized for new family members not contained in Swiss-Prot. It may be the case, that

the complete family consists of Swiss-Prot sequences and the cutoff is then adjusted to find exactly

these sequences.

Overall it seems more appropriate to adjust PoSSuMsearch cutoff values on a more complete set,

probably UniProtKB/TrEMBL itself, or even more ideally on the set of all true family members

known so far and to demonstrate the generalization abilities of determined cutoffs with clearly

separated training- and test-sets.

Cutoff calibration based on UniProtKB/TrEMBL results with training- and test-set separation

As a third strategy for model parameter determination, we built PSSM family models from the

families’ seed alignments for the first 20 families listed in TIGRFAM and calibrated the p-value cutoffs

and minimal chain lengths to match all sequences of a training set containing half of the sequences

returned by direct hmmsearch on UniProtKB/TrEMBL using the profile hidden Markov models’

trusted cutoffs. That is, we adjusted sensitivity according to the sensitivity level of hmmsearch

operating with trusted cutoffs. Employing these models and cutoffs in a database search on complete

UniProtKB/TrEMBL, PSfamSearch returned more than 99.7% of the original results determined by

hmmsearch, including their E-values and scores. Only 14 of 7,574 matches (0.23%) were missed.

With p-value cutoffs calibrated to match the sensitivity level of hmmsearch using noise cutoffs,

PSfamSearch even detected 99.8% of the hmmsearch while missing only 18 out of 9,137 sequences.

See Figure 4.14 and Tables 4.5 and 4.6 for detailed results of this experiment.

It took PSfamSearch only ∼ 146 minutes on one UltraSPARC III CPU running at 900Mhz, to

search with the first 20 TIGRFAM families, instead of more than 7 days for direct hmmsearch using

132

4.6 Accelerating HMM based database searches with PSSM family models

No.
TIGRFAM

family

#matches

PSfamSearch

#matches

hmmsearch

using TC

#missed missed[%]

1 riL35 241 242 1 0.41

2 ribS16 324 328 4 1.22

3 cop-IBP 163 214 51 23.83

4 I-PSP 510 517 7 1.35

5 RluA subfam 1,035 1,038 3 0.29

6 mraW 349 349 0 0

7 TIGR00007 223 223 0 0

8 infA 321 327 6 1.83

9 ribL28 372 372 0 0

10 TatD 563 563 0 0

11 Ybak EbsC 249 255 6 2.35

12 ribL29 485 487 2 0.41

13 taut 152 168 16 9.52

14 arsC 302 302 0 0

15 ackA 438 438 0 0

16 cmk 343 344 1 0.29

17 panC 358 358 0 0

18 prfA 244 244 0 0

19 rpfB 471 472 1 0.21

20 rpiA 344 347 3 0.86

total: 7,487(98.67%) 7,588(100%) 101(1.33%) avg: 2.13

Table 4.4: Comparison of results obtained with PSfamSearch and direct hmmsearch when search-

ing with first 20 TIGRFAM models on UniProtKB/TrEMBL. Cutoffs for PSfamSearch were

calibrated based on hmmsearch matches on Swiss-Prot using the models trusted cutoffs.

Columns five and six give the total number and percentage of matches missed by PS-

famSearch. In this experiment PSfamSearch detected 98.67% of the matches detected by

hmmsearch.

133

4 PSSM family models for sequence family classification

10
0

10
1

10
2

10
3

10
4

10
5

10
6

riL35
ribS16

cop−IBP
l−PSP

RluA_subfam
mraW

Tigr00007
infA

ribL28
TatD

YbaK_EbsC
ribL29

taut
arsC
ackA
cmk

panC
prfA
prfB
rpiA

#TrEMBL seqs

T
IG

R
F

A
M

 f
a

m
ily

#seqs passing Possumsearch filtering

Search space reduction through PSSM family model prefiltering

trusted cutoffs

noise cutoffs

Figure 4.14: Reduction of UniProtKB/TrEMBL achieved by PSSM family model filtering for the first

20 TIGRFAMs families. Green (yellow) bars indicate the effective number of sequences

to be searched with hmmsearch (x-axis, logscale) when using p-value cutoffs adjusted

to match trusted cutoffs (noise cutoffs). The red bar shows the total number of se-

quences in the UniProtKB/TrEMBL (3,874,166 protein sequences with a total length of

∼ 1.26GB) needed to be searched by direct hmmsearch without filtering.

the models trusted cutoffs. That is, PSfamSearch achieves a speedup of factor ∼ 72 over direct

hmmsearch while retaining more than 99.7% of the original results. Using the less stringent noise

cutoffs PSfamSearch reduces the search space to only 5.24% of the original search space size with a

sensitivity of 99.7% (see Table 4.6) and a speedup of factor of 15.2 over direct hmmsearch. Extrap-

olated to all 2,946 TIGRFAM families we estimate a running time of ∼ 14.9 days for PSfamSearch,

and 3.02 years for direct hmmsearch using the models trusted cutoffs.

Overall, we observe, that cutoff calibration on a test set determined from search results of the

pHMM on UniProtKB/TrEMBL outperforms the former mentioned calibration strategies and leads

to cutoffs with very well generalization characteristics. Accordingly this strategy is well suited for

determination of cutoffs with good sensitivity and search space reduction characteristics.

134

4
.6

A
ccelera

tin
g

H
M

M
b
a
sed

d
a
ta

b
a
se

sea
rch

es
w

ith
P

S
S
M

fa
m

ily
m

o
d
els

TIGR family
#seqs in

red. Space

% of total

seq. space

P-value

cutoff

min. chain

length
#found #missed found[%] missed[%]

riL35 21,878 0.56 4.44E-05 2 239 3 98.76 1.24

ribS16 164,203 4.24 1.46E-05 2 328 0 100.00 0.00

cop-IBP 108,907 2.81 1.08E-04 2 213 1 99.53 0.47

I-PSP 710 0.02 1.82E-05 4 514 3 99.42 0.58

RluA subfam 2,303 0.06 1.82E-05 4 1,038 0 100.00 0.00

mraW 358 0.01 2.44E-06 4 348 1 99.71 0.29

TIGR00007 299 0.01 5.96E-06 4 223 0 100.00 0.00

infA 24,280 0.63 1.69E-04 3 326 1 99.69 0.31

ribL28 227,473 5.87 1.01E-03 3 371 1 99.73 0.27

TatD 907 0.02 7.45E-06 4 561 2 99.64 0.36

Ybak EbsC 330 0.01 1.16E-05 3 255 0 100.00 0.00

ribL29 313,713 8.1 2.27E-05 1 487 0 100.00 0.00

taut 163,417 4.22 1.46E-05 1 167 1 99.40 0.60

arsC 382 0.01 1.00E-06 2 302 0 100.00 0.00

ackA 470 0.01 1.00E-06 4 438 0 100.00 0.00

cmk 373 0.01 7.45E-06 4 343 1 99.70 0.30

panC 396 0.01 2.44E-06 6 358 0 100.00 0.00

prfA 485 0.01 1.00E-07 6 244 0 100.00 0.00

rpfB 603 0.02 1.00E-06 7 472 0 100.00 0.00

rpiA 1,629 0.04 3.55E-05 4 347 0 100.00 0.00

Average: 51,655.8 1.33 7.48E-005 3.55 99.78 0.22

Table 4.5: Results of p-value cutoff calibration based on hmmsearch matches obtained on UniProtKB/TrEMBL using trusted cutoffs. Cutoffs were

calibrated such that half of the sequences (training set) pass PoSSuMsearch filtering. Column 2 and 3 give the absolute number and

percentage of sequences passing the filter. Numbers of found and missed family sequences on complete UniProtKB/TrEMBL are given

in column 6 and 7.1
3
5

4
P

S
S
M

fa
m

ily
m

o
d
els

fo
r

seq
u
en

ce
fa

m
ily

cla
ssifi

ca
tio

n

TIGR family
#seqs in

red. Space

% of total

seq. space

P-value

cutoff

min. chain

length
#found #missed found[%] missed[%]

riL35 488102 12.6 3.31E-004 2 265 2 99.25 0.75

ribS16 348187 8.99 6.46E-004 3 329 0 100 0

cop-IBP 239167 6.17 1.26E-003 4 223 0 100 0

I-PSP 4351 0.11 3.55E-005 3 675 5 99.26 0.74

RluA subfam 19315 0.5 2.84E-005 3 1496 0 100 0

mraW 369 0.01 4.77E-006 4 355 1 99.72 0.28

TIGR00007 299 0.01 5.96E-006 4 270 0 100 0

infA 24280 0.63 5.17E-004 3 329 2 99.4 0.6

ribL28 293362 7.57 1.58E-003 4 375 1 99.73 0.27

TatD 91600 2.36 1.36E-004 4 950 0 100 0

Ybak EbsC 149252 3.85 3.31E-004 4 329 2 99.4 0.6

ribL29 1621658 41.86 1.01E-003 2 507 0 100 0

taut 507491 13.1 5.55E-005 1 334 1 99.7 0.3

arsC 34857 0.9 2.84E-005 2 327 1 99.7 0.3

ackA 470 0.01 1.00E-006 4 465 0 100 0

cmk 107685 2.78 8.67E-005 3 366 1 99.73 0.27

panC 73506 1.9 1.82E-005 2 408 0 100 0

prfA 604 0.02 1.00E-007 5 275 0 100 0

rpfB 678 0.02 1.00E-007 4 482 0 100 0

rpiA 56059 1.45 6.94E-005 3 359 2 99.45 0.55

Average: 203,064.6 5.24 3.07E-004 3.2 Total: 9,119 Total: 18 99.77 0.23

Table 4.6: Results of p-value cutoff calibration based on hmmsearch matches obtained on UniProtKB/TrEMBL using noise cutoffs. Cutoffs were

calibrated such that half of the sequences (training set) pass PoSSuMsearch filtering. Column 2 and 3 give the absolute number and

percentage of sequences passing the filter. Numbers of found and missed family sequences on complete UniProtKB/TrEMBL are given

in column 6 and 7.

1
3
6

4.7 Discussion and concluding remarks on performed experiments

4.7 Discussion and concluding remarks on performed experiments

In this chapter we presented the combination of the formerly introduced ESAsearch algorithm with

a fast fragment chaining approach to efficiently search with PSSM family models in large data

sets. We extended our search tool PoSSuMsearch with the algorithm of [AO05] and evaluated the

performance of the combined method in terms of sensitivity and specificity as well as total running

time. In addition, we compared the obtained results to a state of the art pHMM based approach

represented in our experiments by the well known hmmsearch program from the HMMER package.

The experiments assessing the sensitivity and specificity in different evaluation scenarios show that

for protein classification on the family and superfamily level, PSSM family models achieved a clas-

sification performance only marginally inferior to the performance of pHMMs, which yield to be the

most sensitive modeling approach for detecting distant homologies. Although PSSM family mod-

els are much simpler than the full probabilistic pHMMs, the measured FP50 value of PSSM family

models is only 3.2 percentage points below the FP50 value achieved by hmmsearch in the experiment

evaluating the method’s ability to detect very close relationships (see Figure 4.5). In the experiments

assessing the detection performance of close and distant relationships the advance of hmmsearch over

PoSSuMsearch was even only 4.4 and 1.6 percentage points respectively, when accepting 50 false

positive matches. Hence, PSSM family models perform nearly as accurate as pHMMs. Additionally,

there are indications that the classification performance of PSSM family models for protein family

assignment can be further improved. Observe, that the PSSM family model construction process

is really straightforward yet and in the performed experiments, simple log-odds ratios are used for

PSSM deviation (see section 2.5.4 on page 28) from excised alignment blocks instead of the more

sophisticated methods incorporating pseudo-counts described in sections 2.5.7 on page 33 and 2.5.8

on page 34. Preliminary results, not shown in this thesis, indicate, that PSSM construction methods

using pseudo-counts increase the classification performance significantly. Another starting point for

further improvements is how ungapped alignment blocks are excised from the underlying multiple

alignment. One can think of using ungapped but overlapping tiles for PSSM deviation instead of non

overlapping blocks. This should give a better coverage of the multiple alignment and may lead to

a PSSM family model representing the sequence family more accurately. Additionally, the distance

between blocks or tiles in the alignment could be incorporated into the chain score function. This

should increase the specificity of PSSM family models.

Still an open problem is the efficient determination of accurate statistics for PSSM chain scores

without the need for time consuming sampling. Although chain scores as defined by Equation (4.8)

and (4.7) performed well for sequence classification (see Experiments 1 to 3) the score sampling on

random sequences clearly showed a strong dependency on the length of the matched sequence. At

the time of this writing it is not clear, if this problem can be solved by additional normalizations

that finally may lead to a continuous distribution function for high chain scores.

The surprisingly well performance of PSSM family models for protein family classification in terms

of sensitivity and specificity appears in an even brighter light, when the total running time needed

by PoSSuMsearch and hmmsearch to accomplish the same task is taken into account. For the setup

of experiment 4 (see section 4.5.3 on page 118), it took PoSSuMsearch less than 40 minutes to

search with 100 PSSM family models built from the first 100 Pfam protein families on the complete

Swiss-Prot database using a p-value cutoff of π = 10−4, whereas hmmsearch employing an E-value

137

4 PSSM family models for sequence family classification

cutoff of 10−5 needed more than 4 days (∼ 105 hours) for this task. That is PoSSuMsearch achieved

a speedup of factor 171 over hmmsearch. Observe, that we measured the running time only for the

first 100 out of 8957 families listed in the current Pfam release 21.0. By linear extrapolation of the

measured running time to all 8957 families listed in Pfam Release 21.0, we assume a running time

for searching with all family models on Swiss-Prot for hmmsearch of ∼ 391 days compared to only

∼ 54.8 hours for PoSSuMsearch.

In the experiments using PSSM family models for search space reduction for hmmsearch, the com-

bined approach (PSfamSearch) using PoSSuMsearch for pre-filtering and subsequently hmmsearch

also performed very well.

Since the achieved speedups as well as the sensitivity of PSfamSearch strongly depend on the cho-

sen p-value cutoff, we tested different strategies for threshold determination. In our experiments,

the achieved speedups of PSfamSearch were in the range between 72 and 138 when using p-value

cutoffs corresponding to trusted cutoffs and between 15.2 and 45 for p-values adjusted to match

the significance level of the models’ noise cutoffs. The highest speedup factor for PSfamSearch over

hmmsearch of 138 was obtained when searching with models for the first 20 TIGRFAM families

on Swiss-Prot with p-value cutoffs calibrated according to hmmsearch matches on Swiss-Prot using

trusted cutoffs (see section 4.6.3 on page 129). With a clear separation of training- and test-sets for

cutoff determination, necessary to derive cutoffs with good generalization characteristics, PSfam-

Search also achieved speedups between 72 and 15.2 with more than 99.7 sensitivity when searching

with models for the first 20 TIGRFAM families on complete UniProtKB/TrEMBL (see section 4.6.4

on page 132). Extrapolated to all 2, 946 TIGRFAM models we expect a reduction of running time

from more than ∼ 2.84 years for direct hmmsearch using trusted cutoffs to only ∼ 15 days for

PSfamSearch.

In particular, the extremely long running times and the linear time scaling behavior5 of pHMM based

methods employing the Forward, Backward, or Viterbi algorithm (see Figure 4.8) make them more

and more challenging and sometimes even infeasible to dispose in today’s sequence database search

scenarios. In the future this problem will get even more tightening as sequence databases still grow

at an exponential rate. Additionally new, revolutionary high-throughput sequencing techniques like

454 sequencing [MEA+05] will certainly amplify this growth in the near future. Nevertheless, pHMM

based database searches are an indispensable, standard task in today’s genome annotation pipelines.

For instance the majority of member databases of the InterPro classification system [MAA+07], a

widely used system for protein annotation purposes, employ family information in form of pHMMs.

The applied classification procedure InterProScan [QSP+05] includes searches with all pHMMs

from the Pfam [FMSB+06], TIGRFAM [HSW03], Superfamily [GKHC01], PIRSF [WNH+04], Gene3D

[YMM+06], Smart [LCP+06], and Panther [MLUL+05] databases. Especially these pHMM based

database searches render InterProScan into a very compute intensive application whose employment

on a large scale is even challenging on huge cluster systems.

To solve this dilemma much effort has been spent on improving the running time of pHMM based

database search tools. Some approaches for improvement use parallelism techniques and/or fast,

extended, CPU specific instructions sets, like SSE/SSE2 (Streaming Single Instruction/Multiple

Data Extensions) [WQC06, Dep03]. Also discussed is the application of pruning techniques (c.f.

5Linear in the length of the searched sequence.

138

4.7 Discussion and concluding remarks on performed experiments

[Plö05]), like the employment of the Beam-Search algorithm [Low76] instead of the full Viterbi

algorithm. The probably most successful accelerations available, are the commercial DeCypher c©

and BioBoost c©HMMer solutions sold by TimeLogic R© and progeniq R© respectively. They im-

plement among other things the program hmmsearch in hardware on special hardware acceleration

boards using Field Programmable Gate Arrays (FPGAs). In benchmark experiments published by

TimeLogic R© a speedup up to factor 180 for a single DeCypher c© accelerator board over stan-

dard hmmsearch is reported [Tim06]. progeniq R© reports for the BioBoost c©HMMer board a

speedup of factor 40 over standard hmmsearch running on an AMD Athlon 64 3500+ [Pro07]. Con-

sidering, that our experiments revealed for PoSSuMsearch speedups up to factor 171 over standard

hmmsearch, and for PSfamSearch up to factor 138, we observe that our purely software based accel-

eration of hmmsearch compares well with what is achieved by costly, specialized hardware solutions

like DeCypher c© or BioBoost c©HMMer. We note, that this speedup comes from an algorithmic

as well as a conceptual advancement:

• the speed of index based PSSM searching, and

• the astonishing fact that pHMMs can be approximated well with the simpler PSSM family

models and achieve a similar performance for protein family classification as the widely used

more complex pHMMs.

For these reasons, we make up our discussion and concluding remarks with a comparison of PSSM

family models and pHMMs focusing on similarities and differences.

4.7.1 Comparison of pHMMs and PSSM family models

Consider that a PSSM is essentially equivalent to a pHMM consisting of a linear sequence of match

states only, with state transition probabilities of 1 between them, as described in section 2.7.2 and

shown in Figure 2.12. That is, each match state corresponds to a column in the multiple alignment

and hence a row in the PSSM. It emits a symbol from the output alphabet with a certain probability

depending on the probability/score distribution in the corresponding PSSM row. This perception

also holds for PSSM family models like the modelM = M1, M2, M3 given in Figure 4.15 consisting

of three PSSMs of lengths |M1| = 4, |M2| = 2, and |M3| = 3. In contrast to a pHMM where each

match state is connected with an insert state and each match state can be skipped by a delete

state (see Figure 2.11 on page 43), in the PSSM family model arbitrary insertions are only allowed

between single PSSMs, and delete states allow only to skip complete PSSMs. That is, PSSM family

models combined with the employed chaining approach allow

• arbitrary insertions between single PSSMs of a family model and

• arbitrary deletions of complete PSSMs6.

Consequently a PSSM family model is, compared to a pHMM, a similar but more restrictive model-

ing approach for a family of related sequences. In addition, PSSM family models are not necessarily

6This holds at least for our chaining approach and definition of chain scores (see section 4.8 on page 117). However,

one can also think of a local chaining incorporating some kind of gap penalties instead of the currently used more

global one.

139

4 PSSM family models for sequence family classification

EndBegin

M
1 M

2
M

3

Figure 4.15: A pHMM like view on PSSM family models. Shown is a PSSM family model M =

M1, M2, M3 consisting of 3 PSSMs. Likewise to the common pHMM graph view, blue

squares denote match states, insert states are drawn as yellow diamonds and delete

states are given by red circles. Valid state transitions are drawn as unlabeled black arcs.

Observe that each path throughM starting in the Begin state and ending in state End

corresponds to a valid chain of PSSM matches and hence a match to M according to

Definition 15 on page 107.

fully probabilistic, since they can consist of PSSMs containing arbitrary score values. Also in a

PSSM family model, transitions from/to an insert or delete state are unweighted. Hence much less

parameters have to be trained from the underlying data. This, in turn allows the construction of

meaningful PSSM family models from multiple alignments containing much fewer aligned sequences

than are necessary for proper pHMM derivation.

140

5 Genlight - a system for interactive,

high-throughput, differential genome

analysis

5.1 Motivation

Even today and more severe in the future, advancements in high-throughput sequencing techniques

that reduce the time needed for sequencing an organism’s genome from several years to a few days,

will lead to a growing gap between data collection and data interpretation. With the increasing

amount of data that needs to be analyzed there is not only a strong demand for efficient compu-

tational methods generating accurate and reliable results, but also for integrative approaches and

systems that allow to rapidly apply and combine several analysis methods in a user-friendly fashion,

even in data rich application scenarios. The support of different analysis methods for the same task

does not only introduce more flexibility, but also allows to identify method specific weaknesses in

certain application scenarios more quickly. Once such deficiencies are identified, the ability of com-

bining different methods may allow to balance them and hence increase the overall quality of the

results. In addition, with increasing numbers of complete genome sequences, tasks are shifting from

single gene to complete genome or proteome analyses, and many new questions regarding similarities

and differences between the sequenced organisms arise in multiple genome comparison approaches.

An even strong commercial interest exists in genome comparisons of pathogenic organisms, since

they can lead to new insights in the principles of pathogenity and infection [GFB+01, HDB98].

Pathogen genome sequencing projects have provided a wealth of data in this field that need to be

set into context of pathogenicity and the outcome of infections to understand and interfere with

deseases caused by microbial pathogens.

One of the new challenging questions is the differentiation between species specific and common

genes [HdlTV03, Koo03]. This is also a fundamental questions in the target-based approach in the

development of either narrow-spectrum or broad-spectrum antibiotics. For instance, among the key

criterias that must be met by an anti-microbial drug target are

• target pathogen spectrum,

• target selectivity,

• target essentiality, and

141

5 Genlight - a system for interactive, high-throughput, differential genome analysis

• target function, i.e., the biochemical function of the target needs to be characterized. This

includes among other things the gathering of information about structure, potential active

and binding sites, etc.

Genes satisfying these criteria and hence making a promising anti-microbial drug target can be

identified and evaluated by comparing all relevant pathogen genomes with the host genomes. Genes

that show to be conserved in these large-scale comparisons across different pathogens often turn

out to be essential and hence may represent target candidates for new broad-spectrum antibiotics.

Differential or subtractive analyses can reveal those genes that are conserved in all or most of the

pathogenic bacteria but not in eukaryotes. These are the most obvious candidates for drug targets.

Species-specific genes, also identifiable by differential genome comparisons, may offer the possibility

to design drugs against a particular, narrow group of pathogens.

Different studies [DDSS01, HDB98] already proved the potential of differential genome analyses,

often also called differential comparative genomics, especially in combination with the analysis of

functional relevant sequence motifs or domains describable with one of the motif models introduced

in chapter 2, to detect new drug target candidates. Such procedures often include the application

of a variety of bioinformatics methods and searches in different databases to retrieve a maximum of

information about the sequence or gene under consideration. To be feasible in practice, especially

on a larger, genomic scale, integrated and scalable solutions are necessary that support the user in

this data rich problem environment. Unfortunately, the number and flexibility of existing systems is

not sufficient or to the least very limited. Hence there is a strong need for new integrated solutions.

In the following section, we will give a brief overview of existing and conceptional related systems

and explain why they are not well suited to solve our sketched problem scenario.

5.1.1 Genome annotation systems: Related concepts with different focus

Although the integration of various bioinformatics methods and automated sequence homology

searches are widely used techniques in genome annotation systems, such as Magpie [GS96b, GS96a],

PEDANT [FAH+01], genomeSCOUT [SCK00] and GenDB [MGM+03], the objective of these sys-

tems mostly focuses on textual annotation of genes only. An important point, often neglected in

existing systems, is the querying and mining of stored data, especially query capabilities that allow

to combine different, derived attributes or characteristics. More precisely, high-level queries like the

following, combining several attributes of a gene or protein, are hardly possible.

Which outer membrane proteins involved in metabolism M, and linked to apoptosis from the pathogen

organism A are highly conserved in pathogen organism B but lack a counterpart in apathogen or-

ganism C and host organism D?

The deficiencies of existing systems to answer such queries is often founded in the way they inter-

nally organize and store data. For instance the GenDB system, a widely used genome annotation

system for prokaryotes, uses a proprietary object relational mapping layer that allows a persistent

storage of the used object oriented data model in an underlying relational database management

system. Although this mapping layer admits an easy and almost seamless storage of objects in

an relational database while abstracting from the underlying relational data model, the relational

data model generated from the applications object model is not well suited to be queried with rela-

142

5.2 Requirement definitions and design goals

tional database query languages like SQL, any longer. As a consequence the retrieval of non-trivial

information becomes problematic. Especially more complex queries joining multiple attributes of

different database tables, are nearly impossible to formulate or suffer at least from bad response

times. To solve this issue, an annoying and often redundant programming overhead on the applica-

tion level is needed for implementing higher-level functionalities, which could be easily accomplished

with standard SQL-queries and a well designed, query optimized, relational data model1.

The commercial genome annotation system genomeSCOUT , which is no longer available due to

limited commercial success, stored its data in simple ASCII formatted flat files and used the data

integration system SRS [EUA96] for information retrieval and basic data mining tasks. Although

SRS basically offers some flexibility aimed to easily integrate proprietary data from for example

in-house sequencing projects, this benefit is only of practical use with extensive programming skills

and knowledge of the system.

The aforementioned deficiencies of genome annotation systems like insufficient data querying and

mining capabilities should not brush off these systems. We just reveal that traditional genome

annotation systems are simply not designed for extensive querying and mining of data.

When we focus on automated differential genome comparisons, very little is found in literature on

that topic. To the best of our knowledge, only three noncommercial, initial attempts have been made

to develop computational systems, that support these kinds of analyses, namely Seebugs [BDD98],

FindTarget [CGK01], and Difftool [CGK02]. All of these provide limited functionality and flexibility,

i.e., they are very limited in their supported sequence comparison methods, and neither integrate

additional databases for sequence motif analyses, nor do they support subsequent analyses including

generated results inside the systems. That is, they do not allow reusability of derived results for

the step by step modeling of more compley analysis workflows. Further, all systems operate on

precalculated data and do not allow for interactive on-the-fly analyses.

The deficiencies of existing systems were the motivation for the development of the Genlight sys-

tem [BSS04, BMM+04], a versatile and powerful system for interactive high-throughput sequence

analysis and differential comparative genomics with extensive data querying capabilities fulfilling

the subsequently described requirement definitions.

5.2 Requirement definitions and design goals

Genlight follows the overall paradigma of a highly integrated system, suited to perform a wide

range of large-scale sequence analysis tasks in an interactive way with features to combine, reuse,

and query derived results. In particular, Genlight was developed to fulfill the following requirement

definitions:

• support for the discovery or prioritization of potential new drug targets in silico by highly

automated differential comparative analyses and user specified selection criteria;

• automatic genomic scale analyses in reasonable time, without the need for specialized hardware

or large and expensive cluster systems;

1We note at this point that this is a prevalent problem of object relational mapping solutions, that try to store

hierarchically organized objects in a flatter relational database schema.

143

5 Genlight - a system for interactive, high-throughput, differential genome analysis

• interactive as well as asynchronously executed large-scale analyses;

• integration of a wide range of bioinformatics analysis methods, each applicable on genomic

scale data;

• scalability;

• integration of various publicly available sequence and motif databases;

• structured storage of computed results, that allow for extensive querying and mining;

• support for user defined queries and filters operating on generated data whose results are

persistently stored inside the system;

• reusability of generated results to allow protocol based step by step modeling of more complex

analysis workflows;

• concurrent multi user capabilities with project and access control management;

• dynamic presentation and visualization of computed results through an easy to use, but still

flexible, platform independent interface;

• data import and export capabilities which support commonly used exchange formats.

Although each of the requirements listed above can be individually achieved with existing software

solutions, to the best of our knowledge, no publicly available system exists combining all require-

ments in a single integrated approach.

5.3 System architecture and implementation

The Genlight system consists of four major parts as shown in Figure 5.1:

• a web-based user interface for the communication with the system,

• the Genlight server, providing queuing, scheduling, and dispatching capabilities,

• client components to carry out various bioinformatics analysis tasks in an asynchronous way,

• and a database component for storing, modifying, and accessing data.

To allow asynchronously executed, large scale sequence analysis tasks in an interactive system,

Genlight uses a distributed client server approach. The core of the system, i.e., the client and

server components, implementing the distributed execution engine with its queuing, scheduling and

dispatching components are written in the C programming language and access the database via

PostgreSQL’s native C language interface libpq. To ensure a maximum of robustness and fault

tolerance, which is in particular important in a distributed system, the server as well as the client

component are implemented using multi threading for connection supervision and make use of

backlog techniques. This allows to detect the failure of a compute node, deactivate this node in the

144

5.4 Concepts and functionality

Figure 5.1: A schematic overview of the Genlight system architecture

virtual compute cluster, and allow to resubmit the assigned task to a different node. Further, run

time errors of an integrated analysis method do not affect the client application.

The system is capable to serve multiple users. This is achieved with, among other things, the

transaction mechanisms of the underlying database system. For persistent data storage and access

using SQL queries, Genlight employs the ORDBMS (Object Relational Database Management Sys-

tem) PostgreSQL, though any other full SQL99 compliant DBMS (Database Management System)

should also work. The system makes use of PostgreSQL’s object oriented features like inheritance

(see section 5.5 on page 158) and transaction capabilities to ensure data integrity and consistency.

The web interface is written in the server side scripting language PHP. PHP scripts retrieve data

from the underlying PostgreSQL database and generate dynamic HTML pages which are subse-

quently delivered by the Apache web server to the user’s web browser. Dynamic visualizations of

results are performed using the GD graphics library.

In the following we describe the underlying concepts of the main parts of Genlight and the func-

tionalities they provide.

5.4 Concepts and functionality

5.4.1 The set oriented concept

The structured storage, ensuring reusability of generated results, is a critical point for the protocol

based step by step modeling of complex experiments and workflows often neglected in bioinformatics

applications. In Genlight the reuse of derived results is a central concept, anchored in the basic

145

5 Genlight - a system for interactive, high-throughput, differential genome analysis

q1•
~fq1,d1

--

~fq1,d2
,,X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X •d1

q2•

~fq1,d2

00

~fq2,d1

((
Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

•d2

q3•
~fq3,d4

11 •d3

q4• •d4

Figure 5.2: A bipartite graph as a model for a Hit-set .

system design. It is achieved by a set oriented data model with only two basic data object types:

Seq-sets and Hit-sets . A Seq-set Q = {S1, S2, . . . , Sn} is basically an ordered set2 of n = |Q|
sequences over a predefined alphabet A, which is usually the nucleotide or amino acid alphabet.

All sequences Si ∈ A+, i ∈ [1, n] are of one kind, either nucleic acid or protein. That can be for

example all proteins of a certain organism in the order of their occurrence in the organisms genome.

A specialized form of a Seq-set is the Cluster-set which contains for each sequence entry additional

information that allows a partitioning of the Seq-set into sub sets. This allows to model the clustering

of Seq-sets . Although Seq-sets contain additional sequence specific informations for each sequence,

like ID, length, molecular weight and in case of amino acid sequences molar absorption coefficient

and isoelectric point, etc., we neglect these additional informations in the following remarks for

reasons of simplicity.

A Hit-set is a set of sequence pairs, defined by a comparison operation between two Seq-sets and

its user defined parametrization, e.g., the set of all sequence pairs detected by a homology search

between two Seq-sets . Observe that a sequence comparison operation between a single query se-

quence and a set of sequences to be searched (compared) establishes a one to many relationship.

Consequently, in case of comparing two Seq-sets Q and D, the resulting Hit-set defines a many to

many relationship HQ,D ⊆ Q × D = {(q, d) | q ∈ Q ∧ d ∈ D} between sequences from Q and D
and hence can be seen as a directed, weighted, bipartite graph as shown in Figure 5.2 with vertices

corresponding to sequences of the two Seq-sets and edges corresponding to the pair relationship

weighted with a feature vector ~fq,d. The feature vectors ~fq,d contain additional information, fur-

ther characterizing the specific sequence pair (q, d) (e.g. statistical significance of the relationship,

alignment scores, percentage of identity inside aligned region, etc.).

5.4.2 Operations on Seq-sets and Hit-sets

Genlight supports various operations that can be applied to Seq-sets and Hit-sets . The result of each

operation is again a new Seq-set or Hit-set . A Hit-set filter, for instance, which can be pre-defined

in the system or user defined, generates a new Hit-set with sequence pairs satisfying the respective

filter condition. Filter criteria for Hit-sets can be any of the attributes associated with a sequence

pair, like E-value, score(-ranges), rank, alignment coverage rate, percentage of identity/positives,

2For sake of simplicity we speak of ordered sets instead of tuples.

146

5.4 Concepts and functionality

etc. Two Hit-sets may be combined with a filter to determine, for example, bi-directional best hits,

where ”best” can be defined on method specific ranking or other attributes. Additionally, Genlight

comes with a collection of predefined filters for more complex filtering tasks. A detailed list of

predefined filters and their semantics are given in the Appendix in Table A.5.

Sequence filters generate new Seq-sets and extraction operations convert a Hit-set to a new Seq-

set depending on specified criteria (see Table 5.1). This procedure follows the software engineering

concept of compositionality and allows an interactive step by step modeling of complex workflows

as schematically drafted in Figure 5.3.

Using a combination of comparison, filter, and extraction operations, several proteomes, say A, B,

and C, can easily be screened for proteins common to proteome sets A and B but nonexistent in

proteome set C. Moreover, all possible intersections of A, B, and C can be calculated. Evidence of

proteins with similar functions can be defined by combinations of several homology search results

(e.g., unidirectional or bidirectional best hits), even generated by different homology search methods.

Further on, the results of different sequence comparison methods can be combined with Boolean

operators. With this concept the results of different alignment methods can be taken into account as

evidence factors for the detection of homologous genes and weaknesses in the heuristics of a single

method, which result in a false negative detection of homologous sequences, can be balanced.

The implemented project management, provides fundamental access control features and allows to

store Seq-sets and Hit-sets on a per-user basis. Frequently used Seq-sets and Hit-sets , like major

sequence databases as GenBank or UniProtKB/TrEMBL, model organism comparisons, etc., can be

made available system-wide. The administrative features are complemented by a quota system,

which allows to assign resources on a per-user and per-method basis. It is therefore possible to

restrict the number of Seq-sets and Hit-sets in a project or to limit the size of a Seq-set in a

comparison operation.

5.4.3 Integrated sequence analysis methods

Several different algorithms have been developed over the last decades to compare biological se-

quences and determine a concrete measure of their distance or similarity in order to deduce a

common or similar biological function (c.f. [SW81, AGM+90, AMS+97, Pea99, ZSWM00]).

The dynamic programming methods for global (i.e., the Needleman-Wunsch algorithm) or local

alignments (i.e., the Smith-Waterman algorithm) allow to obtain the optimal alignment under a

given scoring schema, in time proportional to the product of the lengths of the two sequences being

compared. With exponentially increasing sequence database sizes, complete exhaustive similarity

searches based on full dynamic programming are no longer feasable in reasonable time. This problem

was the motivation that has led to the development of the FASTA [Pea99] and BLAST (Basic

Local Alignment Search Tool) [AGM+90, AMS+97] alignment programs, which became the most

widely used algorithms in database searches and comparative sequence analysis. One important

aspect, which is often overlooked, is that they are based on heuristics. They achieve improved

performance compared to a full dynamic programing approach like the Smith-Waterman algorithm

[SW81] by sacrificing some sensitivity. BLAST and FASTA reduce the problem by selecting the

sequences in a database search that are thought to share significant similarity with the query

147

5 Genlight - a system for interactive, high-throughput, differential genome analysis

G
e

n
B

an
k

Sw
is

sP
ro

t

P
D

B

H
u

m
an

M
o

u
se

H
.p

yl
o

ri

E.
co

li

H. pylori

vs.
GenBank

.
Human

vs.
Mouse

Human
vs.

Mouse

E.coli

vs.
PDB

Export

Export

Fasta
Format

Tab-delimited
Format

sequence comparison
operation (e.g. Smith-Waterman)

sequence-sets

hit-sets

extraction
operations

Import

Fasta/GenBank/
SwissProt format

sequence filter, set operations, classification

hit-set filter

cluster-sets

clustering
query

cluster-sets

Figure 5.3: Genlight’s operational model. The reuse of results is anchored in Genlight’s operational

design allowing a step by step modeling of complex analysis tasks. E.g., Seq-set filtering

and classification operations result in new Seq-sets and a filtering operation applied

to a Hit-set generates a new Hit-set for further reuse, containing only sequence pairs

satisfying the filtering constraints.

148

5.4 Concepts and functionality

Operation Result

Seq-set operations

filter by domain/motif composition all sequences with a specified sequence motif or a combination

of sequence motifs

SCOP filter all sequences with user defined sequence similarity to a SCOP

class, fold, superfamily, family or protein

taxonomy filter all sequences that belong to a given taxon (if taxonomy infor-

mation is available)

filter by length sequences satisfying length constraints

intersect all sequences that are present in at least two Seq-sets

union/merge merges two or more Seq-sets

Hit-set filter

filter by attribute values all pairs of a Hit-set satisfying the filter condition. Filter condi-

tion is a boolean expression over attribute values

best hit filter selecting the best hits depending on method specific rankings

two-way-best hit filter selecting bidirectional best hit pairs depending on method spe-

cific rankings

text pattern filter all pairs that contain a given pattern in the query or hit, or in

both descriptions of the two sequences of a Hit-set entry

full query seq. length matches all pairs with an aligned region length equal to the length of the

query sequence

full hit seq. length matches all pairs with an aligned region length equal to the length of the

hit sequence

extraction operations

query sequences with homologs generates a new Seq-set of sequences that have a homolog in a

Hit-set

homologs generates a new Seq-set of sequences that are determined as

homologs in a Hit-set

query sequences with no homologs generates a new Seq-set of sequences that have no homolog in a

Hit-set

homologs generates a new Seq-set of sequences from DB-set that are not

present in a Hit-set

cluster set operations

differential cluster analysis selects all clusters that contain sequences satisfying boolean ex-

pression over Seq-sets membership

Table 5.1: An excerpt of available operations on hit-sets and seq-sets.

149

5 Genlight - a system for interactive, high-throughput, differential genome analysis

sequence, and by locating the similar regions in the sequences. These selective steps allow to confine

the computationally expensive sequence alignment methods based on dynamic programming only

to a subset of the database sequences and to restrict the search for the best local alignment to only

subregions of the sequences. Because of concerns of speed they estimate the similarity between the

sequences in an approximate manner, and thus introduce a risk of missing similarities that are not

detectable with the underlying heuristics.

In Genlight we integrated a wide range of sequence comparison algorithms, including methods based

on full dynamic programming as well as algorithms employing heuristics. Almost all algorithms

of the BLAST [AMS+97], and FASTA [Pea90, Pea94] family as well as the traditional Smith-

Waterman algorithm [SW81] are integrated into Genlight. This enables the user to freely choose a

sequence comparison method depending on available compute resources, problem and data sizes,

and experimental requirements. In particular, we will see in section 5.4.8 that Genlight allows for

the application of computationally expensive operations on a larger scale than other systems, due

to bundling of available resources.

The results of sequence comparison operations are stored in Hit-sets and these homology information

can directly serve as input for the probabilistic clustering algorithm Tribe-MCL [EvDO02]. Tribe-

MCL relies on the Markov cluster algorithm of [vD00] for large-scale assignment of proteins into

families based on precomputed sequence similarity information. We modified it, so that Tribe-MCL

directly utilizes sequence similarity information stored in Hit-sets . Results of the clustering are

stored in Cluster-sets. Thus, it integrates seamlessly into Genlight and allows to cluster even whole

proteomes in seconds or minutes.

Adjacent to the integrated sequence comparison methods, Genlight can even compute features of

single sequences, like the ability of an amino acid sequence to form a coiled-coil conformation. Coiled-

coil structures are 2 to 5 stranded bundles of α-helices which are stabilized by hydrophobic and other

interactions [NS76]. They are common in extracellular matrix molecules to connect different subunits

in oligomeric proteins or in regulatory proteins like transcription factors. Coiled-coil domains are

characterized by a heptad repeat pattern in which residues in the first and fourth position are

hydrophobic, and residues in the fifth and seventh position are predominantly charged or polar.

This pattern can be used to predict coiled-coil domains in amino acid sequences with computational

methods. Genlight makes use of the COILS program [LVDS91, Lup96] to detect potential coiled-coil

regions of protein sequences.

In particular useful for wet-lab work is Genlight’s capability to determine basic sequence features,

like a sequence’s G/C content, molecular weight, molar absorption coefficient, isoelectric point, or

charge.

5.4.4 Integrated protein domain and family databases

Protein evolution has employed a repertoire of a few thousand elementary modules or domains,

which form the building blocks of today’s proteins. Since structure and molecular function is largely

conserved within domain families, computational methods for domain identification have become

powerful tools in sequence function annotation, structure-function analysis. Searching for conserved

domains can be helpful in particular to

150

5.4 Concepts and functionality

Method Explanation

BLASTN Nucleotide Blast: Nucleotide query vs. nucleotide DB

BLASTP Protein Blast: Protein query vs. protein DB

BLASTX Translated nucleotide query vs. protein DB

TBLASTN Protein query vs. translated nucleotide DB

TBLASTX Translated query vs. translated nucleotide DB

psiBLAST Position specific iterated Blast: Protein query vs. protein DB

FASTA Nucleotide query vs. nucleotide DB or protein query vs. protein DB

FASTX/Y Nucleotide query vs. protein DB

TFASTA Translated nucleotide query vs. translated nucleotide DB

SSEARCH Smith-Waterman algorithm: Nucleotide query vs. nucleotide DB or protein

query vs. protein DB

rpsBLAST Reverse position specific Blast: Protein query vs. CDD models

hmmpfam Protein query vs. HMM database, like Pfam, TIGRFAM or Smart

PoSSuMsearch Protein query vs. PRINTS and BLOCKS databases employing PSSM family

models and fast fragment chaining as described in chapter 4 on page 105

COILS Detection of coiled-coiled regions in proteins

Tribe-MCL Markov based clustering of protein sequences

Table 5.2: An excerpt of supported sequence analysis methods.

• locate functional domains within a protein,

• predict the function of a protein whose function is unknown,

• establish evolutionary relationships across protein families,

• predict the structure of a protein of unknown structure.

High quality functional and structural annotation information about protein domains and protein

families is available in several manually curated databases. Genlight integrates these heterogeneous

data sources and their specific screening and search methods in one common environment and al-

lows to rapidly combine derived results. More precisely, for the discovery of conserved domains, we

integrated (i) the hidden Markov model based databases Pfam [FMSB+06], TIGRFAM [HSW03],

Smart [LCP+06], CATH [PTS+05], and Superfamily [GKHC01], (ii) National Center for Biotech-

nology Information’s (NCBI for short) PSSM based conserved domain database (CDD for short)

[MBADS+05], and (iii) the PSSM family model based databases PRINTS [AMG+06] and BLOCKS

[HGPH00]. The CDD is a collection of sequence alignments and PSSMs representing protein do-

mains conserved in molecular evolution and hence defines the features that are conserved within

each domain family. Therefore, the CDD can serve as a classification resource that groups proteins

based on the presence of these predefined domains. To identify conserved domains in a protein se-

quence by screening versus the CDD, Genlight employs the reverse position specific BLAST variant

rpsBLAST . With rpsBLAST the query sequence is compared to a psiBLAST generated PSSM

prepared from the underlying conserved domain alignment. A screening versus CDD can also reveal

insights in the structure of a protein, since CDD entries are linked to three dimensional structure

data of the molecular modeling database MMDB [WAC+07]. This allows the user to identify the

151

5 Genlight - a system for interactive, high-throughput, differential genome analysis

Figure 5.4: Visualization of the three dimensional location of a protein sequence (marked gray in the

pairwise alignment and yellow in the multiple CDD alignment and the MMDB structure

model) using the external viewer application Cn3D .

3D location of conserved regions of the protein query with external viewer applications like Cn3D

[MBPS+02] (see Figure 5.4 for an example) and to directly retrieve three dimensional model data

for further structure based studies.

To search in HMM based databases like Pfam, TIGRFAM, etc., Genlight makes use of the hmm-

pfam [Edd98] program from the HMMer package. The database PRINTS and BLOCKS are searched

with PoSSuMsearch employing PSSM family models and fast chaining of PSSM matches.

A further advantage of the integration of a variety of different databases and search methods is

the ability to balance method specific deficiencies in the detection of certain homologies and the

incompleteness of protein family databases. As shown in Figure 5.5, different methods and screenings

versus different databases reveal different results. Hence it is often not sufficient to screen the

sequences under consideration only against one database. Genlight can easily perform searches in

several different databases and allows to access the persistently stored results in an integrated

manner.

5.4.5 Supported protein classification schemes

When dealing with complete proteomes of multiple organisms, the focus may shift from detailed

single protein to complete proteome analyses, depending on the level of detail necessary to an-

152

5.4 Concepts and functionality

Figure 5.5: Searches in different databases reveal different results. In this example a multi domain

protein from S.cerevisae consisting of five functional domains, was screened versus Pfam,

TIGRFAM, and Smart using method hmmpfam, and versus PRINTS and BLOCKS using

PoSSuMsearch. Observe that the screening against TIGRFAM detects only three and

searching in PRINTS using PoSSuMsearch even only one domain. Responsible for these

varying results are missing signatures/models in some databases.

153

5 Genlight - a system for interactive, high-throughput, differential genome analysis

swer a certain type of question. For this purpose, functional classification systems allow a broader

view on and comparison of an organism’s genome or proteome by classifying genes in a relatively

small number of functional categories. Hereby, the number of available categories and hence the

employed abstraction level depends on the classification schema utilized. For maximal flexibil-

ity the integration of different classification systems with different abstraction levels is essential.

For the functional classification of sequences, Genlight integrates the COG (Cluster of Orthologous

Groups) [TKL97, TNG+01] database containing annotated clusters of prokaryotic proteins and its

eukaryotic complement KOG (euKaryotic cluster of Orthologous Groups) [TFJ+03] including their

crude, but widely used functional classification schema. The COG/KOG databases are an attempt

to classify the complete complement of proteins (both predicted and characterized) encoded by

complete genomes. Each COG and KOG respectively is a group of three or more proteins that

are inferred to be orthologs, i.e., they are direct evolutionary counterparts and assumed to share a

common function. The COG release integrated into Genlight consists of 4, 873 COGs, which include

136,711 proteins (71% of all encoded proteins) from 50 bacterial genomes, 13 archaeal genomes,

and 3 genomes of unicellular eukaryotes. The eukaryotic counterpart KOG includes proteins from

7 eukaryotic genomes: three vertebrates (the nematode C.elegans, the fruit fly D.melanogaster and

H.sapiens), one plant (A.thaliana), two fungi (S.cerevisae and S.pombe), and the intracellular mi-

crosporidian parasite Encephalitozoon cuniculi. The KOG version integrated into Genlight consists

of 4, 852 clusters of orthologs, which include 59, 838 proteins, or approximately 54% of the 110,655

analyzed eukaryotic gene products. Classification of nucleotide as well as protein sequences into

one of the 25 functional COG/KOG categories can be performed with Genlight due to homology

to COG/KOG sequences. Inside COG/KOG these categories are further classified into 4 top-level

categories:

1. Information Storage and Processing;

2. Cellular processes and signaling;

3. Metabolism;

4. Poorly characterized.

Although this functional classification is very crude, it is still widely used, in particular when dealing

with prokaryotic sequences. See Figure 5.6 for an example of the classification of the C.glutamicum

proteome into COG categories with Genlight. A more detailed functional classification of sequences

can be achieved with the Pfam clan [FMSB+06] or TIGR role functional classification systems also

integrated into Genlight.

Pfam clans allow a grouping of single Pfam families into a hierarchical classification called clans

and hence provide a hierarchical view of a diverse range of proteins families. A clan contains two or

more Pfam families that have arisen from a single evolutionary origin. Evidence of their evolutionary

relationship is usually determined by similar tertiary structures, or when structures are not available,

by common sequence motifs. Pfam clans provide a level of detail which is a little bit broader than

the protein family level. In its latest release, Pfam contains 262 different clans consisting of 1676

single Pfam families. Classification into clans in Genlight is performed due to homology to Pfam

models. In contrast to Pfam clans, TIGR roles are a more detailed two level classification concept

154

5.4 Concepts and functionality

Figure 5.6: Functional classification of the C.glutamicum proteome based on homology to the COG

database with Genlight. In this example, the classification criteria, which can be user

defined, was a BLASTP hit with an E-value of at most 10−5 and the additional require-

ment that the matching region covers at least 50 percent of the matched COG sequence.

Assignment of functional categories was performed based on the highest scoring hit.

155

5 Genlight - a system for interactive, high-throughput, differential genome analysis

Classification schema Abstraction level Classification criteria

COG/KOG functional

categories

25 categories organized in 4 top-

level categories.

Best BLAST , FASTA, SSEARCH

hit vs. COG/KOG sequence

database satisfying additional

constraints (e.g. E-value or cover-

age).

TIGR roles Two level classification with 105

sub roles organized in 21 main roles.

Best hit to TIGRFAM model library

satisfying E-value constraint.

Pfam clans 262 clans representing 1676 Pfam

families.

(Best) hit to Pfam model library

satisfying E-value constraint.

CATH protein

structure classification

Hierarchical classification of protein

domain structures at the four ma-

jor levels: (C)lass, (A)rchitecture,

(T)opology, and (H)omologous su-

perfamily.

(Best) hit to CATH pHMM model

library satisfying E-value con-

straint.

SCOP structural

classification

Hierarchical classification of pro-

teins at the class, fold, superfamily,

and family level.

(Best) psiBLAST hit vs. SCOP

sequence database satisfying addi-

tional E-value constraint.

Table 5.3: Supported classifications schemas, abstraction level, and employed classification criteria.

consisting of main roles and sub roles and allow to classify proteins on the basis of matches to

TIGRFAM pHMM family models. Currently this classification schema distinguishes 105 sub roles

organized into 21 main role categories.

Beyond the above mentioned functional classification systems, Genlight supports two classification

schemas focusing on structural similarities and differences, namely the multi level hierarchical clas-

sification systems SCOP and CATH.

For a recapitulating overview of supported classification schemas and the classification criteria

employed inside Genlight, see Table 5.3.

5.4.6 Gene ontologies: a unifying vocabulary for cross database queries

For historical reasons, different database use different terminologies and naming conventions, intro-

ducing an artificial heterogeneity which makes it complicated to query these resources in a combined

fashion. For example, if we were searching for new targets for antibiotics, we might want to find

all the gene products that are involved in bacterial protein synthesis, and that have significantly

different sequences or structures from those in humans. Currently, one database describes these

molecules as being involved in “translation”, whereas another uses the phrase “protein synthesis”

and hence without knowledge about these different naming conventions, it is difficult to find func-

tionally equivalent terms and thus related or equivalent sequences. An attempt to overcome this

problem is the Gene Ontology (GO for short) project [Con00]. GOs provide a controlled vocabulary

to describe genes and gene products, addressing the problems resulting from different terminologies

currently used in different databases. Therefore, GO contains three structured controlled vocabular-

ies (ontologies) that describe gene products in terms of their associated biological processes, cellular

156

5.4 Concepts and functionality

components, and molecular functions in a species-independent manner. The usage of GO terms by

collaborating databases enables uniform queries across them.

In Genlight, such terms can be assigned by the system, inferred from the respective assignment of the

integrated databases. Genlight contains mapping to GO terms for entries from the Pfam, TIGRFAM,

Smart, and PRINTS databases, and hence allows to query results from these resources using GO

terms. Since GO is a structured ontology, queries at different levels of abstraction are possible. For

instance, one can use GO terms to find all gene products in an organisms genome that are involved

in signal transduction, or one can zoom in on all the receptor tyrosine kinases.

5.4.7 User defined sequence databases

In addition to the databases integrated into Genlight described above, the system allows to import

any sequence collection available in GenBank, Swiss-Prot, or Fasta format. Such an user defined

sequence collection can contain just a few sequences that should be analyzed with Genlight’s inte-

grated analysis methods, a complete proteome, or even a whole sequence database like Swiss-Prot

or UniProtKB/TrEMBL. Imported sequence collections are treated as normal private Seq-sets in the

user’s project workspace or can be made available as a system-wide resource by the Genlight ad-

ministrator. This means that major public sequence databases, genomes and proteomes of model

organisms of interest, or proprietary in-house sequence data can be imported and made accessible

system-wide if required. This concept saves resources and avoids data redundancy.

5.4.8 Asynchronous distributed execution of sequence analysis tasks

The comparison of whole genomes or proteomes, or their use as query sets for searches in large

databases like GenBank or Swiss-Prot is a challenging and time consuming task. To compare, for

instance, the mouse proteome to the human proteome by pairwise sequence comparison, 53,847

(International Protein Index (IPI) release 3.28, April 2007 [KDW+04]) single homology searches

with programs like BLAST , FASTA, or the time-consuming Smith-Waterman full alignment method

versus the human proteome set comprised of 68,020 protein sequence (IPI 3.28, April 2007) have

to be performed. To handle such comparison tasks in a multi-user capable, interactive system with

the need of guaranteed, adequate response times, the individual comparison calculations have to be

done asynchronously. To accomplish this, Genlight uses queuing mechanisms and a distributed client-

server approach with multiple compute clients carrying out parts of comparison- or other sequence

analysis tasks (see Figure 5.1 on page 145). After submission of such a task, it is asynchronously

executed by the distributed execution system. This process neither influences other users of Genlight,

nor does it block the interactive work with the system while processing. Once computation has

finished, the results are directly accessible inside the system. Sequence analysis tasks can be added

to, suspended from execution, or deleted from the systems job queue at any time. Even changes

to job priorities affecting execution order are possible. The complete queue management can be

performed with a comfortable web interface.

To process queued entries, the system has its own scheduling and dispatching component, which

allows a parallel, distributed execution of comparison jobs and can form a virtual cluster system

of regular workstations for high throughput analysis tasks. This allows to use existing compute re-

157

5 Genlight - a system for interactive, high-throughput, differential genome analysis

Query Set DB Set Method Running time [hh:mm:ss]

H.pylori H.influenzae BLASTP 00:00:32

H.pylori V.cholerae psiBLAST (10 iterations) 00:03:22

L.innocua L.monocytogenes BLASTN 00:00:27

H.pylori CDD rpsBLAST 00:03:41

S.typhimurium A.thaliana BLASTP 00:03:48

H.pylori Pfam hmmpfam 04:41:33

H.sapiens M.musculus BLASTP 02:17:30

Table 5.4: Running times for different comparison methods using the Genlight virtual cluster system

with 25 SUN UltraSparc II CPUs on different workstations.

sources and often eliminates the necessity for a dedicated compute cluster. The integrated dispatcher

splits sequence comparison tasks between two Seq-sets into smaller work units of user defined size

which are subsequently distributed to the available compute nodes, thus balancing the overall load

over the available compute resources. The two major strengths of this approach are the complete in-

tegration into one system without the need for difficult to install third party batch-queuing systems

and a high robustness of the system. The latter is achieved by methods to insure data integrity,

like a backlog technique, transactions, and connection supervision, during distributed execution.

Compute nodes can be added to and deleted from the virtual cluster system by starting or stopping

the Genlight client component on a workstation, via the cluster node management interface (see

Figure 5.7). The cluster node management interface also provides information about each compute

node, the node’s status, and the overall progress of the task currently processed.

The possibility to temporarily include or exclude certain computers at any time, makes the virtual

cluster very flexible. For instance, departmental workstations can be excluded during working hours

and included during the night to use idle compute-power.

Since the Genlight client application is available for different hardware architectures and operating

systems, and platform independent communication between Genlight-server and compute clients

is implemented, the compute resources of computers running different operating systems can be

bundled in one heterogeneous virtual cluster system. Up to now, Genlight supports (and is tested

on) Sparc/Solaris, x86/Solaris, x86/Linux, and Mips/IRIX platforms. The distributed computing

approach allows comparisons of complete genomes or proteomes in short time periods. The overall

running time is nearly inversely proportional to the number of CPUs used (see Figure 5.8). For

concrete examples of running times of different sequence comparison and analysis methods using

Genlight’s virtual cluster system see Table 5.4.

5.5 Database schema

Genlight uses the ORDBMS (Object Relational Database Management System) PostgreSQL for

data storage and access, though Genlight has been designed with other SQL99 compliant DBMS in

mind. The system makes use of PostgreSQL’s object oriented features and transaction capabilities

to ensure data integrity and consistency.

158

5.5 Database schema

Figure 5.7: The virtual cluster management interface gives a detailed overview of the progress of a

sequence analysis job, estimated duration, and real-time status of compute nodes. Users

with system administrator privileges can start, stop, add, or remove compute nodes at

any time.

159

5 Genlight - a system for interactive, high-throughput, differential genome analysis

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

200

Number of used single CPU machines (SUN UltraSparcII 400Mhz)

R
un

ni
ng

 ti
m

e
in

 m
in

ut
es

running time in minutes
192/#CPUs

~192 min

~19 min

Figure 5.8: Scaling behavior of the distributed computing approach. Running times for a BLASTP

comparison of Helicobacter pylori proteome consisting of 1487 proteins and the complete

Swiss-Prot database for different numbers of CPUs used.

The interactive character of Genlight, its concurrent multi user capabilities, and its need to store

calculated data on demand requires more complexity in the implementation of the data model

than it would be the case in single user systems with pre-calculated, static data. In particular

the “dynamics” introduced by the requirement to store data from user specified sequence analysis

operations on demand, have to be supported in the data model.

In the following we describe by example the set oriented concept of Genlight’s data model and show

how this functional concept is represented in the physical data model. Recall, that the set oriented

concept consisting of Seq-sets and Hit-sets , described in section 5.4.1 on page 145, is one of Genlights

fundamental concepts. The information contained in Seq-sets and Hit-sets is persistently stored in

database tables. In case of Hit-sets , the database tables reflect the method-specific attributes of

the sequence comparison methods that generated the data contained in a Hit-set . For this purpose,

Genlight employs method specific template tables for the various supported sequence comparison

methods. Each time a Seq-set or Hit-set needs to be generated, by import, comparison of Seq-sets ,

or through the application of one of the Seq-set and Hit-set operations described in section 5.4.2

on page 146 by the user, a new database table for this Seq-set or Hit-set is automatically created

as a child table by table inheritance from the method specific template table. Hence, this process of

instantiation results in a newly generated table, which can be seen as an instance of the template.

This template instance is then unambiguously referenced by a catalog table entry that stores addi-

tional parameters like generating method, e.g., for a Hit-set table the sequence comparison method

used, parametrization of the method, etc. Accordingly, catalog tables contain information globally

characterizing a complete template instance instead of each of the instance’s entries. They are fur-

ther necessary for the organization and administration of template instances. We now explain the

concept of template instantiation with a small excerpt of Genlight’s data model. Figure 5.9 gives a

160

5.5 Database schema

BLAST Hit-sets

FASTA Hit-set

Seq-sets Method specif ic templates

seq_set_template

sha1_seq_id CHARACTER(40)

serial_id SERIAL

seqnum INTEGER

description TEXT

length INTEGER

sequence TEXT

human

PK sha1_seq_id CHARACTER(40)

PK serial_id SERIAL

PK seqnum INTEGER

description TEXT

length INTEGER

sequence TEXT

mouse

PK sha1_seq_id CHARACTER(40)

PK serial_id SERIAL

PK seqnum INTEGER

description TEXT

length INTEGER

sequence TEXT

blasthits_instance1

FK query_sha1_id CHARACTER(40)

FK hit_sha1_id CHARACTER(40)

query_org_set_id INTEGER

db_org_set_id INTEGER

query_desc TEXT

hit_desc TEXT

query_length INTEGER

hit_length INTEGER

hsp_bit_score DOUBLE PRECISION

hsp_evalue DOUBLE PRECISION

hsp_score INTEGER

hsp_identities INTEGER

hsp_positives INTEGER

hsp_gaps INTEGER

hsp_align_length INTEGER

hsp_rank INTEGER

hsp_query_from INTEGER

hsp_query_to INTEGER

hsp_hit_from INTEGER

hsp_hit_to INTEGER

hsp_ali_qseq TEXT

hsp_ali_midline TEXT

hsp_ali_hitseq TEXT

hsp_query_frame INTEGER

hsp_hit_frame INTEGER

FK serial_id INTEGER

FK seqnum INTEGER

blasthits_template

query_sha1_id CHARACTER(40)

hit_sha1_id CHARACTER(40)

query_org_set_id INTEGER

db_org_set_id INTEGER

query_desc TEXT

hit_desc TEXT

query_length INTEGER

hit_length INTEGER

hsp_bit_score DOUBLE PRECISION

hsp_evalue DOUBLE PRECISION

hsp_score INTEGER

hsp_identities INTEGER

hsp_positives INTEGER

hsp_gaps INTEGER

hsp_align_length INTEGER

hsp_rank INTEGER

hsp_query_from INTEGER

hsp_query_to INTEGER

hsp_hit_from INTEGER

hsp_hit_to INTEGER

hsp_ali_qseq TEXT

hsp_ali_midline TEXT

hsp_ali_hitseq TEXT

hsp_query_frame INTEGER

hsp_hit_frame INTEGER

blasthits_instance2

FK query_sha1_id CHARACTER(40)

FK hit_sha1_id CHARACTER(40)

query_org_set_id INTEGER

db_org_set_id INTEGER

query_desc TEXT

hit_desc TEXT

query_length INTEGER

hit_length INTEGER

hsp_bit_score DOUBLE PRECISION

hsp_evalue DOUBLE PRECISION

hsp_score INTEGER

hsp_identities INTEGER

hsp_positives INTEGER

hsp_gaps INTEGER

hsp_align_length INTEGER

hsp_rank INTEGER

hsp_query_from INTEGER

hsp_query_to INTEGER

hsp_hit_from INTEGER

hsp_hit_to INTEGER

hsp_ali_qseq TEXT

hsp_ali_midline TEXT

hsp_ali_hitseq TEXT

hsp_query_frame INTEGER

hsp_hit_frame INTEGER

FK serial_id INTEGER

FK seqnum INTEGER

rat

PK sha1_seq_id CHARACTER(40)

PK serial_id SERIAL

PK seqnum INTEGER

description TEXT

length INTEGER

sequence TEXT

fastahits_template

query_sha1_id CHARACTER(40)

hit_sha1_id CHARACTER(40)

query_org_set_id INTEGER

db_org_set_id INTEGER

query_desc TEXT

hit_desc TEXT

query_length INTEGER

hit_bit_score DOUBLE PRECISION

hit_evalue DOUBLE PRECISION

hit_zscore DOUBLE PRECISION

hit_sw score INTEGER

hit_positives INTEGER

hit_identities INTEGER

hit_gaps INTEGER

hit_overlap INTEGER

hit_len INTEGER

hit_rank INTEGER

hit_query_from INTEGER

hit_query_to INTEGER

hit_hit_from INTEGER

hit_hit_to INTEGER

query_dsp_start INTEGER

query_dsp_end INTEGER

hit_dsp_start INTEGER

hit_dsp_end INTEGER

hit_orientation CHARACTER(1)

query_align TEXT

hit_align TEXT

midline_align TEXT

fastahits_instance1

FK query_sha1_id CHARACTER(40)

FK hit_sha1_id CHARACTER(40)

query_org_set_id INTEGER

db_org_set_id INTEGER

query_desc TEXT

hit_desc TEXT

query_length INTEGER

hit_bit_score DOUBLE PRECISION

hit_evalue DOUBLE PRECISION

hit_zscore DOUBLE PRECISION

hit_sw score INTEGER

hit_positives INTEGER

hit_identities INTEGER

hit_gaps INTEGER

hit_overlap INTEGER

hit_len INTEGER

hit_rank INTEGER

hit_query_from INTEGER

hit_query_to INTEGER

hit_hit_from INTEGER

hit_hit_to INTEGER

query_dsp_start INTEGER

query_dsp_end INTEGER

hit_dsp_start INTEGER

hit_dsp_end INTEGER

hit_orientation CHARACTER(1)

query_align TEXT

hit_align TEXT

midline_align TEXT

FK serial_id INTEGER

FK seqnum INTEGER

Instantiation of template

One to Many Relationship

Legend:
PK: Primary Key constraint; unique and not null
FK: Foreign key constraint, not null

Instantiation of template

Figure 5.9: Instantiation of template tables and relationships between database tables representing

Seq-sets and Hit-sets . For details see corresponding text.

161

5 Genlight - a system for interactive, high-throughput, differential genome analysis

snapshot of the database schema containing Seq-sets and Hit-sets . The three sequence sets human,

mouse and rat are instantiated from the Seq-set template table seq set template. Template in-

stantiation is shown by arcs annotated with a circle/equal sign connecting template and instance. A

Seq-set contains beside the attributes description, length, and sequence three unique primary

keys, namely the sequence identifier sha1 seq id, the serial serial id for auto numbering of entries

necessary for sequential processing of a Seq-set , and seqnum denoting the position of an entry in

the set of sequences at import time of this Seq-set 3. At import time sha1 seq id acts even as a

primary key constraint for the template table seq template, but this constraint can be violated

through set operations over time. However, sha1 seq id uniquely identifies a sequence entry in a

Seq-set . In section 5.5.1 we will give more details about the sha1 seq id identifier concept.

Further shown in Figure 5.9 are three method specific Hit-sets , namely blasthits instance1,

blasthits instance2, and fastahits instance1 instantiated from the two template tables blast-

hits template and fastahits template, respectively. Observe, that a Hit-set HQ,D is the result

of a sequence comparison operation between two Seq-sets , say Q and D and defines a relation

between the sequences of Q and the sequences of D. This is reflected in the data model by at-

tributes query sha1 id and hit sha1 id of a Hit-set table which are foreign key constraints for

the sha1 seq id sequence identifier of two Seq-sets . For example, table blasthits instance1 de-

fines a relation between sequences from Seq-sets human and mouse, and table fastahits instance1

defines a relation (homology as detected by FASTA) between Seq-sets mouse and rat. Between a

Seq-set Q and a Hit-set HQ,D defined over this Q, there is a one to many relationship, since one

sequence from Q may match multiple sequences in D. Since a Hit-set HQ,D defines a one to many

relationship for both involved Seq-sets Q and D, it establishes a many to many relationship between

sequences from Q and sequences from D.

5.5.1 The internal sequence identifier concept

A central point for a database driven sequence analysis system is the ability to uniquely identify a

single sequence. For this purpose, many different identifier concepts have been developed in recent

years. Such developments were in particular furthered by the maintainers of large public sequence

collections like GenBank or UniProtKB/TrEMBL. Since Genlight can use sequence data from any

resource, even proprietary in-house sequences, it cannot rely on the existence of a specific public

identifier like a GenBank accession number or Swiss-Prot protein id. Therefore, Genlight needs its

own internal identifier concept that allows to uniquely identify a sequence, taking the following

attributes into account:

• the sequence itself,

• its annotation/description and

• its Seq-set membership at import time.

This allows to differentiate between distinct entries for the same sequence even if they share the

same description in two different Seq-sets , which is essential for some of Genlight’s Seq-set set

3Observe that, though being identical at import time, serial id and seqnum can differ over time for instance due

to application of set operations.

162

5.5 Database schema

operations. To combine these three attributes into one unique identifier, Genlight computes SHA-1

hash keys from these attributes. These 160 bit long keys act as primary keys in the database tables

representing a Seq-set (see attribute sha1 seq id in table human in Figure 5.9) and hence as foreign

keys in database tables representing a Hit-set (see attributes query sha1 id and hit sha1 id in

table blasthits instance1 in Figure 5.9).

5.5.2 The handiness of the set oriented concept

We will now give some examples for the handiness of the set oriented concept, and describe ex-

emplarily how its implementation in the physical data model allows to answer biological relevant

questions using standard SQL-queries easily. Such queries are automatically generated by the scripts

implementing Genlight’s web interface depending on user specified criteria.

User defined Hit-sets filtering

Filtering of Hit-sets based on user defined criteria is a straightforward task in Genlight. Assume

that we are only interested in homologous sequence pairs satisfying a certain E-value constraint,

say having an E-value lower than 10−10. LetHA,B be a Hit-set containing pair relationships resulting

from a BLAST based comparison between the two Seq-sets A and B, then the following SQL-query

selects all entries of HA,B satisfying this constraint.

SELECT * FROM HA,B WHERE hsp evalue ≤ 10-10;

Identification of conserved gene orders and genome rearrangements

When analyzing complete genomes or proteomes of prokaryotes, a common task is not only the

identification of homologous sequences, but also the identification of conserved gene orders since

they reveal information about global genome rearrangements, such like, translocations, inversions,

duplications or deletions. These genome-wide mutations are believed to be more neutral than local

mutations such as substitutions, insertions, and deletions. Therefore, phylogenetic investigations

of genome rearrangement events are less biased by the hypothesis of neutral evolution [PH88].

Genlight can support the detection of genome rearrangements as follows. Let A and B be two Seq-

sets containing genes from two prokaryotic genomes in the order of their occurrence in the genome

and a Hit-set HA,B containing homology results from a BLAST based comparison4 of sequences

from A versus sequences from B. Then, the SQL-Query

SELECT t1.seqnum,

t2.seqnum,

t3.hsp bit score

FROM A t1,

B t2,

HA,B t3

WHERE t1.sha1 seq_id = t3.query sha1 id AND

t2.sha1 seq id = t3.hit sha1 id AND

4FASTA or Smith-Waterman based homology information can also be used.

163

5 Genlight - a system for interactive, high-throughput, differential genome analysis

t3.hsp rank = 1

ORDER BY t1.seqnum ASC;

determines triples consisting of two sequence numbers identifying a gene’s or protein’s position in

each of the genomes and an alignment score as a measure of the sequences homology. Due to the

constraint hsp rank=1, only the top ranked hit, if it exists, for each sequence from A is considered.

Genlight allows to visualize these informations in form of a XY plot directly, with optional color

coding of hit quality. In such a XY plot, conservation of gene order and genomic rearrangements

become directly visible (see Figure 5.10).

Determination of bidirectional-best hits

Sequence comparison methods like BLAST or FASTA introduce a kind of asymmetry into sequence

comparisons due to their implied scoring functions. That is, a query/hit pair of sequences (S1, S2)

resulting from a unidirectional comparison of S1 versus S2 may achieve a different score than the

reverse pair (S2, S1). This causes problems in homology based function assignments based on best

hits, since although S2 may be the highest scored (best) homolog found for S1 when using S1 as

the query, this neither necessarily implies that S1 is found with the same score nor that this is the

highest score, when using S2 as query. This issue is often addressed by using bidirectional-best hits

instead of unidirectional-best hits. A bidirectional-best hit is defined as follows.

Definition 17 Let A = {g | g is gene of organism 1}, B = {h | h is gene of organism 2} be two

Seq-sets and SA,B : A×B −→ R, SB,A : B ×A −→ R be two scoring functions that assign to each

pair g ∈ A, h ∈ B a score expressing the homology between g and h, and h and g respectively.

Then, pair g, h is a bidirectional best pair or hit iff. SA,B(g, h) ≥ SA,B(g, h′) for all h′ ∈ B and

SB,A(h, g) ≥ SB,A(h, g′) for all g′ ∈ A.

With Genlight’s set oriented data model, method specific bidirectional-best hits can be easily de-

termined from two reverse, unidirectional comparisons. More precisely, let A and B be two Seq-sets

and HA,B, HB,A be two Hit-sets containing homology results from two unidirectional comparisons

between sequences from A and sequences from B. Then, the subsequently given SQL-query selects

pair relationships satisfying the bidirectional-best hit criteria.

SELECT t1.query desc,

t2.query desc,

FROM HA,B t1,

HB,A t2,

WHERE t1.query sha1 id = t2.hit sha1 id AND

t1.hit sha1 id = t2.query sha1 id AND

t1.hsp rank = t2.hsp rank AND

t2.hsp rank = 1;

Observe, that unidirectional-best hits are specified with the attribute constraint hsp rank=1.

Attribute hsp rank ranks the pair relationships found by the comparison method according to

their method specific score. This is due to concerns of speed and allows to retrieve the best pair of

a Hit-set efficiently and avoids to maximize the score over several entries.

164

5.5 Database schema

Figure 5.10: Visualization of genomic rearrangements between the actino bacterias C.glutamicum

and C.jeikeium (top), and C.glutamicum and C.diptheriae (bottom) using Genlight.

The upper plot clearly shows genomic inversions. Responsible for the gap visible in

the lower plot is a bacteriophage inserted into the genome of C.glutamicum [KBB+03].

Relationships between genes were determined with a Hit-set containing bidirectional-

best BLAST hit information. Data points are colored based on alignment bit scores.

165

5 Genlight - a system for interactive, high-throughput, differential genome analysis

Differential comparative analyses

Differential comparative genome analyses have been successfully used to identify species specific

genes or genes responsible for a certain phenotype [RZG+02]. They can help, for instance, to identify

genes responsible for the pathogenicity of an organism by comparison of the organism’s genome with

closely related apathogenic organisms. Such analyses involve the inclusion of genes with a homolog

in organisms sharing a certain phenotype (the pathogenicity) and an exclusion of genes with a

homolog in an organism not showing this phenotype (being apathogenic). Assume that we have

the proteomes of two organisms A and B showing a certain phenotype and the proteome of a third

organism C not showing this phenotype. Then, it would be interesting to identify genes of A also

existing in B, but not in C under the assumption that these genes, or at least some of them, are

responsible for the observed common phenotype of A and B.

Such questions can be answered with Genlight’s data model using standard SQL queries. More

precisely, let A, B, C be three Seq-sets and HA,B and HA,C be two Hit-sets defining a (homology

based) relationship between members from A and B and A and C respectively. Then SQL-query

SELECT sha1 seq id FROM A

INTERSECT (SELECT query sha1 id FROM HA,B)

EXCEPT (SELECT query sha1 id FROM HA,C);

determines all sequence identifiers of sequences in A that have a counterpart in B defined by HA,B
and no counterpart in C according to HA,C . To determine the desired result we employ the SQL

concept of select chaining. That is, we combine several SELECT statements with INTERSECT

and EXCEPT clauses. The semantics of these clauses are analogical to the homonymous operations

in set theory.

Select chaining also enables us to ask queries of type “Which genes of A have a homolog in B OR

C?”. The logical OR can be modeled using the UNION clause as follows:

SELECT sha1 seq id FROM A

INTERSECT ((SELECT query sha1 id FROM HA,B)

UNION

(SELECT query sha1 id FROM HA,C)

);

5.5.3 More complex queries using computed sequence attributes

Beside the concept of Hit-sets for the pairwise comparison of sequences, Genlight integrates various

protein family and motif databases with their specific search methods and sequence classification

schemas (see section 5.4.4 on page 150 and section 5.4.5 on page 152). Once these database searches

are performed for the sequences of some Seq-set , their results are persistently stored in database

tables also instantiated from method specific templates. The computed information can then be

combined for more complex analysis tasks. Figure 5.11 shows an excerpt of Genlight’s data model

after the sequences of Seq-set human were screened versus databases TIGRFAM, Pfam, Smart, CDD,

COG, and PRINTS.

166

5.5 Database schema

human

PK sha1_seq_id

serial_id

seqnum

description

length

sequence

pfam_matches

FK sha1_seq_id

pfam_model_id

pfam_model_name

pfam_model_desc

hit_domain_number

hit_domain_total

hit_sequence_from

hit_sequence_to

hit_model_from

hit_model_to

hit_score

hit_evalue

overall_model_score

overall_model_evalue

ali_model_line

ali_mid_line

ali_query_line

tigrfam_matches

FK sha1_seq_id

tigrfam_model_id

tigrfam_model_name

tigrfam_model_desc

hit_domain_number

hit_domain_total

hit_sequence_from

hit_sequence_to

hit_model_from

hit_model_to

hit_score

hit_evalue

overall_model_score

overall_model_evalue

ali_model_line

ali_mid_line

ali_query_line

smart_matches

FK sha1_seq_id

smart_model_id

smart_model_name

smart_model_desc

hit_domain_number

hit_domain_total

hit_sequence_from

hit_sequence_to

hit_model_from

hit_model_to

hit_score

hit_evalue

overall_model_score

overall_model_evalue

ali_model_line

ali_mid_line

ali_query_line

CDD_matches

FK sha1_seq_id

cdd_model_acc

cdd_model_desc

model_length

hsp_bit_score

hsp_evalue

hsp_score

hsp_identities

hsp_positives

hsp_gaps

hsp_align_length

hsp_rank

hsp_query_from

hsp_query_to

hsp_model_from

hsp_model_to

hsp_ali_qseq

hsp_ali_midline

hsp_ali_model

prints_matches

FK sha1_seq_id

FK chain_id

prints_model_id

motif_acc

motif_desc

group_pos

rel_pos

match_length

match_sequence

threshold

score

minscore

maxscore

p_value

e_value

mss

prints_chains

PK chain_id

FK sha1_seq_id

chain_length

chain_score

cog_fun

PK fun_cat_ident

PK fun_category

fun_class

pfam2go

FK go_id

pfam_model_id

tigrfam2go

tigrfam_model_id

FK go_id

smart2go

smart_model_id

FK go_id

cog_hits

FK sha1_seq_id

FK cog_seq_id

query_desc

hit_length

hsp_bit_score

hsp_evalue

hsp_score

hsp_identities

hsp_positives

hsp_gaps

hsp_align_length

hsp_rank

hsp_query_from

hsp_query_to

hsp_hit_from

hsp_hit_to

hsp_ali_qseq

hsp_ali_midline

hsp_ali_hitseq

cog_info

PK cog_seq_id

cog_id

FK fun_category

cog_desc

FK source_organism_id

FK fun_cat_ident

prints2go

FK go_id

prints_model_id

tigr_role_names

PK role_id

role_type

role_name

tigr_role_link

tigrfam_model_id

FK role_id

pfam2clans

FK clan_id

pfam_model_id

pfam_clan_info

PK clan_id

clan_acc

clan_description

comment

cog_organisms

PK source_organism_id

taxonomy_id

lineage

organism_name

seq_features

PF sha1_seq_id

mol_w eight

iso_e_point

molar_absorption

charge

go_terms

PK go_id

go_term

term_type

Figure 5.11: An excerpt of Genlights data model showing relationships between a Seq-set (ta-

ble human), results of different sequence analysis methods (tables tigrfam matches,

pfam matches, prints matches etc.), gene ontology mappings (tables pfam2go,

prints2go etc.), and functional classification schemas (tables tigr role names,

tigr role link etc.). For details, see corresponding text.

167

5 Genlight - a system for interactive, high-throughput, differential genome analysis

By incorporation of the results of these database searches and classification information, it is now

possible to perform more complex queries on the data. Assume that we are interested in all human

proteins containing a death domain, since we know in advance that death domains are related to

apoptosis, the programmed cell death in multi cellular organisms. The death domain [CI95] is a

heterodimerization domain present in several proteins involved in apoptotic signal transduction.

Over-expression of these proteins usually leads to cell death. Since death domains constitute a

heterogeneous domain family, they are described by several Pfam models belonging to Pfam clan

Death Domain Superfamily. Thus to identify proteins with a death domain, we should query the

human protein Seq-set for sequences classified with a certain confidence to this Pfam clan instead of

looking for matches to a single Death Domain Pfam model. This is accomplished with the following

SQL query5:

SELECT description

FROM human

WHERE sha1 seq id IN

(SELECT query sha1 id

FROM pfam matches

WHERE hit evalue ≤ 10-5 AND

pfam model id IN

(SELECT pfam model id

FROM pfam2clans

WHERE clan id IN

(SELECT clan id

FROM pfam clan info

WHERE clan description=’Death Domain Superfamily’

)

)

);

To take only sufficiently confident classifications into account, we restrict the Pfam matches to those

having an E-value lower or equal to 10−5. In the above query we make use of sub queries instead of

joining the involved tables. Here all sub queries may return multiple rows which are processed by

the comparison operator IN. Operator IN is similar to the ∈ operator in mathematics.

We already addressed the problem of different terminologies used in different databases and de-

scribed the Gene Ontology controlled vocabulary as an approach to solve this issue. In the follow-

ing, we will show how we can make use of GO terms to collect results from different data sources

employing different naming conventions. Observe, that in the above query example we looked for

death domains as single indicator for a sequence to be involved in apoptosis and the only evidence

factor for the existence of such a domain, taken into account, was a hit to a Pfam model. Basically,

we face here two problems.

1. It is unlikely that the death domain is the only domain linked to apoptosis, which is a process

that involves an orchestrated series of biochemical events. Hence, there may be proteins not

containing a death domain, but which nevertheless play a central role in the process of cell

death. With the above query we would fail to detect these proteins.

5For the following examples we use the data model as given in Figure 5.11.

168

5.5 Database schema

2. Domain/motif databases, even large ones like Pfam, are often incomplete in certain areas or

contain suboptimal models which do not detect all related sequences (of a family). Hence,

a different model taken from a different database may further detect proteins involved in

apoptosis.

To overcome these pitfalls we have to consider results from searches in multiple different databases.

To address the problem of different naming conventions we use GO terms for querying instead of

attributes of certain database entries. This procedure implies that entries of databases like Pfam,

TIGRFAM, etc. can be mapped to GO categories. Such mappings, which are built with expert

knowledge and are freely available for certain domain and motif databases, are also integrated

into Genlight. Therefore, it is possible to (i) look up from the gene ontology (all) entries linked to

apoptosis, (ii) to look up with the mapping information the model identifiers of databases like Pfam,

TIGRFAM, or Smart, and (iii) to finally return the sequences matching these models. This can be

performed with the following SQL-query.

SELECT description FROM human WHERE sha1 seq id IN (

(SELECT query sha1 id FROM pfam matches WHERE hit evalue ≤ 10-5 AND pfam model id IN (

SELECT pfam model id FROM pfam2go WHERE go id IN (

SELECT go id FROM go terms WHERE name=’apoptosis’

)

)

)

UNION

(SELECT query sha1 id FROM tigrfam matches WHERE hit evalue ≤ 10-5 AND tigrfam model id IN (

SELECT tigrfam model id FROM tigrfam2go WHERE go id IN (

SELECT go id FROM go terms WHERE name=’apoptosis’

)

)

)

UNION

(SELECT query sha1 id FROM smart matches WHERE hit evalue ≤ 10-5 AND smart model id IN (

SELECT smart model id FROM smart2go WHERE go id IN (

SELECT go id FROM go terms WHERE name=’apoptosis’

)

)

)

UNION

(SELECT DISTINCT t1.sha1 seq id FROM prints matches t1, prints chains t2

WHERE t1.chain id=t2.chain id AND

t2.p value ≤ 10-3 AND

t2.chain length > 2 AND

t1.prints model id IN (

SELECT prints model id FROM prints2go WHERE go id IN (

SELECT go id FROM go terms WHERE name=’apoptosis’

)

)

)

);

This query selects all sequences (more precisely their descriptions) from our Seq-set human that

contain a match of reasonable quality to one of the databases Pfam, TIGRFAM, Smart, and PRINTS

169

5 Genlight - a system for interactive, high-throughput, differential genome analysis

(stored in tables pfam matches, tigrfam matches, smart matches, etc.) by chaining SELECT

statements, specific to retrieve certain database search results, with the UNION clause. Addition-

ally, to be picked up by the query, sequences have to match database entries that are linked with

the mapping tables pfam2go, tigrfam2go, smart2go, and prints2go via attribute go id to the GO

term apoptosis.

5.5.4 Genlight as a data warehouse

Figures 5.9 on page 161 and 5.11 on page 167 clearly show that Genlights data model is not fully

normalized, according to normalization forms known in relational database theory [Ken83]. This

process of denormalization is common for systems intended for OLAP (On Line Analytical Pro-

cessing). In contrast to OLTP (On Line Transaction Processing) systems, which are designed for

handling a high volume of transactions, like inserting/deleting or modifying relatively small amounts

of data, and hence often employing highly normalized data models, OLAP systems are primarily

designed for read-only reporting and data analysis. E.g., for the purpose of data analyses a high level

of normalization often has an disadvantageous effect on query response times, since normalization

splits related data into several database tables, which, have to be combined again for querying,

using costly table joining operations.

For Genlight short query response times are essential due to the interactive character of the system.

Consequently the employed data model, which is optimized for short query response times by

intended denormalization through the introduction of data redundancy6 has more characteristics

of a typical OLAP than an OLTP system. This is not in contradiction to the fact, that Genlight

also carries out several data generating analysis tasks, which lead to extensive data insertions and

modifications, since these tasks are executed asynchronously by the distributed execution approach,

and hence are independent from guaranteed response and completion times.

Typical representatives of OLAP like systems, are the so called data warehouses. They follow an

information integration concept and integrate data from heterogeneous and distributed sources into

one system to allow a global view on the data by enabling source data comprehensive queries and

data analyses. Following this view, Genlight also shares several characteristics with data warehouses.

In particular, by the persistent storage of computed results in a query-optimized data model that

allows to combine heterogeneous information in complex queries, Genlight builds, while analyzing

a certain organism’s genome or proteome, an integrated information resource from the computed

sequence analysis results. This resource can be accessed by using standard SQL queries even from

external applications as well as by a user-friendly web interface automatically generating the needed

SQL queries and thus hiding the internals of the underlying data model from the user.

5.6 The Genlight user interface

For interaction with the system, we developed a flexible and powerful web-interface that, while

containing a high information density, is still user-friendly and easy to use. It allows the user to set

up sequence comparison jobs and to perform all operations on Seq-sets and Hit-sets described in this

6Genlight also employs B-Tree indexing of certain attribute fields to ensure short query response times.

170

5.6 The Genlight user interface

chapter, or to import/export Seq-set and Hit-set information in a completely interactive way. For

operations that cannot be handled interactively like the comparison of large Seq-set sets which are

processed asynchronously by the distributed execution engine, the processing state and progress of

computation is directly visible in the interface. Once computation has finished, these informations

are dynamically updated and the newly computed results are available for further analyses. This

is a major advantage in comparison to other systems, which use pre-computed data and present it

in a static way. The generated results can be viewed in tabular as well as in graphical form, using

intuitive visualizations. Throughout this thesis, we already presented visualizations generated by

Genlight in various figures. For example the sequence to structure mapping figures in chapter 2 (see

Figures 2.1 on page 9 and 2.2 on page 10), the visualizations of single PSSM matches and matches

to PSSM family models in Figure 4.2 on page 108, the demonstration of functional classification of

sequences into COG/KOG categories (see Figure 5.6 on page 155), or the visualization of genome

rearrangements shown in Figure 5.10 on page 165.

The central place of Genlight’s user interface, which is also the entry point after successful authen-

tication and project selection, is the overview page of a project’s workspace (see Figure 5.12). It

shows all Seq-sets , Hit-sets and user defined filters available in the selected project and gives the user

a comprehensive overview of already performed or ongoing analyses. Indicated are the processing

states of certain analyses, i.e., which analyses for which Seq-sets are already computed, which are

in processing state or waiting in the systems job-queue to be executed by the distributed execution

engine.

From the project overview page, the information contained in a certain Seq-set or Hit-set is quickly

accessible, following a hyper text reference. Information contained in a Hit-set is conveniently dis-

played in tabular (see Figure 5.13) as well as in graphical forms (see Figure 5.14). Descriptions of

sequences in a Hit-set can be searched using exact patterns or regular expressions, allowing a quick

navigation even in large Hit-sets . If the user is interested in further details of a Hit-set entry, like

concrete alignment information, Genlight generates this information on the fly by comparing the two

involved sequences of a Hit-set entry with the sequence comparison method that has been used to

generate this specific Hit-set . Alignment informations are due to concerns of space not stored in the

underlying database. Alignments are presented in colored textual as well as in graphical form (see

Figure 5.15). In case of a comparison with a nucleotide sequence being involved, additional informa-

tion about start- and stop-codons and potential open reading frames are dynamically determined

and presented in graphical form (see Figure 5.16).

Results that arose from screenings of a Seq-set versus one of the integrated domain and family

databases are also presented in a comprehensive manner including additional derived information

like Gene Ontology classifications. This allows a unifying view on the determined database search re-

sults. For an example see Figure 5.17 which shows the results of a search with a protein sequence from

H.pylori versus the PRINTS database using PoSSuMsearch. Observe that both database matches,

although being different, are classified to the same GO categories.

For searches in databases with structure information available, Genlight can retrieve structure infor-

mation from the source database and allows to visualize these information using structure viewer

applications like Jmol or Rasmol . This allows for direct mapping of sequence features, like homology

171

5 Genlight - a system for interactive, high-throughput, differential genome analysis

Figure 5.12: Genlight’s project workspace overview, showing information about Seq-sets and Hit-

sets of the current project. In the upper right corner, information about the current

project is displayed, like its name, the project id, project owner, privacy status, and

the creation time. The top of the page shows the Genlight navigation menu. This menu

is present on almost all pages of the system and allows an easy and quick navigation

to different sections of the system. The upper table gives information about available

Seq-sets and the availability of screening results versus databases like Pfam, TIGRFAM,

Smart, etc., whereas the two centered tables show computed Hit-sets . The table at the

bottom of the page shows user defined Hit-set filters available in this project.

172

5.6 The Genlight user interface

Figure 5.13: Tabular view of the content of a Hit-set . For each entry (matching sequence pair),

several attributes characterizing the entry are displayed. Entries can be displayed in

sorted order using different sort keys, like E-value, score, rank, number of identities,

number of positives or query/hit description.

173

5 Genlight - a system for interactive, high-throughput, differential genome analysis

Figure 5.14: Graphical view of a Hit-set . Shown are matches resulting from a BLASTX search

of a contig sequence of the alpha proteobacteria Serratia proteamaculans versus the

Escherichia coli proteome. Matches are colored according to the obtained alignment

score.

174

5.6 The Genlight user interface

Figure 5.15: Visualization of on the fly generated BLASTP alignment information for a Hit-set

entry. In the coloured textual alignment, identical amino acids are marked red, similar

amino acid (positives) are marked blue. Gaps are shown as black dashes.

175

5 Genlight - a system for interactive, high-throughput, differential genome analysis

Figure 5.16: Visualization of a FASTY alignment with additional start/stop codon and open reading

frame information. Potential open reading frames are marked as blue arrows, start

(stop) codons are shown as small green (red) boxes in the upper part of this figure. In

this example, the aligned regions correspond to a potential open reading frame in the

frame one translation of the shown nucleotide sequence.

176

5.6 The Genlight user interface

Figure 5.17: Visualization of database search results from a screening versus the PRINTS database

using PoSSuMsearch. Genlight allows to map obtained results directly to GO categories.

177

5 Genlight - a system for interactive, high-throughput, differential genome analysis

Figure 5.18: Mapping of homology information determined by a PsiBLAST search versus the SCOP

sequence database on PDB structures corresponding to SCOP entries.

information to the structure models, by automatically generating viewer specific script files. For an

example see Figure 5.18.

Wherever possible Genlight also references to external data sources allowing the user to retrieve

additional information not contained inside the system. E.g., references to web pages describing a

certain family complement the information of the publicly available HMM collections integrated

into Genlight with a variety of additional information. These information are quickly accessible from

Genlight’s interface following a single hyper text reference.

5.7 Genlight case studies

5.7.1 Detection and analysis of the Smh gene family in maize

In [MBG+03] we detected a new gene family in maize (Zea mays), called Single myb histone (Smh)

family, with the help of the Genlight prototype system. We screened GenBank, ZmDB [DRF+03]

and Pioneer Hi-Bred (PHI)7 expressed sequence tag (EST) databases with Genlight’s built-in se-

quence comparison and domain search methods for the occurrence of the myb-like domain of human

telomeric protein TRF1. TRF1 binds to repeats at chromosome ends and has homology to the DNA-

7http://www.pioneer.com/

178

http://www.pioneer.com/

5.7 Genlight case studies

binding domain of the Myb family of transcription factors, but unlike most Myb related proteins,

TRF1 carries only one rather than multiple Myb-like binding motifs. We identified several maize

ESTs that encoded proteins with a single N-terminal myb-like domain. Together, the EST and

additional cDNA library screens uncovered cDNAs from five related genes. The deduced protein se-

quences from five different full-length cDNAs revealed a family of small basic proteins. The cDNAs

belonged to an uncharacterized gene family, the Smh gene family. Detailed sequence analysis with

Genlight revealed a number of surprising features of Smh genes. The most remarkable aspect was

their triple-motif structure, which has not been previously described in any system, plant, animal,

fungal, or bacterial. Namely, Smh genes have

• (a) an N-terminal myb like or SANT domain of the homeodomain-like superfamily of 3-helical-

bundle-fold proteins,

• (b) a central region with homology to the globular domain of linker histones H1/H15, and

• (c) a strong prediction signature for a coiled-coil domain near the C-terminus.

See Figure 5.19 for the gene model of Smh1 and an excerpt of the underlying Genlight analysis

results. Table 5.5 gives more details about all members of the Smh family.

Additional large scale database searches with Genlight versus GenBank and Swiss-Prot revealed that

Smh-type genes are plant specific and include a gene family in Arabidopsis thaliana and one gene

(PcMYB1) of parsley (Petroselinum crispum). Various wet-lab experiments with a chosen member

of the Smh family (Smh1) showed the ability to bind telomeric DNA repeats in vitro.

5.7.2 Analysis of Xenopus laevis expressed sequence tag clusters

Agglomerative clustering of Expressed Sequence Tags (EST) sequences is a widely used method for

analyzing the transcriptome of a genome. Especially in organisms where the genome sequence is

not (yet) sequenced, the EST data is a valuable source of information. In [SBB+] Genlight was used

for extensive analysis of 31,353 tentative contig (TC) and 40,877 singleton sequences resulting from

clustering and assembly of all 350,468 ESTs of the african claw frog Xenopus laevis as were avail-

able in November 2003. Xenopus laevis is a major model organism for early embryonic vertebrate

development. Since its genome is not fully sequenced yet, in particular due to problems introduced

by its pseudo-tetraploidity, extensive analysis of available EST information seems to be promising

and may lead to new insights in embryonic vertebrate biology.

Our analysis of X.laevis ESTs described in [SBB+] focused on the identification of full length

contigs, representing potential new, yet unknown genes from X.laevis. Therefore, sequences were

subject to BLASTX and FASTY homology searches with Genlight in NCBI’s non-redundant protein

database (NR), the proteomes of five major model organisms (H.sapiens, M.musculus, R.norvegicus,

C.elegans, D.melanogaster), X.laevis and the closely related X.tropicalis. We chose FASTY , which is

a version of the FASTA program that compares a DNA sequence to a protein sequence database by

translating the DNA sequence in all six reading frames, since it allows in contrast to BLASTX for

frame shifts. As EST sequences contain many sequencing errors, and even the assembly of clusters

cannot correct all of these, frame shift tolerant database searching with FASTY should, though

179

5 Genlight - a system for interactive, high-throughput, differential genome analysis

(A): ZmSMH1 gene model/domain structure

1

N C

299

56 1307 203 237 280

Myb/SANT linker histone H1/H5 coiled-coil domain

(B): Results of screening vs. CDD

(C): Results of screening vs. Smart

(D): Results of coiled-coil prediction with program COILS

Figure 5.19: An excerpt of Genlight analysis results for ZmSMH1. For the derived domain structure

of ZmSMH1 see (A). Database searches vs. CDD and Smart (see (B) and (C)) show

near the N-terminus the myb-like or SANT domain and more centered the linker his-

tone 1 and 5 domain. The analysis of potential coiled-coil formations reveals a strong

prediction signature near the C-terminus (see (D)). Plot (D) shows the probability for

coiled-coil formation using windows of width 14, 21, and 28.

180

5.7 Genlight case studies

Gene GenBank Accession No. Protein (length;mass;pI) Domain Location

ZmSMH1 AY271659 299;32.6;9.07 SANT R7-L56

H15 D130-K203

CC K237-D280

ZmSMH3 AY280629 285;31.3;9.45 SANT K7-L56

H15 G111-V173

CC E219-E264

ZmSMH4 AY280631 288;31.3;9.33 SANT K7-L56

H15 P115-I173

CC V229-S260

ZmSMH5 AY280630 286;31.4;8.71 SANT R7-M56

H15 K120-V182

CC M226-V286

ZmSMH6 AY280632 298;33;8.78 SANT R7-M56

H15 N127-K200

CC M236-A297

Table 5.5: Smh-type genes and predicted protein features. Domain names and database identifiers

for SANT are cd00167, SW13, ADA2, N-CoR, and TFIIIB DNA-binding domains from

NCBI’s conserved domain database (CDD); H15 is cd00073, linker histone1 and 5 do-

mains, from CDD or smart00526, domain in histones families 1 and 5 from Smart; CC is

the coiled-coil domain, which is indicated for any region where a peak probability exceeds

0.8. Column 3 gives the length of the amino acid sequence, the molecular weight in kilo

Dalton [kD] and the isoelectric point.

181

5 Genlight - a system for interactive, high-throughput, differential genome analysis

(A): Open Reading Frames of X.laevis contig sequence

(B): BLASTX alignment of X.laevis contig sequence

(C): FASTY alignment of X.laevis contig sequence

Figure 5.20: Comparison of a BLASTX alignment with corresponding full length FASTY align-

ment, generated with Genlight. Open reading frames are indicated by blue boxes in

(a), start and stop codons by green and red boxes, respectivly. The assembled contig

sequence has a frame shift at position 1150 from frame 1 to frame 3, generating two

distinct HSPs in the BLASTX alignment (b). FASTY clearly corrects this frame shift

and generates a full alignment (c).

more CPU-intensive, maximize the length of the resulting alignments and hence allow to identify

full length contigs even if they contain frame shifts. For an example of the differences between

BLASTX and FASTY screening results for a contig sequence containing a frame shift, see Figure

5.20.

In particular, for these large-scale BLASTX and FASTY homology searches, the distributed exe-

cution approach used in Genlight proved to be very powerful, and reduced, in combination with the

application of external compute resources, the overall time needed for these tasks dramatically. For

these analyses, we disposed external compute resources at the Center of Biotechnology of Bielefeld

university as well as a huge cluster system at the supercomputing facility of Florida state univer-

sity. Results determined with external resources were easily integrated using Genlight’s XML/XSLT

import layer (see Figure 5.1).

For full length contig identification different Hit-set filters were defined and applied to the Hit-sets

containing FASTY screening results versus the model organisms. FASTY hits were categorized into

four classes, representing the quality of the full length matches (see Figure 5.21).

• (1) Class 1 hits are defined as matches covering 100% of the sequence of a known protein.

Additionally, the matched protein sequence has to start with a conserved methionine has to

end at a conserved STOP codon.

182

5.7 Genlight case studies

CAP3 consensus

FASTY hit

CAP3 consensus

FASTY hit

Protein P

Protein P

CAP3 consensus

FASTY hit

ATG

M Protein P

STOP

Class 1

CAP3 consensus

FASTY hit

ATG

M Protein P

Class 2

Class 3

Class 4

Figure 5.21: ESTs derived from different clones were compared to protein databases using BLASTX

and FASTY and hits were categorized in 4 categories. Class 1 hits had to match the

whole protein sequence and start with an ATG in the TC and an methionine (M) in

the protein and the hit had to end at a STOP codon. Class 2 hits had to match the

whole protein sequence, start with an ATG in the TC and M in the protein. Class 3 had

to match the full protein sequence (without further restrictions), class 4 had to cover

the protein over almost its full length, allowing the match to start or end maximal 10

amino acids after/before the start or end of the protein.

183

5 Genlight - a system for interactive, high-throughput, differential genome analysis

Class NR Human Mouse Rat Fruit fly C.elegans X.laevis X.tropicalis

Comparison method: BLASTX

1 3,942 1,760 1,765 1,455 219 140 2,918 495

2 5,050 2,067 2,076 1,736 311 233 3,104 541

3 7,792 2,647 2,919 2,592 392 283 3,898 590

4 12,389 5,587 5,841 3,078 2,071 1,856 5,024 1,033

Comparison method: FASTY

1 5,139 2,347 2,337 1,930 268 190 3,862 660

2 6,243 2,692 2,671 2,248 383 296 4,119 721

3 9,576 3528 3,774 3,374 473 357 4,967 796

4 14,094 6,467 6,701 6,341 2,249 1,918 5,701 1,241

Table 5.6: Number of X.laevis contigs with full length BLASTX and FASTY hits in the non-

redundant protein database (NR), five model organisms, and available X.laevis and

X.tropicalis proteins. Lower quality categories include sequences from higher, more strin-

gent categories.

• (2) Class 2 hits are defined as matches covering 100% of the sequence of a known protein.

Additionally, the matched sequence has to include the initial methionine.

• (3) Class 3 hits are matches capable of covering 100% of the matched protein sequence with

no additional constraints.

• (4) Class 4 hits are matches that cover the protein over almost its full length, allowing the

match to start or end up to 10 amino acids after or before the start or end of the protein

respectively.

Table 5.6 shows the numbers of full length sequences matching proteins for each model organism.

For a functional classification of the clustered X.laevis data set, a non-redundant sequence set

was built by selecting in each cluster a single contig. This resulted in 26,187 sequences. This non-

redundant data set was then classified based on homology to known proteins from the KOG database

using SSEARCH (Smith-Waterman) with an E-value cutoff of 10−5. 17,624 sequences (67.3%) had

a hit against the KOG database under these constraints and could be assigned a functional category,

see Figure 5.22.

5.7.3 Identification of potential drug targets in Helicobacter pylori

Subsequently, we describe the application of the Genlight system to detect potential drug targets in

the human pathogen Helicobacter pylori using Genlight’s integrated sequence analysis methods and

capabilities for differential genome analyses. Parts of this study were carried out by the department

of BioChem Informatics of Intervet Innovation GmbH, our project partner in the development of

the Genlight system, and were published in [BMM+04].

H.pylori is a spiral shaped bacterium living in the stomach and duodenum of humans and in other

mammalians [THHM92]. Uncontrolled H.pylori infections are a major factor for duodenal ulcers,

184

5.7 Genlight case studies

[J]5%
[A]4%

[K]7%

[L]2%

[B]2%

[D]2%
[Y]< 1%
[V]< 1%

[T]15%

[M]< 1%
[N]< 1%

[Z]4%
[W]2%

[U]4% [O]9%

[C]2%

[G]3%

[E]2%

[F]1%
[H]< 1%

[I]3%

[P]3%

[Q]1%

[R]17%

[S]8%

[J] Translation, ribosomal structure and biogenesis
[A] RNA processing and modification
[K] Transcription
[L] Replication, recombination and repair
[B] Chromatin structure and dynamics
[D] Cell cycle control, cell division, chromosome partitioning
[Y] Nuclear structure
[V] Defense mechanism
[T] Signal transduction mechanism
[M] Cell wall/membrane/envelope biogenesis
[N] Cell motility
[Z] Cytoskeleton
[W] Extracellular structures
[U] Intracellular trafficking, secretion, and vesicular transport
[O] Posttranslational modification, protein turnover, chaperones
[C] Energy production and conversion
[G] Carbohydrate transport and metabolism
[E] Amino acid transport and metabolism
[F] Nucleotide transport and metabolism
[H] Coenzyme transport and metabolism
[I] Lipid transport and metabolism
[P] Inorganic ion transport and metabolism
[Q] Secondary metabolites biosynthesis, transport and catabolism
[R] General function prediction only
[S] Function unknown

Functional classification based on homology to the euKaryotic clusters of Orthologous Groups (KOG) database

Figure 5.22: Functional classification of 26,187 non redundant X.laevis sequences based on similarity

determined with SSEARCH to the euKaryotic clusters of Orthologous Groups (KOG)

database. Classification criteria was best hit with an E-value of at least 10−5.

gastric ulcers, stomach cancer, and non-ulcer dyspepsia [Mar02]. The sequencing of the H.pylori

genome (strains H.pylori 26695 and H.pylori J99) offers the chance to develop highly specific treat-

ments against H.pylori infections [TWK+97, ALM+99]. With the idea of minimizing toxicological

effects, a perfect drug target protein should have low similarity to eukaryotic proteins [GK99]. Such

genes are the most obvious candidates for drug targets. The strategy of this study was therefore to

find all H.pylori proteins with low similarity to known eukaryotes.

The H.pylori J99 proteome consisting of 1,487 protein sequences was compared to various eukaryotic

proteome sets (see Table 5.7) using the BLASTP sequence comparison method integrated into

Genlight. From the resulting Hit-sets all H.pylori proteins that have no homolog in one of the

eukaryotes with a BLASTP bit-score of at least 30 were extracted. After this initial filtering step

only 226 H.pylori sequences remained.

In a subsequent analysis step the remaining 226 protein sequences were screened for putative

drug/vaccine targets using Genlight’s integrated protein family and motif databases Pfam, TIGR-

FAM, Smart, PRINTS, BLOCKS, and CDD. UreI, a well known drug target [STLDR98, BMSLDR01],

which served as an internal control, was detected within this sequence set. UreI encodes an activated

urea channel enabling urea access to intrabacterial urease at acidic pH. UreI is necessary for the

survival of H.pylori at pH < 4.0 [MRHSM02].

185

5 Genlight - a system for interactive, high-throughput, differential genome analysis

Organism Number of protein sequences

H.sapiens (IPI) 43,426

M.musculus (IPI) 40,742

R.norvegicus (IPI) 33,028

A.thaliana 26,192

C.elegans 22,439

D.melanogaster 16,106

S.cerevisae 6,195

P.falciparum 5,257

S.pombe 5,037

E.cuniculli 1,908

G.theta 451

Total 200,781

Table 5.7: Eukaryotic proteome sets used in the comparative analyses.

Pfam/BLOCKS Acc. Description

PF06160 Septation ring formation regulator, EzrA

PF07432 Histone H1-like protein Hc1

PF01098 Cell cycle protein

PF00493 MCM2/3/5 family

PF01189 NOL1/NOLP2/sun family

PF03568 Peptidase family C50

IPB001182 Cell cycle protein

Table 5.8: Pfam and BLOCKS protein families known to be involved in the cell cycle process in

bacteria.

186

5.7 Genlight case studies

Figure 5.23: Results of database searches with H.pylori protein FTSW HELPJ in BLOCKS using

PoSSuMsearch (top) and Pfam using hmmpfam (bottom). The results of both methods

reveal strong evidence for FtsW family membership.

Identification of cell cycle proteins

Vital processes, like the process of cell division, are of special interest for drug development. Proteins

involved in these processes are quite often fundamental and therefore are putative drug targets. In

order to find such putative targets the remaining 226 protein sequences were screened for several

families known to be involved in the cell cycle process in bacteria. More precisely, we queried

the screening results for hits to the protein families given in Table 5.8. This query resulted in a

potential target, the cell division protein FtsW. See Figure 5.23 for matches of this protein versus

BLOCKS and Pfam models. FtsW is a polytopic membrane protein that is required for cell division

in E.coli [KBD94, IJI+89] and that is present in virtually all bacteria having a peptidoglycan cell

wall [LA02, ISW+89, HGPM98]. It is also discussed in the context of chemotherapeutic intervention

of M.tuberculosis [DDBB02].

Identification of surface proteins

Surface proteins playing a role in pathogen-host interactions represent potential targets for vac-

cination [SLZA+02]. To find such putative targets within the specific H.pylori proteins, the 226

protein sequences were analyzed for the appearance of surface exposed proteins using an hmmpfam

screening versus Genlight’s integrated Pfam database. Thirteen potential outer membrane proteins

were found in this screening (data not shown here, see [BMM+04]). These proteins could serve as

potential candidates for vaccination.

The detection of UreI, FtsW, and outer membrane proteins clearly demonstrates the ability of

Genlight to detect potential drug targets with its built in sequence analysis methods. In particular

the differential or subtractive genome comparison approaches possible with Genlight allow to cut

down a genome scale data set to a manageable size focusing on genes or proteins with interesting,

user defined characteristics. UreA, UreB, VacA, and other well known pharmaceutical targets were

not included in our analyses, since they do not pass the initial filtering step due to their significant

similarity to eukaryotic proteins [SJ99]. Observe that this finding is in accordance to our strategy

to detect only proteins with very low similarity to eukaryotic proteins.

187

5 Genlight - a system for interactive, high-throughput, differential genome analysis

5.8 Concluding remarks on Genlight

In this chapter, we described Genlight an interactive system for high-throughput sequence analysis

with specific features for differential comparative genome analysis. Due to its distributed client

server concept that allows an asynchronous execution of sequence analysis and comparison tasks, it

is suitable for large scale analysis of nucleotide as well as protein sequence data in reasonable time.

Genlight can facilitate available compute resources and build a virtual cluster system from normal

department workstation computers. The overhead necessary for managing compute nodes inside the

virtual cluster is negligible leading to an excellent scaling behavior with an overall running time

nearly inversely proportional to the number of used CPUs. This approach allows sequence analyses

on a scale otherwise only achievable with large and expensive cluster systems. Genlight contains

integrated scheduling and queuing components. Consequently, there is no need for specialized third

party software, which is often difficult to install and maintain.

A unique property of Genlight is its powerful, set oriented data model, that anchors the reusability

of results in the system design and allows a protocol based step by step modeling of complex

workflows. Genlight integrates and automates a variety of sequence analysis methods, including our

PSSM matching software PoSSuMsearch, in a common environment, thus saving hours of tedious

work that would otherwise be needed for performing all analysis tasks sequentially and manually in a

non-integrated fashion. Due to the persistency of computed results and extensive query capabilities,

Genlight can also be used as a data warehouse for sequence data and allows to build organism specific

information resources. For easy access to and interactive work with the system we implemented a

powerful, platform-independent web interface that allows to present derived results in a clearly

arranged way and employs various result visualizations. We also remark, that Genlight is not just

a prototype developed in an academic environment. It is a system ready for production and has

already been installed and is successfully used for different research projects in the pharmaceutical

industry. Furthermore its merits were already evaluated and have been proven valuable in several

scientific studies [MBG+03, SBGA04, MMBB05, SBB+].

5.8.1 Potential future developments and system extensions

Although Genlight already supports a variety of sequence analysis methods and integrates various

databases into a common environment, there are still several methods and databases which have

not found their way into Genlight yet, but which would definitely fit in the context of the system and

could benefit from the developed generic concepts and the high-throughput analysis infrastructure.

Integration of PoSSuMsearch and PSfamSearch as additional screening methods for pHMM

based databases

In Genlight PoSSuMsearch is currently only used for searching with PSSM family models from the

PRINTS and BLOCKS databases. We have shown that using PSSM family models in combination

with fast index based PSSM searching as implemented in PoSSuMsearch, is an alternative to time

consuming pHMM based methods in the context of protein family assignment and classification. In

section 4.6.2 on page 127 we further demonstrated with the combined approach PSfamSearch, that

188

5.8 Concluding remarks on Genlight

PSSM family models derived from pHMM seed alignments can be used for search space reduction

and hence to speed up the search with pHMMs dramatically. Therefore, it is reasonable to integrate

PoSSuMsearch as well as PSfamSearch as additional search methods for pHMM based databases

like Pfam, TIGRFAM, CATH, Superfamily, or Smart into Genlight. Due to the generic and modular

structure of Genlight, the integration of such new analysis methods is straightforward and can be

easily accomplished. One can also think about the integration of further major pHMM based protein

family collections, like for example the Panther database [MLUL+05].

Up to now, analysis methods and databases integrated into Genlight show a bias towards the analysis

of amino acid sequences. However, noncoding DNA and RNA sequences attracted an increased

attention in the last years since it became clear that they play a central role in many regulatory

processes. To illustrate the potential importance of this non-protein coding genes consider the

human genome. About 5% of the genome is evolutionarily conserved with respect to rodent genomic

sequences, and therefore is inferred to be functionally important [Rat04, Mou02], but only about

one-third of the sequence under such selection is predicted to encode proteins [Con01]. In [ENC04],

the authors state that the collective knowledge about putative functional, noncoding elements, which

represent the majority of the remaining functional sequences in the human genome is remarkable

underdeveloped.

To the types of analyses necessary for identification and function predicition of these noncoding

elements belong, among other things, the search for

• cis-regulatory elements, like transcription factor binding sites,

• microRNAs and their target sites, and

• structurally conserved noncoding RNAs.

Detection of transcription factor binding sites

The search for transcription factor binding sites can be efficiently accomplished with PoSSuMsearch

using PSSMs from collections like TRANSFAC. Unfortunately, the licensing conditions of the com-

mercial TRANSFAC database, the major collection of binding site signatures used in this field, does

not allow an integration into a publicly available system like Genlight. Possibly, the actually rela-

tively small open access database JASPAR [SAE+04] will offer a free alternative signature resource

in the future, when the number of contained binding site signatures increases.

Methods for miRNA prediction

MicroRNAs (miRNAs for short) [Ruv01] are short single-stranded RNA molecules of about 21-23

nucleotides that post-transcriptionally regulate the expression of target genes by binding to the

target mRNAs, and inhibit translation or facilitates cleavage of the mRNA. They are known to be

involved in several regulatory processes and hence are of increasing importance also for the phar-

maceutical industry. For their prediction, programs like mirscan [LGY+03] or PoMiR II [NKKZ06]

were developed, which probably can be integrated into Genlight as additional analysis methods for

DNA/RNA sequences.

189

5 Genlight - a system for interactive, high-throughput, differential genome analysis

Methods for miRNA target prediction

Widely used tools for the prediction of potential microRNA target sites are programs like RNAhybrid

program [Reh06, RSHG04], PicTar [KGP+05], miranda [EJG+03], or targetscan [LSJR+03]. They

compute the ability of a given miRNA to bind to a given target mRNA. Such programs could

be integrated into Genlight as sequence analysis methods, establishing a pair relationship between

two sets of nucleotide sequences, comparable to the already supported pairwise alignment methods

BLAST and FASTA. Their results could then be represented in form of a method specific Hit-set

table.

Integration of methods for the detection of structurally conserved noncoding RNAs

With the detection of microRNAs and other structurally conserved noncoding RNAs and their

involvement in several central regulatory processes, a lot of effort was spent on the development

of computational methods and tools for their reliable detection. In the following we briefly in-

troduce existing methods and resources whose integration into Genlight could be reasonable. One

important resource from this field is the Rfam collection of known structurally conserved noncoding

RNAs [GJMM+05]. Rfam describes families of noncoding RNAs with covariance models [ED94] and

can be searched with the INFERNAL program [Edd02]. In Genlight, INFERNAL could be integrated

as an additional database screening method, comparable to the already integrated PoSSuMsearch

and hmmpfam methods.

A different approach, combining description of and searching for structurally conserved noncoding

RNAs is used in the thermodynamic matcher approach described in [HHG06]. This may also lead in

the future to collections of programs suitable for searching for specific structurally conserved RNAs

and may offer an alternative to the covariance models used in Rfam.

A program for the detection of new structurally conserved RNAs, which works in the absence of

an available structure model is the RNAz program [WHS05]. RNAz predicts structurally conserved

and thermodynamically stable RNA secondary structures in multiple sequence alignments. It can

be used in genome wide screenings to detect new functional RNA structures, as found in noncoding

RNAs and cis-acting regulatory elements of mRNAs.

Integration of metabolic pathway information

In recent years the Kyoto Encyclopedia of Genes and Genomes (KEGG for short) [KGH+06] has

developed to a major resource for metabolic pathways, bio molecular interactions and reaction

networks. A proper integration of the information contained in the KEGG database into Genlight

would allow for a mapping of proteins to pathway data and hence a quick assessment of existing

metabolic pathways in an organism’s genome. Moreover, sophisticated differential screenings on the

pathway level between certain organisms would become possible.

190

5.8 Concluding remarks on Genlight

Provision of Genlight as a web service

Under the assumption of sufficiently available compute resources one can think about the develop-

ment of a web service API for Genlight’s analysis capabilities. This would allow an external user, or

even an external system to participate from the implemented infrastructure and the distributed ex-

ecution approach by sending sequence data via the web service to Genlight and receive, for instance,

all results obtained from a database search in one or even all of the integrated motif and protein

family databases.

191

5 Genlight - a system for interactive, high-throughput, differential genome analysis

192

6 Conclusions and prospects

6.1 Concluding remarks

The contributions made with this thesis can be subdivided into two parts, namely an algorithmic

and a software engineering part. We presented not only several algorithmic contributions to the

field of sequence analysis using PSSMs as approximate motif descriptors, but also implemented

these newly developed algorithms in our search tool PoSSuMsearch. With the Genlight system, we

further developed a production ready system, integrating PoSSuMsearch and a variety of existing

sequence analysis methods in a common and user-friendly environment suitable for interactive high-

throughput sequence analysis tasks.

Our first main contribution is the development of a new non-heuristic algorithm, called ESAsearch,

to efficiently find matches of PSSMs in large databases. ESAsearch facilitates persistently stored

enhanced suffix arrays for search space indexing and allows to search a database with a PSSM

in sublinear expected time. We presented a detailed complexity analysis which revealed sublinear

running time in the expected case, and linear running time in the worst case for sequences not shorter

than |Am +m−1|, where m is the length of the PSSM and A a finite alphabet. We tested algorithm

ESAsearch in various experiments on nucleotide as well as amino acid data. In these experiments

ESAsearch shows speedups of factor between 17 and 275 compared to the best previous methods

for nucleotide PSSMs, and speedups up to factor 1.8 for amino acid PSSMs. Comparisons with

the most widely used programs that all use variants of the SPsearch algorithm for searching with

PSSMs even show speedups by a factor of at least 3.8.

Since ESAsearch benefits from small alphabets, we developed a variant employing alphabet reduc-

tion. In our performance experiments alphabet reduction yields an additional speedup factor of 2

on amino acid sequences compared to results achieved with the 20 symbol standard alphabet.

Our second main contribution addresses the problem of non-comparable PSSM-scores of different

PSSMs. Therefore, we developed with algorithm LazyDistrib a new method for efficient computation

of a matrix similarity threshold for a PSSM given an E-value or a p-value. LazyDistrib is based on

dynamic programming and in contrast to other methods, it employs lazy evaluation of the dynamic

programming matrix. It is much faster than existing methods and reaches speedups of a factor

between 3 and 330 depending on the stringency of the threshold. In contrast to other methods,

which often use approximations to determine a PSSM threshold from a user specified E-value or p-

value, LazyDistrib is exact and allows accurate on-the-fly calculations of thresholds. For application

scenarios, where it is difficult to specify meaningful PSSM score thresholds, we developed two

variants, ESAsearchKb and LAsearchKb, that adjust dynamically the threshold while searching

and report the k highest scoring matches for a PSSM.

193

6 Conclusions and prospects

In our third main contribution, we addressed the problem of limited expressiveness of single PSSM

matches and introduced the concept of PSSM family models. To efficiently search with such models,

we combined algorithm ESAsearch with a fast fragment chaining approach. We performed several

experiments assessing the sensitivity and specificity of our PSSM family model approach for protein

family classification and assignment. In these experiments PSSM family models achieved a clas-

sification performance only marginally inferior to the performance of pHMMs on the family and

superfamily level, which yield to be the most sensitive modeling approach for detecting distant

homologies and define the state of the art in this field. For distant relationships the percentage

of true positives when allowing 50 false positives was only 1.6 percentage points below the value

achieved by hmmsearch. These results are astonishing, since PSSM family models are much simpler

models than the fully probabilistic pHMMs. From our experimental results, we conclude that PSSM

family models perform nearly as accurate as pHMMs for protein family classification. In addition

there are indications that the classification performance can be further improved by using more

sophisticated methods for PSSM construction. The major advantage of using PSSM family models

instead of pHMMs is the dramatically reduced running time needed for searching with these models

compared to searching with pHMMs. This is due to the use of algorithm ESAsearch for fast PSSM

matching. In a comparable experimental set up, our search tool PoSSuMsearch, also implementing

the combination of ESAsearch and the fragment chaining algorithm of [AO05], achieved a speedup

of factor 171 over hmmsearch.

With the PoSSuM software distribution we provide a well documented software package implement-

ing the ideas and algorithms for efficient searching with PSSMs. Some of the included programs also

support multi-threading and hence benefits from multiple CPUs for further speedups. The PoSSuM

software distribution has already been successfully used in [FSD+05], and is an integrated analysis

method in the Genlight and CoryneRegNet [BBC+06, BRT06] software systems.

Motivated by the surprisingly well classification performance of PSSM family models compared to

pHMMs, and the fact that database searching with pHMMs in particular on a larger scale is a chal-

lenging and time consuming task, we developed the idea of using PoSSuMsearch with PSSM family

models to speedup time consuming pHMM based database searches. Therefore, we designed and

implemented PSfamSearch which uses PoSSuMsearch with PSSM family models to pre-filter the

search space for subsequent application of hmmsearch on the filtered sequence set. Our benchmark

experiments revealed speedups up to factor 138 for PSfamSearch over standard hmmsearch and

hence may offer a purely software based alternative to highly specialized, costly, hardware based

acceleration solutions like DeCypher c© or BioBoost c©HMMer. In several experiments we tested

the impact of the chosen p-value cutoff on the achieved speedups as well as sensitivity of PSfam-

Search. We tested different strategies for threshold determination. The most promising strategy

uses a clear separation of matches obtained on UniProtKB/TrEMBL into training- and test-sets. It

computes cutoffs with good generalization characteristics, and using these cutoffs with PSfamSearch

revealed speedup factors of 72 for p-value cutoffs corresponding to the HMMs trusted cutoffs and

15.2 for p-value cutoffs corresponding to noise cutoffs, compared to direct unfiltered hmmsearch,

while retaining more than 99.7% of the original results. For the first 20 protein families listed in

the TIGRFAM database, PSSM family model based pre-filtering using this strategy for cutoff deter-

mination allowed to reduce the search space to only 1.72% of the original search space on average.

Extrapolated to all 2,946 models listed in the current TIGRFAM release we expect a reduction of

194

6.2 Prospects

running time when searching with these models in UniProtKB/TrEMBL using the models trusted

cutoffs from more than ≈ 2.84 years for direct hmmsearch to only ≈ 15 days for PSfamSearch.

The measured speedup factors achieved by our purely software solutions PoSSuMsearch and PS-

famSearch compare well with what is achieved by the costly, specialized DeCypher c© hardware

solution sold by TimeLogic R©. Responsible for this speedup are an algorithmic as well as a con-

ceptual advancement. The speed of index based PSSM searching with ESAsearch and the fact that

pHMMs can be approximated well with the related, but much simpler, PSSM family models.

As a final contribution of this thesis, we describe Genlight, a production ready, interactive system

suitable for various high-throughput sequence analysis tasks with a special focus on differential

comparative genome analyses. Beyond a variety of other methods, Genlight integrates our database

search tool PoSSuMsearch for efficient searching with PSSM family models from the PRINTS and

BLOCKS databases in large sequence sets using algorithm ESAsearch. Unique features of Genlight are

its set oriented generic data model anchoring the reusability of results in the basic system design and

the integrated distributed execution engine allowing asynchronously executed large-scale analyses

even in the absence of costly cluster systems. These features combined with a user-friendly interface

make Genlight an extremely flexible system with proven value and usability in several scientific

studies.

The majority of contributions made in this thesis were already evaluated and have been proven

valuable for publication in the peer reviewing procedures of different journals or conference pro-

ceedings. I.e., the algorithms dealing with efficient searching with PSSMs and the PoSSuM software

distribution have been published in [BSH+04, BHGK06]. We remark that [BHGK06] was designated

as highly accessed by the journal publisher. Further, at time of this writing (June 2007) [BHGK06]

is ranked at second position in the publishers ranking of the most accessed contributions of the last

12 months of all contributions from members from Bielefeld University in all Biomedcentral jour-

nals. The Genlight system is described in [BMM+04, BSS04] and is available for non-commercial use

on http://piranha.techfak.uni-bielefeld.de/. The presented Genlight case studies in which

the author of this thesis was involved appeared in [MBG+03, BMM+04, SBB+]. A manuscript

describing the application of PSfamSearch as a fast alternative to hmmsearch is in preparation.

6.2 Prospects

Beside several ideas for future Genlight developments already mentioned in section 5.8.1 on page 188,

a significant and still open problem is accurate statistics for PSSM chain scores without the need

for time consuming sampling. Our experiments (see Figure 4.9 on page 123 and Figure 4.10 on

page 125) clearly show a dependency of chainscores C∗M,S and C∗F ,S on the length of the matched

sequence. If this dependency can be eliminated by additional normalizations, this may finally lead

to a continous distribution function for chain scores and hopefully to efficiently computable E-values

and p-values expressing the statistical significance of a certain chainscore.

We have shown in this thesis that our concept of PSSM family models is well suited to describe

protein families and to detect distant relationships. However, PSSM family models are not widely

used in practice yet. This is predominantly founded in the unavailability of searchable collections

of these models. Although we already converted the BLOCKS and PRINTS databases into a format

195

http://piranha.techfak.uni-bielefeld.de/

6 Conclusions and prospects

readable by PoSSuMsearch and use them inside the Genlight system, a future provision of widely used

pHMM based databases in form of PSSM family models is reasonable and necessary to increase the

level of popularity and the dispersal of PoSSuMsearch. Once these conversions have been done, these

resources will become directly applicable for efficient searching using PoSSuMsearch. The conversion

procedure may also include the proper computation of PSSM chainscore cutoffs, corresponding to

pHMM trusted and noise cutoffs so that PoSSuMsearch can be used as a pre-filter for speeding up

database searches with pHMMs.

196

A Appendix

A.1 The 20 letter amino acid alphabet

A ALA Alanine

V VAL Valine

L LEU Leucine

I ILE Isoleucine

F PHE Phenylalanine

P PRO Proline

M MET Methionine

D ASP Aspartic Acid

E GLU Glutamic Acid

K LYS Lysine

R ARG Arginine

S SER Serine

T THR Threonine

C CYS Cysteine

N ASN Asparagine

Q GLU Glutamine

H HIS Histidine

Y TYR Tyrosine

W TRP Tryptophan

G GLY Glycine

Table A.1: The twenty amino acids commonly found in proteins and their one-letter and three-letter

coding.

197

A Appendix

A.2 PROSITE pattern entry

ID CUTINASE 1; PATTERN.

AC PS00155;

DT APR-1990 (CREATED); NOV-1997 (DATA UPDATE); MAR-2005 (INFO UPDATE).

DE Cutinase, serine active site.

PA P-x-[STA]-x-[LIV]-[IVT]-x-[GS]-G-Y-S-[QL]-G.

NR /RELEASE=46.4,178022;

NR /TOTAL=20(20); /POSITIVE=20(20); /UNKNOWN=0(0); /FALSE POS=0(0);

NR /FALSE NEG=0; /PARTIAL=0;

CC /TAXO-RANGE=??EP?; /MAX-REPEAT=1;

CC /SITE=11,active site;

DR P63880, CUT1 MYCBO , T; P63879, CUT1 MYCTU , T; P63882, CUT2 MYCBO , T;

DR P63881, CUT2 MYCTU , T; P0A537, CUT3 MYCBO , T; P0A536, CUT3 MYCTU , T;

DR P00590, CUTI1 FUSSO, T; Q96UT0, CUTI2 FUSSO, T; Q96US9, CUTI3 FUSSO, T;

DR P41744, CUTI ALTBR , T; P29292, CUTI ASCRA , T; P52956, CUTI ASPOR , T;

DR Q00298, CUTI BOTCI , T; P10951, CUTI COLCA , T; P11373, CUTI COLGL , T;

DR Q8X1P1, CUTI ERYGR , T; Q99174, CUTI FUSSC , T; P30272, CUTI MAGGR , T;

DR Q8TGB8, CUTI MONFR , T; Q9Y7G8, CUTI PYRBR , T;

3D 1AGY; 1CEX; 1CUA; 1CUB; 1CUC; 1CUD; 1CUE; 1CUF; 1CUG; 1CUH; 1CUS; 1CUU;

3D 1CUV; 1CUW; 1CUY; 1CUZ; 1FFA; 1FFB; 1FFC; 1FFD; 1FFE; 1OXM; 1XZA; 1XZB;

3D 1XZC; 1XZD; 1XZE; 1XZF; 1XZG; 1XZH; 1XZJ; 1XZK; 1XZL; 1XZM; 2CUT;

DO PDOC00140;

//

Figure A.1: PROSITE entry of a pattern describing a serine active site (PROSITE Accession:

PS00155). The pattern description in form of a limited regular expression following

the conventions as described in Section 2.4.2 on page 17 is given in the PA line.

A.3 PoSSuMsearch command line interface: Quick reference

Subsequently we give short explanations of the PoSSuMsearch command line options. Help on

these options is also provided at the command line by calling PoSSuMsearch with option -help.

For a detailed description of the available command line paramters see the complete manual of the

PoSSuM software distribution provided in section A.4.

* PoSSuMsearch 1.3.3-chaining 64bit, compiled on Feb 14 2007 at 14:41:21

-help Show help screen.

-version Show program version.

-db Name of a database to search in, which can be either an enhanced

suffix array, a Fasta, GENBANK, or EMBL file.

-pr Name of a profile library file.

-protein Use protein alphabet for input sequence.

-dna Use DNA alphabet for input sequence.

-smap Name of a symbol map file for input sequence alphabet.

-freq Name of a frequency file.

-uniform Assume uniform character distribution in input sequence.

-pdis Name of a precalculated probability distribution file.

-lazy Lazy probability evaluation.

-esa Enhanced suffix array search algorithm (only applicable if the

input is really an enhanced suffix array).

-lahead Lookahead search algorithm.

-simple Simple search algorithm.

198

A.4 The PoSSuM software distribution

-eval An E-value to determine the threshold from.

-pval A p-value to determine the threshold from.

-mssth A matrix similarity score (MSS) to determine the threshold from.

-rawth Raw threshold value.

-best Search for k best matches for each PSSM.

-all Search for all PSSMs, even if they fall below the given cutoff.

-dbsize Size of database for E-value tuning (optional if -eval is used).

-realpha Use reduced alphabet for searching protein PSSMs.

-sort Sort output by key. Valid keys are i=identifier, a=accession,

p=p-value, e=E-value, m=mss, s=score, n=sequence number,

o=position, r=group ID, t=group position, g=group ID/position

(=rt), l=chain length.

-pssmsearch Sequence classification based on a, typically small, library of

known family models. This option requires a numeric argument, k.

Per family model, the (up to) k best matching sequences are

reported.

-seqclass Sequence classification based on a, typically large, library of

known family models. This option requires a numeric argument, k.

Per sequence, the (up to) k best matching family models are

reported.

-mclen Minimum chain length (default is 1).

-mrclen Minimum relative chain length, reject chains shorter than a given

fraction of its group size.

-format Output format, one of "human" (default), "cisml", "tabs", "stats",

or "null".

-fn Search in forward direction (default).

-rc Search for reverse complementary matches (only applicable on DNA).

-rn Search for reverse non-complementary matches.

-fc Search for complementary matches (only applicable on DNA).

-2 Search forward and reverse complementary (short for ‘‘-fn -rc’’).

-4 Search in all possible ways (short for ‘‘-fn -fc -rn -rc’’).

-ncompl When reporting complementary matches, print out the matching

sequences as appearing in the database instead of complementary.

-seqrange Sequence range in which to search, given as min:max pair.

-mult Multiplier for PSSM values (default is 1.0).

-csfun Which chain score function to use. Valid functions are "pvalues"

(default) and "ones" (longest chains win).

-nomatch Don’t actually search, just set thresholds for benchmarking and

print the time needed for that.

-qm Suppress status messages.

-qw Suppress warnings.

-q Quiet execution, suppress warnings and status messages.

A.4 The PoSSuM software distribution

A.4.1 File formats

PoSSuMsearch and PoSSuMdist require PSSMs stored in an easy to read ASCII based file format,

combining features supported by other PSSM formats. Converters are included in the PoSSuM

software distribution to transform TRANSFAC and PRINTS PSSM libraries into PoSSuM -PSSM

format, see Section A.4.5 on page 217. PSSMs of the BLOCKS database [HP99, HGPH00] or any

199

A Appendix

PSSMs in BLOCKS format can be used detouring a conversion into PRINTS format. Converters

for this purpose are already available, e.g., in the FingerPrintScan [SFA99] package.

The PoSSuM-PSSM format

In PoSSuM -PSSM format, each line begins with a tag, followed by one white space character,

followed by some data for that tag. All strings are case-sensitive. There must be no white space

before the beginning of any tag. Lines may be empty to separate things. Comments are allowed and

introduced by a # character at the beginning of a line, the whole line is considered as a comment

then.

These are the general rules. Now, a PSSM is defined in multiple lines, from which the first one reads

BEGIN type

followed by some other lines making up the PSSM, and the last line

END

indicating the end of a PSSM. The type can be one of INT or FLOAT, depending on the values used

in the scoring matrix. If no floating point values occur in the matrix, then type should bet set to

INT to speed up the search as integers can be processed much faster on most machines than floats

can be.

Valid tags between a PSSM’s BEGIN and END lines are (in any order):

ID The identifier of the PSSM. This tag is required.

AC The accession of the PSSM.

DE A description; any number of DE lines are allowed per PSSM. Multiple description lines are

concatenated in order of occurence and separated by full stops when displayed by PoSSuM-

search.

AL An alphabet string. Each character in the string stands for one column of the PSSM, in given

order and case-sensitive. The length of the alphabet string determines the width of the scoring

matrix, that is, how many columns are expected to be defined.

AP A name of a predefined alphabet, either PROTEIN or DNA. Specifying DNA is equivalent to using

an AL line with alphabet string ACGT; PROTEIN is equivalent to AL ACDEFGHIKLMNPQRSTVWY

(note that the exact order of characters is important, thus the explicit specification of the

alphabet strings).

Only one of AL or AP can be used for a PSSM, of course, but one of them is required.

LE The “length” of the PSSM, that is the number of rows. This tag is required.

The values of a scoring matrix are defined using MA tags, one line per matrix row. There must be

as many rows as specified in the LE line, each containing as many values as there are characters in

the alphabet, in the order imposed by the alphabet. All values are given either as integers or reals

as specified by the BEGIN line, separated by white space. After the first MA line, only MA, empty, or

comment lines, or END are permitted.

200

A.4 The PoSSuM software distribution

The format requires matrices being grouped for later, optional chaining. A group of PSSMs must be

surrounded by BEGIN GROUP and END lines. If your application context does not require grouping,

just start the library file with a BEGIN GROUP line and end it with a final END after the END of the

last PSSM. This declares all PSSMs in the file to belong to the same group.

Internally, each PSSM is identified by a tuple of group identifier and group position. The group

identifier is the position of a group within the profile library file and the group position is the

position of a PSSM within its group. Both quantities are counted up from 0 while the profile library

file is read, where the group position counter is reset to 0 for every new group. Group identifiers

and positions can be used for sorting the output (see description for -sort in Section A.4.2) or for

PSSM identification when post-processing the output by external programs.

A valid, artificial example for a PSSM library file is

BEGIN GROUP

BEGIN INT

ID Some matrix identifier

AC Some accession

DE A description describing the PSSM

DE Multiple description lines are possible

AP DNA

LE 3

A C G T was specified by "AP DNA"

MA 5 -1 -6 2

MA -4 4 -1 -5

MA 0 -3 3 -4

END

BEGIN FLOAT

ID Some other matrix identifier

DE Another description

AL AUCG

LE 2

A U C G

MA 0.0 -3.5 3.2 -4.8

MA -4.2 -1.0 4.0 -5.8

END

END

Frequency file format

A frequency file consists of simple character/value pairs, one pair per line. It serves for proper

probability distribution calculation for E- and p-values for the PSSMs based on a specific input

sequence.

A line starts with a single character, followed by white space, followed by the relative frequency of

that character in the input sequence. The relative frequency is a real number in the interval [0, 1],

the sum of all frequencies specified in one file should be 1.0, such that they constitute a sequence

dependent character distribution.

201

A Appendix

Comments are allowed and introduced by a # character at the beginning of a line, the whole line is

considered as a comment then. Empty lines are permitted.

A valid example for a uniform distribution on DNA data is

Uniform nucleotide distribution.

A 0.25

C 0.25

G 0.25

T 0.25

Note that instead of “T 0.25” it would be equivalent to specify “U 0.25” or two separate lines
reading

T 0.15

U 0.1

if the input sequence alphabet were to define “T” and “U” being the same. Frequencies of equivalent

characters are summed up. See below for more information about symbol mappings.

See Section A.4.4 on page 216 for the description of a tool for determining relative frequencies of

characters from an input sequence.

Custom symbol mappings

To work on some sequence, PoSSuMsearch, PoSSuMdist , and PoSSuMfreqs all need to know the

sequence’s underlying alphabet. If the input sequence is an enhanced suffix array built by mkvtree1

from the Vmatch package (see http://www.vmatch.de/), then this information is stored in the

suffix array project. If the input sequence is a plain text format like Fasta, though, the user must

either provide a symbol mapping file, or use the command line options -dna or -protein to specify a

predefined (built-in) alphabet.

The format of symbol mapping files is the same as the format used in Vmatch, which is because

the PoSSuM software distribution is based on the same libraries as Vmatch. Each line consists of

a string of characters that should be regarded as equal. E.g., the file

aA

cC

gG

tT

*

defines a case-insensitive DNA alphabet. The last line specifies a group of special wildcard characters

(only “*” in the example). Actually the wildcard is just an ordinary character treated in a special

way internally. Note that the symbol mapping parser is quite picky and requires the last line to be

terminated by a newline character.

1Executable binary also included in the PoSSuM software distribution.

202

http://www.vmatch.de/

A.4 The PoSSuM software distribution

Internally, all characters read from the input sequence are mapped to integers, and all characters

that appear on the same line of the symbol mapping file are mapped to the same integer such that

there is really no difference between them internally.

Use of symbol mappings is important for several reasons:

• Validation of the input sequence (invalid characters can be detected and therefore never occur

during searching or in the output).

• Special treatment for case-(in)sensitivity, or more generally, character classes (like “t” = “T”

= “u” = “U”), is unnecessary because these cases are handled at the alphabet transformation

level.

• The alphabet imposes an order on its characters by mapping them to integers (e.g., “a” and

“A” may be mapped to 0, “c” and “C” to 1, etc.). Columns of PSSMs are ordered according to

some alphabet, too (first column may stand for “A”, second for “C”, etc.). If the order of the

input sequence alphabet is different from the PSSM’s alphabet, then the columns of the PSSM

can be reordered according to the order of the input sequence alphabet (otherwise, the user

would be urged to provide his PSSMs with their columns in input sequence alphabet order),

and this can be done with character classes being handled correctly (if the input sequence is

encoded using the alphabet from the example above and the PSSM has some column for “U”,

then this column is read whenever a “t”, “T”, “u”, or “U” appears in the input, additional

columns for any of “t”, “T”, or “u” will be flagged as an error because of ambiguities).

A.4.2 PoSSuMsearch

Description

This is the main searching program. It implements ESAsearch for searching PSSMs in an enhanced

suffix array, the lazy dynamic programming evaluation algorithm for threshold derivation from E-

and p-values and the fast fragment chaining algorithm of [AO05] to compute high scoring chains

of PSSM matches. Additionally, other search algorithms LAsearch and simple search for plain text

formats such like Fasta are implemented. As an alternative to the lazy dynamic programming

evaluation algorithm, a precalculated probability distribution generated by PoSSuMdist (see Sec-

tion A.4.3 on page 214) can be used to derive PSSM thresholds.

Command line options

The searching program PoSSuMsearch is called as follows:

possumsearch [options]

Valid choices for options are

-help

Show options and terminate with error code 0.

203

A Appendix

-db dbfile

Name of a database to search in, which can be either an enhanced suffix array, or a Fasta,

GenBank, or EMBL file. The sequence must consist of characters over the alphabet as specified

by the options -dna, -protein, or -smap, see below. This option is mandatory.

-pr matrixfile

Name of a profile library file. A “library” here is a collection of one or more PSSMs stored in

the format as described in Section A.4.1 on page 200. This option is mandatory.

-protein

This option is equivalent to the option -smap mapfile where mapfile stores exactly the following

21 lines:

L

V

I

F

K

R

E

D

A

G

S

T

N

Q

Y

W

P

H

M

C

XBZ*

This specifies an alphabet of size 20 with additional wildcard symbols on the last line. See

Section A.4.1 on page 202 or the Vmatch manual for a more detailed explanation of the format

of symbol mapping files.

-dna

This option is equivalent to the option -smap mapfile where mapfile stores exactly the following

5 lines:

aA

cC

gG

tTuU

nsywrkvbdhmNSYWRKVBDHM

This specifies an alphabet of size 4 with additional wildcard symbols appearing in the fifth

line. See Section A.4.1 on page 202 or the Vmatch manual for a more detailed explanation of

the format of symbol mapping files.

204

A.4 The PoSSuM software distribution

-smap mapfile

Specify the file storing the symbol mapping. If the given mapfile cannot be found in the direc-

tory where PoSSuMsearch is run, then all directories specified by the environment variable

MKVTREESMAPDIR are searched. If defined correctly, this contains a list of directory paths sep-

arated by colons (“:”).

If the file can’t be found, an error message is reported and the program exits with error code 1.

See Section A.4.1 on page 202 or the Vmatch manual for a more detailed explanation of the

format of symbol mapping files.

-freq freqfile

Specify the file storing the relative frequencies of characters in the input sequence. See Sec-

tion A.4.1 on page 201 for file format reference and Section A.4.4 on page 216 for a description

of PoSSuMfreqs , a simple program for generating frequency files from a database.

-uniform

If no frequency file is available, this option can be specified to assume characters being dis-

tributed uniformly. Note that this option is not meant for regular use—for accurate results,

determining the real character distribution and specifying it via -freq is mandatory.

-pdis distfile

Specify the file storing a precalculated probability distribution as generated by PoSSuMdist

for fast computation of E- and p-values for the PSSMs. The file must match the profile

library specified by -pr and the alphabet of the input sequence. Because frequency information

was already used when the distribution was precalculated by PoSSuMdist , options -freq and

-uniform are prohibited when using this option. See Section A.4.3 on page 216 and PoSSuMdist

description for further information. Alternatively, -lazy can be used.

-lazy

Use lazy dynamic programming for fast computation of E- and p-values for the PSSMs as

described in [BHGK06].

-esa

Search the PSSMs via ESAsearch as described in [BHGK06]. This option is only valid if

the dbfile given to -db is an enhanced suffix array which must have been built by mkvtree

beforehand.

-lahead

Search the PSSMs via LAsearch as described in [WNB00, BHGK06]. This option can be used

with all kinds of input sequences.

-simple

Search the PSSMs via algorithm SPsearch as implemented in FingerPrintScan, Blocksearch

[HH91], Blimps , MatInspector , and probably others. This option can be used with all kinds of

input sequences, but should be used for debugging and benchmarking only due to its inferior

efficiency.

-eval E-value

Specify E-value cutoff. This option must be combined with either -lazy or -pdis. E-value

205

A Appendix

calculation is based on p-values, it is simply the p-value times database size. If combined with

-seqrange, the database size is still assumed to be the size of the whole input sequence, not

just the range’s size. Use -dbsize to modify the database size for E-value calculation.

-pval p-value

Specify p-value cutoff. This option must be combined with either -lazy or -pdis.

-mssth similarity

Specify a matrix similarity score (MSS) cutoff. MS-scores are PSSM scores rescaled to the

interval [0, 1] with the minimum reachable PSSM score corresponding to 0 and the maximum

reachable PSSM score corresponding to 1. This scoring scheme is used in MatInspector and

Match [KGR+03]. The MSS of PSSM M of length m and a sequence w ∈ Am is defined as

MSS = sc(w,M)−scmin(M)
scmax(M)−scmin(M) and hence given an MSS cutoff value, the threshold th is determined

as th = MSS · (scmax(M)− scmin(M))+ scmin(M). Note that because PSSM thresholds can be

derived from similarity without use of probability distributions, they will not be calculated by

default and E- and p-values will not be available in the results. If this information is required,

also specify -freq, -uniform, or -pdis to tell PoSSuMsearch how the probability distributions for

displaying E- and p-values should be obtained. If -freq or -uniform is used, a full probability

distribution must be calculated for each matching PSSM which can be slow, using -pdis is the

better choice then.

-rawth threshold

Specify a raw, global threshold for all PSSMs. As PSSM thresholds are set directly and hence

no probability distributions are required to do so, the same discussion about E- and p-values

as for -mssth applies.

-best k

Find the k > 0 best (meaning highest scoring) matches per PSSM. If there are less then k

matches, only those are printed. This option can only be used in conjunction with -esa and

-lahead. Searching with reduced alphabets on enhanced suffix arrays (options -realpha and

-esa), however, does not work together with this option.

Note that since in general matches are found in different order for -esa and -lahead, their results

may also slightly differ (e.g., this is the case when asking for, say, the best three matches, but

there are actually a total of five best equally scoring matches in the database, then two of

them never get reported—this is not a bug).

Also note that the threshold used for searching reported for each match (the value printed

after “threshold” in human readable output, field 9 in tab delimited output, see Section A.4.2

on page 213) is quite useless if -best is specified.

-all

If a PSSM fails to code for the specified cutoff, e.g., if a p-value of 10−30 was specified, but

the PSSM is only capable to code for a p-value of 10−20, then that PSSM is not searched

for by default and a warning is issued instead. If this option is specified, then in these cases

the threshold is set to the maximum possible score the PSSM can yield, so it could match

nonetheless (with a p-value higher than requested, though).

206

A.4 The PoSSuM software distribution

-dbsize size

Assume the database size is size as basis for E-value calculation. This option affects E-value

calculation exclusively. By default, the original database size is used. Option -seqrange does

not affect the default value.

-realpha

This option is specific to protein data/PSSMs. A problem with protein data is the large

alphabet (when compared to DNA) involved which slows down the ESAsearch algorithm. A

solution is to build an enhanced suffix array using a smaller custom alphabet which defines

groups of amino acids as single representative characters, and to search the PSSMs on that

reduced alphabet size index.

Usually PSSMs are converted to match the input sequence alphabet, such that an error would

be issued when a protein PSSM was searched in an enhanced suffix array built with such a

reduced alphabet. The problem then is that groups of distinct profile columns are mapped to

the same sequence character representing a group, and when scoring that character there is

no way to decide which of the PSSMs’ columns should be used for scoring. So to handle this

application case properly, the -realpha option must be specified. PSSMs are then read as if the

input sequence was encoded by the standard protein alphabet, i.e., for enhanced suffix arrays

as if they had been built using the -protein option, and for flat files (like Fasta) as if -protein

had been passed to PoSSuMsearch (see description for -protein above). PSSMs are converted

internally according to the reduced sequence alphabet and searched in the reduced sequence,

the intermediate matches found are applied to the original PSSMs and original input sequence

to calculate the correct match scores. Since reduced alphabets are specific to protein data,

options -rc and -fc cannot be used together with -realpha, of course.

Note that for applying this option to an enhanced suffix array, it must have been built with

the -ois option passed to mkvtree. To specify a reduced alphabet, write a symbol map file as

described in Section A.4.1 on page 202 or in the Vmatch manual and pass that symbol map

to mkvtree via the -smap option. Using this option for flat files doesn’t make much sense but is

still supported, use PoSSuMsearch’s -smap option then. Also don’t expect any speed-up when

using reduced alphabets with the LAsearch algorithm.

All PoSSuMsearch options retain their original semantics even if -realpha is specified, e.g., -pval

specifies a p-value cutoff for the PSSMs as if they were searched directly in the protein data,

hence optionally passed frequencies or precalculated distributions must refer to the standard

protein alphabet. See Section A.4.6 for a complete example on how to use this option.

There is one drawback, though: if both -esa and -best are specified, then this option cannot

be used. If -best is needed, use -lahead or a full alphabet size version of the index (i.e., no

-realpha) instead.

-sort keys

Specify order in which matches should be reported. If this option is omitted, the output is not

sorted in any special way. The keys argument is a string of keys the output is to be sorted by,

priority in order of keys. Valid keys are

i PSSM identifier, sorted in lexical order. This is the string that is specified in the ID tag.

207

A Appendix

a PSSM accession, sorted in lexical order. This is the string that is specified in the AC tag.

p p-value of match, smallest first.

e E-value of match, smallest first.

m MSS of match, largest first.

s Score of match, largest first.

n Sequence number, smallest first.

o Position of match in sequence, smallest first.

r Group identifier.

t Group position.

g Group identifier and position, short for “rt”.

E.g., to get results sorted by E-value in first place and sequence number in second place,

specify “-sort en”. Matches with both the same E-values and sequence numbers again are not

sorted in any special way.

Note that a pair of group identifier and group position (sort key “g”) always identifies exactly

one PSSM, but a PSSM identifier together with its accession (sort keys “ia” or “ai”) may not

because multiple PSSMs with equal identifiers and accessions can be specified. If unsure, use

“iag” instead of “ia” or “aig” instead of “ai” to make sure to have PSSMs with both the

same identifier and accession separated in the output. Also note that specification of “gia”

or “gai” is equivalent to only specifying “g” because if PSSMs are already sorted by group

identifier and position in first place, then further sorting by PSSM identifier or accession is not

possible (read: unnecessary). In other words, specification of “g” just separates matches by

PSSM in order of occurence in the profile library, “iag” or “aig” arrange them in alphabetical

order and then make sure to have distinct PSSMs with equal identifier and accession strings

being separated.

-pssmsearch k

Sequence classification based on a, typically small, library of known family models. This option

requires a numeric argument, k. Per family model, the (up to) k best matching sequences

are reported. For this option matches to PSSMs are chained according to the order given

in their corresponding “GROUP” definition. A group of PSSMs is also called a PSSM family

model. Employing this options, PoSSuMsearch computes and rports high-scoring chains of

PSSM matches instead of single PSSM matches. For fast computation of high-scoring chains

the fragment chaining algorithm of [AO05] is applied with chain scores defined according to

Equation (4.8) and Equation (4.7). Using this option, the mode of operation is comparable to

hmmsearch from the HMMER package.

-seqclass k

Sequence classification based on a, typically large, library of known family models. This option

requires a numeric argument, k. Per sequence, the (up to) k best matching family models are

reported. Likewise to “-pssmsearch” this option also employs fragment chaining. Its semantics

are comparable to hmmpfam from the HMMER package.

208

A.4 The PoSSuM software distribution

-mclen k

Filtering of obtained high scoring chains based on chainlength. Only chains consisting of at

least k PSSM matches are reported.

-mrclen k

Filtering of obtained high scoring chains based on relative chainlength. Here k specifies the

chain length necessary for a reported result relative to the number of PSSMs in the corre-

sponding family model. k = 0.66 means, that the minimum length of a chain to be reported

has to be at least two third of the number of PSSMs specified in the family model.

-format fmt

Specify output format, where fmt is one of

human a human readable multiline format,

cisml CisML [HW04], an XML-based format,

tabs tab delimited output (see Section A.4.2 on page 213), or

null no output.

-fn

Search on forward strand (default). This option works with any alphabet and replaces the

-fwd option of previous versions of PoSSuMsearch. See also -rc, -rn, and -fc. See Section A.4.2

on page 211 and Figure A.2 for a more detailed explanation on the options concerning search

directions.

-rc

Search for reverse complementary matches. This option disables the default of searching on

the forward strand—specify an extra -fn to search on both strands, or use option -2 or even

-4. This is a DNA specific option, i.e., the input alphabet must be a DNA alphabet (or in

better words, a DNA compatible alphabet, not necessarily generated via the -dna option of

PoSSuMsearch or mkvtree), and, of course, the PSSMs should encode DNA motifs.

The reason for the DNA specificity is that internally the PSSMs’ columns are exchanged (“A”-

column with “T”- or “U”-column and “C”-column with “G”-column), their rows are reversed

in order, and then a usual search in forward direction is done. Because PoSSuMsearch supports

arbitrary alphabets to be used for both, input sequences and PSSMs, the column exchange

must be done carefully, the compatibility of both alphabets must be checked, and character

classes must be recognized (“T” and “U” could be distinct characters in the input sequence).

Note that PoSSuMsearch does not attempt to recognize whether the alphabets are strictly

DNA or not, it just tries to find those columns unambiguously labelled with characters from

the DNA alphabet and exchanges them. If columns cannot be exchanged for some reason, the

program will tell so and exit with error code 1. See Section A.4.2 on page 211 and Figure A.2

for a more detailed explanation on the options concerning search directions. See also option

-ncompl.

A more general, non-DNA specific approach could be implemented by requiring the user to

explicitly specify the columns to be exchanged instead of autodetecting them, but it would be

harder to use without any gain in practical use. Expect no problems when using option -dna

throughout.

209

A Appendix

-rn

Search for reverse matches. The PSSMs’ rows are reversed in order and a usual search in

forward direction is done. This option works with any alphabet. See Section A.4.2 on the

next page and Figure A.2 for a more detailed explanation on the options concerning search

directions.

-fc

Search for complementary matches. Alike -rc, this is a DNA specific option, i.e., the input

alphabet must be a DNA alphabet and the PSSMs should encode DNA motifs. Internally,

the PSSMs’ columns are exchanged as with -rc and a usual search in forward direction is

done, but the PSSMs’ rows are not reversed in order. This option replaces the (misnamed)

option -rev of previous versions of PoSSuMsearch. See Section A.4.2 on the facing page and

Figure A.2 for a more detailed explanation on the options concerning search directions. See

also option -ncompl.

-2

Short for -fn and -rc. If searching for forward and reverse complementary matches, this option

is usually what you want. See Section A.4.2 on the next page and Figure A.2 for a more detailed

explanation on the options concerning search directions.

-4

Short for all of -fn, -rc, -rn, and -fc. See Section A.4.2 on the facing page and Figure A.2 for

a more detailed explanation on the options concerning search directions.

-ncompl

By default, the matching sequences for matches on the complementary strand (options -rc

and -fc) are printed out complemented, i.e. not as they appear in the input sequence. E.g.,

ACG is a matching sequence to the first PSSM in Section A.4.1 on page 201 with a threshold

of 12 on the forward strand. A reverse complementary matching sequence to the same PSSM

with threshold 12 is CGT, possibly occuring somewhere else on the reverse complementary

strand. In this case, the string that really occurs in the input sequence is GCA since the input

sequence is always considered to be the forward strand. Without this option, the matching

sequence will be printed as CGT, and as GCA otherwise. See Section A.4.2 on the facing page

and Figure A.2 for a more detailed explanation on the options concerning search directions.

-seqrange range

When using -lahead or -simple, search only in a range of sequences, not all. The range is specified

as min:max pair, including the borders. A range of 30:39 will search only in sequences 30 to

39, including sequence 30 and 39. Sequence numbers always start at 0.

-mult factor

For probability distribution calculation, the values of the scoring matrices are scaled by the

value of factor . The default value of factor is 1.0. To speed up calculation of E- and p-values

at the price of loss of precision and to reduce disk space when writing the distribution to file

using PoSSuMdist , choose a value from interval (0, 1). This effects in a compression of PSSM

score ranges and thereby a reduction of computation time for the probability distribution

calculation. E.g., a value of 0.1 speeds up the probability distribution calculation for a PSSM

210

A.4 The PoSSuM software distribution

by approximately a factor of 10 (because the PSSM’s score range is only a tenth of the original

range then), but this also means that every 10 consecutive score values achievable by a PSSM

are condensed into one single p-value, which is likely to produce false positives and false

negatives.

To enhance precision in some cases, choose a value greater than 1, resulting into an expansion

of score ranges. Since floating point PSSMs must be rounded to integers for our dynamic

programming method, a value greater than 1 can help getting better E- and p-values for

PSSMs containing very small values.

This option should be used with great care. PSSMs with smaller score ranges are more prone

to rounding errors than those with larger ranges. Larger score ranges result into considerably

more space consumption by the probability distribution calculation.

-qm

Do not print status messages to stderr.

-qw

Do not print warnings to stderr.

-q

Quiet, do not print anything to stderr. This is equivalent to specifying both -qm and -qw.

Matches are still written to stdout.

-version

Show program version. Option --version is a synonym for this option.

There is also a multithreaded version of PoSSuMsearch, usually called possumsearch-mt. It knows

one additional option:

-j jobs

Number of simultaneous jobs. By default, without this option the number of jobs is 1. Set

the optional argument jobs to the number of physical CPUs inside your computer to get best

performance or to a lower number to keep some CPUs free for other processes. If jobs exceeds

the number of CPUs, performance may suffer badly.

If -j is specified without jobs, PoSSuMsearch tries to ask the operation system for the num-

ber of CPUs installed. Note that this may lead to undesired results if Hyper-Threading is

activated—measurements on a 2-processor machine with Hyper-Threading enabled showed

drastically reduced performance when using four (virtual) CPUs, that was even slightly below

the performance of a single CPU doing the same task.

Both programs will terminate silently with error code 0 if no error occured. On error, they will

terminate with error code 1 and print the error to stderr.

Search directions

On any data, PoSSuMsearch supports searching with PSSMs in forward and reverse directions in

order to find matches to the provided PSSMs and their reverse. Additionally, on DNA data, searching

211

A Appendix

5′ 3′

3′ 5′

. . .
forward

reverse complementary

1 3

4 2

Figure A.2: The search directions supported by PoSSuMsearch. If the data is DNA, then there

are four cases to consider, namely searching with a PSSM (1) in forward direction on

forward strand (option -fn, default), (2) in reverse direction on reverse complementary

strand (option -rc), (3) in reverse direction on forward strand (option -rn), and (4) in

forward direction on reverse complementary strand (option -fc). Note that the arrows

denote directions in a biologically correct sense since DNA is commonly read from 5′-

to 3′-end. The lower strand in the figure is the complement to the upper strand, not

the reverse. In case of non-DNA data, the lower strand does not exist, and so then do

cases (2) and (4) not.

on the complementary strand is possible. This sums up to a total of four cases, see Figure A.2 for

reference. PoSSuMsearch offers command line switches to choose any combination of these, the

default is -fn (search for matches on the forward, non-complementary strand). Specifying one of

the other options disables -fn, so -fn must be specified explicitly if this is also required. Cases (1)

and (3) can be used independently of the alphabet, cases (1) and (2) are most commonly used on

DNA data. Whether or not cases (3) and (4) are especially useful in practice is arguable, though,

still we provide options for these since the user usually knows better what he wants than we do.

For convenience, option -2 can be used to search for matches falling into the categories of cases (1)

and (2). Use option -4 to search for matches in all four possible ways.

Within PoSSuMsearch, only the forward, non-complementary strand is known, as provided by the

user, represented by the upper strand in Figure A.2. Searching in reverse direction is implemented by

reversing the PSSM’s row order, covering cases (2) and (3). Searching on the complementary strand

is accomplished by alphabet transformation, i.e., by permuting the PSSM’s columns according to

Watson-Crick base pairing, covering cases (2) and (4). The sequence itself remains unchanged.

Since a match does not imply the existence of corresponding matches on the complementary strand

nor does it imply the existence of reverse matches, PoSSuMsearch must search explicitly for every

possible case, hence passing option -4 results in roughly a 4-fold time consumption for the search

phase compared to when searching for a single case.

There are various possible ways one could think of to report reverse and/or complementary matches.

In PoSSuMsearch, matches are always reported with respect to the forward strand since this is the

only sequence that is explicitly represented in the computer and stored in the database. The left-

212

A.4 The PoSSuM software distribution

most position of a match relative to the beginning of the sequence the match occurs in is shown

as the start position, starting with position 0, regardless of search direction. E.g., the matching

positions for the instances of cases (1) to (4) in Figure A.2 would be reported as marked as 2,

n−10, n−5, and 4, respectively, where n is the number of characters in the sequence. The matching

sequence is printed in forward direction as occuring in the database, so in particular, not in reverse

even if the match was found on a reverse strand. For matches on the complementary strand, the

complementary sequence is printed as matching sequence. To get the matching sequences as they

occure in the database (i.e., on the non-complementary forward strand), specify option -ncompl.

Tab delimited output format

This output format contains one single line per match, containing 18 entities, separated by tabula-

tors, with the following meanings:

1. matched PSSM’s identifier (ID),

2. matched PSSM’s accession (AC),

3. matched PSSM’s description (DE, multiple lines separated by “. ”),

4. group identifier, which is the position of the group in the profile library file that the PSSM

belongs to, starting at 0,

5. position of PSSM within its group, starting at 0,

6. start position of the match with respect to the beginning sequence the match occurs in, starting

at 0 (see Section A.4.2 for more details on this),

7. length of the match,

8. search direction (“fn” for forward non-complementary, “rc” for reverse complementary, “rn”

for reverse non-complementary, “fc” for forward complementary, see Section A.4.2),

9. threshold used for searching (value is useless if -best was specified since there is no specific

predefined threshold in that case),

10. match score,

11. minimum score the PSSM can achieve,

12. maximum score the PSSM can achieve,

13. p-value,

14. E-value,

15. MSS,

16. matching sequence number, starting at 0,

17. matching sequence description (multiple lines separated by “. ”), and

213

A Appendix

18. matching substring (see also Section A.4.2 and PoSSuMsearch option -ncompl).

Note that tabulators in string entities (descriptions, identifier, etc.) are not filtered and may there-

fore cause problems when parsing an output containing such a string.

If the probability distribution is not available during match evaluation (maybe because -mssth or

-rawth was specified but neither -pdis nor -freq), the fields for E- and p-value will still be there,

but left empty. The same is true for missing information due to lack of AC or DE tags in the PSSM

specification or missing sequence description. A parser reading tab delimited PoSSuMsearch output

should take this into account.

A.4.3 PoSSuMdist

Description

This is a supplementary program for PoSSuMsearch. It is used to precalculate the complete probabil-

ity distribution which is used to derive PSSM thresholds from E- and p-values. This can be useful if

the same PSSM library is searched multiple times and lazy evaluation within PoSSuMsearch should

be circumvented. Note that a complete probability distribution may require a significant amount of

space on file and can take a long time to calculate.

In PoSSuMsearch, it is not possible to use a generated probability distribution file with PSSM

libraries different from that given to PoSSuMdist to generate the distribution. It is not even possible

if PSSMs are only rearranged within, deleted from or inserted into that PSSM library. Hence the

use of precalculated probability distributions decreases the grade of flexibility in favor of speed.

Command line options

The program for probability distribution calculation PoSSuMdist is called as follows:

possumdist [options]

Valid choices for options are

-help

Show options and terminate with error code 0.

-pr matrixfile

Name of a profile library file. A “library” here is a collection of one or more PSSMs stored in

the format as described in Section A.4.1 on page 200. This option is mandatory.

-protein

Generate a probability distribution file for an input sequence encoded by the standard protein

alphabet as described in the description of PoSSuMsearch option -protein.

-dna

Generate a probability distribution file for an input sequence encoded by the standard DNA

alphabet as described in the description of PoSSuMsearch option -dna.

214

A.4 The PoSSuM software distribution

-smap mapfile

Generate a probability distribution file for an input sequence encoded by the symbol mapping

defined in mapfile. See the description of PoSSuMsearch option -smap for more details.

-db dbfile

Generate a probability distribution file for the enhanced suffix array dbfile. This option is used

for convenience to just read the symbol mapping from an enhanced suffix array. The enhanced

suffix array itself is not read.

-freq freqfile

Specify the file storing the relative frequencies of characters in the input sequence. See Sec-

tion A.4.1 on page 201 for file format reference and Section A.4.4 on the next page for a

description of PoSSuMfreqs , a simple program for generating frequency files from a database.

-uniform

If no frequency file is available, this option can be specified to assume characters being dis-

tributed uniformly. Note that this option is not meant for regular use—for accurate results,

determining the real character distribution and specifying it via -freq is mandatory.

-pdis distfile

Specify the name of the output file storing the precalculated probability distribution. This file

can be used later by PoSSuMsearch only in conjunction with the profile library specified by

-pr and input sequences encoded by the specified alphabet. Note that the factor of -mult given

to PoSSuMdist will be encoded into distfile, hence it can’t be changed by a later invokation

of PoSSuMsearch. See Section A.4.3 on the following page for format description and more

information.

-mult factor

The values of the scoring matrices are always scaled by the value of factor, which defaults to

1.0. See the description of the PoSSuMsearch option -mult on page 210 for more details.

-qm

Do not print status messages to stderr.

-qw

Do not print warnings to stderr.

-q

Quiet, do not print anything to stderr. This is equivalent to specifying both -qm and -qw.

-version

Show program version. Option --version is a synonym for this option.

Like for PoSSuMsearch, there is also a multithreaded version of PoSSuMdist , called possumdist-mt.

For technical reasons, it needs more RAM than the single-threaded version (sometimes much more)

because all probability distributions are kept in RAM and finally written to file as a whole after all

calculations are finished. This version knows one additional option:

215

A Appendix

-j jobs

Number of simultaneous jobs. By default, without this options the number of jobs is 1. Set

the optional argument jobs to the number of physical CPUs inside your computer to get best

performance. See description for option -j of PoSSuMsearch in Section A.4.2 on page 211 for

additional notes, also applying to PoSSuMdist .

Both programs will terminate silently with error code 0 if no error occured. On error, they will

terminate with error code 1 and print the error to stderr.

Format of the probability distribution file

A probability distribution file contains the complete probability distributions of all PSSMs in

the profile library in order of occurence, written as binary stream and compressed via zlib (see

http://www.gzip.org/zlib/). This data is architecture dependent and can’t be exchanged be-

tween different architectures because of different byte orders and eventually different sizes of data

types. Exchanging probability distribution files between incompatible architectures will yield un-

predictable results, from false matches to program crashes.

The distributions are written one after the other, containing

• minscore, the absolute of the minimum achievable score (unsigned integer),

• maxscore, the absolute of the maximum achievable score (unsigned integer),

• the absolute of the global matrix minimum multiplied by the matrix height (unsigned integer),

• the factor specified by -mult when the distribution was calculated (double), and

• an array of p-values of length maxscore−minscore+1, ranging from minscore to maxscore

(doubles).

All scores are scaled by the factor specified by -mult and rounded to integers. So, the general file

layout is simply

1. minscore 1. maxscore 1. global minimum 1. factor 1. array of p-values

2. minscore 2. maxscore 2. global minimum 2. factor 2. array of p-values

· · · · · · · · · · · · · · ·

in uncompressed form. To save space, zlib is used to compress the output transparently. Use gunzip

(see http://www.gzip.org/) for manual decompression if needed.

A.4.4 PoSSuMfreqs

Description

For accurate results in score threshold calculation from significance thresholds, the relative frequen-

cies of characters in the database need to be known. PoSSuMfreqs is a simple program to determine

those frequencies and write them to stdout in the format described in Section A.4.1 on page 201.

216

http://www.gzip.org/zlib/
http://www.gzip.org/

A.4 The PoSSuM software distribution

Command line options

The program for determining relative frequencies of characters PoSSuMfreqs is called as follows:

possumfreqs [options]

Valid choices for options are

-help

Show options and terminate with error code 0.

-db dbfile

Name of a database to determine the relative frequencies of characters from, which can be

either an enhanced suffix array, or a Fasta, GenBank, or EMBL file. The sequence must consist

of characters over the alphabet as specified by the options -dna, -protein, or -smap, see below.

This option is mandatory.

-protein

Generate a frequency file for an input sequence encoded by the standard protein alphabet as

described in the description of PoSSuMsearch option -protein.

-dna

Generate a frequency file for an input sequence encoded by the standard DNA alphabet as

described in the description of PoSSuMsearch option -dna.

-smap mapfile

Generate a frequency file for an input sequence encoded by the symbol mapping defined in

mapfile. See the description of PoSSuMsearch option -smap for more details.

-qm

Do not print status messages to stderr.

-qw

Do not print warnings to stderr.

-q

Quiet, do not print anything to stderr. This is equivalent to specifying both -qm and -qw.

-version

Show program version. Option --version is a synonym for this option.

A.4.5 PSSM converters

The PoSSuM software distribution comes with two simple converters, transfac2gen and prints-

2gen, to transform TRANSFAC and PRINTS PSSM libraries into PoSSuM -PSSM format, respec-

tively. They both take a single command line argument, which is the name of a PSSM library to be

converted. The result is printed to stdout, i.e., it must be redirected to some other file to be usable

by PoSSuMsearch or PoSSuMdist .

217

A Appendix

A.4.6 Using the PoSSuM software distribution

Example 1: Basic operations

Build an enhanced suffix array sprot from Fasta file sprot.fas containing protein data, using the

predefined protein alphabet. To save disk space, not all possible tables are built, only those required

by PoSSuMsearch.

$ mkvtree -db sprot.fas -indexname sprot -protein -tis -suf -lcp -skp -v

Generate character distribution from the previously built enhanced suffix array sprot and write it to

frequencies.txt, then search all PSSMs in profiles.txt in sprot, deriving PSSM thresholds via

the lazy dynamic programming algorithm LazyDistrib using an E-value of 10−15 and the character

distribution from frequencies.txt. The size of the database and its alphabet are known from the

sprot project.

$ possumfreqs -db sprot > frequencies.txt

$ possumsearch -pr profiles.txt -db sprot -esa -eval 1e-15 -lazy\

-freq frequencies.txt

Precalculate probability distribution of PSSM library file profiles.txt, write distribution to

dist.gz, and search all PSSMs with a p-value cutoff of 10−20 or less in Fasta file sprot.fas via

LAsearch, which contains protein data with a character distribution stored in frequencies.txt.

The alphabet of the database must be explicitly specified and match the alphabet used when

dist.gz was created (-protein here). Perform the same search again on the previously built en-

hanced suffix array via ESAsearch and then via simple search and observe the differences in running

time.

$ possumdist -pr profiles.txt -protein -freq frequencies.txt -pdis dist.gz

$ possumsearch -pr profiles.txt -protein -db sprot.fas -pval 1e-20 -lahead\

-pdis dist.gz

$ possumsearch -pr profiles.txt -db sprot -pval 1e-20 -esa -pdis dist.gz

$ possumsearch -pr profiles.txt -db sprot -pval 1e-20 -simple -pdis dist.gz

For a working example, take a look into the share/PoSSuM/examples/ directory of the PoSSuM

software distribution. Included are a Bourne shell script (demo.sh), a Fasta sequence file containing

two sequences (demo.fas), and 17 PSSMs in PoSSuM -PSSM format (demo.lib). The shell script

builds an enhanced suffix array from the Fasta file and performs some searches in the enhanced

suffix array and in the Fasta file. The output of the shell script can be redirected to a file and

compared to the included file results.txt found in the examples directory.

Example 2: Using reduced alphabets

Here is a complete example on how to use the -realpha option of PoSSuMsearch to speed up

ESAsearch. We use a custom symbol map, called prot8.map, containing eight character classes

to build an enhanced suffix array sprot8 from the protein data in Fasta file sprot.fas. The

content of prot8.map reads

218

A.4 The PoSSuM software distribution

G

ALM

VI

ND

P

YFWC

KRQE

STH

BXZ*

PoSSuMsearch is used to search the profiles in profiles.txt in sprot8. Note that the distribu-

tion data previously generated can be used here again. Remember that internally the PSSMs are

treated as if the input sequence was encoded by the standard protein alphabet, so the probabil-

ity distribution must be, too. Hence when a precalculated probability distribution should be used

in conjunction with -realpha, it must always refer to the standard protein alphabet. All relevant

commands are shown below.

$ mkvtree -db sprot.fas -indexname sprot8 -smap prot8.map -tis -ois -suf -lcp -skp -v

$ possumfreqs -db sprot.fas -protein > frequencies.txt

$ possumdist -pr profiles.txt -protein -freq frequencies.txt -pdis dist.gz

$ possumsearch -pr profiles.txt -db sprot8 -pval 1e-20 -esa -realpha -pdis dist.gz

The results should be the same as in the example before, except for the ordering.

Example 3: Computing scores for all substrings

If the scores of all substrings of a sequence need to be known, e.g. to determine a distribution

of scores, the best method is to use simple search or ESAsearch in conjunction with setting the

threshold to the PSSMs’ minscore. This can be easily performed by using the normalized matrix

similarity scoring shema, since MSS = 0 ⇔ th = minscore. To achieve this, use something like the

following.

$ possumsearch -pr profiles.txt -db sprot -esa -mssth 0

Do not use LAsearch in this case, since here every substring must be read to its full length anyways

and simple search avoids the extra overhead of LAsearch. Still, ESAsearch is even more preferable.

A.4.7 Messages and warnings

Both programs, PoSSuMsearch and PoSSuMdist , print progress messages to inform the user about

what the program is doing, and warnings if problems are detected. Messages and warnings are

always printed to stderr and are therefore separated from the matches, which are always printed

to stdout.

Messages can safely be ignored, but if any warnings occur, you should read them as they could

point you to some undiscovered problem. Ignore them only if you know they are harmless.

Most warnings are self-explanatory, but there are some that can be confusing:

219

A Appendix

• Warnings concerning PSSM library files:

Character ‘x’ is undefined/defined as a wildcard/defined as the special separator

character in the input alphabet.

A PSSM defines a column for some character which is not defined as a valid character in

the database alphabet and will therefore never contribute to a match score. Those columns

are ignored for probability distribution calculation and during matching. This is a com-

mon warning for e.g., protein PSSMs defining a column for ‘B’ which is a wildcard in the

predefined protein alphabet.

Character ‘x’ may occur in the input sequence, but is not defined for the PSSM.

A character may occur in the database that no column is defined for in a PSSM. This is a bad

warning because this means that the missing column is inserted and filled with a very low,

negative score. No problem for the searching algorithms, but a big problem for probability

distribution calculation—the score range is enlarged artificially and the calculation is likely

to abort due to insufficient memory. Expect to see this warning when e.g., trying to search

DNA PSSMs on protein data.

Character class {. . . } may occur in the input sequence, but no column for any

of its representatives is defined in the PSSM.

This is just the same like above, but instead of a single character ‘x’, the inserted column

stands for a set of characters. The PSSM is expected to define a column for exactly one of

them, otherwise the same will happen as described above.

• Warnings concerning frequency files:

Character ‘x’ is undefined in the input alphabet.

The frequency file defines a frequency for some character which is not defined in the database

alphabet and will therefore never occur in a sequence. This frequency is ignored then.

Character ‘x’ is defined as a wildcard in the input alphabet.

The frequency file defines a frequency for a character that is defined as wildcard in the

database alphabet and will therefore never match. This frequency is still accounted for.

Character ‘x’ is defined as the special separator character in the input alphabet.

The frequency file defines a frequency for some character that is mapped internally to a

special separator which will never occur in a sequence. This frequency is ignored then.

Sum of relative frequencies is not 1.0.

The sum of all frequencies should be exactly 1.0 such that they constitute a probability

distribution. If the sum is not 1.0, this warning is issued, but the frequencies are accepted

as provided. Note that this warning can be an artifact due to rounding errors.

If any of the first three warnings occurs, probably the wrong frequency file for the database

alphabet was specified.

• Searching on complementary strand with PoSSuMsearch:

220

A.5 Predefined Hit-set filters in the Genlight system

Characters ‘x’ and ‘X’ are both undefined in the input alphabet.

Searching on the complementary strand, reverse or not, requires exchanging PSSM columns,

in particular the “A”-column with “T”- or “U”-column and “C”-column with “G”-column.

PoSSuMsearch tries to find these columns automatically, ignoring case (so the ‘x’ and ‘X’

above may stand for ‘a’ and ‘A’). If there is no column for neither the lower nor the upper

case letter of the to-be-exchanged columns, this warning will be issued, meaning that the

search will still proceed but with the corresponding columns unexchanged.

A.5 Predefined Hit-set filters in the Genlight system

In addition to the user defined Hit-set filters, Genlight comes with several predefined filters. Table A.5

on the next page gives an overview of these filters.

221

A Appendix

Filter name Arguments Semantic/Explanation

Select only non-identical

homolog pairs

- With this filter you can select all pairs from a Hit-set that

are not completely identical. Here completely identical means,

that they have exactly the same sequence and annotation

Select full (query) length

matches

This filter returns only sequence pairs, where the aligned re-

gion detected by the comparison method covers the complete

query sequence

Select full (hit) length

matches

This filter returns only sequence pairs, where the aligned re-

gion detected by the comparison method covers the complete

database sequence

Select full (hit) length

matches starting with

PATTERN1 in matching

query region and

PATTERN2 in matching

hit region

PATTERN1

(e.g. ATG),

PATTERN2

(e.g. M)

This filter returns only sequence pairs, where the aligned re-

gion detected by the comparison method covers the complete

database sequence and the aligned region in the query be-

gins with PATTERN1 and the aligned region in the datbase

sequence starts with PATTERN2

Select full length protein

matches starting with

ATG/M and ending with

stop

Special filter for BLASTX, FASTX, FASTY based Hit-sets.

Sequence pairs passing this filter, has to match the complete

database sequence. Further the matching area has to start

with the start codon ATG in the query, a methionine (M) in

the datbase sequence and has to end with one of the three

stop codons TAA,TAG or TGA.

Select almost full (query)

length matches (except

start offset, end offset)

START

OFFSET,

END OFFSET

This filter selects only pairs, where the aligned region cov-

ers the query sequence completely, except some allowed mis-

matches at the start and the end. The number of allowed non

matching characters is given by the two parameters “START

OFFSET” and “END OFFSET”.

Select almost full (hit)

length matches (except

start offset, end offset)

START

OFFSET,

END OFFSET

This filter selects only pairs, where the aligned region covers

the database sequence completely, except some allowed mis-

matches at the start and the end. The number of allowed non

matching characters is given by the two parameters “START

OFFSET” and “END OFFSET”.

Filter by keyword contained

in query sequence header

KEYWORD

(e.g. trans-

membrane),

OCCURENCE

Sequence pairs passing this filter have to contain the string

specified by the KEYWORD parameter as a substring in the

annotation (header) of the query sequence. Setting the OC-

CURENCE parameter to “NO” negates this filter

Filter by keyword contained

in hit sequence header

KEYWORD

(e.g. trans-

membrane),

OCCURENCE

Sequence pairs passing this filter have to contain the string

specified by the KEYWORD parameter as a substring in the

annotation (header) in the annotation of the hit sequence.

Setting the OCCURENCE parameter to “NO” negates this

filter.

Table A.5: The predefined filters in Genlight, their parameters and semantics.

222

Bibliography

[ABB+81] S. Anderson, A.T. Bankier, B.G. Barrell, M.H. de Bruijn, A.R. Coulson, J. Drouin,

I.C. Eperon, D.P. Nierlich, B.A. Roe, F. Sanger, P.H. Schreier, A.J. Smith, R. Staden,

and I.G. Young. Sequence and organization of the human metochondrial genome.

Nature, 290(5806):457–465, 1981. 1.1

[ABF+03] T. K. Attwood, P. Bradley, D. R. Flower, A. Gaulton, N. Maudling, A. L. Mitchell,

G. Moulton, A. Nordle, K. Paine, P. Taylor, A. Uddin, and C. Zygouri. PRINTS and

its automatic supplement, prePRINTS. Nucl. Acids Res., 31(1):400–402, 2003. 3.1

[ABOH01] S.F. Altschul, R. Bundschuh, R. Olsen, and T. Hwa. The estimation of statistical

parameters for local alignment score distributions. Nucl. Acids Res., 29(2):351–361,

2001. 4.1

[ACF+00] T.K. Attwood, M.D.R. Croning, D.R. Flower, A.P. Lewis, J.E. Mabey, P. Scordis,

J.N. Selley, and W. Wright. PRINTS-S: The database formerly known as PRINTS.

Nucl. Acids Res., 28(1):225–227, 2000. 2.5.1, 4.2

[ACH+00] M.D. Adams, S.E. Celniker, R.A. Holt, C.A. Evans, J.D. Gocayne, and J.C. Venter et

al. The genome sequence of drosophila melanogaster. Science, 287(5461):2185–2195,

2000. 1.1

[ADRF04] I. Alam, A. Dress, M. Rehmsmeier, and G. Fuellen. Comparative homology agreement

search. An effective combination of homology search methods. Proc. Nat. Acad. Sci.

U.S.A., 101(38):13814–13819, 2004. 4.5.3

[AGM+90] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local align-

ment search tool. J. Mol. Biol., 215(3):403–413, 1990. 1.1, 1.1, 2.5, 5.4.3

[AHB+04] A. Andreeva, D. Howorth, S.E. Brenner, T.J.P. Hubbard, C. Chothia, and A.G.

Murzin. SCOP database in 2004: refinements integrate structure and sequence family

data. Nucl. Acids Res., 32(1):D226–D229, 2004. 2.7.3, 4.5

[AKO02] M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch. The enhanced suffix array and its

applications to genome analysis. In Proceedings of the 2nd Workshop on Algorithmns

in Bioinformatics (WABI), pages 449–463, 2002. 3.5

[AKO04] M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees with enhanced

suffix arrays. Journal of Discrete Algorithms, 2:53–86, 2004. 1.1, 3.1, 3.5, 3.5.1

[ALM+99] R.A. Alm, L.S. Ling, D.T. Moir, B.L. King, and E.D. Brown. Genomic-sequence

comparison of two unrelated isolates of the human gastric pathogen Helicobacter

pylori. Nature, 397(6715):176–180, 1999. 5.7.3

223

Bibliography

[Alt91] S.F. Altschul. Amino acid substitution matrices from an information theoretic per-

spective. J. Mol. Biol., 219(3):555–565, 1991. 2.5.5

[AMG+06] T.K. Attwood, A. Mitchell, A. Gaulton, G. Moulton, and L. Tabernero. The PRINTS

protein fingerprint database: functional and evolutionary applications. In M. Dunn,

L. Jorde, P. Little, and A. Subramaniam, editors, Encyclopedia of Genetics, Ge-

nomics, Proteomics and Bioinformatics. John Wiley & Sons, 2006. 2.5.1, 5.4.4

[AMS+97] S.F. Altschul, T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D.J.

Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein database

search programs. Nucl. Acids Res., 25(17):3389–3402, 1997. 1.1, 1.1, 1.1, 2.5, 2.5.2,

5.4.3

[AO03a] M.I. Abouelhoda and E. Ohlebusch. A local chaining algorithm and its applications

in comparative genomics. In Proceedings of the 3rd Workshop on Algorithms in

Bioinformatics (WABI), volume 2812, pages 1–16, Springer Berlin/Heidelberg, 2003.

Lecture Notes in Bioinformatics. 4.3

[AO03b] M.I. Abouelhoda and E. Ohlebusch. Multiple genome alignment: Chaining algo-

rithms revisited. In Proceedings of the 14th Annual Symposium on Combinatorial

Pattern Matching (CPM), volume 2676, pages 1–16, Springer Berlin/Heidelberg,

2003. Lecture Notes in Computer Science. 4.3, 4.3.1

[AO05] M.I. Abouelhoda and E. Ohlebusch. Chaining algorithms for multiple genome com-

parison. Journal of Discrete Algorithms, 3(2-4):321–341, 2005. 4.3, 4.3.1, 4.3.1, 4.3.1,

4.4, 4.5.3, 4.7, 6.1, A.4.2, A.4.2

[Apo85] A. Apostolico. The myriad virtue of subword trees. In Apostolico, A. and Gali,

Z., editor, Combinatorial Algorithms on Words, volume F12, pages 85–96. Springer,

1985. 1.1, 3.4

[BBC+06] J. Baumbach, K. Brinkrolf, L.F. Czaja, S. Rahmann, and A. Tauch. CoryneReg-

Net: An ontology-based data warehouse of corynebacterial transcription factors and

regulatory networks. BMC Genomics, 7(1), 2006. 3.12, 6.1

[BBD+00] A. Bateman, E. Birney, R. Durbin, S.R. Eddy, K.L. Howe, and E.L.L. Sonnhammer.

The Pfam protein families database. Nucl. Acids Res., 28(1):263–266, 2000. 2.5.1,

2.7.2

[BCD+04] A. Bateman, L. Coin, R. Durbin, R.D. Finn, V. Hollich, S. Griffith-Jones, A. Khanna,

M. Marshall, S. Moxon, E.L.L. Sonnhammer, D.J. Studholme, C. Yeats, and S.R.

Eddy. The Pfam protein families database. Nucl. Acids Res., 32(1):D138–D141,

2004. 2.7, 2.7.3

[BCH98] S.E. Brenner, C. Chothia, and T.J.P. Hubbard. Assessing sequence comparison meth-

ods with reliable structurally identified distant evolutionary relationships. Proc. Nat.

Acad. Sci. U.S.A., 95(11):6073–6078, 1998. 4.5

[BDD98] R.E. Bruccoleri, T.J. Dougherty, and D.B. Davidson. Concordance analysis of mi-

crobial genomes. Nucl. Acids Res., 26(19):4482–4486, 1998. 5.1.1

224

Bibliography

[BE95a] T. Bailey and C. Elkan. Unsupervised learning of multiple motifs in biopolymers

using expectation maximization. Machine Learning, 21(1-2):51–80, 1995. 2.3

[BE95b] T. Bailey and C. Elkan. The value of prior knowledge in discovering motifs with

MEME. In Proc. of the Third International Conference on Intelligent Systems for

Molecular Biology, pages 21–29, Menlo Park, CA, 1995. AAI Press. 2.3

[BG98a] T.L. Bailey and M. Gribskov. Combining evidence using p-values: application to

sequence homology searches. Bioinformatics, 14(1):48–54, 1998. 4.5.4

[BG98b] T.L. Bailey and M. Gribskov. Methods and statistics for combining motif match

scores. J. Comput. Biol., 5(2):211–221, 1998. 4.5.4, 4

[BH87] O.G. Berg and P.H. Hippel. Selection of DNA binding sites by regulatory proteins.

Statistical mechanical theory to operators and promotors. J. Mol. Biol., 193(4):723–

750, 1987. 2.5.4, 2.5.4

[BHGK06] M. Beckstette, R. Homann, R. Giegerich, and S. Kurtz. Fast index based algorithms

and software for matching position specific scoring matrices. BMC Bioinformatics,

7(389):, 2006. 6.1, A.4.2

[BHK+93] M. Brown, R. Hughey, A. Krogh, I.S. Mian, K. Sjölaender, and D. Haussler. Using

Dirichlet mixture priors to derive hidden Markov models for protein families. In Proc.

of the First International Conference on Intelligent Systems in Molecular Biology,

pages 47–55, Menlo Park, CA, 1993. AAAI Press. 2.5.6

[BK97] C.B. Burge and S Karlin. Prediction of complete gene structures in human genomic

DNA. J. Mol. Biol., 268(1):78–94, 1997. 2.7

[BKML+07] D.A. Benson, I. Karsch-Mizrachi, D.J. Lipman, J. Ostel, and D.L. Wheeler. Genbank.

Nucl. Acids Res., 35(1):D21–D25, 2007. 1.1

[BLB03] S. P. Bennett, L. Lu, and D. Brutlag. 3MATRIX and 3MOTIF: a protein structure

visualization system for conserved sequence motifs. Nucl. Acids Res., 31(13):3328–

3332, 2003. 2.5, 2.5

[BM77] R.S. Boyer and J.S. Moore. A fast string searching algorithm. Communications of

the ACM, 20(10):762–772, 1977. 3.4

[BMM+04] M. Beckstette, J.T. Mailänder, R.J. Marhöfer, A. Sczyrba, E. Ohlebusch,

R. Giegerich, and P.M. Selzer. Genlight: Interactive high-throughput sequence anal-

ysis and comparative genomics. Journal of Integrative Bioinformatics, 1(8):, 2004.

1.2, 2.1, 3.12, 4.4, 5.1.1, 5.7.3, 5.7.3, 6.1

[BMSLDR01] S. Bury-Mone, S. Skouloubris, A. Labigne, and H. De Reuse. The Helicobacter pylori

UreI protein: role in adaptation to acidity and identification of residues essential for

its activity and for acid activation. Mol. Microbiol., 42(4):1021–1034, 2001. 5.7.3

[Bra94] A. et al. Brazma. Approaches to the automatic discovery of patterns in biosequences.

J. Comput. Biol., 5(2):279–305, 1994. 2.3

225

Bibliography

[BRT06] J. Baumbach, S. Rahmann, and A. Tauch. CoryneRegNet: An integrative bioinfor-

matics platform for the analysis of transcription factors and regulatory networks. In

Proceedings of the European Conference on Computational Biology (ECCB) , 2006.

3.12, 6.1

[BSH+04] M. Beckstette, D. Strothmann, R. Homann, R. Giegerich, and S. Kurtz. PoSSuM-

search: Fast and sensitive matching of position specific scoring matrices using en-

hanced suffix arrays. In Proc. of the German Conference on Bioinformatics, vol-

ume P-53, pages 53–64. GI Lecture Notes in Informatics, 2004. 3.10, 3.4, 6.1

[BSS04] M. Beckstette, A. Sczyrba, and P. M. Selzer. Genlight: An interactive system for high-

throughput sequence analysis and comparative genomics. In Proc. of the German

Conference on Bioinformatics, volume P-53. GI Lecture Notes in Informatics, 2004.

4.4, 5.1.1, 6.1

[BT04] M.A. Beer and S. Tavazoie. Predicting gene expression from sequence. Cell,

117(2):185–198, 2004. 3.1

[Bur98] C.B. Burge. Modelling dependencies in pre-mRNA splicing signals. In S. Salzberg,

D. Searls, and S. Kasif, editors, Computational Methods in Molecular Biology, pages

127–163, Amsterdam, 1998. Elsevier Science. 2.7

[BWO+96] C.J. Bult, O. White, G.J. Olson, L. Zhou, R.D. Fleischmann, G.G. Sutton, J.A. Blake,

L.M. FitzGerald, R.A. Clayton, J.D. Gocayne, A.R. Kerlavage, B.A. Dougherty,

J.F. Tomb, M.D. Adams, C.I. Reich, R. Overbeek, E.F. Kirkness, K.G. Weinstock,

J.M. Merrick, A. Glodek, J.L. Scott, N.S. Geoghagen, and J.C. Venter. Complete

genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science,

273(5278):1058–1073, 1996. 1.1

[BYG89] R. A. Baeza-Yates and G. H. Gonnet. A new approach to text searching. In N. J.

Belkin and C. J. van Rijsbergen, editors, Proceedings of the 12th International Con-

ference on Research and Development in Information Retrieval, pages 168–175, Cam-

bridge, MA, 1989. ACM Press. 2.4.2

[Cas88] G. Castillo. Extreme Value Theory in Engineering. Academic Press, 1988. 3.8.1

[CBK01] P. Cramer, D.A. Bushnell, and R.D. Kornberg. Structural basis of transcription.

RNA polymerase II at 2.8 angstrom resolution. Science, 292(5523):1863–76, 2001.

2.2, 2.2

[CCBH73] S.N. Cohen, A.C.Y. Chang, H.W. Boyer, and R.B. Helling. Construction of bio-

logically functional bacterial plasmids in vitro. Proc. Nat. Acad. Sci. U.S.A.,

70(11):3240–32444, 1973. 1.1

[CGK99] F. Corpet, J. Gouzy, and D. Kahn. Recent improvements of the ProDom database

of protein familes. Nucl. Acids Res., 27(1):263–267, 1999. 2.5.1

[CGK01] F. Chetouani, P. Glaser, and F. Kunst. FindTarget: software for substractive genome

analysis. Microbiology, 147(10):2643–2649, 2001. 5.1.1

226

Bibliography

[CGK02] F. Chetouani, P. Glaser, and F. Kunst. DiffTool: building, visualizing and querying

protein clusters. Bioinformatics, 18(8):1143–1144, 2002. 5.1.1

[CHCB04] G.E. Crooks, G. Hon, J.M. Chandonia, and S.E. Brenner. WebLogo: A sequence logo

generator. Genome Research, 14(6):1188–1190, 2004. 2.4

[CI95] J. Cleveland and J.N. Ihle. Contenders in FasL/TNF death signaling. Cell,

81(4):479–482, 1995. 5.5.3

[Cla94] J. M. Claverie. Some useful statistical properties of position-weight matrices. Com-

put. Chem, 18(3):287–293, 1994. 2.5.6

[Con98] The C.elegans Sequencing Consortium. Genome sequence of the nematode C. elegans:

a platform for investigating biology. Science, 282(5396):2012–2018, 1998. 1.1

[Con00] The Gene Ontology Consortium. Gene Ontologies: tool for the unification of biology.

Nat. Genetics, 25(1):25–29, 2000. 5.4.6

[Con01] International Human Genome Sequencing Consortium. Initial sequencing and anal-

ysis of the human genome. Nature, 409(6915):860–921, 2001. 1.1, 5.8.1

[Con06] The Gene Ontology Consortium. The Gene Ontology (GO) project in 2006. Nucl.

Acids Res., 34(1):D322–D326, 2006. 2.7.3

[dB46] N.G. de Bruijn. A combinatorial problem. In Koninklijke Nederlands Akademie van

Wetenschappen Proceedings, volume 49, pages 758–764, 1946. 3.5.1

[DDBB02] P. Datta, A. Dasgupta, S. Bhakta, and J. Basu. Interaction between FtsZ and FtsW

of Mycobacterium tuberculosis. J. Biol. Chem., 277(28):24983–24987, 2002. 5.7.3

[DDSS01] T. Dandekar, F. Du, R.H. Schirmer, and S. Schmidt. Medical target prediction

from genome sequence: combining different sequence analysis algorithms with expert

knowledge and input from artificial intelligence approaches. Computers and Chem-

istry, 26(1):15–21, 2001. 5.1

[DECS65] M.O. Dayhoff, R.V. Eck, M.A. Chang, and M.R. Sochard. Atlas of protein sequence

and structure. National Biomedical Research Foundation, Silver Spring, MD, 1965.

1.1

[DEK98] R. Durbin, S. Eddy, and A. Krogh. Biological sequence analysis. Probabilistic models

of proteins and nucleic acids. Cambridge University Press, New York, 1998. 2.7.2,

4.5

[Dep03] Logical Depth. LDhmmer. http://logicaldepth.com/ldhmmer, 2003. 4.7

[DNM00] B. Dorohonceanu and C.G. Nevill-Manning. Accelerating protein classification using

suffix trees. In in Proc. of the International Conference on Intelligent Systems for

Molecular Biology, pages 128–133, Menlo Park, CA, 2000. AAAI Press. 3.1, 3.4.1,

3.4.1, 3.5, 3.10, 3.10, 3.1, 3.2, 3.12

227

http://logicaldepth.com/ldhmmer

Bibliography

[Doo81] R.F. Doolittle. Similar amino acid sequences: chance or common ancestry? Science,

214(4517):149–159, 1981. 1.1

[Doo86] R.F. Doolittle. Of URFs and ORFs: a primer on how to analyze derived amino acid

sequences. University Science Books, Mill Valley, California, 1986. 2.2

[DRF+03] Q. Dong, L. Roy, M. Freeling, V. Walbot, and V. Brendel. ZmDB, an integrated

database for maize genome research. Nucl. Acids Res., 31(1):244–247, 2003. 5.7.1

[ED94] S.R. Eddy and R. Durbin. RNA sequence analysis using covariance models. Nucl.

Acids Res., 22(11):2079–2088, 1994. 5.8.1

[Edd98] S. R. Eddy. Profile hidden Markov models. Bioinformatics, 14(9):755–763, 1998.

1.1, 1.1, 2.7.2, 7, 2.7.2, 2.7.3, 4.5, 5.4.4

[Edd02] S.R. Eddy. A memory efficient dynamic programming algorithm for optimal struc-

tural alignment of a sequence to an rna secondary structure. BMC Bioinformatics,

3(18), 2002. 5.8.1

[EJG+03] A.J. Enright, B. John, U. Gaul, T. Tuschl, C. Sander, and D.S. Marks. MicroRNA

targets in Drosophila. Genome Biol, 5(1):R1, 2003. 5.8.1

[EKM97] P. Embrechts, C. Klüppelberg, and T. Mikosch. Modelling Extremal Events. Springer,

1997. 3.8.1

[ENC04] ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements)

Project. Science, 306(5996):636–640, 2004. 5.8.1

[EPC+00] G. Emilien, M. Ponchon, C. Caldas, O. Isacson, and J.M. Maloteaux. Impact of

genomics on drug discovery and clinical medicine. Quarterly journal of medicine,

93(7):391–423, 2000. 1.1

[EUA96] T. Etzold, A. Ulyanov, and P. Argos. SRS: information retrieval system for molecular

biology data banks. Methods Enzymol., 266:114–28, 1996. 5.1.1

[EvDO02] A.J. Enright, S. van Dongen, and C.A. Ouzounis. An efficient algorithm for large-

scale detection of protein families. Nucl. Acids Res., 30(7):1575–1584, 2002. 5.4.3

[FAH+01] D. Frishman, K. Albermann, J. Hani, K. Heumann, A. Metanomski, A. Zollner, and

H.W. Mewes. Functional and structural genomics using PEDANT. Bioinformatics,

17(1):44–57, 2001. 5.1.1

[FAW+95] R.D. Fleischmann, M.D. Adams, O. White, R.A. Clayton, E.F. Kirkness, A.R.

Kerlavage, C.J. Bult, J.F. Tomb, B.A. Dougherty, and J.M. Merrick. Whole-

genome random sequencing and assembly of Haemophilus influenzae Rd. Science,

269(5223):496–512, 1995. 1.1

[FB05] V. Freschi and A. Bogliolo. Using sequence compression to speedup probabilistic

profile matching. Bioinformatics, 21(10):2225–2229, 2005. 3.1

228

Bibliography

[FCD+76] W. Fiers, R. Contreras, F. Duerinck, G. Haegemann, D. Iserentant, J. Merregaert,

W. Min Jou, F. Molemans, A. Raeymaekers, A. van den Berghe, G. Volckaert, and

M. Ysebaert. Complete nucleotide sequence of bacteriophage MS2 RNA: primary

and secondary structure of the replicase gene. Nature, 260(5551):500–507, 1976. 1.1

[FGW+95] C.M. Fraser, J.D. Gocayne, O. White, M.D. Adams, R.A. Clayton, R.D. Fleischmann,

C.J. Bult, A.R. Kerlavage, G. Sutton, J.M. Kelley, R.D. Fritchman, J.F. Weidman,

K.V. Small, M. Sandusky, J. Fuhrmann, D. Nguyen, T.R. Utterback, D.M. Saudek,

C.A. Phillips, J.M. Merrick, J.F. Tomb, B.A. Dougherty, K.F. Bott, P.C. Hu, T.S.

Lucier, S.N. Peterson, H.O. Smith, C.A. Hutchison, and J.C. Venter. The minimal

gene complement of Mycoplasma genitalium. Science, 270(5235):397–403, 1995. 1.1

[FHSW04] M.C. Frith, U. Hansen, J.L. Spouge, and Z. Weng. Finding functional sequence

elements by multiple local alignment. Nucl. Acids Res., 32(1):189–200, 2004. 2.3

[Fit70] W.M. Fitch. Distinguishing homologous from analogous proteins. Syst. Zool.,

19(2):99–113, 1970. 1.1

[FMSB+06] R.D. Finn, J. Mistry, B. Schuster-Bockler, S. Griffith-Jones, V. Hollich, T. Lassmann,

S. Moxon, M. Marshall, A. Khanna, R. Durbin, S.R. Eddy, E.L. Sonnhammer, and

A. Bateman. Pfam: clans, web tools, and services. Nucl. Acids Res., 34(1):D247–

D251, 2006. 1.1, 4.2, 4.5.3, 4.7, 5.4.4, 5.4.5

[FSD+05] K. Florquin, Y. Saeys, S. Degroeve, P. Rouze, and Y. Van de Peer. Large-scale

structural analysis of the core promotor in mammalian and plant genomes. Nucl.

Acids Res., 33(13):4255–4264, 2005. 3.12, 6.1

[Gal05] M. Y. Galperin. The molecular biology database collection: 2005 update. Nucl. Acids

Res., 33(1):D5–D24, 2005. 2.5.1

[GBB+96] A. Goffeau, B.G. Barrell, H. Bussey, R.W. Davis, B. Dujon, H. Feldmann, F. Gal-

ibert, J.D. Hoheisel, C. Jacq, M. Johnston, E.J. Louis, H.W. Mewes, Y. Mu-

rakami, P. Philippsen, H. Tettelin, and S.G. Oliver. Life with 6000 genes. Science,

274(5287):546–567, 1996. 1.1

[GBYS92] G. Gonnet, R.A. Baeza-Yates, and T. Snider. New indices for text: PAT trees and

PAT arrays. In Frakes, W.B. and Baeza-Yates, R.A., editor, Information Retrieval:

Algorithms and Data Structures, volume 132, pages 66–82. Prentice-Hall, New Jersy,

1992. 3.5

[GFB+01] P. Glaser, L. Frangeul, C. Buchrieser, C. Rusniok, A. Amend, F. Baquero, P. Berche,

H. Bloecker, P. Brandt, T. Chakraborty, A. Charbit, F. Chetouani, E. Couve,

A. de Daruvar, P. Dehoux, E. Domann, G. Dominguez-Bernal, E. Duchaud, L. Du-

rant, O. Dussurget, K.D. Entian, H. Fsihi, F. Garcia-del Portillo, P. Garrido, L. Gau-

tier, W. Goebel, N. Gomez-Lopez, T. Hain, J. Hauf, D. Jackson, L.M. Jones,

U. Kaerst, J. Kreft, M. Kuhn, F. Kunst, G. Kurapkat, E. Madueno, A. Maitour-

nam, J.M. Vicente, E. Ng, H. Nedjari, G. Nordsiek, S. Novella, B. de Pablos, J.C.

Perez-Diaz, R. Purcell, B. Remmel, M. Rose, T. Schlueter, N. Simoes, A. Tierrez,

229

Bibliography

J.A. Vazquez-Boland, H. Voss, J. Wehland, and P. Cossart. Comparative genomics

of Listeria species. Science, 294(5543):849–52, 2001. 5.1

[GJMM+05] S. Griffith-Jones, S. Moxon, M. Marshall, A. Khanna, S.R. Eddy, and A. Bateman.

Rfam: annotating non-coding RNAs in complete genomes. Nucl. Acids Res., 1:121–

124, 2005. 5.8.1

[GK95] R. Giegerich and S. Kurtz. A comparison of imperative and purely functional suffix

tree constructions. Science of Computer Programming, 25(2-3):187–218, 1995. 3.5

[GK99] M.Y. Galperin and E.V. Koonin. Searching for drug targets in microbial genomes.

Current Opinion in Biotechnology, 10(6):51–57, 1999. 5.7.3

[GKHC01] J. Gough, K. Karplus, R. Hughey, and C. Chlothia. Assignment of homology to

genome sequences using a library of hidden Markov models that represent all proteins

of known structure. J. Mol. Biol., 313(4):903–919, 2001. 2.7.3, 4.7, 5.4.4

[GLE90] M. Gribskov, R. Luethy, and D. Eisenberg. Profile analysis. Meth. Enzymol.,

183:146–159, 1990. 2.6

[GME87] M. Gribskov, M. McLachlan, and D. Eisenberg. Profile analysis: Detection of dis-

tantly related proteins. PNAS, 84(13):4355–4358, 1987. 1.1, 1.1, 1.1, 2.5, 2.5.1, 2.5.5,

2.6, 3.1

[GMR+03] A. Gattiker, K. Michoud, C. Rivoire, A. H. Auchincloss, E. Coudert, T. Lima,

P. Persey, M. Pagni, C.J.A. Sigrist, C. Lachaize, A.-L. Veuthey, and E. Gasteifer.

Automatic annotation of microbial proteomes in Swiss-Prot. Comput. Biol. Chem.,

27(1):49–58, 2003. 2.5.1, 2.6

[Gon04] H.G. Gonnet. Some string matching problems from Bioinformatics which still need

better solutions. J. Discrete Algorithms, 2(1):3–15, 2004. 3.1

[Got93] O. Gotho. Optimal alignment between groups of sequences and its application to

multiple sequence alignment. Comput. Appl. Biosci., 9(3):361–370, 1993. 2.6

[GS96a] T. Gaasterland and C.W. Sensen. Fully automated genome analysis that reflects user

needs and preferences. A detailed introduction to the MAGPIE system architecture.

Biochemie, 78(5):302–10, 1996. 5.1.1

[GS96b] T. Gaasterland and C.W. Sensen. MAGPIE: automated genome interpretation.

Trends in Genetics, 12(2):76–8, 1996. 5.1.1

[Gus97] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University

Press, New York, 1997. 3.4

[GV96] M. Gribskov and S. Veretnik. Identification of sequence patterns with profile analysis.

Methods Enzymol., 266:198–212, 1996. 2.5.5

[GW94] L. Goldstein and M.S. Waterman. Approximations to profile score distributions. J.

Comput. Biol., 1(2):93–104, 1994. 3.8.1

230

Bibliography

[HB01] J.Y. Huang and D.L. Brutlag. The EMOTIF Database. Nucl. Acids Res., 29(1):202

– 204, 2001. 2.4.2

[HBB+06] N. Hulo, A. Bairoch, V. Bulliard, L. Cerutti, E. De Castro, P.S. Langendijk-

Genevaux, M. Pagni, and C. J. A. Sigrist. The PROSITE database. Nucl. Acids

Res., 34(1):D227–D230, 2006. 2.4.2

[HBFB99] K. Hofmann, P. Bucher, L. Falquet, and A. Bairoch. The PROSITE database, its

status in 1999. Nucl. Acids Res., 27(1):215–9, 1999. 2.5.1, 2.6

[HDB98] M. Huynen, T. Dandekar, and P. Bork. Differential genome analysis applied to the

species-specific features of Helicobacter pylori. FEBS Letters, 426(1):1–5, 1998. 5.1

[HdlTV03] E. Herrero, M.A. de la Torre, and E. Valentin. Comparative genomics of yeast species:

new insights into their biology. Int. Microbiology, 6(3):183–90, 2003. 5.1

[HETC00] J.D. Hughes, P.W. Estep, S. Tavazoie, and G.M. Church. Computational identifica-

tion of cis-regulatory elements associated with functionally coherent groups of genes

in Saccharomyces cerevisiae. J. Mol. Biol., 296(5):1205–1214, 2000. 2.3

[HGPH00] J.G. Henikoff, E.A. Greene, S. Pietrokovski, and S. Henikoff. Increased coverage of

protein families with the Blocks database servers. Nucl. Acids Res., 28(1):228–230,

2000. 2.5.1, 3.1, 3.2, 4.2, 5.4.4, A.4.1

[HGPM98] A.O. Henriques, P. Glaser, P.J. Piggot, and C.P. Moran. Control of cell shape and

elongation by the rodA gene in Bacillus subtilis. Molecular Microbiology, 28(2):235–

247, 1998. 5.7.3

[HH89] S. Henikoff and J.G. Henikoff. Amino acid substitution matrices from protein blocks.

Proc. Nat. Acad. Sci. U.S.A., 89(22):10915–10919, 1989. 2.5

[HH91] S. Henikoff and J.G. Henikoff. Automated assembly of protein blocks for database

searching. Nucl. Acids Res., 19(23):6565–6572, 1991. 2.3, 2.5.1, A.4.2

[HH94] S. Henikoff and J.G. Henikoff. Position-based sequence weights. J. Mol. Biol.,

243(4):574–578, 1994. 2.5.2

[HH96] J.G. Henikoff and S. Henikoff. Using substitution probabilities to improve position-

specific scoring matrices. Comput. Appl. Biosci., 12(2):135–143, 1996. 2.5.1, 2.5.5,

2.5.5, 2.5.6, 2.5.6, 3.1

[HHAP95] S. Henikoff, J.G. Henikoff, W. Alford, and S. Pietrokovski. Automated construc-

tion and graphical presentation of protein blocks from unaligned sequences. Gene,

163(2):17–26, 1995. 2.5.7

[HHG06] T. Höchsmann, M. Höchsmann, and R. Giegerich. Thermodynamic matchers:

Strengthening the significance of RNA folding energies. In Proceedings of the Com-

putational Systems Conference (CSB), pages 111–121, 2006. 5.8.1

231

Bibliography

[HHS90] G. Hertz, G. III Hartzel, and G. Stormo. Identification of consensus patterns in

unaligned DNA sequences known to be functionally related. Comput. Appl. Biosci.,

6(2):81–92, 1990. 2.3

[HKB+93] D. Haussler, A. Krogh, M. Brown, I.S. Mian, and K. Sjölander. Protein modeling

with hidden Markov models: an analysis of globins. In Proc. of the 26th Hawaii

International Conference on System Sciences, pages 792–802, Washington, DC, USA,

1993. IEEE Computer Society. 1.1, 2.7.2, 2.7.2

[HKO02] M. Höhl, S. Kurtz, and E. Ohlebusch. Efficient multiple genome alignment. Bioin-

formatics, 18(1):312–320, 2002. 4.3.1

[HP99] J.G. Henikoff and S. Pietrokovski. Blocks+: A non-redundant database of protein

alignment blocks derived from multiple compilations. Bioinformatics, 15(6):471 –

479, 1999. 2.5.1, 4.2, A.4.1

[HRCV00] J.V. Helden, A.F. Rios, and J. Collado-Vidies. Discovering regulatory elements in

non-coding sequences by analyses of spaced dyads. Nucl. Acids Res., 28(8):1808–

1818, 2000. 2.3

[HS95] G.Z. Hertz and G.D. Stormo. Identification of consensus patterns in unaligned DNA

and protein sequences: a large-deviation statistical basis for penalizing gaps. In

Proc. of the Third International Conference on Bioinformatics and Genome Re-

search, pages 201–216, Singapore, 1995. World Scientific Publishing Co. 2.5.1

[HS99] G.Z. Hertz and G. Stormo. Identifying DNA and protein patterns with statistically

significant alignments of multiple sequences. Bioinformatics, 15(7):563–577, 1999.

2.3, 2.3

[HSHA92] J. Heringa, H. Sommerfeldt, D. Higgins, and P. Argos. OBSTRUCT: a program to

obtain largest cliques from a protein sequence set according to structural resolution

and sequence similarity. Comput. Appl. Biosci., 8(6):599–600, 1992. 2.5.2

[HSL+04] N. Hulo, C.J.A. Sigrist, V. Le Saux, P. S. Langendijk-Genevaux, L. Bordoli, A. Gat-

tiker, E. De Castro, P. Bucher, and A. Bairoch. Recent improvements to the PRO-

SITE database. Nucl. Acids Res., 32(1):134–137, 2004. 1.1, 3.1

[HSW03] D. H. Haft, J. D. Selengut, and O. White. The TIGRFAMs database of protein

families. Nucl. Acids Res., 31(1):371–373, 2003. 1.1, 2.7, 2.7.2, 2.7.3, 4.2, 4.7, 5.4.4

[HTG+94] D. Higgins, J. Thompson, T. Gibson, J.D. Thompson, D.G. Higgins, and T.J. Gibson.

CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment

through sequence weighting, position-specific gap penalties and weight matrix choice.

Nucl. Acids Res., 22(22):4673–4680, 1994. 2.5.1, 4.5.2

[HW04] P.M. Haverty and Z. Weng. CisML: an XML-based format for sequence motif detec-

tion software. Bioinformatics, 20(11):1815–1817, 2004. 3.11, A.4.2

[HWB90] S. Henikoff, J.C. Wallace, and J.P. Brown. Finding protein similarities with nucleotide

sequence databases. Methods Enzymol., 183:111–132, 1990. 2.5.4

232

Bibliography

[IHS+01] V.R. Iyer, C.F. Horak, C.S. Scafe, D. Bolstein, M. Snyder, and P.Q. Brown. Genomic

binding sites of the yeast cell-cycle transcription factor SBF and MBF. Nature,

409(6819):533–538, 2001. 2.3

[IJI+89] F. Ishino, H.K. Jung, M. Ikeda, M. Doi, M. Wachi, and M. Matsuhashi. New mu-

tations fts-36, lts-33, and ftsW clustered in the mra region of the Escherichia coli

chromosome induce thermosensitive cell growth and division. Journal of Bacteriol-

ogy, 171(10):5523–5530, 1989. 5.7.3

[ISW+89] M. Ikeda, T. Sato, M. Wachi, H.K. Jung, F. Ishino, Y. Kobayashi, and M. Matsuhashi.

Structural similarity among Escherichia coli FtsW and RodA proteins and Bacillus

subtilis SpoVE protein, which function in cell division, cell elongation, and spore

formation, respectively. Journal of Bacteriology, 171(11):6375–6378, 1989. 5.7.3

[JCH95] I. Jonassen, J.F. Collins, and D.G. Higgins. Finding flexible patterns in unaligned

protein sequences. Protein Sci., 4(8):1587–1595, 1995. 2.3

[KA03] P. Ko and S. Aluru. Space efficient linear time construction of suffix arrays. In

R. Baeza-Yates, E. Chavez, and M. Chrochemore, editors, Proceedings of the 14th

Annual Symposium on Combinatorial Pattern Matching (CPM), volume 2676, pages

200–210, Springer-Verlag, New York, 2003. Lecture Notes in Computer Science. 1.1,

3.5

[KBB+03] J. Kalinowski, B. Bathe, D. Bartels, N. Bischoff, M. Bott, A. Burkovski, N. Dusch,

L. Eggeling, B.J. Eikmanns, L. Gaigalat, A. Goesmann, M. Hartmann, K. Huth-

macher, R. Kramer, B. Linke, A.C. McHardy, F. Meyer, B. Mockel, W. Pfefferle,

A. Pühler, D.A. Rey, C. Rückert, O. Rupp, H. Sahm, V.F. Wendisch, I. Wiegrabe,

and A. Tauch. The complete corynebacterium glutamicum ATCC 13032 genome

sequence and its impact on the production of l-aspartate-derived amino acids and

vitamins. J. Biotechnol., 104(1-3):5–25, 2003. 5.10

[KBD94] M.M. Khattar, K.J. Begg, and W.D Donachie. Identification of FtsW and character-

ization of a new FtsW division mutant of Escherichia coli. Journal of Bacteriology,

176(23):7140–7147, 1994. 5.7.3

[KBH98] K. Karplus, C. Barret, and R. Hughey. Hidden Markov models for detecting remote

protein homologies. Bioinformatics, 14(10):846–856, 1998. 2.7.2, 4.5

[KDW+04] P.J. Kersey, J. Duarte, A. Williams, Y. Karavidopoulou, E. Birney, and R. Apweiler.

The international protein index: An integrated database for proteomics experiments.

Proteomics, 4(7):1985–1988, 2004. 5.4.8

[Kei02] P.A. Keich, U. Pevzner. Finding motifs in the twilight zone. Bioinformatics,

18(10):1374–1381, 2002. 2.3

[Ken83] W. Kent. A simple guide to five normal forms in relational database theory. Com-

munications of the ACM, 26(2):120–125, 1983. 5.5.4

233

Bibliography

[KGH+06] M. Kanehisa, S. Goto, M. Hattori, K.F. Aoki-Kinoshita, M. Itoh, S. Kawashima,

T. Katayama, M. Araki, and M. Hirakawa. From genomics to chemical genomics:

new developments in KEGG. Nucl. Acids Res., 34(1):D354–357, 2006. 5.8.1

[KGP+05] A. Krek, D. Grun, M.N. Poy, R. Wolf, L. Rosenberg, E.J. Epstein, P. MacMenamin,

I. da Piedade, K.C. Gunsalus, M. Stoffel, and N. Rajewsky. Combinatorial microRNA

target predictions. Nat Genet, 37(5):495–500, 2005. 5.8.1

[KGR+03] A.E. Kel, E. Gößling, I. Reuter, E. Cheremushkin, O.V. Kel-Margoulis, and E. Win-

gender. MATCH: a tool for searching transcription factor binding sites in DNA

sequences. Nucl. Acids Res., 31(13):3576–3579, 2003. 1.1, 2.5.9, 2.5.9, 3.1, 3.2, A.4.2

[KKMBW99] A. Kel, O. Kel-Margoulis, V. Babenko, and E. Wingender. Recognition of

NFATp/AP-1 composite elements within genes induced upon the activation of im-

mune cells. J. Mol. Biol., 288(3):353–376, 1999. 2.5.9

[KLA+01] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time Longest-

Common-Prefix Computation in Suffix Arrays and its Applications. In 12th Annual

Symposium on Combinatorial Pattern Matching (CPM2001), volume 2089, pages

181–192, Springer-Verlag, New York, 2001. Lecture Notes in Computer Science. 3.5

[KLvHS01] B. Krogh, B. Larsson, G. von Heijne, and E.L.L. Sonnhammer. Predicting trans-

membrane protein topology with a hidden Markov model: Application to complete

genome. J. Mol. Biol., 305(3):567–580, 2001. 2.7

[KMP77] D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings. SIAM

Journal on Computing, 6(2):323–350, 1977. 3.4

[KMSH94] A. Krogh, M. Mian, I.S. Sjölander, and D. Haussler. Hidden Markov Models in Com-

putational Biology - Applications to Protein Modeling. J. Mol. Biol., 235(5):1501–

1531, 1994. 1.1, 2.7.2, 2.7.2

[Koo03] E.V. Koonin. Comparative genomics, minimal gene-sets and the last universal com-

mon ancestor. Nature Reviews Microbiology, 1(2):127–36, 2003. 5.1

[KS03] J. Kärkkäinen and P. Sanders. Simple Linear Work Suffix Array Construction. In

Proceedings of the 13th International Conference on Automata, Languges and Pro-

gramming. Springer, 2003. 1.1, 3.5

[KSPP03] D.K. Kim, S. Sim, J, H. Park, and K. Park. Linear-Time Construction of Suffix Ar-

rays. In R. Baeza-Yates, E. Chavez, and M. Chrochemore, editors, Proceedings of the

14th Annual Symposium on Combinatorial Pattern Matching (CPM, volume 2676,

pages 186–199, Springer-Verlag, New York, 2003. Lecture Notes in Computer Science.

1.1, 3.5

[KTP+04] M. G. Kann, P. A. Thiessen, A. R. Panchenko, A. A. Schaeffer, S. F. Altschul, and

S. H. Bryant. A structure-based method for protein alignment. Bioinformatics,

21(8):1451–1456, 2004. 2.5

234

Bibliography

[Kur99] S. Kurtz. Reducing the space requirement of suffix trees. Software-Practice and

Experience, 29(13):1149–1171, 1999. 3.5

[Kur05a] S. Kurtz. Lecture Notes for foundations of sequence analysis.

http://www.zbh.uni-hamburg.de/teaching/SS2005/00.914/scriptSommer2005.pdf,

2005. 4.3

[Kur05b] S. Kurtz. The Vmatch large scale sequence analysis software.

http://www.vmatch.de/, 2005. 3.10

[LA02] B. Lara and A. Ayala. Topological characterization of the essential Escherichia coli

cell division protein FtsW. FEMS Microbiol. Lett., 216(1):23–32, 2002. 5.7.3

[LAB+93] C.E. Lawrence, S.F. Altschul, M.S. Bogouski, J.S. Liu, A.F. Neuwald, and J.C.

Wooten. Detecting subtle sequence signals: A Gibbs sampling strategy for multi-

ple alignment. Science, 262(5131):208–214, 1993. 2.3, 2.5.4, 2.5.6, 2.5.6, 2.5.6

[LCP+06] I. Letunic, R.R. Copley, B. Pils, S. Pinkert, J. Schultz, and P. Bork. SMART 5:

domains in the context of genomes and networks. Nucl. Acids Res., 34(1):D257–

D260, 2006. 2.7.3, 4.2, 4.7, 5.4.4

[LFWW03] T. Li, K. Fan, J. Wang, and W. Wang. Reduction of protein sequence complexity by

residue grouping. Protein Engineering, 16(5):323–330, 2003. 3.6.1

[LGY+03] L.P. Lim, M.E. Glasner, S. Yekta, C.B. Burge, and D.B. Bartel. Vertebrate mi-

croRNA genes. Science, 299(5612):1540, 2003. 5.8.1

[Low76] B. Lowerre. The Harpy Speech Recognition System. Carnegie-Mellon University,

1976. 4.7

[LP85] D.J. Lipman and W.R. Pearson. Rapid and sensitive protein similarity searches.

Science, 227(4693):1435–1441, 1985. 1.1, 1.1, 1.1

[LR90] C.E. Lawrence and A.A. Reilly. An expectation maximization algorithm for the iden-

tification and characterization of common sites in unaligned biopolymer sequences.

Proteins, 7(1):41–51, 1990. 2.3

[LSJR+03] B.P. Lewis, IH. Shih, M.W. Jones-Rhoades, D.P. Bartel, and C.B. Burge. Prediction

of mammalian microRNA targets. Cell, 115(7):787–98, 2003. 5.8.1

[LT06] N. Li and M. Tompa. Analysis of computational approaches for motif discovery.

Algorithms for Molecular Biology, 1(8), 2006. 2.3

[LTHK06] K. Liolios, N. Tavernarakis, P. Hugenholtz, and NC. Kyrpides. The Genomes On

Line Database (GOLD) v.2: a monitor of genome projects worldwide. Nucl. Acids

Res., 34(1):D332–D334, 2006. 1.1

[Lup96] A. Lupas. Prediction and analysis of coiled-coil structures. Meth. Enzymology,

266:513–525, 1996. 5.4.3

235

http://www.zbh.uni-hamburg.de/teaching/SS2005/00.914/scriptSommer2005.pdf
http://www.vmatch.de/

Bibliography

[LVDS91] A. Lupas, M. Van Dyke, and J. Stock. Predicting coiled coils from protein sequences.

Science, 252(5010):1162–1164, 1991. 5.4.3

[LXB94] R. Luthy, I. Xenarios, and P. Bucher. Improving the sensitivity of the sequence profile

method. Protein Sci., 3(1):139–146, 1994. 2.5.2

[MAA+07] Nicola J. Mulder, Rolf Apweiler, Teresa K. Attwood, Amos Bairoch, Alex Bateman,

David Binns, Peer Bork, Virginie Buillard, Lorenzo Cerutti, Richard Copley, Em-

manuel Courcelle, Ujjwal Das, Louise Daugherty, Mark Dibley, Robert Finn, Wolf-

gang Fleischmann, Julian Gough, Daniel Haft, Nicolas Hulo, Sarah Hunter, Daniel

Kahn, Alexander Kanapin, Anish Kejariwal, Alberto Labarga, Petra S. Langendijk-

Genevaux, David Lonsdale, Rodrigo Lopez, Ivica Letunic, Martin Madera, John

Maslen, Craig McAnulla, Jennifer McDowall, Jaina Mistry, Alex Mitchell, Anasta-

sia N. Nikolskaya, Sandra Orchard, Christine Orengo, Robert Petryszak, Jeremy D.

Selengut, Christian J. A. Sigrist, Paul D. Thomas, Franck Valentin, Derek Wilson,

Cathy H. Wu, and Corin Yeats. New developments in the InterPro database. Nucl.

Acids Res., 35(1):D224–228, 2007. 4.7

[Mar02] B. Marshall. Helicobacter pylori: 20 years on. Clinical medicine, 2(2):147–152, 2002.

5.7.3

[MBADS+05] A. Marchler-Bauer, J.B. Anderson, C. DeWeese-Scott, N.D. Fedorova, L.V. Geer,

M. Gwadz, S. He, D.I. Hurwitz, J.D. Jackson, Z. Ke, C. Lanczycki, C.A. Liebert,

C. Liu, F. Lu, G.H. Marchler, M. Mullokandov, B.A. Shoemaker, V. Simonyan, J.S.

Song, P.A. Thiessen, R.A. Yamashita, J.J. Yin, D. Zhang, and S.H. Bryant. CDD: a

Conserved Domain Database for protein classification. Nucl. Acids Res., 33(1):D192–

196, 2005. 2.5, 5.4.4

[MBG+03] C.O. Marian, S.J. Bordoli, M. Goltz, R.A. Santarella, L.P. Jackson, O. Danilevskaya,

M. Beckstette, R. Meeley, and H.W. Bass. The Maize Single myb histone 1 gene,

Smh1, belongs to a novel gene family and encodes a protein that binds telomere DNA

repeats in vitro. Plant Physiology, 133(3):1336–1350, 2003. 1.2, 5.7.1, 5.8, 6.1

[MBPS+02] A. Marchler-Bauer, A.R. Panchenko, B.A. Shoemaker, P.A. Thiessen, L.Y. Geer, and

S.H. Bryant. CDD: a database of conserved domain alignments with links to domain

three-dimensional structure. Nucl. Acids Res., 30(1):281–3, 2002. 5.4.4

[McC76] E.M. McCreight. A space-economical suffix tree construction algorithm. Journal of

the ACM, 23(2):262–272, 1976. 1.1, 3.4, 3.4.1

[MEA+05] Marcel Margulies, Michael Egholm, William E Altman, Said Attiya, Joel S Bader,

Lisa A Bemben, Jan Berka, Michael S Braverman, Yi-Ju Chen, Zhoutao Chen,

Scott B Dewell, Lei Du, Joseph M Fierro, Xavier V Gomes, Brian C Godwin, Wen

He, Scott Helgesen, Chun Heen Ho, Gerard P Irzyk, Szilveszter C Jando, Maria L I

Alenquer, Thomas P Jarvie, Kshama B Jirage, Jong-Bum Kim, James R Knight,

Janna R Lanza, John H Leamon, Steven M Lefkowitz, Ming Lei, Jing Li, Kenton L

Lohman, Hong Lu, Vinod B Makhijani, Keith E McDade, Michael P McKenna, Eu-

gene W Myers, Elizabeth Nickerson, John R Nobile, Ramona Plant, Bernard P Puc,

236

Bibliography

Michael T Ronan, George T Roth, Gary J Sarkis, Jan Fredrik Simons, John W

Simpson, Maithreyan Srinivasan, Karrie R Tartaro, Alexander Tomasz, Kari A Vogt,

Greg A Volkmer, Shally H Wang, Yong Wang, Michael P Weiner, Pengguang Yu,

Richard F Begley, and Jonathan M Rothberg. Genome sequencing in microfabri-

cated high-density picolitre reactors. Nature, 437(7057):376–380, 2005. 1.1, 1.1,

4.7

[MFG+03] V. Matys, E. Fricke, R. Geffers, E. Gößling, M. Haubrock, R. Hehl, K. Hornischer,

D. Karas, A. E. Kel, O. V. Kel-Margoulis, D.-U. Kloos, S. Land, B. Lewicki-Potapov,

H. Michael, R. Munch, I. Reuter, S. Rotert, H. Saxel, M. Scheer, S. Thiele, and

E. Wingender. TRANSFAC(R): transcriptional regulation, from patterns to profiles.

Nucl. Acids Res., 31(1):374–378, 2003. 3.1, 3.10

[MG77] M. Maxam and W. Gilbert. A new method for sequencing DNA. Proc. Nat. Acad.

Sci. U.S.A., 74(2):560–564, 1977. 1.1

[MG02] M. Madera and J. Gough. A comparison of profile hidden Markov model procedures

for remote homology detection. Nucl. Acids Res., 30(19):4321–4328, 2002. 2.7.2

[MG06] K. Malde and R. Giegerich. Calculating PSSM probabilities with lazy dynamic pro-

gramming. J. Functional Programming, 16(1):75–81, 2006. 3.10

[MGM+03] F. Meyer, A. Goesmann, A.C. McHardy, D. Bartels, T. Bekel, J. Clausen, J. Kali-

nowski, B. Linke, O. Rupp, R. Giegerich, and A. Pühler. GenDB–an open source

genome annotation system for prokaryote genomes. Nucl. Acids Res., 31(8):2187–95,

2003. 5.1.1

[MLUL+05] H. Mi, B. Lazareva-Ulitsky, R. Loo, A. Kejariwal, J. Vandergriff, S. Rabkin, N. Guo,

A. Muruganujan, O. Doremieux, M.J. Campbell, H. Kitano, and P.D. Thomas. The

PANTHER database of protein families, subfamilies, functions and pathways. Nucl.

Acids Res., 33(1):D284–D288, 2005. 2.7.3, 4.7, 5.8.1

[MM90] U. Manber and E.W. Myers. Suffix arrays: A new method for on-line string searches.

In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pages 319–327,

1990. 1.1

[MM93] U. Manber and E.W. Myers. Suffix arrays: A new method for on-line string searches.

SIAM Journal on Computing, 22(5):935–948, 1993. 3.5

[MMBB05] P. Martinez, K. Malde, M. Beckstette, and J. Baguna. The origin of bilateral animals.

A multigene approach. Comparative Biochemistry and Physiology. Abstracts of the

Society for Experimental Biology Annual Main Meeting, 141:S119–S120, 2005. 5.8

[MN61] J.H. Matthaei and M.W. Nirenberg. Characteristics and stabilization of DNAase-

sensitive protein synthesis in E.coli extracts. Proc. Nat. Acad. Sci. U.S.A.,

15(47):1580–1588, 1961. 1.1

[Mor68] D. R. Morrison. PATRICIA - practical algorithm to retrieve information coded in

alphanumeric. Journal of the Association of Computing Machinery, 15(4):514–534,

1968. 3.4

237

Bibliography

[Mou02] Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis

of the mouse genome. Nature, 420(6915):520–562, 2002. 5.8.1

[MRHSM02] M. Mollenhauer-Rektorschek, G. Hanauer, G. Sachs, and K. Melchers. Expression of

UreI is required for intragastric transit and colonization of gerbil gastric mucosa by

Helicobacter pylori. Research in microbiology, 153(10):659–666, 2002. 5.7.3

[MS58] M. Meselson and F.W. Stahl. The replication of DNA in Escherichia coli. Proc. Nat.

Acad. Sci. U.S.A., 44(7):671–682, 1958. 1.1

[MWL00] L. R. Murphy, A. Wallqvist, and R.M. Levy. Simplified amino acid alphabets for

protein fold recognition and implications for folding. Protein Engineering, 13(3):149–

152, 2000. 3.6.1

[Mye99] G. Myers. A fast bit-vector algorithm for approximate string matching based on

dynamic programming. Journal of the ACM, 46(3):395–415, 1999. 2.4.2

[NHH00] C. Notredame, D. Higgins, and J. Heringa. T-Coffee: A novel method for multiple

sequence alignments. J. Mol. Biol., 302(1):205–217, 2000. 2.5.1

[NKKZ06] J.W. Nam, J. Kim, S.K. Kim, and B.T. Zhang. ProMiR II: a web server for the

probabilistic prediction of clustered, nonclustered, conserved and nonconserved mi-

croRNAs. Nucl. Acids Res., 34:W455–8, 2006. 5.8.1

[NLL95] A.F. Neuwald, J.S. Liu, and C.E. Lawrence. Gibbs motif sampling: Detection of

bacterial outer membrane repeats. Protein Sci., 4:1618–1632, 1995. 2.3

[NLLL97] A.F. Neuwald, J.S. Liu, D.J. Lipman, and C.E. Lawrence. Extracting protein align-

ment models from the sequence database. Nucl. Acids Res., 25(9):1665–1677, 1997.

2.5.2

[NS76] K. Nishikawa and H.A. Scheraga. Geometrical criteria for formation of coiled-coil

structures in polypeptide chains. Macromolecules, 9(3):395–407, 1976. 5.4.3

[NW70] S.B. Needlemann and C.D. Wunsch. A general method applicable to the search for

similarities in the amino acid sequence of two proteins. J. Mol. Biol., 48(3):443–453,

1970. 1.1, 1.1

[NWB98] C.G. Nevill-Manning, T.D. Wu, and D.L. Brutlag. Highly specific protein sequence

motifs for genome analysis. Proc. Nat. Acad. Sci. U.S.A., 95(11):5865 – 5871, 1998.

1.1

[Pea90] W.R. Pearson. Rapid and sensitive sequence comparison with FASTP and FASTA. In

Doolittle, R., editor, Methods Enzymol., volume 183, pages 63–98. Academic Press,

San Diego, CA, 1990. 5.4.3

[Pea94] W. R. Pearson. Using the FASTA program to search protein and DNA sequence

databases. Methods Mol. Biol., 24:307–331, 1994. 5.4.3

238

Bibliography

[Pea99] W.R. Pearson. Flexible sequence similarity searching with the FASTA3 program

package. In Misener, S. and Krawetz, S., editor, Bioinformatics Methods and Proto-

cols, volume 132, pages 185–219. Humana Press, Totowa, NJ, 1999. 5.4.3

[PH88] J.D. Palmer and L.A. Herborn. Plant mitochondrial DNA evolves rapidly in struc-

ture, but slowly in sequence. J. Mol. Evol., 28(1-2):87–97, 1988. 5.5.2

[Plö05] T. Plötz. Advanced Stochastic Protein Sequence Analysis. Dissertation, Faculty of

Technology, Bielefeld University, 2005. 4.7

[Pro07] Progeniq BioBoost accelerator boards. Performance benchmarks: Bio-

Boost c©HMMer. http://www.progeniq.com/products/, 2007. 4.7

[PSTB05] R. Pudimat, E. G. Schukat-Talamazzini, and R. Backofen. A multiple feature frame-

work for modelling and predicting transcription factor binding sites. Bioinformatics,

21(14):3082–3088, 2005. 3.1

[PTS+05] F. Pearl, A. Todd, I. Sillitoe, M. Dibley, O. Redfern, T. Lewis, C. Bennett, R. Mars-

den, A. Grant, D. Lee, A. Akpor, M. Maibaum, A. Harrison, T. Dallman, G. Reeves,

I. Diboun, S. Addou, S. Lise, C. Johnston, A. Sillero, J. Thornton, and C. Orengo.

The CATH domain structure database and related resources Gene3D and DHS pro-

vide comprehensive domain family information for genome analysis. Nucl. Acids Res.,

33(1):D247–D251, 2005. 2.7.3, 5.4.4

[QFWW95] K. Quandt, K. Frech, E. Wingender, and T. Werner. MatInd and MatInspector: new

fast and versatile tools for detection of consensus matches in nucleotide data. Nucl.

Acids Res., 23(23):4878–4884, 1995. 3.1, 3.2

[QSP+05] E. Quevillon, V. Silventoinen, S. Pillai, N. Harte, N. Mulder, R. Apweiler, and

R. Lopez. InterProScan: protein domains identifier. Nucl. Acids Res., 33:W116–

W120, 2005. 4.7

[Rab90] L.R. Rabiner. A tutorial on hidden Markov models and selected applications in speech

recognition. In Waibel, A. and Lee,K. F., editor, Readings in speech recognition, pages

267–296. Morgan Kaufmann Publishers Inc., San Francisco, CA, 1990. 2.7.1, 2.7.2

[Rah03] S. Rahmann. Dynamic programming algorithms for two statistical problems in com-

putational biology. In Proc. of the 3rd Workshop of Algorithms in Bioinformatics

(WABI), pages 151–164. LNCS 2812, Springer Verlag, 2003. 3.1, 3.8.1, 3.8.2

[Rat04] Rat Genome Sequencing Project Consortium. Genome sequence of the brown norway

rat yields insights into mammalian evolution. Nature, 428(6982):493–521, 2004. 5.8.1

[RD04] M. Regnier and A. Denise. Rare events and conditional events on random strings.

Discrete Math. Theor. Comput. Sci., 6(2):191–214, 2004. 2.3

[Reh02] M. Rehmsmeier. Automatic evaluation of database search methods. Briefings in

Bioinformatics, 3(4):342–352, 2002. 4.5

[Reh06] M. Rehmsmeier. Prediction of microRNA targets. Methods Mol. Biol , 342:87–89,

2006. 5.8.1

239

http://www.progeniq.com/products/

Bibliography

[RHEC98] F.P. Roth, J.D. Hughes, P.W. Estep, and G.M. Church. Finding DNA regulatory mo-

tifs within unaligned noncoding sequences clustered by whole-genome mRNA quan-

titation. Nature Biotechnology, 16(10):939–945, 1998. 2.3

[RJS02] S. Rajasekaran, X. Jin, and J.L. Spouge. The efficient computation of position specific

match scores with the fast fourier transformation. J. Comput. Biol., 9(1):23–33, 2002.

3.1

[RMV03] S. Rahmann, T. Müller, and M. Vingron. On the power of profiles for transcription

factor binding site detection. Statistical Applications in Genetics and Molecular

Biology, 2(1), 2003. 3.1, 4.1

[RRW+00] B. Ren, F. Robert, J.J. Wyrick, O. Aparicio, E.G. Jennings, I. Simon, J. Zeitlinger,

J. Schreiber, N. Hannet, E. Kanin, T.L. Volker, C.J. Wilson, S.P. Bell, and R.A.

Young. Genome-wide location and function of DNA binding proteins. Science,

290(5500):2306–2309, 2000. 2.3

[RSHG04] M. Rehmsmeier, P. Steffen, M. Höchsmann, and R. Giegerich. Fast and effective

prediction of microRNA/target duplexes. RNA, 10(10):1507–1517, 2004. 5.8.1

[Ruv01] G. Ruvkun. Molecular biology: Glimpses of a tiny RNA world. Science,

294(5543):797–799, 2001. 5.8.1

[RV01] M. Rehmsmeier and M. Vingron. Phylogenetic information improves homology de-

tection. Proteins: Structure, Function, and Genetics, 45(4):360–371, 2001. 4.5

[RYW+00] G.M. Rubin, M.D. Yandell, J.R. Wortman, G.L. Gabor-Miklos, C.R. Nelson, I.K.

Hariharan, M.E. Fortini, P.W. Li, R. Apweiler, W. Fleischmann, J.M. Cherry,

S. Henikoff, M.P. Skupski, S. Misra, M. Ashburner, E. Birney, M.S. Boguski,

T. Brody, P. Brokstein, S.E. Celniker, S.A. Chervitz, D. Coates, A. Cravchik,

A. Gabrielian, R.F. Galle, W.M. Gelbart, R.A. George, L.S. Goldstein, F. Gong,

P. Guan, N.L. Harris, B.A. Hay, R.A. Hoskins, J. Li, Z. Li, R.O. Hynes, S.J. Jones,

P.M. Kuehl, B. Lemaitre, J.T. Littleton, D.K. Morrison, C. Mungall, P.H. O’Farrell,

O.K. Pickeral, C. Shue, L.B. Vosshall, J. Zhang, Q. Zhao, X.H. Zheng, and S. Lewis.

Comparative genomics of the eukaryotes. Science, 287(5461):2204–15, 2000. 1.1

[RZG+02] J. Raymond, O. Zhaxybayeva, J.P. Gogarten, S.Y. Gerdes, and R.E. Blankenship.

Whole-genome analysis of photosynthetic prokaryotes. Science, 298(5598):1616–

1620, 2002. 5.5.2

[SAC90] H.O. Smith, T.M. Annau, and S. Chandrasegaran. Finding sequence motifs in groups

of functionally related proteins. Proc. Nat. Acad. Sci. U.S.A., 87(2):826–830, 1990.

2.3

[SAE+04] A. Sandelin, W. Alkema, P. Engstrom, W.W. Wasserman, and B. Lenhard. JASPAR:

an open-access database for eukaryotic transcription factor binding profiles. Nucl.

Acids Res., 32(1):D91–D94, 2004. 2.5.1, 3.1, 5.8.1

240

Bibliography

[SBB+] A. Sczyrba*, M. Beckstette*, A.H. Brivanlou, R. Giegerich, and C.R. Altmann.

XenDB: Full length cDNA prediction and cross species mapping in Xenopus laevis.

1.2, 5.7.2, 5.8, 6.1

[SBGA04] A. Sczyrba, M. Beckstette, R. Giegerich, and C.A. Altmann. Identification of 10,500

Xenopus laevis full length clones through EST clustering and sequence analysis. In

Proceedings of the German Conference on Bioinformatics (GCB). Discovery Notes,

volume P-53, pages 6–7. Lecture Notes in Informatics, 2004. 5.8

[SC75] F. Sanger and A.R. Coulson. A rapid method for determining sequences in DNA by

primed synthesis with DNA polymerase. J. Mol. Biol., 54(3):441–446, 1975. 1.1

[SCH+82] F. Sanger, A.R. Coulson, G.F. Hong, D.F. Hill, and G.B. Petersen. Nucleotide se-

quence of bacteriophage lambda DNA. J. Mol. Biol., 162(4):729–773, 1982. 1.1

[SCK00] C. Suter-Crazzolara and G. Kurapkat. An infrastructure for comparative genomics

to functionally characterize genes and proteins. Genome informatics, 11:24–32, 2000.

5.1.1

[SER+99] S.R. Sunyaev, F. Eisenhaber, I.V. Rodchenkov, B. Eisenhaber, V.G. Tumanyan, and

E. Kuznetsov. PSIC: profile extraction from sequence alignments with position-

specific counts of independent observations. Protein Engineering, 12(5):387–394,

1999. 2.5.2

[SFA99] P. Scordis, D.R. Flower, and T.K. Attwood. FingerPRINTScan: intelligent searching

of the PRINTS motif database. Bioinformatics, 15(10):799–806, 1999. 3.1, 3.2, A.4.1

[SH90] G.D. Stormo and G.W. Hartzell. Identifying protein binding sites from unaligned

DNA fragments. PNAS, 86(4):1183–1187, 1990. 2.5.4

[SJ99] S. Suerbaum and C. Josenhans. Virulence factors of Helicobacter pylori: implications

for vaccine development. Mol. Med. Today, 5(1):32–39, 1999. 5.7.3

[SKB+96] K. Sjölander, K. Karplus, M. Brown, R. Hughey, A. Krogh, and D. Haussler. Dirichlet

mixtures: A method for improved detection of weak but significant protein sequence

homology. Comput. Appl. Biosci., 12(4):327–345, 1996. 2.5.1, 2.5.6

[SLSB05] Q.J. Su, L. Lu, S. Saxonov, and D.L. Brutlag. eBLOCKS: enumerating conserved

protein blocks to achieve maximal sensitivity and specificity. Nucl. Acids Res.,

33(1):D178–182, 2005. 2.5.1, 2.5.8

[SLZA+02] N. Sabarth, S. Lamer, U. Zimney-Arndt, P.R. Jungblut, T.F. Meyer, and D. Bumann.

Identification of surface proteins of Helicobacter pylori by selective biotinylation,

affinity purification, and two-dimensional gel electrophoresis. Journal of Biological

Chemistry, 277(31):27896–27902, 2002. 5.7.3

[SMD98] J. Stoye, V. Moulton, and A.W.M. Dress. DCA: An efficient implementation of the

divide-and-conquer multiple sequence alignment algorithm. Gene, 211(2):GC45–

GC56, 1998. 2.5.1

241

Bibliography

[SSZ07] D.E. Schones, A.D. Smith, and M.Q. Zhang. Statistical significance of cis-regulatory

modules. BMC Bioinformatics, 8(19), 2007. 3.1, 3.4.1

[ST03] S. Sinha and M. Tompa. YMF: a program for discovery of novel transcription factor

binding sites by statistical overrepresantion. Nucl. Acids Res., 31(13):3586–3588,

2003. 2.3

[Sta89] R. Staden. Methods for calculating the probabilities for finding patterns in sequences.

Comp. Appl. Biosci., 5(2):89–96, 1989. 3.1, 3.8.1

[STLDR98] S. Skouloubris, J.M. Thiberge, A. Labigne, and H. De Reuse. The Helicobacter pylori

UreI protein is not involved in urease activity but is essential for bacterial survival

in vivo. Infection and immunity, 66(9):4517–4521, 1998. 5.7.3

[Sto98] J. Stoye. Multiple sequence alignment with the divide-and-conquer method. Gene,

211(2):GC45–GC56, 1998. 2.5.1

[SW81] T.F. Smith and M.S. Waterman. Identification of common molecular subsequences.

J. Mol. Biol., 147:195–197, 1981. 1.1, 1.1, 2.5, 5.4.3

[SWP+99] A. A. Schaeffer, Y. I. Wolf, C. P. Ponting, E. U. Koonin, L. Aravind, and S.F.

Altschul. IMPALA: matching a protein sequence against a collection of PSI-BLAST

constructed position specific scoring matrices. Bioinformatics, 15(12):1000–1011,

1999. 2.5

[TAK94] R.L. Tatusov, S.F. Altschul, and E.V. Koonin. Detection of conserved segments in

proteins: Iterative scanning of sequence databases with alignment blocks. Proc. Nat.

Acad. Sci. U.S.A., 91(25):12091–12095, 1994. 2.5.1, 2.5.5, 2.5.6, 2.5.6, 2.5.6, 3.1

[TFJ+03] R.L. Tatusov, N.D. Fedorova, J.D. Jackson, A.R. Jacobs, B. Kiryutin, E.V. Koonin,

D.M. Krylov, R. Mazumder, S.L. Mekhedov, A.N. Nikolskaya, B.S. Rao, S. Smirnov,

A.V. Sverdlov, S. Vasudevan, Y.I. Wolf, J.J. Yin, and D.A. Natale. The COG

database: an updated version includes eukaryotes. BMC Bioinformatics, 4(41), 2003.

5.4.5

[THG94] J.D. Thompson, D.G Higgins, and T.J. Gibson. Improved sensitivity of profile

searches through the use of sequence weights and gap excision. Comput. Appl. Biosci.,

10(1):19–29, 1994. 2.5.2

[THHM92] G.R. Turbett, P.B. Hoj, R. Horne, and B.J. Mee. Purification and characterization

of the urease enzymes of Helicobacter species from humans and animals. Infection

and immunity, 12(60):5259–5266, 1992. 5.7.3

[Tim06] TimeLogic biocomputing solution. Performance benchmarks: HMM performance.

http://www.timelogic.com/benchmark hmm.html, 2006. 4.6, 4.7

[TKL97] R.L. Tatusov, E.V. Koonin, and D.J. Lipman. A genomic perspective on protein

families. Science, 278(5338):631–637, 1997. 5.4.5

242

http://www.timelogic.com/benchmark_hmm.html

Bibliography

[TLB+05] M. Tompa, N. Li, T. L. Bailey, G.M. Church, B. De Moor, E. Eleazar, A.V. Favorov,

M.C. Frith, Y. Fu, W.J. Kent, V.J. Makeev, A.A. Mironow, W.S. Noble, G. Pavesi,

G. Pesole, M. Regnier, N. Simonis, S. Sinha, G. Thijs, J. van Helden, M. Vandenbo-

gaert, Z. Weng, C. Workman, C. Ye, and Z. Zhu. Assessing computational tools for

the discovery of transcription factor binding sites. Nature Biotechnology, 23(1):137–

144, 2005. 2.3, 2.5

[TLM+01] G. Thijs, M. Lescot, K. Marchal, S. Rombauts, B. De Moor, P. Rouze, and Y. Moreau.

Higher-order background model improves the detection of promotor regulatory ele-

ments by Gibbs sampling. Bioinformatics, 17(12):1113–1122, 2001. 2.3

[TLRS01] Cormen T.H., C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to algorithms,

second edition. MIT Press and McGraw-Hill, 2001. 3.9

[TNG+01] R.L. Tatusov, D.A. Natale, I.V. Garkavtsev, T.A. Tatusova, U.T. Shankavaram, B.S.

Rao, B. Kiryutin, M.Y. Galperin, N.D. Fedorova, and E.V. Koonin. The COG

database: new developments in phylogenetic classification of proteins from complete

genomes. Nucl. Acids Res., 29(1):22–28, 2001. 5.4.5

[TWK+97] J.F. Tomb, O. White, A.R. Kerlavage, R.A. Clayton, and G.G. Sutton. The complete

genome sequence of the gastric pathogen Helicobacter pylori. Nature, 388(6642):539–

547, 1997. 5.7.3

[Ukk95] E. Ukkonen. On-line construction of suffix-trees. Algorithmica, 14(3), 1995. 1.1, 3.4

[VA89] M. Vingron and P. Argos. A fast and sensitive multiple alignment algorithm. Comput.

Appl. Biosci., 5:115–121, 1989. 4.3.1

[vD00] S. van Dongen. Graph clustering by flow simulation. In PhD Thesis. University of

Utrecht, The Netherlands, 2000. 5.4.3

[WAC+07] Y. Wang, K.J. Addess, J. Chen, L.Y. Geer, J. He, S. He, S. Lu, T. Madej, A. Marchler-

Bauer, P. A. Thiessen, N. Zhang, and S.H. Bryant. MMDB: annotating protein

sequences with entrez’s 3D-structure database. Nucl. Acids Res., 35(1):298–300,

2007. 5.4.4

[WC53] J.D. Watson and F.H.C. Crick. A structure for desoxyribose nucleic acid. Nature,

171(4356):737–738, 1953. 1.1

[WCF+98] E. Wingender, X. Chen, E. Fricke, R. Geffers, R. Hehl, I. Liebich, M. Krull, V. Matys,

and H. Michael. Databases on transcriptional regulation: TRANSFAC, TRRD, and

COMPEL. Nucl. Acids Res., 26(1):362–367, 1998. 1.1, 2.5.1

[Wei73] P. Weiner. Linear pattern matching algorithms. In Proceedings of the 14th IEEE

Annual Symposium on Switching and Automata Theory, pages 1–11, The University

of Iowa, 1973. 1.1, 3.4, 3.4

[WESS00] D.L. Weeks, S. Eskandari, D.R. Scott, and G. Sachs. A H+-gated urea chan-

nel: the link between Helicobacter pylori urease and gastric colonization. Science,

287(5452):482–485, 2000. 3.15

243

Bibliography

[WHS05] S. Washietl, I.L. Hofacker, and P.F. Stadler. Fast and reliable prediction of noncoding

RNAs. Proc. Nat. Acad. Sci. U.S.A., 102(7):2454–2459, 2005. 5.8.1

[WJ94] L. Wang and T. Jiang. On the complexity of multiple sequence alignment. J. Comput.

Biol., 1(4):337–338, 1994. 2.3

[WM92] S. Wu and U. Manber. Fast text searching allowing errors. In Communications of

the ACM, volume 35, pages 83–91. ACM Press, New York, NY, USA, 1992. 2.4.2

[WNB99] T.D. Wu, C.G. Nevill-Manning, and D.L. Brutlag. Minimal-risk scoring matrices for

sequence analysis. J. Comput. Biol., 6(2):219–235, 1999. 2.5.1, 2.5.8, 2.5.8, 2.5.8, 3.1

[WNB00] T.D. Wu, C.G. Nevill-Manning, and D.L. Brutlag. Fast probabilistic analysis of

sequence function using scoring matrices. Bioinformatics, 16(3):233–244, 2000. 1.1,

3.1, 3.3, 3.3.1, 3.3.1, 3.8.1, 3.8.2, A.4.2

[WNH+04] C.H. Wu, A. Nikoloskaya, H. Huang, L.S.L. Yeh, D.A. Natale, Vinajaka C.R., Z.Z.

Hu, R. Mazumder, S. Kumar, P. Kourtesis, R.S. Ledley, B.E. Suzek, L. Arminski,

Y. Chen, J. Zhang, J.L. Cardenas, S. Chung, J. Castro-Alvear, G. Dinkov, and W.C.

Barker. PIRSF: family classification system at the Protein Information Ressource.

Nucl. Acids Res., 32(1):D112–D114, 2004. 4.7

[WQC06] J.P. Walters, B. Qudah, and V. Chaudhary. Accelerating HMMER sequence analysis

suite using conventional processors. In Proceedings of the 20th International Con-

ference on Advanced Information Networking and Aplications (AINA06), volume 1,

pages 289–294, Washington, DC, USA, 2006. IEEE Computer Society. 4.7

[YH01] Y.K. Yu and T. Hwa. Statistical significance of probabilistic sequence alignment and

related local hidden Markov models. J. Comput. Biol., 8(3):249–282, 2001. 4.1

[YMM+06] C. Yeats, M. Maibaum, R. Marsden, M. Dibley, D. Lee, S. Addou, and C.A. Orengo.

Gene3D: Modelling protein structure, function and evolution. Nucl. Acids Res.,

34(1):D281–D284, 2006. 4.7

[YTI+98] T. Yada, Y. Totoki, M. Ishikawa, K. Asai, and K. Nakai. Automatic extraction of

motifs represented in the hidden Markov model from a number of DNA sequences.

Bioinformatics, 14(4):317–325, 1998. 2.3

[ZMD+96] E. Zaychikov, E. Martin, A. Denissova, M. Kozlov, V. Markovtsov, M. Kashlev,

H. Heumann, V. Nikiforov, A. Goldfarb, and A. Mustaev. Mapping of catalytic

residues in the RNA polymerase active center. Science, 273(5271):107–109, 1996.

2.2

[ZP65] E. Zuckerkandl and L. Pauling. Molecules as documents of evolutionary history. J.

Theoretical Biology, 8(2):357–366, 1965. 1.1

[ZSWM00] Z. Zhang, S. Schwartz, L. Wagner, and W. Miller. A greedy algorithm for aligning

DNA sequences. J. Comput. Biol., 7(1-2):203–214, 2000. 5.4.3

244

	Introduction
	The continuing challenge of biosequence analyis
	Structure of this thesis

	Modeling concepts for sequence motifs and consensi
	Basic definitions and nomenclature
	Motifs, domains, and sequence families
	Motif finding
	Regular expressions as motif descriptors
	Consensus strings
	Prosite patterns: Regular expressions for protein family assignment

	Position specific scoring matrices
	From alignment blocks to PSSMs
	Sequence weighting procedures
	Basic PSSM construction principles
	PSSMs based on odds ratios
	Average score methods
	Explicit log-odd score methods
	Construction of amino acid PSSMs in the BLOCKS database
	Wu's minimal risk scoring matrices
	Construction of nucleotide PSSMs in the TRANSFAC database

	Gribskov's profile model
	Hidden Markov models
	Foundations of hidden Markov model theory
	Profile hidden Markov models
	Profile HMM collections for sequence annotation and classification

	Concluding remarks on sequence motif models

	Fast algorithms for matching position specific scoring matrices
	Introduction
	Pattern matching with PSSMs
	Improved running time through the usage of lookahead scoring
	Permuted lookahead scoring

	PSSM searching using suffix trees
	Dorohonceanu's algorithm

	PSSM searching using enhanced suffix arrays: The ESAsearch algorithm
	Analysis

	Further performance improvements via alphabet transformations
	Reduced amino acid alphabets

	A unifying view on SPsearch, LAsearch, and ESAsearch
	Finding an appropriate threshold for PSSM searching
	Probabilities and expectation values
	Calculation of exact PSSM score distributions
	Evaluation with dynamic programming
	Restricted probability computation
	Lazy evaluation of the permuted matrix

	Threshold independent PSSM matching: The k-best algorithm
	Implementation and computational results
	PoSSuM software distribution
	Discussion and concluding remarks

	PSSM family models for sequence family classification
	Increasing the expressiveness of PSSM-based database searches
	Using multiple ordered PSSMs for sequence classification
	PSSM family models
	Computation of optimal PSSM chains

	Integration of PSSM family models into PoSSuMsearch
	Performance of PSSM family models for protein family classification
	Employed data set and evaluation scenarios
	Model construction and scoring
	Performance evaluation and results
	The significance of PSSM chain scores

	Accelerating HMM based database searches with PSSM family models
	Model specific trusted- and noise cutoffs
	PSfamSearch: Search space reduction with PSSM family models
	Evaluation and computational results
	Cutoff calibration strategies

	Discussion and concluding remarks on performed experiments
	Comparison of pHMMs and PSSM family models

	Genlight - a system for interactive, high-throughput, differential genome analysis
	Motivation
	Genome annotation systems: Related concepts with different focus

	Requirement definitions and design goals
	System architecture and implementation
	Concepts and functionality
	The set oriented concept
	Operations on Seq-sets and Hit-sets
	Integrated sequence analysis methods
	Integrated protein domain and family databases
	Supported protein classification schemes
	Gene ontologies: a unifying vocabulary for cross database queries
	User defined sequence databases
	Asynchronous distributed execution of sequence analysis tasks

	Database schema
	The internal sequence identifier concept
	The handiness of the set oriented concept
	More complex queries using computed sequence attributes
	Genlight as a data warehouse

	The Genlight user interface
	Genlight case studies
	Detection and analysis of the Smh gene family in maize
	Analysis of Xenopus laevis expressed sequence tag clusters
	Identification of potential drug targets in Helicobacter pylori

	Concluding remarks on Genlight
	Potential future developments and system extensions

	Conclusions and prospects
	Concluding remarks
	Prospects

	Appendix
	The 20 letter amino acid alphabet
	PROSITE pattern entry
	PoSSuMsearch command line interface: Quick reference
	The PoSSuM software distribution
	File formats
	PoSSuMsearch
	PoSSuMdist
	PoSSuMfreqs
	PSSM converters
	Using the PoSSuM software distribution
	Messages and warnings

	Predefined Hit-set filters in the Genlight system

	Bibliography

