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1 Introduction

Due to the technological advances in the last thirty years more and more data be-

come available. Scientists from many fields are monitoring huge numbers of variables

that might be univariate, multivariate, longitudinal or even functional. This leads to

an exploding numerical complexity when conclusions shall be drawn from this data

or interdependencies shall be analyzed within the framework of a regression setting.

Often classical statistical tools fail to provide reliable results. A growing number of

unobservable parameters has to be estimated which increases the amount of parameter

uncertainty that is contained in the model. Therefore data compression methods have

received much attention in statistics during the last three decades. Exploratory factor

analysis and principal components analysis that were formerly well known in sociology

and psychology have gained importance in other fields like econometry, for example.

Ramsay & Silverman (2005) coined the term “functional data analysis” and developed

multivariate techniques for functional data, i. e. for discretisized versions of functional

observations that are a posteriori smoothed with the help of a spline basis and an ap-

propriate smoothness penalty. In the economic field where time series forecasts are of

great interest Geweke (1977) and Sargent & Sims (1977) suggested the use of so-called

“dynamic factor models” that reduce the dimension of a high-dimensional forecasting

problem thereby making it tractable for classical time series techniques. In the recent

past dynamic factor models have gained popularity and found applications in many

fields. In this thesis we look at high-dimensional data sets and present new variations

and applications of the methodologies mentioned above.
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1 Introduction

1.1 Dynamic Temperature Management in the River

Wupper

The applications presented in this thesis are related to a research project authorized by

the municipal utility of the city of Wuppertal in cooperation with the Wupperverband.

These institutions supplied a dataset which included the following covariates for different

time spans on an hourly basis: water and air temperature, stream flow, precipitation,

global radiation, heat demand. The measurements were partially taken at different

locations in the area of interest. The river Wupper is located in the north-western part

of Germany and embouches near Cologne into the Rhine. The Wuppertal municipal

utility operates two fuel based power plants on its banks which use river water as cooling

device and by doing so heat up the stream. This has crucial impacts on the ecological

conditions, for example on the amount of dissolved oxygen in the water which in turn

determines the species that can inhabit the river. Naturally, the Wupper belongs to the

waterbodies which are inhabited by Salmonidae and further downstream by Cyprinidae.

If the water temperature in certain states of development exceeds a given threshold the

spawning cycle of both families of fish can be severely disturbed with the long term effect

that the prefered species become extinct. To avoid effects like that the Water Framework

Directive of the European Union (see directives 2000/60/EC and 2005/646/EC) obliges

the member states to achieve good qualitative and quantitative status of waterbodies

until 2015.

If the water temperature reaches critical values there are mainly two solutions to avoid

crossing the corresponding threshold. Firstly, the stream water can be cooled down by

mixing in colder water taken from an upstream water reservoir but in long heat periods

this would waste the reserves for the year within a short period of time. Secondly, the

warming caused by the power plants can be lowered by throttling or even shutting down

the gas engines. This in turn causes costs for not being able to run the engines at the

desired level. For economical reasons two types of forecasts are required which shall be

provided by applying various statistical tools in the remainder of this paper:

2



1 Introduction

Figure 1.1: Map of the drainage area of the river Wupper. Points of interest are marked

by black spots. All three locations belong to the city of Wuppertal (Source:

www.wupperverband.de).
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1 Introduction

1. A water temperature forecast at an upstream location close to the first of

the two power plants to determine which amount of heat can be dissipated. The

locations of the measurement site “Laaken” and the power plants are indicated in

Figure 1.1 which shows the entire drainage area of the river Wupper. A method-

ology for forecasting water temperature using dynamic factor models is presented

in Chapter 4.

2. A heat demand forecast which leads to an expected amount of waste heat that

has to be dissipated using stream water. Of course there is also an economical

interest in such kind of a forecast. A procedure for forecasting heat demand using

dynamic factor models is described in Chapter 5.

Knowledge about future values of both, water temperature and waste heat amount,

allows to assess if in the following days the corresponding water temperature threshold

is at risk in which case the engine output has to be reduced. Furthermore, it is desirable

to provide both forecasts on a fine resolution as energy is traded in short time intervals

at the European Energy Exchange in Leipzig, Germany (www.eex.com).

A third aspect related to economic worthwhile water temperature management is to

fix the appropriate threshold for the current season. Figure 1.2 illustrates the relevant

thresholds for the Brown Trout. In the beginning of winter Salmonids start spawning

and a water temperature up to 10◦C is acceptable. In spring when hatching is finished

the threshold can be risen to 12◦C at first and then 14◦C. These thresholds are allowed

to be crossed once in a while but warming up the water over a longer period causes death

of the young fish. In summer there is a strict maximum temperature of 25◦C which must

not be exceeded because this would cause death even to adult fish as its proteins begin

to clot. In autumn the river water temperature should be reduced stepwisely from 14◦C

to 10◦C to trigger the spawning cycle, again.

The above mentioned temperatures are given for an average year but in practise it

is very implausible to assume that the thresholds are attached to certain timepoints.

The beginning of the winter which is the most important pivot in the spawning cycle

of fish can come earlier in some years and later in others. The question arises how to
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Figure 1.2: Relevant temperature thresholds for the Brown Trout.

determine a standard or reference year and how to measure deviations of the current

year. A solution based on landmark-based curve registration is presented in Chapter 3.

Relevant Characteristics of the River Wupper The river Wupper has an overall

length of 115km from its origin to its mouth and its drainage area covers 815km2,

see Figure 1.1. The mean annual discharge is about 17m3/sec near its mouth and

approximately 9m3/sec at the upstream measurement site “Laaken”. Before the river

enters the city of Wuppertal its bed is left almost natural although there are a large

number of smaller and bigger dams. Within the city bounds of Wuppertal it is channeled

to an average width of about 7m.
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1 Introduction

1.2 Outline of this Thesis

Before looking in detail at the applications a review on the theory of the most important

statistical tools employed in the later chapters is given in Chapter 2. Here the topics

“generalized additive models”, “EM-algorithm”, “curve registration” and “approximate

dynamic factor models” are addressed.

In Chapter 3 an application of landmark-based curve registration to the water temper-

ature data of the river Wupper is described. We define four different landmark criteria

that partly exploit the multivariate structure of the data to identify characteristics that

can be observed repeatedly in every year thereby giving hints if the current year is run-

ning ahead or behind some previously defined reference year. A special challenge in the

definition of landmarks is to formulate online criteria, i. e. criteria that only use contem-

poraneously available data to decide whether a certain landmark has been reached.

Chapter 4 is dedicated to the forecasting of hourly water temperature readings based

on the historical water and air temperature. Here approximate dynamic factor models

will be employed. As both, water and air temperature, are measured on an hourly basis

they can be interpreted as 24-dimensional time series and from both we will extract

common factors. The interdependence between both temperatures will then be modelled

on the factor level. We examine three different approaches to factor estimation and

compare the performance through an out-of-sample forecast with a classical time series

approach as well as with univariate water temperature forecasting models from the

hydological field because multivariate approaches are lacking in the respective literature.

In Chapter 5 we suggest a general routine for energy demand forecasts based on a two

stage modelling. First, deterministic pattern dependent on external calendarial or mete-

orological covariates are extracted using a generalized additive model for each hour (or

half-hour) separately. We impose a dynamic factor structure on the remaining residuals.

The methodology is applied not only to the heat demand data provided by the munici-

pal utility of Wuppertal as literature on heat demand forecasting is sparse. Instead we

present a second data example where we forecast the aggregate electricity demand of

the state Victoria, Australia. For electricity demand there exists a wide literature and

6
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we compare three different factor models with the quite popular periodic autoregressions.

This thesis is based on the following papers:

Kauermann, G. and Mestekemper, T. (2010). A Short Note on Quantifying and Visu-

alizing Yearly Variation in Online Monitored Temperature Data. Statistical Modelling

(to appear).

Mestekemper, T., Windmann, M. and Kauermann, G. (2010). Functional Hourly Fore-

casting of Water Temperature. International Journal of Forecasting 26. 684-699.

Mestekemper, T., Kauermann, G. and Smith, M. (2010). A Comparison of Periodic

Autoregressive and Dynamic Factor Models in Intraday Energy Demand Forecasting.

International Journal of Forecasting (submitted).
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2 Theoretical Background

In this chapter a review on the theory of the most important methods applied in the

following three chapters will be given. It starts with a brief and by far not exhaustive

overview of generalized additive models in Section 2.1 and is followed by a short intro-

duction to the expectation maximization (EM) algorithm in Section 2.2. The stress of

this thesis is on landmark-based curve registration and on approximate dynamic factor

models which will be discussed in more detail in Sections 2.3 and 2.4, respectively.

2.1 Generalized Additive Models

Suppose that some random vector Y = (Y1, . . . , YN)> follows an exponential fam-

ily distribution, i. e. Y ∼ exp [(Y θ − b(θ))/φ+ c(Y , φ)] where θ is the canonical pa-

rameter, φ is the scale or dispersion parameter and c(·, ·) is some function (see Mc-

Cullagh & Nelder, 1999). Y is assumed to depend on p observed covariate vectors

Xj = (Xj1, . . . , XjN)>, j = 1, . . . , p. Let the realisations of these vectors be denoted by

y,x1, . . . ,xp. The most general model that can be formulated is given by

g(µi) = f(x1i, . . . , xpi) + εi, (2.1)

where g(·) is an appropriate link function, µi := E(Yi) and εi the residual. f is a

possibly smooth but otherwise unspecified function that shall be estimated from the

data by applying smoothing techniques. Note that in the literature there seems to

be a consensus to call a function “smooth” if it is twice continously differentiable but

depending on the basis functions employed the funtional term can also be piecewise

linear. In this thesis only spline smoothing (see Ruppert, Wand & Carroll, 2003 or

8



2 Theoretical Background

Wood, 2006 as comprehensive textbook references) will be treated but there are other

possibilities such as kernel smoothing, for instance. Unfortunately, model (2.1) has two

major drawbacks: Firstly, for p > 2 one faces huge numerical obstacles that can impede

its estimation, that is, the model suffers from the so-called “curse of dimensionality”.

Secondly, if the estimation is possible anyhow its interpretation can be very difficult as

the impact of a single covariate cannot be extracted easily. Therefore this approach is of

little interest in practise. Hastie & Tibshirani (1990) proposed to model the influence of

the covariates additively as univariate or, at most, bivariate (smooth) functions. Such a

generalized additive model (GAM) can be structured like

g(µi) = xiβ + f1(x1i) + f2(x2i) + f3(x3i, x4i) + · · ·+ εi. (2.2)

Here xi is the i-th row of a design matrix X. Note that (2.2) suffers from a identifiabilty

problem. For example, a constant could be substracted from f1 and added to f2 without

changing the fit. Hence, indentifiability constraints have to be introduced.

The first term on the right hand side of (2.2) stands for the parametric part of the

model and the remaining terms represent the non-parametric part. Models of this type

are therefore often called “semiparametric” to emphasize that they form some kind of a

compromise between purely parametric models and fully non-parametric ones like kernel

smoothers. However, the term “semiparametric” is missleading as the non-parametric

part of (2.2) still contains parameters as will be shown later. The purpose of naming

it “non-parametric” is to cleary differentiate the “flexible” part of the model from the

static part.

Both main disadvantages of (2.1) have been eliminated by using model (2.2). We

now face the estimation of several low dimensional functions instead of a single high

dimensional one and those functions can be interpreted more easily. In the remainder

of this section a detailed description of penalized splines will be given which represent

only one possibility to estimate the possibly smooth terms f· in equation (2.2) from the

data.

9



2 Theoretical Background

2.1.1 Penalized Splines

A spline of degree m is defined to be piecewisely composed of polynomials of degree

m or less. By choosing m the smoothness of the spline, i. e. the number of continuous

derivatives is selected. In a more general framework an univariate unknown function

f(x) (bivariate functions will be treated in Section 2.1.4) can be written as a linear

combination of appropriate basis functions bk(·) by setting

f(xi) =
K∑
k=1

bk(xi)vk, (2.3)

where the vk are basis coefficients. A GAM of the structure

g(µi) = Xiβ + f1(x1i) + f2(x2i) + · · ·+ εi, i = 1, . . . , N,

can then be rewritten as generalized linear model (GLM)

g(µi) = X∗i β
∗ + εi, (2.4)

by setting

X∗ =
[
X, b1

1(x1), . . . , b1
K1

(x1), b2
1(x2), . . . , b2

K2
(x2), . . .

]
,

and

β∗ =


β

v1

v2

...

 ,
where vm = (vm1 , . . . , v

m
Km

)>, m = 1, 2, . . .. Model (2.4) can be estimated by applying

the Fisher-Scoring algorithm which is implemented in many standard software packages.

Now, as mentionend above, a spline is a special function that is constructed piecewisely

by “glueing” together polynomials. The breakpoints where two parts of the function are

merged are called “knots”. For a given set of knots κ1, . . . , κK a cubic spline can be

build from a truncated polynomial basis (see Section 2.1.4 for alternative bases), i. e.

f(x) = β0 + xβ1 + x2β2 + x3β3 +
K∑
k=1

(x− κk)3
+uk. (2.5)

10
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●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●●●
●●

●

●

●

●●

●

●

●

●

●
●
●

●

●●●

●
●

●
●

●
●

●
●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●
●

●

●

●●

●

●

●●
●

●●●

●

●

●

●
●

●

x

si
n((

x))
++

εε

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0 ππ 2ππ

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●●●
●●

●

●

●

●●

●

●

●

●

●
●
●

●

●●●

●
●

●
●

●
●

●
●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●
●

●

●

●●

●

●

●●
●

●●●

●

●

●

●
●

●

x

si
n((

x))
++

εε

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0 ππ 2ππ

Figure 2.1: A cubic truncated polynomial spline fitted to sinusoidal data with gaussian

errors. In the left panel five equidistant knots were used, in the right panel

25. The basis functions are sketched in the lower part of both plots.

Note that the basis coefficients, formerly annotated as v·, have been divided into two

groups by using different annotations: β· and u·. The advantage of this distiction will

be clarified in Section 2.1.2. The subscipt (z)+ denotes the positive part of the function

z, i. e.

(z)+ =

{
z, z ≥ 0

0, z < 0.

Figure 2.1 shows a cubic spline fitted to the values of a sinusoidal function which were

observed with guassian errors. The left panel depicts a setting where five equidistant

knots were used and the result seems to describe the data well except for an edge effect

on the right side of the plot. When the number of knots is increased to 25, see the right

panel, the result is a smooth but “wiggly” fit. In this case the data were “overfitted”.

This demonstrates that the choice of the number (and the location) of the knots has

11



2 Theoretical Background

a strong influence on the fit. However, in order to achieve an automatic smoothing

procedure Ruppert, Wand & Carroll (2003) suggest, for example, to choose the number

of knots by the formula

K = min

(
1

4
× number of unique covariate values, 35

)
.

Their idea is to choose a sufficient number so that a good fit can be achieved without

allowing the set of knots to grow excessively for huge datasets. As knot location they

propose samples quantiles:

κk =

(
k

K + 1

)
-th sample quantile of the unique covariate values.

This guarantees that the model is flexible enough where a lot of information is available

while only few knots are located where data are sparse. Having fixed the number and

location of knots by these or similar formulas a wiggly fit can be avoided by introducing

a roughness penalty for each of the functional terms fm,m = 1, 2, . . . that is given by

λmJ(fm) = λm

∫
[f ′′m(z)]2dz

= λm

Kj∑
k,l=1

vmk v
m
l

∫
bm′′k (z)bm′′l (z)dz =: λm(vm)>Smv

m. (2.6)

Here λm is called a smoothing parameter and J(fm) is a roughness measure for function

fm. Equation (2.6) demonstrates that the latter can be written as quadratic form where

Sm is a positiv semi-definite matrix of known coefficients. For given smoothing param-

eters λm,m = 1, 2, . . . and given starting values µ(0) and β∗(0) the estimator β̂∗ can be

calculated by penalized iteratively re-weighted least squares (P-IRLS, see Wood, 2006):

1. Given the current values for µ(s) and β∗(s) calculate:

wi ∝
1

V (µ
(s)
i )g′(µ

(s)
i )2

and zi = g′(µ
(s)
i )(yi − µ(s)

i ) +X∗i β
∗(s), i = 1, . . . , N,

where V (µ
(s)
i ) = Var(Yi)/φ is the variance function and φ is the dispersion param-

eter of the corresponding exponential family distribution.

12



2 Theoretical Background

2. Calculate

β∗(s+1) = argmin
β∗
||
√

diag(w)(z −X∗β∗)||2 + λ1(v1)>S1v
1 + λ2(v2)>S2v

2 + . . . ,

with w = (w1, . . . , wN)>.

Iterate 1. and 2. until convergence.

Optimal smoothing parameters can be found by using a generalized cross-validation

criterion (GCV, see Wood, 2006), for instance. If more than one functional terms are

involved, a grid search can be performed to identify the optimal combination of smooth-

ing parameters. This approach will not be explained in detail in this thesis. Here the

mixed model approach is mainly pursued which will be described in the following part

of this section.

2.1.2 Representing GAMs as Generalized Linear Mixed Model

It will be shown that every functional term with a quadratic penalty as in (2.6) can be

integrated in a linear mixed model framework, that is, every GAM (or, more generally

speaking, every generalized additive mixed model, GAMM) can be written as generalized

linear mixed model (GLMM). This is desirable as mixed model software that is readily

available in many statistical software packages can be used for estimation and, further-

more, the optimal smoothing parameter(s) result more or less automatically from the

estimation routine so that a search algorithm via GCV or similar criteria is unnecessary.

GLMMs are of interest in many scientific fields. By incorporating random effects

differences between individuals in a longitudinal study can be modelled, for instance.

However, as will be demonstrated the random component is also helpful when estimating

spline models. Let µu := E(y|u) where yi|u follows an exponential family distribution.

A GLMM is defined to be a model of the structure

g(µui ) = xiβ + ziu+ εi with u ∼ N(0,Σu
ϕ),

where zi is the i-th row of the model matrix Z for the random effects u and Σu
ϕ is

the corresponding covariance matrix of the random effects that depends on some distri-

butional parameters ϕ. Assume that a GAMM with univariate functional terms (the
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bivariate case will be treated in Section 2.1.4) of the form

g(µui ) = xiβ + f1(x1i) + f2(x2i) + · · ·+ ziu+ εi, (2.7)

shall be written as GLMM. For simplicity it will be demonstrated by means of a single

functional term

f(x) =
K∑
k=1

bk(x)vk =: Xfv,

with associated roughness measure J(f) = v>Sv as in (2.6) that this is possible. Fol-

lowing the Bayesian argumentation in Wood (2006) the assumption that f is rather

smooth than wiggly can be formalized by choosing an exponential distribution with rate

parameter λ as prior for v, i. e.

fv(v) ∝ exp

(
−λv

>Sv

2

)
. (2.8)

In general S is not of full rank, that is, the prior fv is generally improper. Let

S =: UDU> denote the eigendecomposition of S so that D is a diagonal matrix of the

eigenvalues arranged in decreasing order and the columns of U are the corresponding

eigenvectors. Remember that S is positiv semidefinite and define D+ as the largest

submatrix of D with strictly positive values on the main diagonal. After reparameter-

ising vu := Uv the new parameter vector can be split into vu =: (v>p ,v
>
up)> where vp

denotes the penalized coefficients corresponding to the eigenvalues in D+ and vup are

the remaining unpenalized coefficients. By setting 1/λ = σ2 the prior in (2.8) can be

written as

fv(v) ∝ exp

(
−v

>
uDvu
2σ2

)
= exp

(
−
v>pD+vp

2σ2

)
.

That is, the prior for the penalized parameters vp is multivariate normal while it is

completely uninformative for the remaining coefficients vup. This fact fits greatly into

a mixed model framework. If U =: [Up,Uup] is divided into two parts corresponding to

penalized and unpenalized parameters, respectively, a mixed model can be formulated

by setting Xup := XfUup and Xp := XfUp:

Xupvup +Xpvp with vp ∼ N(0,D−1
+ /λ).

14
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To obtain the familiar mixed model annotation some last reparametrisations are neces-

sary. Define βup := vup, up :=

√
D+vp and Zp := Xp

√
D−1

+ yields

Xupβup +Zpup with up ∼ N(0, I/λ).

Here the smoothing parameter λ is a fixed parameter that can be estimated along with

the fixed effects parameter vector βup. Now the integration of a smooth term in a

GLMM is straight forward. It only remains to append the columns of Xup to the already

existing fixed effects matrix X in (2.7) and to combine the random effect matrices Z

and Zp in an analogous way. Simultaneously, the parameter vectors are merged, i. e.

βnew := (β>,β>up)> and unew := (u>,u>p )>. The same procedure is repeated for all

smooth terms in (2.7).

2.1.3 Estimation

After having demonstrated that every GAMM can be written as GLMM it remains to

present an estimation routine for the latter class of models. Looking at a GLMM in the

general form

g(µui ) = Xiβ +Ziu+ εi, u ∼ N(0,Σu
ϕ), µu := E(y|u),

where yi|u follows a distribution from the exponential family with associated link func-

tion g the parameters to be estimated are the fixed effects β and the variance components

of the random effects ϕ. This is done by maximizing the (log-)likelihood of the joint

distribution

fβ,ϕ(y,u) ∝ |Σu
ϕ|−

1
2 exp

(
log f(y|u)− 1

2
u>(Σu

ϕ)−1u

)
,

where | · | is the determinant. A likelihood function that focuses on the parameters of

interest can be obtained by integrating out the random effects and using the observed

response yobs:

L(β,ϕ) ∝ |Σu
ϕ|−

1
2

∫
exp

(
log f(yobs|u)− 1

2
u>(Σu

ϕ)−1u

)
du. (2.9)
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Calculation of the log-likelihood term l(β,u) = log f(yobs|u) in (2.9) is numerically

difficult for higher dimensions of u but can be replaced by its Laplace approximation

what leads to the approximate likelihood function of the joint distribution

L∗(β,ϕ) ∝ |Σu
ϕ|−

1
2

∫
exp

(
− 1

2φ

∣∣∣∣∣∣W− 1
2 (z −Xβ −Zu)

∣∣∣∣∣∣2 − 1

2
u>(Σu

ϕ)−1u

)
du,

(2.10)

where W is a diagonal matrix with

Wii =
1

V (µbi)g
′(µbi)

2
and zi = g′(µbi)(yi − µbi) +Xiβ +Ziu.

Equation (2.10) is also called the integrated quasi-likelihood function and the approxi-

mate estimation algorithm described below is known as penalized quasi-likelihood (PQL).

PQL was suggested in a Bayesian framework by Laird (1978) and the algorithm was jus-

tified by Schall (1991) and Breslow & Clayton (1993) who relate the PQL criterion to a

Fisher Scoring algorithm developed by Green (1987).

Starting with some initial estimates β̂(0) and û(0) the fixed effects and the variance

components can be computed by iterating the following steps to convergence:

1. Given β̂(s) and û(s) calculate µ̂u(s) = g−1(Xβ̂(s) +Zû(s)), z and W .

2. Estimate the linear mixed model

z = Xβ +Zu+ ε, u ∼ N(0,Σu
ϕ), ε ∼ N(0,W−1φ), (2.11)

to obtain β̂(s+1), û(s+1), ϕ̂(s+1) and φ̂(s+1).

The (ordinary) linear mixed model (2.11) can be fitted by maximising the correspond-

ing profile likelihood that is given by

Lp(ϕ) =
1√

(2πσ̂2
ϕ)N |Σϕ|

exp

(
− 1

2σ̂2
ϕ

(
y −Xβ̂ϕ

)>
Σ−1
ϕ

(
y −Xβ̂ϕ

))
,

with respect to ϕ. Here β̂ϕ and σ̂2
ϕ are standard estimators written as functions of the

variance components ϕ. The maximisation of Lp(ϕ) is easy as a multivariate version of

the Newton-Raphson algorithm can be applied.
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2.1.4 Spline Bases and Penalties

A possibly smooth term f can be represented as a linear combination of a certain set

of basis functions bk, k = 1, . . . , K as was shown in equation (2.3). Deliberately, in this

section about generalized additive models the functions bk(·) have remained unspecified

as there is a huge amount of possible bases a statistician can choose from depending on

his data and the purpose of his analysis. In Section 2.1.1 a truncated polynomial basis

was introduced to motivate the need of a penalisation. However, for a large number of

knots this basis turns out to be numerically unstable for small values of the smoothing

parameter λ. It should also be noted that it can be advantegeous to choose another

roughness measure than that given in equation (2.6) while retaining a quadratic form

benefits the implementation. In the following three types of basis functions will be briefly

presented that were used in the applications of this thesis.

B-Spline Basis The main advantage of B-spline basis functions is that they are only

different from zero over a bounded interval, i. e. a B-spline basis function of degree m+1

is only positive between m + 3 knots. This leads to enhanced numerical stability if the

set of breakpoints is large. Let κ1 < κ2 < . . . < κK+m+1 be such an ordered set of knots.

Then B-spline basis functions can be defined recursively (see de Boor, 1978) by setting

Bm
k (x) :=

x− κk
κk+m+1 − κk

Bm−1
k (x) +

κk+m+2 − x
κk+m+2 − κk+1

Bm−1
k+1 (x), k = 1, . . . , K,

with

B−1
k (x) :=

{
1, κk ≤ x < κk+1

0, else.

A B-spline of order m+ 1 written in the style of equation (2.3) is given by

f(x) =
K∑
k=1

Bm
k (x)vk.

As associated roughness measure Eilers & Marx (1996) propose a difference penalty as

approximation of the second squared derivative of f . If first-order differences shall be
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used this results in

J(f) =
K−1∑
k=1

(vk+1 − vk)2 = v>


1 −1 0 0 0 · · ·
1 −2 1 0 0 · · ·
0 1 −2 1 0 · · ·
...

...
. . . . . . . . . . . .

v.
Higher order differences that lead to smoother fits can be implemented analogously.

Thin Plate Spline Basis Thin plate splines were suggested by Duchon (1977) and have

been given their name as the roughness measure is proportional to the bending energy

that would result if a thin plate was deformed in the same shape as the functional term

f . A major advantage of using a thin plate spline basis is that it theoretically permits

to estimate a high dimensional function, that is f can be a function of d covariates. For

2m > d the roughness penalty is defined by

Jm,d(f) =

∫
R
· · ·
∫
R

∑
ν1+···+νd=m

m!

ν1! · · · νd!

(
∂mf

∂xν1
1 · · · ∂x

νd
d

)2

dx1 . . . dxd,

(see Wood, 2006). A thin plate spline can then be written as

f(x) =
M∑
j=1

ψj(x)βj +
N∑
i=1

ηm,d(||x− xi||)ui, with T>u = 0,

where Tij = ψj(xi) and M =
(
m+d−1

d

)
. Here the functions ψ(·) are those polynomials

that span the space of polynomials of degree less than m in Rd and for that Jm,d is

zero, i. e. in the mixed model context these functions remain unpenalized and will be

categorised as fixed effects. The remaining functions to be penalized are defined by

ηm,d(r) =

{
(−1)m+1+d/2

22m−1πd/2(m−1)!(m−d/2)!
r2m−d log(r), for d even,

Γ(d/2−m)

22mπd/2(m−1)!
r2m−d, for d odd.

Further advantages of thin plate splines are that no knots have to be specified as these

are given by the observations itselves which means that a certain amount of subjectivity
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is removed from the estimation process. In addition the estimated function is invariant

under rotation and translation of the underlying coordinate system. On the other side

this basis comes at a high computational cost and in practice has to be approximated

by so-called thin plate regression splines (Wood, 2006). For further details on this topic

see Wahba (1990) and Green & Silverman (1994).

Tensor Product Basis Besides the thin plate spline approach a bi- or multivariate

spline basis can be defined by a tensor product basis. In the two dimensional case assume

that for two covariates x1 and x2 arbitrary bases B = {bk(x1)|k = 1, . . . , K1, x1 ∈ R}
and C = {cl(x2)|l = 1, . . . , K2, x2 ∈ R} are at hand. A bivariate spline basis can be

constructed by taking the tensor product B ⊗ C, i. e.

f(x1,x2) =

K1∑
k=1

K2∑
l=1

bk(x1)cl(x2)vkl.

Let Jx1(fx1|x2) be the one dimensional penalty assiciated to B for a given value of x2

and define Jx2(fx2|x1) analogously. Then a valid roughness measure can be obtained by

integrating out the fixed covariates and adding both terms:

J(fx1x2 , λx1 , λx2) = λx1

∫
R
Jx1(fx1|x2)dx2 + λx2

∫
R
Jx2(fx2|x1)dx1

where the λ· are to be understood as smoothing parameters in their corresponding

direction. Bases for higher dimensions can be constructed in complete analogy. For

details concerning the implementation of the penalty term, see Wood (2006).

2.1.5 Computational Issues

In R the estimation of generalized additive models can be performed using the package

mgcv created by Simon N. Wood. Wood (2004, 2006, 2008) give a description of the

capability of this package. The main function gam() plays the role of a wrapper function

that translates the GAM formula and the data passed as arguments into a mixed model

and then calls the PQL estimation routine glmmPQL() from the MASS package or in case

that no generalized response is involved the function lme() from the nmle package (see

Pinheiro & Bates, 2002).
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2.2 The EM-Algorithm

The EM algorithm is a possible method to get reliable maximum-likelihood based param-

eter estimates when a part of the data is missing or unobserved. In many applications it

also can be helpful to fomulate an estimation problem with complete data as an incom-

plete one and to apply the EM algorithm as it requires less computational resources than

a Fisher Scoring algorithm, for instance, although it can be significantly slower. Many

authors have applied specialized algorithms which are very similar to the EM algorithm

before Dempster, Laird & Rubin (1977) formulated a global defintion which today is

commonly known. Each iteration of the algorithm consists of the following two steps:

1. E-Step: In the Estimation Step of iteration s the set of unknown parameters or

observations θ is replaced by its estimation from the preceding iteration θ(s−1) or an

initial value θ(0) in case of the first iteration, respectively. Then a function which

is often called the “Q-function”, that is, the conditional expected value of the

log-likelihood given the observed data and the current estimate of the unobserved

values is evaluated:

Q(θ, θ(s−1)) = Eθ(s−1)(logL(θ)|y),

where y are the observed (incomplete) data and L(·) is the likelihood function.

2. M-Step: In the Maximization Step of iteration s the Q-function is maximized

and a new estimator θ(s) is chosen:

θ(s) ∈
{
θ | θ = argmax

θ
Q(θ, θ(s−1))

}
.

Both steps are repeated until either |Q(θ, θ(s)) − Q(θ, θ(s−1))| or |θ(s) − θ(s−1)| is suf-

ficiently small. A detailed description of the EM algorithm can be found in Dempster,

Laird & Rubin (1977), Tanner (1992) or in McLachlan & Krishnan (1997) where the

latter is currently the only textbook which is fully dedicated to this algorithm and which

contains a great number of extensions and examples.
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2.3 Curve Registration

Functional data analysis (FDA) is a term coined by Ramsay & Silverman (2005) and

recently further discussed in Ferraty & Vieu (2006) and Ramsay, Hooker & Graves

(2009). The field is concerned with the analysis of random functional observations or

discrete values that can be considered to be discretisized versions of functional obser-

vations. Without loss of generality these functional observations can be considered as

functions in time t. With the technological advances since the last decade of the 20th

century FDA has gained importance as the outcome of more and more experiments are

functional. Often these functional observations exhibit a common pattern or similar

features like extreme points, for example. However, due to the functional form these

features may not only differ by their functional value, i. e. in amplitude, in addition they

may be shifted in time, i. e. in phase. Curve registration is a technique from the field

of FDA that tackles the latter aspect and is apt to align curves pairwise or towards

some reference curve depending on the methodology. The first part of this section gives

a brief overview of the literature on curve registration. Section 2.3.2 concentrates on

landmark-based time-warping, a special version of curve registration that will be used

with some modifications in Chapter 3. Section 2.3.3 treats monotone smoothing with

quadratic programming. Although a topic of its own, monotone smoothing is presented

within this framework as it forms a desirable improvement of curve registration.

2.3.1 History and Recent Advances

An early example for curve registration is Sakoe & Chiba (1978) who suggest a dynamic

programming method for the elimination of speaking rate variation in order to enable

the automated recognition of spoken words. Another interesting aspect when looking at

a sample of functional observations is the definition of a meaningful average function.

When the cross-sectional mean over all observations is taken, features that are clearly

exposed in each single curve may be smeared or even disappear. A typical example for

this kind of problem is presented in Ramsay, Bock & Gasser (1995). They provide a

set of (smoothed) height acceleration curves of children observed over the period from

21



2 Theoretical Background

an age of four to adulthood. Every child in the sample experiences a pubertal growth

spurt that results in a peak in the acceleration curves followed by a global minimum

when the growth spurt terminates. Although these features are clearly exhibited in each

sample curve, the cross-sectional mean yields unsatisfying results, meaning that both

global extreme points are less exposed as in any of the sample curves. To tackle this

problem Kneip & Gasser (1988, 1992) suggest to compute a structural mean, that is, to

align the curves prior to compute a cross-sectional mean function. Given a set of curves

{xi(t)|xi : [0, T ]→ R, i = 1, . . . , I} they presume the general model

µ(t) = αi(t)xi (πi(t)) + εi(t), (2.12)

where µ(t) is the structural mean function, αi(t) is a non-uniform amplitude modulation

function, πi(t) is a non-uniform strictly monotonically increasing time transformation,

xi(t) is the i-th possibly smooth sample curve that was observed with noise function

εi(t) with µ, αi, εi : [0, T ] → R and πi : [0, T ] → [0, T ]. They focus on estimating

the time transformation or time-warping function πi(t) by identifying so-called struc-

tural functionals or landmarks, i. e. characteristics that can be found in every sample

curve. As structural functionals they propose to take local extreme points, inflection

points and points where the slope of xi(t) crosses certain thresholds. Having found

the locations of these structural functionals (these are called structural points) in ev-

ery sample curve, their average locations can be computed. Given these informations

the time-warping functions πi(t) can be built by either linear interpolating or smooth-

ing the two-dimensional dataset of average and observed time points. The procedure

will be described in detail in Section 2.3.2. Applications can be found in Gasser et al.

(1990, 1991a, 1991b) and Gasser & Kneip (1995) address some practical aspects of the

estimation routine.

Although landmark-based curve registration is considered as benchmark or even best

working methodology in many publications such as Ramsay & Li (1998) or Gervini

& Gasser (2004, 2005), it is inadequate for large curve samples. Often an automatic

calculation of the structural points is not possible and they have to be set by hand.

Later research therefore focuses on developing automatic procedures for the calculation
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of time-warping functions. Wang & Gasser (1997, 1998, 1999) present an approach based

on dynamic programming. However, it is only apt for pairwise alignment of two curves

so that the knowledge of a master curve is necessary if a large sample is to be registered.

Ramsay & Li (1998) extend the work of Silverman (1995) and suggest a continous fitting

criterion for the model

µ(t) = xi (πi(t)) + εi(t), (2.13)

which is similar to (2.12) but does not allow the curves to vary in amplitude. This

leads to an overfitting problem when too much amplitude variation is present in the

sample curves. Rønn (2001) presents a maximum likelihood routine for shift registration,

that is, the curves may differ in amplitude but the time-warping functions πi(t) are

restricted to have a slope equal to one. Gervini & Gasser (2004, 2005) propose another

approach to self-modelling warping functions that is motivated by landmark-based curve

registration. They extend model (2.13) in the sense that they allow for a uniform

amplitude modulation in the style of

µ(t) = αixi (πi(t)) + εi(t). (2.14)

Similar to the methodology presented in Ramsay & Li (1998) their method suffers from

an overfitting problem if this assumption is violated. An alternative technique using

the continous wavelet transform to estimate the time-warping functions was proposed

by Bigot (2006). A Bayesian approach to curve registration was presented by Telesca &

Inoue (2008) who consider the model

µ(t) = γi + αixi (πi(t)) + εi(t), (2.15)

that is, in addition to (2.14) they allow the curves to have a varying level. Recently,

Liu & Yang (2009) described a procedure for simultaneous registration and clustering

of curves.

Landmark-based curve registration in two and three dimensions also refered to as

image registration has received much attention in medicine and neuro biology. However,

the development in this field seems to be more or less independent of the literature
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presented above and shall therefore not be discussed in depth in this thesis. An extensive

literature review can be found in Zitová & Flusser (2003), for example.

The landmark-based approach to curve registration as suggested by Kneip & Gasser

(1992) will now be described in detail as it will be applied in Chapter 3.

2.3.2 Landmark-based Curve Registration

As pointed out in the preceding section Kneip & Gasser (1992) use the most general

model for time-warping. Its only limitations lie in the restricted applicability for large

curve samples when the automatic recognition of landmarks is impossible. However, this

is not the case in the application example presented in Chapter 3. Furthermore, the data

at hand are time series data and a methodology shall be developed that allows application

in an “online” style, i. e. it shall be possible to incorporate new measurements of the time

series of interest. In this context the automatic curve registration methods developed

later do not work as they require a set of complete functional observations. This section

therefore focuses on landmark-based curve registration as proposed by Kneip & Gasser

(1988, 1992) and Gasser & Kneip (1995).

2.3.2.1 The Definition of Landmarks

Let J denote the time interval of interest, let Cν(J) be the set of all ν times continously

differentiable functions on J and let ||v||(ν)
J :=

∑ν
s=0 supt∈J |v(s)(t)|, v ∈ Cν(J) define a

norm on Cν(J) where v(s)(t) is the s-th derivative of v(t). Without loss of generality we

can set J := [0, T ].

Kneip & Gasser (1992) assume that a functional observation consists of a smooth

signal that is observed with noise, i. e. a typical sample consists of a set of regression

curves {xi(t)|xi : J → R, xi ∈ Cν(J), i = 1, . . . , I} for some ν ≥ 2. The shape of these

sample curves is thereby characterized by structural features like local extreme points

together with their corresponding amplitude and inflection points. These characteristics

shall be captured by defining continuous landmark functionals L : C2(J) →]0, T [∪{a}
where L takes the argument value of the feature of interest or L(v) = a /∈ J, v ∈ C2(J)
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if it is missing in v. For a local maximum on a subinterval [t1, t2] ⊆ J this boils down to

L(v) :=

 arg sup
t∈[t1,t2]

v(t), if v possesses a unique supremum in [t1, t2],

a, otherwise.

From the continuity of L follows that ∀ε > 0 ∃δ > 0 such that ∀v, w ∈ C2(J) with

||v − w||(2)
J < δ follows |L(v)− L(w)| < ε.

Kneip & Gasser (1992) suggest the use of three types of landmarks whose definition

are listed below. Let thererfore DL ⊆ C2(J) be the subset of all functions v ∈ C2(J)

with L(v) 6= a.

• A local extreme point is a functional L : C2(J) →]0, T [∪{a} for some a /∈ J if

the following assumptions hold:

1. L is continous on DL,

2. ∀v, w ∈ DL, v(L(v)) and w(L(w)) are either both local maxima or local

minima of v and w, and sign(v′′(L(v))) = sign(w′′(L(w))) 6= 0.

• A local percentage point is a location where a certain local percentage of total

increase or decrease is reached, that is, a functional L : C2(J) →]0, T [∪{a} for

some a /∈ J with p ∈]0, 1[ with

1. L is continous on DL,

2. ∀v ∈ DL holds v(L(v)) = pv(ψ0,v) + (1 − p)v(ψ1,v), where ψ0,v and ψ1,v are

successive local extreme points of v, v is strictly monotone on the interval

[ψ0,v, ψ1,v] and ψv,0 is either a local maximum or local minimum ∀v ∈ DL.

• Further characteristics like inflection points are captured by the more general

definition of an extreme point functional on the derivates of the functions of in-

terest, i. e. for some u ∈ N a functional L : Cu+2(J) →]0, T [∪{a} for some a /∈ J
is called a landmark of order u + 1 if there exists an extreme point functional

Lu : C2(J)→]0, T [∪{a} with L(v) = Lu(v
(u)),∀v ∈ Cu+2(J).
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Additionally, Kneip & Gasser (1992) postulate consistency among landmarks of the

same order. That is, for any two landmark functionals L,L∗ : Cu+2(J)→]0, T [∪{a} for

some a /∈ J , u ∈ N ∪ {0}, exactly one of the following equations hold:

1. L(v) < L∗(v),∀v ∈ DL,

2. L(v) = L∗(v),∀v ∈ DL,

3. L(v) > L∗(v),∀v ∈ DL.

Note that consistency is fulfilled by definition between extreme points and percentage

points as well as among percentage points.

2.3.2.2 Building the Time-Warping Functions

Let Li = (Li,1, . . . , Li,K)>, K ∈ N be the vector of landmarks in the i-th sample curve

with Li,k = Lk(xi) and assume that the condition Li,r < Li,s holds for r < s if Li,r 6= a

and Li,s 6= a. In addition, let HK be the set of all ordered vectors t = (t1, . . . , tl)
> ∈

(J ∪ {a})K that fulfill tr < ts for all r < s if tr 6= a and ts 6= a.

Kneip & Gasser (1992) formulate the following requirements for appropriate time-

warping functions πi, i = 1, . . . , I that correspond to a curve sample {xi(t)|xi : [0, T ]→
R, i = 1, . . . , I}:

1. As no other information is available, for all i, j ∈ {1, . . . , I} the differences between

πi and πj shall only depend on differences between the landmarks Li and Lj.

2. For all k ∈ {1, . . . , K} the landmark Li,k in the i-th curve shall be align to its

average location L̄k = 1
I

∑I
i=1 Li,k.

3. For all i ∈ {1, . . . , I} πi shall be strictly monotonically increasing.

4. For all i ∈ {1, . . . , I} πi shall be a smooth function.

Note that for empirical applications these points may partly be contradictory. For

example, the claim of finding smooth strictly monotonically increasing time-warping

functions may inhibit the exact alignment of Li,k to its average location L̄k.
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Kneip & Gasser (1992) formulate the general concept of a shift operator which is an

operator Π : H2
K → C1(R) that satisfies:

1. ∀(t0, t1) ∈ H2
K , Π(t0,t1)(·) is a strictly monotonically increasing continous real func-

tion,

2. ∀(t0, t1) ∈ H2
K : Π(t0,t1)(t0,k) = t1,k for all k = 1, . . . , K with t0,k 6= a and t1,k 6= a.

A time-warping function is then defined by

πi(·) := Π(L̄,Li)(·),

where L̄ is the vector of the average landmark locations and Li is the vector of landmarks

in the i-th curve.

The simplest way of finding an appropriate shift operator is to add the start and

end points of the time interval of interest to the set of landmarks and to define the time

warping functions πi : [0, T ]→ [0, T ] as linear interpolation between adjacent landmarks,

i. e.

πi(t) = Li,k + (t− L̄k)
Li,k+1 − Li,k
L̄k+1 − L̄k

for t ∈
[
L̄k, L̄k+1

]
, k = 1, . . . , K − 1.

If some landmarks are missing in Li the technique can be applied to the remaining ones.

However, this approach does not provide smooth time-warping functions. In Section

2.3.3 a monotone smoothing technique will be presented that can fix this deficit.

2.3.3 Monotone Smoothing with Quadratic Programming

For monotone smoothing a special property of B-spline bases (see Section 2.1.4) can be

exploited. Therefore the strict monotonicity of the the time-warping functions will be

relaxed to non-decreasingness for practicability reasons.

A time-warping function πi(t) can be written as linear combination of B-spline basis

functions of order m+ 1

πi(t) =
P∑
p=1

Bm
p (t)up.

27



2 Theoretical Background

For simplicity assume that m = 3 for cubic B-splines and that Bm
p , p = 1, . . . , P are

uniform, non-degenerated B-splines, that is, a grid of equidistant knots is used and

degenerated B-splines on the edges of the interval [0, T ] are replaced by their non-

degenerated versions.

Kelly & Rice (1990) point out that there can be no more sign changes in πi(t) than

there are in the sequence of coefficients {up}p=1,...,P . A non-decreasing time-warping

function can therefore be found by minimizing the sum of squared residuals

Q(u) =
I∑
i=1

K∑
k=1

(
Li,k − B(L̄k)u

)2
, (2.16)

subject to the constraints that u1 ≤ u2 ≤ . . . ≤ uP , where B denotes the B-spline basis

{Bm
p (t)|p = 1, . . . , P} and u = (u1, . . . , uP )>. These constraints can be expressed as

Cu =


−1 1 0 0 · · · 0

0 −1 1 0 · · · 0
...

. . . . . . . . . . . .
...

0 0 · · · 0 −1 1

u ≥ 0. (2.17)

The minimization problem (2.16) under the restrictions (2.17) can be solved iteratively

by quadratic programming. Let therefore u(s) be the estimate in the s-th iteration step

and let u(s+1) = u(s) + δ(s). A Taylor expansion of (2.16) yields

Q
(
u(s+1)

)
= Q

(
u(s)

)
+
∂Q
(
u(s)

)
∂u

δ(s) +
(
δ(s)
)> ∂2Q

(
u(s)

)
∂(u)>∂u

δ(s),

so that we have to minimize the quadratic form(
a(s)
)>
δ(s) +

(
δ(s)
)>
B δ(s), (2.18)

subject to (2.17) where

a(s) =
∂Q
(
u(s)

)
∂u

=

(
−2

I∑
i=1

K∑
k=1

B>(L̄k)
(
Li,k − B(L̄k)u

(s)
))>

,
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and

B =
∂2Q

(
u(s)

)
∂(u)>∂u

= 2
I∑
i=1

K∑
k=1

B>(L̄k)B(L̄k).

An optimal solution for u can be computed by starting with u(0) = 0, iteratively solving

(2.18) under the constraint (2.17) and updating u(s+1) = u(s) + δ(s) until Q
(
u(s)

)
con-

verges. An alternative approach to monotone smoothing with quadratic B-splines can

be found in He & Shi (1998).

2.4 Approximate Dynamic Factor Models

In applications in multivariate statistics it is often desirable to reduce the dimension of

the original dataset and to thereby compress the information and structure contained

in the raw data. Factor models form a technique that has been widely employed for

this purpose. By incorporating time series dynamics into factor models they became

more and more interesting for economic applications, as well. In the firts part of this

section an overview of the development of (approximate) dynamic factor models will be

given. Then two different approaches to factor estimation within this framework will

be discussed in Sections 2.4.2 and 2.4.3. In the last part of this section some light will

be shed on the difference between principal components analysis and exploratory factor

analysis as in practise factors are often estimated by principal components.

2.4.1 History and Recent Advances

The roots of dynamic factor models go back to the year 1904 when Charles Spearman

found out that school children’s results on a wide range of seemingly unrelated tasks

were positively correlated (see Spearman, 1904, a brief review of the early history of

classical factor analysis can be found e. g. in Steiger, 1979). He introduced a single

common factor model and showed that it fitted his data well. He used this common

factor which he called the g-factor as a measure for the unobservable mental ability or

intelligence of a person. 15 years later Garnett (1919) extended Spearmans approach
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to an M -factor model allowing for more than a single common component influencing

a set of response variables. The “multiple factor analysis” gained popularity during the

1940’s mainly due to Thurstone (1947) and became a commonly known and applied

method in psychology and sociology. Let xt = (x1,t, . . . , xN,t)
> denote the realisations of

N random variables Xi,t, i = 1, . . . , N, t = 1, . . . , T . In the classical M -factor model this

multivariate time series is decomposed into M common and N idiosyncratic factors:

xt = Λft + εt, t = 1, . . . , T,

where Λ is an N ×M -matrix of factor loadings, ft = (f1,t, . . . , fM,t)
> is the vector of

the M common factors and εt = (ε1,t, . . . , εN,t)
> is a vector of N idiosyncratic factors or

disturbances. It is assumed that the N +M common and idiosyncratic factors are mu-

tually independent and uncorrelated across all t which seems to be a feasible assumption

in most cross-sectional studies in social sciences. This assumption was the main obstacle

which prevented the classical factor model from being applied to time series. Here, both

types of factors will show some correlation over t.

In the economic context factor models were of great interest as they permitted to

capture the main part of the variability of a large dimensional dataset with only a few

common factors. This, in particular, was meaningful in forecasting models where the

number of parameters to be estimated could be considerably reduced. This, in turn,

would result in a significant reduction of uncertainty caused by the estimation of the

unknown parameters. The stability of forecasting models with many predictors could

be enhanced that way. Geweke (1977) and Sargent & Sims (1977) were the first who

introduced time series dynamics into factor models. They also created the expression

“dynamic factor analysis” and “dynamic factor model”. Geweke loosened the restriction

mentioned above by allowing for correlation of both, common and idiosyncratic factors

over time t. He retained the restriction of ft and εt being mutually independent and

postulated that both were covariance stationary and strictly indeterministic. By giving a

frequency domain representation he showed that the dynamic factor model is especially

suitable for time series which have most of their variation at low frequencies. He pointed

out that this is the case for most macroeconomic series where features of interest like
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Figure 2.2: Schematic of the development of the approximate dynamic factor model.

business cycles have a six month or even longer frequency. Because of this dynamic

factor models became interesting for scientists of the economic field.

Chamberlain (1983) and Chamberlain & Rothschild (1983) extended the classical

“strict” factor model in another direction. They pointed out that the assumption of

uncorrelated idiosyncratic factors is very unlikely in most applications in economics

and finance. They therefore introduced the “approximate factor model” where the id-

iosyncratic distrubances are allowed to be weakly cross-sectionally correlated, i. e. the

assumption

E(εit · εjs) = 0,∀ i, j, t, s with i 6= j,

is being relaxed. The idea of the approximate factor structure was also taken up by

Connor & Korajczyk (1986, 1993).

The first who formulated a combination of both mentioned extensions of the classic

factor model were Forni & Reichlin (1998) and Forni et al. (2000). Their “generalized
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dynamic factor model” is the synthesis of the concepts suggested by Geweke (1977) and

Chamberlain & Rothschild (1983) and allows for serial correlation of both, common

and idiosyncratic factors as well as for weak cross-correlation among the idiosyncratic

part. However, they proposed to estimate the latent factors via dynamic principal

components (see Brillinger, 1981) which is a two-sided estimation routine that includes

leads and lags. Therefore, their approach was not apt for forecasting. Stock & Watson

(2002a, 2002b) were the first who came up with a one-sided estimation routine using

only contemporaneously available values of the predictors of interest. Their work focused

on forecasting macroeconomic variables when a large number of candidate predictor

variables is available. The number of time series might even exceed the number of

observations in the dataset. Instead of excluding less relevant variables from the analysis

they employ an approximate dynamic factor model where they estimate the factors using

principal component analysis. They impose a vector-autoregressive structure on the

common part and, if needed, univariate autoregressive structures on the idiosyncratic

factors. An alternative one-sided estimation routine for the factors is proposed by Forni,

Hallin, Lippi & Reichlin (2005). Similar to their earlier publications (Forni, Hallin, Lippi

& Reichlin, 2000, 2004) they pursue a spectral density based approach and estimate the

factors with generalized principal components what yields asymptotically better results

as the method suggested by Stock & Watson (2002a) which they proof with the help of

a simulation study and a real data example.

In the very recent past Byeong et al. (2009) in line with a number of other studies (see

references therein) presented a semiparametric approach to dynamic factor models which

they call the “dynamic semiparametric factor model” (DSFM). The main difference to

the former mentioned techniques is that they let the factor loadings be semiparametric

functions of some observable influencing variables. They use a multivariate Newton-

Raphson-Algorithm to estimate the factor scores. Unlike Stock & Watson and Forni

et al. they do not make use of a normalization in order to identify the common factors

uniquely (up to the sign) but they show with the help of a simulation study that for

any set of estimated factors there exists a transformed solution which has the same

covariance structure as the original set of common factors and hence inference can be

32



2 Theoretical Background

done based on any feasible solution. Another application of the DSFM is given in Borak

& Weron (2008).

Up to now the publications of Stock & Watson (see Section 2.4.2 for more details) and

Forni et al. (see Sectoin 2.4.3) are considered to be the main references for applications

of approximate dynamic factor models in the field of economics and finance. A graphical

sketch of the most relevant development stages of this type of factor model is given in

Figure 2.2.

2.4.2 Common Factor Estimation via Principal Components

Analysis

Stock & Watson (2002a) point out that for many macroeconomic forecasting problems

economists monitor a large number of candidate predictor variables. Often the number

of predictors even exceeds the number of observations available which makes a direct

regression of the variable of interest on the predictors impossible. Instead of excluding

less relevant variables from the analysis they formulate the idea that the economy is

driven by some unobservable forces and the hundreds or maybe thousands economic

variables are measures which contain information about a mixture of these driving forces.

They estimate the forces using an approximate dynamic factor model. The forecasting

setting is then reduced to a feasible size by plugging in an appropriate number of common

factors instead of a huge number of predictor variables. In order to produce a k-step

ahead forecast of a response time series yt they suggest a two-step estimation through a

static factor model for the predictors xt = (x1,t, . . . , xN,t)
>

xt = Λft + εt, (2.19)

where ft = (f1,t, . . . , fM,t) is a vector of M common factors, Λ is the N ×M -matrix of

factor loadings and εt the N -vector of idiosyncratic factors, together with a forecasting

equation

yt+k = f>t βf +w>t βw + et+k. (2.20)

Here, wt is a vector of covariates that shall be incorporated directly into the forecasting

process, βf and βw are coefficient vectors and et+k is the forecasting error. The dynamic
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factor model

xi,t = λi(L)f ′t + εi,t, (2.21)

and

yt+k = (f ′t)
>βf (L) +w>t βw + et+k, (2.22)

with L as lag operator, can be rewritten in the static form (2.19) and (2.20) by setting

ft = ((f ′t)
>,
(
f ′t−1)>, . . . , (f ′t−q)

>)> if the lag polynomials are of finite order q. This is of

great importance because for the static form the factors can be consistently estimated via

principal component analysis for N, T → ∞ as shown in Stock & Watson (2002a). For

the identification of the factors (up to the sign) Stock and Watson impose the following

assumptions:

• (Λ>Λ/N)→ IM ,

• E(ftf
>
t ) = Σff is a diagonal matrix with σii > σjj for i < j,

• T−1
∑

t ftf
>
t

p→ Σff ,

• |λi,j| ≤ c <∞ for some constant c.

That is, they postulate that each of the common factors significantly contributes to

the explanation of the total variance in xt and that the factor process ft is covariance

stationary. Furthermore, they allow for correlation among the idiosyncratic part in the

sense of Chamberlain & Rothschild (1983) and Connor & Korajczyk (1986, 1993) by

assuming

• E(ε>t εt+s/N) = γN,t(s) with limN→∞ supt
∑∞

s=−∞ |γN,t(s)| <∞,

• E(εi,t · εj,t) = τij,t with limN→∞ suptN
−1
∑N

i=1

∑N
j=1 |τij,t| <∞,

• limN→∞ supt
∑N

i=1

∑N
j=1 |Cov(εi,s · εi,t, εj,s · εj,t)| <∞.

The first assumption implies serial correlation among the idiosyncratic factors, the sec-

ond allows them to be weakly cross-correlated and the third limits the fourth moments.
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Stock & Watson (2002a, 2002b) thereby suggest a combination of the concepts of

Geweke (1977) and Chamberlain & Rothschild (1983). The latter proposed to estimate

factors via principal components analysis for the static case. An alternative approach

using generalized principal components will be presented in the next section.

2.4.3 Common Factor Estimation via Generalized Principal

Components

In the approximate dynamic factor model suggested by Forni, Hallin, Lippi & Reichlin

(2000) the common factors were estimated using dynamic principal components analysis

(see Brillinger, 1981). This estimation routine is two-sided meaning that both, leads

and lags, are included which is no problem “in the middle” of the sample but it is not

applicable to the first and last observations. Therefore, this method is improper for

forecasting where factors of the most recent observations have to be determined.

Forni, Hallin, Lippi & Reichlin (2005) suggest a one-sided estimation routine for an

approximate dynamic factor model. Following Stock & Watson (2002a, 2002b) they

point out that a dynamic factor model of the form (2.21) and (2.22) with a finite lag

structure can be written in the static form (2.19) and (2.20) which allows to use prin-

cipal components for factor estimation. However, they argue that instead of standard

principal components there may be better linear combinations that result in a better

approximation of the space of common factors. As an alternative they recommend to use

generalized principal components. The static form is necessary for the factor estimation

through principal components. By imposing similar assumptions as Stock & Watson

(2002a) they derive their estimation routine from the spectral density Φ(θ). Let Φ̂(θ)

denote the lag-window estimator of Φ(θ) (that can be a two-sided mid-sample estima-

tor). Spectral density estimates of the common and idiosyncratic factors can then be

obtained by setting

Φ̂f (θ) = ν̂1(θ)p̂1(θ)p̂∗1(θ) + · · ·+ ν̂M(θ)p̂M(θ)p̂∗M(θ),

and

Φ̂ε(θ) = ν̂M+1(θ)p̂M+1(θ)p̂∗M+1(θ) + · · ·+ ν̂N(θ)p̂N(θ)p̂∗N(θ),
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where ν̂i is the i-th largest estimated eigenvalue of Φ̂(θ) and p̂i(θ) the corresponding

eigenvector and the superscript ∗ denotes the transposed, complex conjugated version.

M denotes the number of eigenvalues that are needed to capture the desired part of the

variation in Φ̂(θ). Using these results the covariance matrices of common and idiosyn-

cratic factors are given by

Σ̃f =

∫ π

−π
Φ̂f (θ)dθ,

and

Σ̃ε =

∫ π

−π
Φ̂ε(θ)dθ.

The N×M matrix of factor loadings is build from the first M generalized eigenvectors

of the matrices Σ̃f and Σ̃ε, that is, the solutions of the generalized eigenvalue problem

Σ̃fλi = ρiΣ̃ελi, i = 1, . . . , N,

where ρi denotes the i-th largest generalized eigenvalue and λi the corresponding eigen-

vector of the matrix couple Σ̃f and Σ̃ε under the normalization constraints

λ>i Σ̃ελi =

{
1, i = j,

0, i 6= j.

The factor loading matrix is then given by Λ = (λ1, . . . ,λM).

In the last part of this section the differences between exploratory factor analysis and

principal components analysis will be pointed out and it will be shown under which

circumstances they yield approximately the same results.

2.4.4 Principal Components Analysis vs. Exploratory Factor Analysis

The aim of this section is to emphasize that principal components analysis (PCA) and

exploratory factor analysis (EFA) are, although related, different methods and in general

their results are not the same. In practise, they are often confused or used equivalently.

It shall be explained under which circumstances both techniques yield quite similar
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results. Instructions how to employ both techniques and information about the assump-

tions being made can be found in most textbooks on multivariate analysis, for example,

Mardia, Kent & Bibby (1979) or Rencher (2002).

Although PCA and EFA are closely related and in practise even often confused they

are not identical. Both procedures can be used to reduce the dimension of a dataset.

They differ by the amount of variance which is accounted for in their models. In prin-

cipal components analysis all the variance which is contained in N observed variables is

preserved by N factors. The PCA model is

xi,t = λi,1f1,t + λi,2f2,t + · · ·+ λi,NfN,t,

with t = 1, . . . , T and i = 1, . . . , N , where xi,t is the mean-corrected value of the t-th

observation on the i-th random variable, λi,m is the weight of the i-th variable on the

n-th factor fn,i (n = 1, . . . , N). The factors fm,i are assumed to be uncorrelated.

The EFA model only accounts for the amount of variance which is shared by all

observed variables. Here, the variable xi,t has to be not only mean-corrected but stan-

dardized. The factor model can be written as

xi,t = λ′i,1f
′
1,t + λ′i,2f

′
2,t + · · ·+ λ′i,Mf

′
M,t + εi,t, (2.23)

with t = 1, . . . , T and i = 1, . . . , N and M ≤ N . Here N random variables are explained

by usually less theN common factors and εi,t are the idiosyncratic disturbances. Without

loss of generality it can be assumed that both common and unique factors have zero mean

and unit variance as they are unknown in practice. Moreover, the unique factors are

assumed to be independent of each other and of the common factors.

To point out the differences of PCA compared to EFA assume that the components

are ordered by their corresponding eigenvalues, i. e. by the amount of variance explained

through each component in decreasing order. When the dimension of a dataset shall

be reduced by applying a PCA this can be done by retaining only the leading M com-

ponents f1,t, . . . , fM,t and dropping the information contained in the remaining N −M
components. This leads to

xi,t =
M∑
m=1

λi,mfm,t + ei,t,
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which appears to be similar to (2.23). A closer look at the residuals ei,t reveals the

difference:

ei,t =
N∑

m=M+1

λi,mfm,t.

In the factor model we presumed that the unique factors εi,t were mutually independent.

This assumption is violated in the PCA model. Here ei,t and ej,t are not independent

for i 6= j as the same fm,t’s are involved.

Chamberlain & Rothschild (1983) show for their approximate static factor model that

PCA and EFA are asymptotically equivalent for N, T → ∞. Stock & Watson (2002a)

demonstrate the same for the approximate dynamic factor model. However, there are

situations where both, PCA and EFA, yield approximately the same results for finite N

and T , as well. This is the case when the communalities of the EFA model are close to

unity. The communalities h2
i , i = 1, . . . , N are defined as

h2
i =

M∑
m=1

(λ′i,m)2.

If they are close to unity this means that the main part of the variance in the N observed

variables is due to the M common factors and that the unique factors are of little

importance. In this case in a PCA the first M components will explain the main part

of the variance, as well, and the results of both methods will only differ slightly.

In this chapter the main important theoretical concepts have been presented that will

be applied in the following part of this thesis. The focus thereby was on landmark-based

curve registration and approximate dynamic factor models because these methods will

be employed in new frameworks. In Chapter 3 the former will be used to estimate

time-warping functions for parts of an online monitored time series. The latter will find

application in high-resolution forecasting of water temperature (Chapter 4) and energy

demand (Chapter 5).
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in Water Temperature Data

If we compare meteorological air temperature measurements taken over different years

in the European climate zone we usually find the warm and the cold period of a year, i. e.

summer and winter, clearly exposed. These yearly temperature curves not only differ in

amplitude meaning that we find hotter summers in some years and colder ones in others.

The periods may also be shifted in time, i. e. we can observe that in some years the warm

or cold period of the year starts earlier, lasts longer or the contrary, respectively. These

time shifts can be called phase variation.

Due to the physical heat transfer the patterns carry over to river water temperature

measurements. As pointed out in detail in Section 1.1 such shifts have an influence on the

fish population in terms of, for instance, migration, spawning or maturing of juvenile

fish, see e. g. Ovidio et al. (2002) or Rakowitz et al. (2008) and references therein.

As mentioned in Section 1.1 there are certain water temperature thresholds during the

different stages of the spawning cycle of fish that must not be crossed. Furthermore,

water temperature among other things is a significant stimulus and trigger for spawning

and migration, see e. g. Ovidio et al. (1998). Such triggers could be considered as

landmarks in the annual variation of water temperature. Given a set of landmarks that

can be reliably found in every year we can judge whether in a particular year a season

is running behind or ahead of the “average” time scale. In this application, however, we

focus on the problem of finding landmarks from a statistical perspective by looking for

recurrent events in temperature data. We will also investigate if the conclusions drawn

from these landmarks can be linked to the ecological versions consisting of triggers and
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Figure 3.1: Daily average water temperature recorded from 1 July 2002 to 30 June 2008.

For a better visualization the curves from the second year on have been

shifted by cumulatively adding 10◦C.

spawning stages.

Note that the “average year” which we want to use for our analysis has to be defined

from the landmarks found in the dataset. For any landmark we therefore take the

rounded mean of its appearance in the differnt years of our data sample as reference

points. These form the reference year that will be used to evaluate deviations for a

particular year in terms of stretching or compressing time.

The data at hand consist of hourly water temperature measurements from the river

Wupper in the North-Western part of Germany. The measurements were taken upstream

of the city of Wuppertal where two fossil-fueled powerplants use the water as cooling

device (see also Section 1.1). Corresponding hourly air temperature readings from the
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area of interest are available, as well. The water temperature data can be considered as

free from any kind of (relevant) human interference. The curves of the maximum daily

water temperatures are shown in Figure 3.1 with observations being shifted vertically

(by cumulatively adding 10◦C) for better visual impression. Years are fixed to last from 1

July to 30 June instead of the Julian calendar, which is more coherent with the spawning

cycle of Salmonidae that starts in autumn and ends in late winter / early summer. Just

by pure visual inspection we see a number of features. For instance, summer 2003 lasted

long (until September) and was followed by an early spring in 2004. Our intention is to

get statements like these more formally based on statistical grounds.

In order to obtain an indication whether a season is running ahead or behind the

average year we want to employ a technique known as “curve registration” from the

field of functional data analysis. We thereby closely follow the suggestions of Kneip &

Gasser (1992) and Gasser & Kneip (1995) who present a set of groth acceleration curves

of children that show the same features, i. e. the same extreme points but shifted in

time. These features are called “structural functionals” or “landmarks”. With knowl-

edge about the locations of these characteristics a so-called “time-warping function”

can be derived for every functional observation that aligns the acceleration curves to a

priori defined reference points by compressing or expanding time. A detailed review of

landmark-based time-warping as well as an overview of related techniques can be found

in Section 2.3. However, the data structure and the focus of our data analysis does

not allow for a direct application of these methods because of the following reasons.

First, looking at our data it appears that the only clearly exposed local extrema mark

summer and winter and other local extrema appear to be more or less random events.

Hence, the underlying ideas of finding local extrema as suggested in Gasser & Kneip

(1995) seems not fruitful except of defining these two yearly extrema. Secondly, and

more importantly, all methods described in Section 2.3 are designed for a retrospective

point of view, that is, the complete data are necessary to run a warping or registration

procedure. In our example this would mean, based on the data of a year we could ret-

rospectively decide whether seasons were running ahead or behind the “average year”.

We want however an procedure reacting “online” by looking at recent measurements.
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Hence, based on data collected in the progression over a year we want to decide whether

a landmark has been reached. Our intention is to find landmarks in a data driven style

and to retrieve structures which can be found quite reliably every year. To do so, we

will make use of running means, temperature thresholds, principal component analysis

and canonical correlation relating water temperature to air temperature. This shows

similarities to Silverman (1995) but instead of looking at the average water temperature

shown in Figure 3.1 we also look at the daily variation of the temperature. We will see

that the data are quite informative and provide relevant information about the course

of the seasons.

In the Section 3.1 we will present four online methods for the specification of land-

marks. These will be used in Section 3.2 for time-warping. Here we will also explain

in detail which modifications to the classical techniques presented in Section 2.3 are

necessary to handle the time series structure of our data. The results will be linked to

data concerning the fish reproduction cycle of the Brown Trout in the river Wupper. In

Section 3.3 we investigate the variability of the different landmarks by considering their

bootstrapped distribution before we summarize our results in Section 3.4.

3.1 Landmark Specification

We will subsequently introduce landmarks which are found in different ways by analyzing

water temperature and its connection to air temperature. However, before going into

detail we first introduce our notation. Let wt = (wt,0, . . . , wt,23) be the vector of hourly

water temperature at time t, where t can be expressed by t = (i, d) with i indicating

the year and d giving the day of the year (yearday). Analogously, we define the vector

of hourly air temperatures at. We decompose both temperature vectors into

wt = 1 · w̄t + xt (3.1)

at = 1 · āt + bt (3.2)

where 1 is a vector of 1’s, w̄t and āt are the average water and air temperature at day d

in year i and xt and bt are the remaining water and air temperature courses over that
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day, respectively. Note that xt = (xt,0, . . . , xt,23) has 24 elements summing up to zero,

the same is true for bt.

3.1.1 Running Means

As natural set of landmarks in the data we have yearly maximum and minimum tem-

perature, see Figure 3.1. These are, however, generally weakly exposed so that we do

not make use of finding global extrema per year. Instead, we employ the simple strategy

by using two running means and define their cut points as landmarks. To be specific,

a first pair of landmarks is defined by the cut points of simple running 100 days / 200

days means.

The temperature curves shown in Figure 3.1 do not exhibit any further exposed func-

tional characteristics. We therefore look at temperature thresholds.

3.1.2 Temperature Thresholds

In order ot fix these landmarks we apply simple t-tests to the daily mean temperature

w̄t̃ in a small time window t̃ ∈ {t− 14, . . . , t} and test the hypothesis

H0 : E(w̄t̃) ≥ η for t̃ ∈ {t− 14, . . . , t}, (3.3)

against its one-sided alternative. As temperature thresholds we choose η ∈ {7◦C, 11◦C,

15◦C}. We set the landmarks for temperature η every time the corresponding p-value

of the test crosses the .1 threshold. The p-values for the three different values of η and

the related landmarks are shown in Figure 3.3. In order to stabilize the location of the

landmarks an additional restriction is needed here. We postulate that the minimum

distance between two adjacent landmark for the same value of η is 30 days. In total this

criterion results in three additional pairs of landmarks.

The landmarks so far are based on the average daily temperature. We will now look

deeper into the daily variation of the temperature.
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Figure 3.2: Top panel: 100- and 200-days running mean curves of the average tem-

perature. The cut points which are selected as landmarks are marked by

red vertical dashed lines. Bottom panel: Daily average water temperature.

The red vertical dashed lines mark the position of the running mean based

landmarks.
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Figure 3.3: First three panels: p-values of the one-sided t-tests to hypothesis (3.3) for

η = 7◦C, 11◦C, 15◦C taking into account 15 consecutive days. Bottom panel:

Daily average water temperature. The vertical dashed lines mark the posi-

tions of the daily mean temperature landmarks for η ∈ {7◦C, 11◦C, 15◦C}.
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Figure 3.4: Top panel: The first two (smooth) principal components λx,k(h), k = 1, 2 of

the daily water temperature course. Second panel: Scores of the first prin-

cipal component. Third panel: p-value levels resulting from (3.6). Bottom

panel: Daily average water temperature. The vertical dashed lines mark the

positions of the PCA-based landmarks.
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3 Application: Landmark Specification in Water Temperature Data

3.1.3 Daily Temperature Curve

We now consider the daily temperature course xt = (xt,0, . . . , xt,23) defined in (3.1).

Note that xt sums up to zero and does not provide any information about the particular

level of the temperature but instead it gives its daily fluctuation. We first extract the

hourly mean curve µx(h) by setting

xt,h = µx(h) + x̄t,h. (3.4)

Here µx(h) is a smooth function in hour h which in fact is calculated taking the mean

value of available observations, that is

µ̂x(h) =
1

T

T∑
t=1

xt,h,

with T as number of available observations. We then run a principal component analysis

(PCA) to obtain

x̄t,h =
∑
k

λk(h)yt,k (3.5)

where λk(·) is the k-th (smooth) principal component and yt,k, k = 1, 2, . . . are uncorre-

lated scores with mean 0 and variance σ2
k. Decomposition (3.5) could be carried out with

functional principal component analysis (Ramsay & Silverman, 2005) as implemented in

the fda package in R. Based on the amount of data available, however, a standard PCA

applied to x̄t,h also provides smooth, functional principal components. We may consider

the principal components as normed orthogonal functions, i. e.
∫
λk(h) · λl(h) dh = δkl

with δkl = 1 for k = l and δkl = 0 otherwise. The assumption E(yt,k) = 0 holds by con-

struction over the entire data, that is when averaging over the entire dataset. Within a

year, however, some annual fluctuations of E(yt,k) around 0 become visible. In the top

panel of Figure 3.4 we show the first two fitted principal components λ̂k(h), k = 1, 2

corresponding to the largest two eigenvalues which cover 91% of the variability (first

component: 83%). The first principal component carries the daily temperature vari-

ation with a minimum temperature in the early morning and a maximum in the late

afternoon. The corresponding fitted score ŷt,1 for the first component is shown in the
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3 Application: Landmark Specification in Water Temperature Data

second panel of Figure 3.4. Obviously, it carries an annual structure showing periods of

the year with strictly negative values and low variation (winter) while in other periods

the score varies around zero. This structure will now be exploited to define a further

pair of landmarks.

To determine the landmarks we consider the scores of the first component and pri-

marily check the sign of the scores and whether it changes form “−” (winter) to “+”

(summer). Hence, the intention is to locate the structural break in the first score. This

is done by making use of a local one-sided t-test taking into account the foregoing 15

days. That is, we test the null-hypothesis

H0 : E(yt̃,1) ≤ 0 for t̃ ∈ {t− 14, . . . , t}, (3.6)

against the one-sided alternative. Figure 3.4 shows the resulting p-values which give a

clear separation between the seasons by either taking large or small values. We locate

the first landmark when the p-value drops below .05 for the first time in the year. A

second landmark is set when the p-value rises again over .95. The p-value levels in Figure

3.4 clearly show the annual features although there are days within the high- or low-

level periods, where the mentioned thresholds are crossed and no landmark should be

declared. To stabilize the procedure we add the further condition and postulate that the

minimum distance between two consecutive landmarks is 120 days. In the bottom panel

in Figure 3.4 we show the location of the landmarks on the course of the (daily) average

water temperature over the years. Note that even though the structure in the first

principal score component is well exhibited, the landmarks do not specify any exposed

structure in the yearly temperature curve itself. Nonetheless, it shows the days when

the daily temperature variation changes.

A fourth landmark criterion will now be defined by looking at the correlation between

the daily temperature courses of water and air temperature.

3.1.4 Correlation between Water and Air Temperature

As final set of landmarks we look at the relation between the daily courses of air and water

temperature. We therefore seek for a pair of landmarks which occur in the correlation
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Figure 3.5: Scatterplot of zt,1 plotted against ct,1.

between these two measurements. In particular, we make use of (functional) canonical

correlation and consider the mean corrected water and air temperature x̄t,h and b̄t,h,

respectively, with bt,h = µb(h) + b̄t,h where µb(h) is the hourly mean structure extracted

from bt,h in the same way as we obtained µx(h) in (3.4). We decompose

x̄t,h =
∑
k

ζk(h) zt,k + ε(x),t,h, b̄t,h =
∑
k

γk(h) ct,k + ε(b),t,h, (3.7)

where ζk(h) and γk(h) are the canonical correlation functions fulfilling the orthonormality

constraints
∫
ζk(h) · ζl(h) dh =

∫
γk(h) · γl(h) dh = δkl with δkl = 1 for k = l and

δkl = 0 otherwise. The score vectors zt = (zt,1, zt,2, . . . ) and ct = (ct,1, ct,2, . . . ) can be

considered as random with Var(zt) = I,Var(ct) = I and Cov(zt, ct) = diag(ρ1, ρ2, . . . ),

where the canonical correlations are ordered such that ρ1 > ρ2 > . . . . The correlation

model (3.7) can be fitted using the implemented version in the fda package in R, see

Ramsay & Silverman (2002) or Leurgans, Moyeed & Silverman (1993). The amount of

data available, however, also allows to use a standard canonical correlation applied to
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x̄t,h and b̄t,h. Figure 3.6 (top panel) shows the first canonical functional components

ζ1(h) and γ1(h) for water temperature and air temperature, respectively. The course of

the first canonical coefficient mirrors that the minimum air temperature is reached by

about 6 a.m., while the minimum water temperature is reached by 8 a.m. Moreover,

the afternoon air temperature is about equally useful to express the correlation with the

maximum water temperature at around 4 p.m.

For the definition of the landmarks we look at the first canonical correlation and the

fitted coefficients zt,1 and ct,1 which carry the maximum canonical correlation of order

0.87. Figure 3.5 shows a scatterplot of zt,1 plotted against ct,1 exhibiting the correlation

structure. We find that points in the lower left quadrant belong to days during late

spring and summer while the remaining three quadrants contain observations from all

over the year. This structure can be better exploited by defining the modified score that

only gives weight to data in the lower left sector:

Zt =

{
zt,1 · ct,1, if zt,1, ct,1 < 0,

0, otherwise.

The daily scores Zt are shown in the second panel of Figure 3.6 and the seasonal pattern

becomes more obvious. To formalize the definition of the last pair of landmarks we,

again, pursue a one-sided t-test now taking into account the 25 previous days. We test

the hypothesis

H0 : E(Zt̃) ≥ E(Z) for t̃ ∈ {t− 24, . . . , t},

against the one-sided alternative where E(Z) is the mean value of Zt averaged over t.

For our example we replace E(Z) by its empirical version which equals .58. A landmark

is defined when the corresponding p-value (see third panel of Figure 3.6) crosses the

threshold of 0.1 while a minimum distance of 50 days is postulated between two adjacent

landmarks. The bottom panel illustrates the location of the landmarks in the water

temperature course.
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Figure 3.6: The first panel illustrates ζ1(h) and γ1(h). Second panel: Modified contribu-

tion to the first canonical correlation: Zt. Third panel: Level of p-values of a

one-sided t-test accounting for 25 days. Bottom panel: Daily average water

temperature. The vertical dashed lines mark the positions of the canonical

correlation landmarks.
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3 Application: Landmark Specification in Water Temperature Data

In this section we introduced four criteria build for specifying landmarks in a time series

with regularly arriving new observations. We chose the cut points of running means as

an equivalent to seasonal temperature extrema. The three remaining criteria are based

on a one-sided t-test that only takes into account recent observation. The obtained

landmarks will now be used to register the data in order to find time-warping functions

that can be used as indicator whether a season is running early or late compared to a

reference year.

3.2 Registering the Data

A major intention of our data exploration is to apply landmark-based curve registration

as developed by Kneip & Gasser (1992) and Gasser & Kneip (1995). However, in our

application we do not face independent functional observations but one single time series

whose yearly courses shall be aligned to that of an average year. The registration method

we pursue and the modifications to the original technique will be described in the first

part of this section before we present our time-warping results. In the second part those

results shall be linked to spawn cycle data of the Brown Trout (Salmo Trutta).

3.2.1 Landmark-based Time-Warping

We rewrite the temperature wt,h as wi,h(d) indicating the temperature (at hour h) in year

i at day d. We assume that the course carries annual characteristics but may be shifted

in time. We therefore need a (strictly) monotonically increasing time transformation

d 7→ πi(d) such that

w∗h(d) := wi,h(πi(d)), h = 0, . . . , 23, i = 1, 2, . . . ,

where w∗h(d) are so-called registered curves (see Ramsay & Silverman, 2005, page 132).

The time transformation πi(d) works by accelerating or slowing down time, respectively,

and is called the time-warping function, subsequently. To estimate functions πi(d) we
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3 Application: Landmark Specification in Water Temperature Data

pursue the landmark-based approach suggested by Kneip & Gasser (1992) (see Section

2.3.2) which has to be extended to our application in so far that the functional observa-

tions wi,h(d) are not independent observations in i but parts of the same time series wt.

Therefore, we derive a single time-warping function for the entire data

π̃ : [0, T ] → [0, T ],

t 7→ π̃(t),

and define πi(d) := π̃(t), bearing in mind that time t is indicated by year i and day d.

Furthermore, we do not require the curves wi,h(d) to be at least twice differentiable, al-

though it would be possible by smoothing our data. In our context the landmark criteria

described in Section 3.1 are functionals on D([0, T ]), the set of all discrete functions over

the time interval [0, T ]. So that a mathematical definition of some landmark functional

L could be given by

L : D([0, T ]) → [0, T ] ∪ {NA},

t 7→ L(t) = Li(d),

where the value NA ist taken if the landmark is missing in an observation.

Let {Li,k|i = 1, . . . , I, k = 1, . . . , K} denote the set of landmarks with index i giving

the year and k indicating the landmarks resulting form the different criteria. For our

example we have K = 12 possible landmarks per year. Note that Li,k may exceed the

interval [1, 365] which happens if a landmark located near the beginning or end of a year

is shifted into the adjacent year. For each k we define the reference point

L̄k :=
1

I

I∑
i=1

Li,k,

giving the average landmark location over the years. We now consider the landmarks

and their reference points in the context of the entire data series and set

L̄i,k := (i− 1) · 365 · L̄k and L̃i,k := (i− 1) · 365 · Li,k.

This gives a set of I · K data points (L̄i,k, L̃i,k) with i = 1, . . . , I and k = 1, . . . , K.

The time-warping functions shall be constructed by applying monotone smoothing (see
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3 Application: Landmark Specification in Water Temperature Data

Section 2.3.3) to the set of two-dimensional data points (L̄i,k, L̃i,k), that is, instead of

matching the observed landmarks exactly with their reference points we assume

L̃i,k = π̃(L̄i,k) + εi,k,

where π̃ is a monotonically increasing time-warping function and εi,k is an error term.

Introducing an error term is also advantagous as it allows us to ignore the consistency

assumption among the landmarks which was postulated by Kneip & Gasser (1992).

In practise it would be inprobable to only observe consistent landmarks when criteria

are employed that focus on totally different characteristics. For practicability reasons

we relaxed the strict monotonicity assumption on the time-warping functions and only

consider them to be non-decreasing. We thereby follow the ideas of Kelly & Rice (1990).

The exact smoothing procedure is presented in Section 2.3.3. Due to modifications of

the warping procedure introduced above there are some adjustments to the smoothing

equations necessary, as well. The sum of squares criterion (2.16) that has to be minimized

changes to

Q(u) :=
I∑
i=1

K∑
k=1

(
L̃i,k − B(L̄i,k)u

)2

,

and the matrices involved in the resulting quadratic form (2.18) have to be replaced by

a(s) :=
∂Q
(
u(s)

)
∂u

= −2
I∑
i=1

K∑
k=1

B>(L̄i,k)
(
L̃i,k − B(L̄i,k)u

(s)
)
,

and

B :=
∂2Q

(
u(s)

)
∂(u)>∂u

= 2
I∑
i=1

K∑
k=1

B>(L̄i,k)B(L̄i,k).

If a landmark is missing, i. e. it takes the value NA, the corresponding summand simply

has to be dropped from the calculations.

The results are shown in Figure 3.7. If a season is running ahead of its correspondent

in the average year we find πi(d) below the diagonal. A course above it means that the

season is running late. For example the fall in 2003 came late and did not last long as it

was followed by an early winter which in turn merged with an equally early spring and

summer.
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3 Application: Landmark Specification in Water Temperature Data

reference time

re
al

 ti
m

e

J A S O N D J F M A M J

J
A

S
O

N
D

J
F

M
A

M
J

year 2002/2003

late

early

reference time

re
al

 ti
m

e

J A S O N D J F M A M J

J
A

S
O

N
D

J
F

M
A

M
J

year 2003/2004

late

early

reference time

re
al

 ti
m

e

J A S O N D J F M A M J

J
A

S
O

N
D

J
F

M
A

M
J

year 2004/2005

late

early

reference time

re
al

 ti
m

e

J A S O N D J F M A M J

J
A

S
O

N
D

J
F

M
A

M
J

year 2005/2006

late

early

reference time

re
al

 ti
m

e

J A S O N D J F M A M J

J
A

S
O

N
D

J
F

M
A

M
J

year 2006/2007

late

early

reference time

re
al

 ti
m

e

J A S O N D J F M A M J

J
A

S
O

N
D

J
F

M
A

M
J

year 2007/2008

late

early

Figure 3.7: Course of the time-warping functions πi(d) for the six years of our dataset.

3.2.2 Linking to Ecological Data

We may try to connect our results with available ecological data in fish reproduction.

Temperature pattern in rivers are considered as trigger for fish spawning, which can be

explored by connecting the time warping function πi(d) to annual data on fish popula-

tions. We therefore use data containing the stages of the spawning cycle of Salmo Trutta

(Brown Trout) for the last three years of data (July 2005 - June 2008) considered in the

preceding section. The data trace from local records of fish surveillance in the upper part

of the river Wupper. These stages can be taken as landmarks itself and we may consider

the matching to the temperature based landmarks. In chronological order the fish go

through the stages Begin of Spawning Time, End of Spawning Time, Eye-Point Stage,
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Figure 3.8: Spawn cycle phases of Salmo Trutta are indicated by red time-warping

functions. Our results are given as green lines.

Eclosion and Emergence. Let L∗i,k be the beginning of the k-th reproduction stage in

year i. We register the stages through linear interpolation of the points (L̄∗k, L
∗
i,k) where

L̄∗k := 1
I

∑I
i=1 L

∗
i,k. The corresponding plots for the three considered years are shown

in Figure 3.8. The time-warping functions πi(d) calculated above are plotted as green

lines, the equivalents calculated from the spawn cycle dataset are given in red.

For the first two years (2005/2006 and 2006/2007) our landmarks in general coincide

with the ecological candidates and the shape of the ecological time-warping functions

matches those which we have calculated in a data driven way. Shift differences on

the reference time axis may be caused by the small amount of ecological data that

was available to calculate the reference points L̄∗k. For the third year(2007/2008) the

matching does not work properly. We find that the spawn cycle takes place rather early

in the year. This seems to be highly correlated with the very early fall found by our

procedure. This could be taken as an indication that the spawning cycle of the Brown

Trout is not only dependent on the current water temperature but on the temperature

level in the foregoing months, as well.
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3 Application: Landmark Specification in Water Temperature Data

In this section we used the landmarks defined in Section 3.1 to align the curves to their

reference time points. We demonstrated what modifications were necessary to apply

the classical landmark-based time-warping technique to our time series data and we

compared our results to landmarks based on ecological data of the spawn cycle of the

Brown Trout. We will now give insight into the variability of landmarks that is caused

by the use of such different definition criteria and that may cause inconsistencies among

the landmarks within a year.

3.3 Variability of Landmarks

The calculated landmarks itself are random variables and their specification is therefore

stochastic. The amount of variability differs thereby between the landmarks. This is

not surprising as, for instance, the running mean landmarks are based on a retrospective

view on the 200 foregoing days which leads to a quite stable or robust behavior while

the other landmarks are determined by accounting only for fifteen foregoing days. In

order to assess the variability of landmark specification we therefore run a bootstrap

procedure.

3.3.1 The Bootstrap Procedure

Bear in mind that all landmarks are calculated from derived time series data which are

subsequently generally notated as et. For instance, the temperature threshold landmark

(Section 3.1.2) calculates the landmark from et = w̄t or the daily temperature curve

landmark (Section 3.1.3) is calculated from et = yt,1. Note that et can also be multivari-

ate, like for the canonical correlation landmark (Section 3.1.4) with et = (zt,1, ct,1). The

idea is now to bootstrap the series et to obtain information about the variability of the

landmark specification. Note that et is not stationary, so that we do not resample the

entire series but apply the bootstrap to a window et0−∆, . . . , et0 where t0 is the time point

of interest where the landmark criterion shall be evaluated and ∆ ≤ 50 is appropriately
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3 Application: Landmark Specification in Water Temperature Data

chosen.

Bootstrapping in time series has been generally treated in Härdle, Horowitz & Kreiss

(2003), see also Paparoditis & Politis (2002). We follow these ideas but first extract the

non-stationarity by setting

et = µe(t) + ẽt,

where µe is mean trend over the interval [t0 − 50, t0] and ẽt are the autocorrelated

residuals. As we look at a rather small interval only, we assume µe to be locally linear

and fit it with ordinary least squares. For the remaining residuals we fit an AR(p)

process

ẽt =

p∑
k=1

Rkẽt−k + εt,

where matrix Rk is the (matrix valued) autoregressive correlation. Residuals εt are

possibly heteroscedastic which motivates to pursue a wild bootstrap see e. g. Mammen

(1993). Therefore we draw ε∗t from a two-point distribution given by ε̂t ·((1−
√

5)/2, (1+
√

5)/2) with probabilities ((5 +
√

5)/10, (5 −
√

5)/10) where ε̂t is the empirical version

of εt. Inserting the resulting bootstrap in the autoregressive models gives

ẽ∗t =

p∑
k=1

R̂kẽ
∗
t−k + ε∗t ,

where R̂k is the fitted autocorrelation. The bootstrap sample of the original time series

can finally be constructed by e∗t = µ̂e(t) + ẽ∗t . Based on such bootstrap replicates we can

now calculate the bootstrap version of the landmarks.

The results of the application of this procedure will be demonstrated in the next part

of this section.

3.3.2 Bootstrap Application

For all four landmark criteria we bootstrapped the underlying time series, that is, we

have set et = w̄t for the running means and temperature threshold criterion and et = yt,1

for the PCA criterion. For the application to the canonical correlation criterion we had
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3 Application: Landmark Specification in Water Temperature Data

to bootstrap a two dimensional time series, i. e. zt,1 and ct,1. The lag structure p for

the residual autoregressive process was chosen by looking at the partial autocorrelation

function which suggested to set p = 3 for the running means, temperature threshold and

daily temperature curve, respectively. For the canonical correlation landmarks we set

p = 1. For each day in our database we drew 5000 bootstrap replications and checked

each time whether the landmark criteria were fulfilled. That is, for the k-th landmark we

calculate the proportion of fulfillment around the observed values of the corresponding

landmark criterion through

Fk
(
t̃
)

=
1

I · 5000

I∑
i=1

5000∑
j=1

1{L̃∗i,k,j≤L̃i,k−t̃}, t̃ = −20, . . . , 20,

where L̃∗i,k,j is the j-th bootstrapped landmark in year i and 1{·} is the indicator func-

tion. Note that Fk(·) can be interpreted as distribution function. The values were

monotonically smoothed and are shown in Figure 3.9. Evidently, both running means

landmarks show less variability than the remaining ones, followed by the temperature

threshold landmarks exemplarily shown here for 11◦C. Furthermore, for the first daily

temperature curve (PCA) landmarks a high probability for negative deviations can be

seen. Similarly, the second canonical correlation landmarks show less variability than

the remaining two whose distribution functions can roughly be taken to be of the same

shape.

In this section we demonstrated that landmarks defined through different criteria may

also turn out to be of different variability. This may lead to inconsistencies among the

landmarks within a year. However, we are not to concerned about that as we calculate

time-warping functions by monotonically smoothing the data. This, in turn, allows us to

handle inconsistencies automatically as we do not match the observed landmarks exactly

to their reference points. We will now briefly sum up the results that can be drawn from

this application.
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Figure 3.9: Monotonically smoothed proportions of fulfillment Fk
(
t̃
)

of four landmark

criteria applied to the bootstrap samples plotted against the deviation from

the observed landmark t̃.
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3 Application: Landmark Specification in Water Temperature Data

3.4 Results

In this chapter we suggested a modified landmark-based time-warping routine derived

from the approach of Kneip & Gasser (1992) that can be applied to online-monitored time

series data. We presented an application example for a water temperature dataset of the

river Wupper. For these concrete data we proposed four different landmark criteria which

led to up to twelve landmarks per year that can be calculated online. These observed

landmarks were used to derive a time-warping function that allowed us to assess if the

current year is running ahead or behind the average year. We tried to verify the time-

warping using a spawn cycle dataset of the Brown Trout in the river Wupper. The

ecological data matched our results in two of three years that were available. However,

there is still not enough data available to assess the performance of our approach to the

data example presented here. In a last step we provided insight in the variability of the

landmarks derived from the different criteria.
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Temperature with Dynamic Factor

Models

As mentioned in Section 1.1 a forecast of water temperature at an upstream location

is needed to determine the amount of waste heat that can be dissipated by the two

powerplants in the city of Wuppertal using river water. This is only one example where

such forecasts can be employed successfully. In general, water temperature is one of the

steering influences that determine stream life and its forecasting is of key importance

for the ecological management of waterbodies. Other authors focus on different aspects

such as the impact of extreme weather conditions and global warming on the water

temperature (see Morrill, Bales & Conklin, 2005).

Because of its importance there is a wide literature on the topic of water temperature

forecasts. An overview of recent approaches can be found in Webb et al. (2008) or

Caissie (2006). Although almost all articles identify the air temperature as a factor of

great importance there are generally two types of strategies to produce forecasts. In

some articles physical modelling techniques are pursued. For example, Caissie, Satish

& El-Jabi (2005) use a heat exchange equation which contains the following variables:

water temperature, daytime, distance downstream from the measurement site, mean

water velocity, river width, dispersion coefficient in the direction of flow, specific heat of

water, water density, wetted perimeter of the river, total heat flux from the atmosphere

to the river and heat flux to or form the sediment or streambed. Many of these variables

can hardly be measured, for instance, the heat flux from the atmosphere to the river
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4 Application: Forecasting Water Temperature with Dynamic Factor Models

not only depends on air temperature but furhter decomposes into net long- and short-

wave radiation, evaporative heat flux and convective heat transfer where the radiation

depends on the cloud cover. In short, the physical approach is quite impractical as

many of the influencing factors can only be estimated roughly which, in turn, leads to

inaccurate forecasts. That is why in other articles (see Caissie, El-Jabi & Satish, 2001, for

instance) a stochastic modelling approach is prefered considering the disturbances caused

by inmeasureable factors as random and applying classical statistical tools instead. If

forecasts shall be given on higher resolutions these models suffer from the curse of

dimensionality, i. e. a strong increase in complexity if only a small number of dimensions

is added. This, again, can lead to poor forecasts. That is, the reason why many studies

from the hydrological field focus on predicting daily (or even weekly) mean or maximum

temperatures only. A small collection of these modelling strategies with performance

comparisons can be found in Caissie, El-Jabi & St-Hilaire (1998). As pointed out earlier

in this thesis for our application example a high (hourly) resolution is essential as it

is requiered to calculated an energy production limit and energy is traded in minute

intervals. Two procedures to remedy the curse of dimensionality shall be compared

within this chapter. The first strategy is to estimate an autoregressive model separately

for each hour, that is, to allow not only the regression coefficients to vary over the day but

also the set of influencing covariates. A similar approach using Bayesian methodology

applied to an energy demand forecasting setup is pursued in Cottet & Smith (2003). A

second and somewhat more elegant solution is the employment of dynamic factor models

in VAR-form.

Dynamic factor models are applied in many different fields of study. Hyndman & Ullah

(2007), for instance, suggest a DFM to forecast mortality and fertility rates and in Erbas,

Hyndman & Gertig (2007) a similar model is used to predict breast cancer mortality

rates. These are only examples from the broad literature where DFMs have been applied

successfully in the past. An overview of the development stages of DFMs is given in

Section 2.4.1. However, in our application we face the challenge to incorporate further

candidate covariates. Water temperature is influenced by a variety of environmental

variables. First of all it seems closely related to the air temperature and, furthermore, it
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4 Application: Forecasting Water Temperature with Dynamic Factor Models

is also effected by global radiation, precipitation and stream flow. A first result from our

analysis is that global radiation can be neglected because it does not show a significant

effect as soon as air temperature is included. We also decided not to include precipitation

and stream flow for the following reasons. Firstly, the effect of precipitation is partly

contained in air temperature as a precondition for rain is cloud cover which results

in less global radiation and, therefore, in lower air temperature, secondly, forecasts of

precipitation are less reliable and also in many cases less available than air temperature

forecasts and these will be needed in a forecasting setting. Thirdly, although rapid

changes in stream flow caused by strong precipitation or manually by adjustments on

one of the upstream dams in the river do have a significant impact, slower changes can be

neglected. As explained in detail in Section 4.4 our dataset does contain rapid changes

caused by human interference as well as by heavy rainfall but the human effects should

be eliminated in new data measurements from the river Wupper as the Wupperverband

agreed on a new water management policy that only allows slow manual changes of

the stream flow. So the only problem that is left are rapid stream flow changes caused

by heavy downpour and it is not our intention to find a forecasting procedure that is

capable to handle extreme weather conditions. Hence, that special case is left aside in

our analysis and we focus on the incorporation of lagged water temperature values as

well as current and lagged air temperatures as covariates in our model. Note that the

dependence of the response on the covariates is non-linear as we apply smooth principal

components analysis (PCA) to estimate the relevant factors in the DFM.

Among others Caissie, Satish & El-Jabi (2005) point out that there are two different

types of cycles contained in water temperature data. Firsly, the seasonal variation and,

secondly, the daily variation which is stronger on summer days than in the winter. A

feasible forecasting model should consider this interdependency. And the first step prior

to apply any modelling techniques will be to remove this deterministic part from the

data. The same is true for the air temperature. The analyses will then be carried out

on the remaining residuals.

In Section 4.1 a method is presented that is apt to remove the deterministic component

from the data and a detailed description of the different modelling approaches will be
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4 Application: Forecasting Water Temperature with Dynamic Factor Models

given. Section 4.2 discusses how forecasts can be build and how their accuracy can be

assessed and in Section 4.3 the results of the application of all approaches applied to our

dataset will be presented. In Section 4.4 we will have a look on the data quality before

Section 4.5 concludes.

4.1 Models and Estimation

In this section four competing approaches will be presented. In the first part it will be

explained in detail how the deterministic component consisting of intra-day and sea-

sonal cycles can be removed from the data accounting for their interdependencies. The

modelling techniques described in the remainder of this section will be applied to the

remaining component which is considered to be stochastic. In the second part a gen-

eral formulation of the approximate dynamic factor model is given which allows for

an influence of air temperature on the water temperature factors. Three strategies to

compute the factor scores will be presented: firstly, a simple least squares approach, sec-

ondly, maximum likelihood based estimation for the water temperature scores only and,

thirdly, maximum likelihood estimation for both, water and air temperature scores. This

is followed by desription how model selection will be done as there are several parameters

in the DFM that have to be calibrated. In the last part of this section we formulate an

alternative approach that is used as benchmark. We propose an autoregressive model

which is estimated for every hour of the day separately allowing parameters and the set

of covariates to vary over the day.

4.1.1 Removing the Seasonal Component from the Data

Let t = (i, d) be the time index consisting of year i and day of the year d where leap

years will be ignored for simplicity, i. e. d ∈ {1, . . . , 365}. We write t+1 for (i, d+1) and

if t = (i, 365) we define t+ 1 = (i+ 1, 1) and similarly for higher order differences at the

end of a year. Note that in our application a year starts on 1st July and ends on 30th

June. Our dataset consists of hourly temperature measurements and we concatenate the
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4 Application: Forecasting Water Temperature with Dynamic Factor Models

values for day t = (i, d) to a vector, that is, wt = (wt,1, . . . , wt,24)> for water temperature

and at is built analogously for the air temperature. Now the deterministic part shall be

removed from the data. We therefore decompose both temperatures into

wt = µw(d) + w̄t,

at = µa(d) + āt,

where µw,µa : {1, . . . , 365} −→ R24 and can be interpreted as smooth functions giving

the intra-day cycle on day d and over their entire domain the seasonal variation over

the year. w̄t and āt are the 24-dimensional stochastic variations beyond the seasonal

components which will be used for modelling.

As already pointed out the intra-day variation is stronger in summer than in winter and

our definition of µw and µa is suited for handling this feature. Let W̄ = (w̄1, . . . , w̄T )>,

and Ā defined analogously, be T × 24 matrices with daily water or air temperature

measurements as row entries. We now estimate µw and µa with the help of a cyclic

B-spline basis Bc(doy(t)), see Section 2.1.4 or de Boor (1978) for details. Here doy(t)

denotes the day of the year corresponding to the t-th observation. Cyclic means that

Bc(doy(t)) = Bc(dt+365) holds which guarantees continuity at µ·(365) and µ·(1). To

achieve a smooth fit without having to include a penalty term we choose only six knots

per year where we place one knot at the 365th day of the year 365 (which is topologically

identical with the zeroth day of the year) and put the remaining five knots equidistantly

in between. Let Bc be the T × 6 matrix with rows (Bc(doy(t)))>, t = 1, . . . , T then we

can estimate

µw = Bc(B>c Bc)−1B>c W̄ and µa = Bc(B>c Bc)−1B>c Ā,

where µw and µa are T × 24 matices with rows (µw(d))> and (µa(d))>, d = 1, . . . , T ,

respectively. The temperature courses of two successive days, i. e. µ·(d)24 and µ·(d+1)1,

can be connected smoothly as will be demonstrated in the application, see Section 4.3.

We now present the approximate dynamic factor model that will be used for our

forecasting setting.
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4 Application: Forecasting Water Temperature with Dynamic Factor Models

4.1.2 The Dynamic Factor Model

After having removed the deterministic component from the data we are left with the

24-dimensional residuals w̄t and āt. Imposing a vectorautoregressive process directly on

them would lead to a bad conditioned model because of the huge number of parameters

to be estimated. Therefore, we will first extract a suitable number (� 24) of common

factors form the stochastic component of both temperature types prior to apply any

classical methods. That is, the residuals further decompose into

w̄t = Λwft + εw,t, (4.1)

āt = Λa gt + εa,t, (4.2)

where ft is a K-dimensional vector of water temperature factors, Λw is a 24 × K di-

mensional loading matrix and εw,t as 24-dimensional white noise residual vector. Anal-

ogously, gt is an H-dimensional vector of air temperature factor scores, Λa a 24 × H

dimensional matrix of factor loadings and εa,t the corresponding residual vector. In-

stead of using exploratory factor analysis the factors will be estimated using principal

components analysis as this is more in line with famous approaches in the literature

as Stock & Watson (2002a,b). A discussion of the difference between both techniques

and under which conditions they yield approximately the same results can be found in

Section 2.4.4. How the factor numbers K and H are fixed will be described in more

depth in Section 4.1.2.2.

Let ∆a,b, a < b denote the backshift operator defined by ∆a,bft = (f>t−a, . . . ,f
>
t−b)

>.

We now impose an autoregressive structure on the water temperature factors:

ft = βf︸︷︷︸
(K×P1K)-dim.

(∆1,P1 ft)︸ ︷︷ ︸
(P1K×1)-dim.

+ βg︸︷︷︸
(K×(P2+1)H)-dim.

(∆0,P2 gt)︸ ︷︷ ︸
((P2+1)H×1)-dim.

+ εf,t, (4.3)

with εf,t as K-dimensional white noise residual vector and βf and βg as coefficient

matrices. Model 4.3 implies that today’s water temperature factors depend on water

temperature factors of the preceeding P1 days and on air temperature factors of today

and the preceeding P2 days. If a forecast shall be made at timepoint t for timepoint

t + 1 (or even further into the future) in a real forecasting setting the air temperature
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4 Application: Forecasting Water Temperature with Dynamic Factor Models

of that day is unknown and has to be replaced by its meteorological forecast. However,

for our forecast comparison study we use the observed temperatures (which in practise

would be unknown) to avoid an increased amount of uncertainty due to the error in

meteorological forecasts.

The common factors ft and gt in (4.3) are unobservable and have to be estimated. In

the following section we will describe three routines of different complexity to approxi-

mate them.

4.1.2.1 Factor Estimation

The first approach is to use simple least squares estimation after having fixed the factor

loadings. However, this disregards the stochastic models (4.1) – (4.3) and as a con-

sequence the estimated parameters are not maximum likelihood based. We therefore

propose two other strategies that involve simultaneos maximum likelihood estimation of

the common factors and the parameters by applying an EM algorithm (see Section 2.2).

Least Squares Estimation (LS) The main advantage of this approach is its simplicity

with the drawback that the estimated parameters βf , βg and the residual variances are

not based on a maximum likelihood procedure and, therefore, may lack of some desired

properties like asymptotical unbiasedness and consistency. The factor scores are simply

taken as

f̂ t = Λ>ww̄t and ĝt = Λ>a āt. (4.4)

Given the factor scores, βf and βg can be estimated by applying ordinary least squares

regression on equation (4.3).

Maximum Likelihood Estimation (ML) We now consider the stochastic models (4.1)

and (4.3). That is, firstly, we assume that the residuals εw,t in (4.1) follow a normal

distribution

εw,t ∼ N(0, diag(σ2
w)),

68



4 Application: Forecasting Water Temperature with Dynamic Factor Models

i. e., for simplicity we take the hourly variances to be independent. This is feasible as ft

and εw,t are independent by definition which leads to the decomposition

Var(w̄t) = ΛwVar(ft)Λ
>
w + Var(εw,t), (4.5)

with σ2
w = (σ2

w,1, . . . , σ
2
w,24) and since Λw will be chosen to capture the biggest part of

the variance, as described later, there is little information left in the last summand. For

the residuals in equation (4.3) we assume normality, as well:

εf,t ∼ N(0, diag(σ2
f )),

with σ2
f = (σ2

f,1, . . . , σ
2
f,K). An EM-algorithm (see Section 2.2) is applied to simultane-

ously fix the common factor scores ft and to estimate the parameters βf , βg, σ
2
f and

σ2
w. We will refer to the water temperature scores found by this method as

ˆ̂
ft. Note

that for the air temperature factors we take the least squares estimates ĝt.

To simplify the formulation of the EM-algorithm we concatenate the parameters to

a vector θ = (β>f ,β
>
g , (σ

2
f )
>, (σ2

w)>)> where the parameter matrices β· are stacked to

vectors. Formally, the E-Step of the s-th iteration consists of the construction of the

Q-function

Q
(
θ,θ(s−1)

)
= Eθ(s−1)

(
l(θ; w̄t,ft, gt)

)
,

where l(·) denotes the log-likelihood which, after dropping the constant term, is given

by

l(θ; w̄t,ft, gt) = −1

2

∑
t

{
εf,tdiag(σ2

f )ε
>
f,t +

K∑
k=1

log(σ2
f,k)

+ εw,tdiag(σ2
w)ε>w,t +

24∑
j=1

log(σ2
w,j)

}
.

We denote the history at timepoint t with Ht = (∆1,P1

ˆ̂
ft,∆0,P2 ĝt). The only ran-

dom components in the E-Step are the residuals which can be rewritten as εf,t =

ft−βf (∆1,P1ft)−βg(∆0,P2gt) and εw,t = w̄t−Λwft. In order to determine the expected

value of the log-likelihood function we have to calculate the conditional expectations
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E(εf,tdiag(σ2
f )ε
>
f,t|w̄t,Ht) and E(εw,tdiag(σ2

w)ε>w,t|w̄t,Ht) for all t. For the former it

suffices to compute E(ftdiag(σ2
f )f

>
t |w̄t,Ht) and E(ft|w̄t,Ht) as the remaining terms

are known at timepoint t. Assume that we have calculated
ˆ̂
ft̃ = E(ft̃|w̄,Ht),∀ t̃ ≤ t− 1

we can compute the following two expectations which are unconditional with respect to

w̄t:
ˇ̌ft = E(ft|Ht) = βf (∆1,P1

ˆ̂
ft) + βg(∆0,P2 ĝt) and ˇ̄̌w = E(w̄t|Ht) = Λw

ˇ̌ft where the

latter can be defined as forecast of w̄t at timepoint t− 1. We define

Σff = Var(f>t |Ht) = diag(σ2
f ),

Σw̄w̄ = Var(w̄>t |Ht) = diag(σ2
w) + ΛwΣffΛ

>
w ,

Σw̄f = Cov(w̄>t ,ft|Ht) = ΛwΣff .

Following the standard results of the multivariate normal distribution the expected value

of ft conditional on w̄t is given by

ˆ̂
ft = E(ft|w̄t,Ht) = ˇ̌ft +B(w̄t − ˇ̄̌wt), (4.6)

with B = (Σ−1
w̄w̄Σw̄f )

>. Making use of the equivalence Var(X) = E(X2) − (E(X))2 ⇔
E(X2) = (E(X))2 + Var(X) which is valid for any random variable X we get

E(ftdiag(σ−2
f )f>t |w̄t,Ht) =

ˆ̂
ftdiag(σ−2

f )
ˆ̂
f>t + tr

[
diag(σ−2

f )Var(f>t |w̄,Ht)
]
.

Using again standard results of the multivariate normal distribution the rightmost term

on the right hand side can be rewritten as

tr
[
diag(σ−2

f )Var(f>t |w̄,Ht)
]

= tr
[
Σ−1
ff (Σff −Σfw̄Σ−1

w̄w̄Σw̄f )
]

= K − tr(Σ−1
w̄w̄ΛwΣffΛ

>
w)

= K − 24 + tr(Σ−1
w̄w̄diag(σ2

w)). (4.7)

The number of principal components K will be chosen to cover the main part of the

variance in w̄ which implies by equation (4.5) that the vector of the remaining variance

not covered by the leading principal components, i. e. σ2
w, has relatively small entries

and can therefore be neglected in (4.7). This leads to the approximation

E(ftdiag(σ−2
f )f>t |w̄t,Ht) ≈ ˆ̂

ftdiag(σ−2
f )

ˆ̂
f>t + C1,
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and analogously to

E(εw,tdiag(σ−2
f )ε>w,t|w̄t,Ht) ≈ ˆ̂εw,tdiag(σ−2

f )ˆ̂ε>w,t + C2,

where C1 and C2 are constants and ˆ̂εw,t = w̄t − Λw
ˆ̂
ft. Iterative calculation of these

expected values completes the E-Step.

Once having built the Q-function the M-Step is easy as the likelihood function is

maximized by the OLS estimates of the parameters using the expectation of the water

temperature factors
ˆ̂
f

(s)
t in the s-th iteration.

As starting values
ˆ̂
f

(0)
t we take the LS-factors f̂ t (see above) and iterate until |θ(s) −

θ(s−1)| is sufficiently small.

Full Maximum Likelihood Estimation (FullML) Up to this point we only made use of

the LS air temperature factors but these are not based on a maximum likelihood estima-

tion, either. In order to change this fact we extend the above idea by also incorporating

a stochastic autoregressive model for the air temperature scores of the form

gt = β̃g(∆1,P3gt) + εg,t, (4.8)

where we assume that the residuals are white noise, i. e.

εg,t ∼ N(0, diag(σ̃2
g)),

with σ̃2
g = (σ̃2

g,1, . . . , σ̃
2
g,H). For the residuals in (4.2) we assume

εa,t ∼ N(0, diag(σ̃2
a)).

We have to predict gt based on a1, . . . ,at, i. e.,
ˆ̂
ĝt = E(gt|at,∆1,q̃gt) where we consider

the current air temperature as known and in practice use a meteorological forecast.

Figure 4.1 gives a graphical sketch of the dependence structure in a FullML-model for

the lags P1 = 2, P2 = 1 and P3 = 2. Once the expectation is estimated it can be

inserted into the maximum likelihood routine of the ML approach. That is, to estimate

the parameter vector θ̃ = (θ>, β̃>g , (σ̃
2
g)
>, (σ̃2

a)
>)> we run a two stage EM-algoritm.
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Figure 4.1: Graphical sketch of the dependence structure in the full factor model. Here

the lags are set to p = 2, q = 1 and q̃ = 2.

The Q-function that has to be constructed in the E-Step of the s-th iteration is now

given by

Q
(
θ̃, θ̃(s−1)

)
= Eθ̃(s−1)

(
l(θ̃; w̄t, āt,ft, gt)

)
,
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and the log-likelihood additively expands to

lfull(θ̃; w̄t, āt,ft, gt) = l(θ; w̄t,ft, gt)

− 1

2

∑
t

{
εg,tdiag(σ̃2

g)ε
>
g,t +

H∑
h=1

log(σ̃2
g,h)

+ εa,tdiag(σ̃2
a)ε
>
a,t +

24∑
j=1

log(σ̃2
a,j)

}
.

where εa,t and εg,t are defined in (4.2) and (4.8), respectively. Let H̃t = (∆1,P3 gt) be the

history for the air temperature factor scores. In complete analogy to the ML approach

we have to estimate E(gt|āt, H̃t) and E(gtdiag(σ̃−2
a )g>t |ā, H̃t) where we use the notation

Σgg = diag(σ̃2
g), Σāā = diag(σ̃2

a) + ΛaΣggΛ
>
a and Σāg = ΛaΣgg.

Following the argumentation given above we get

ˆ̂
ĝt = E(gt|āt, H̃t) = ˇ̌̌gt + B̃(āt −

ˇ̌̌
āt), (4.9)

with B̃ = (Σ−1
āā Σāg)

>, ˇ̌̌gt = β̃g(∆1,P3

ˆ̂
ĝt) and

ˇ̌̌
āt = E(āt|H̃t) = Λa

ˇ̌̌gt. And as we choose

the number of principal components for the air temperature h so that the main part of

variance contained in the data is captured this leads to the following approximations:

E(gtdiag(σ̃−2
g )g>t |āt, H̃t) ≈

ˆ̂
ĝtdiag(σ̃−2

g )
ˆ̂
ĝ>t + C3,

E(εa,tdiag(σ̃−2
a )ε>a,t|āt, H̃t) ≈

ˆ̂
ε̂a,tdiag(σ̃−2

w )
ˆ̂
ε̂>a,t + C4,

where C3 and C4 are constants. Note that by using
ˆ̂
ĝt instead of ĝt in the history H̃t

defined above the prediction of ft is effected, as well.

The M-Step, again, is easy as the Q-function is maximized by simply estimating all

parameters by OLS regression.

Both steps are repeated until |θ(s) − θ(s−1)| converges. As starting values the LS

estimates f̂t and ĝt can be taken.
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4.1.2.2 Model Selection

We need to select a suitable model for forecasting purposes and, therefore, a number of

parameters has to be fixed. Firstly, we have to decide how many common factors for

water and air temperatures are to be incorporated, that is, we have to choose K and H,

respectively. Secondly, the number of timelags for both types of temperatures P1 and

P2 have to be picked. In the FullML approach there is also the need to fix the timelag

number P3 for the air temperature model.

We split our dataset into two parts: a training sample which will be used to choose ap-

propriate models for all three approaches (and a competing model that will be described

later) and a forecasting sample where the model performances shall be compared. As

we want to limit the numerical burden and to maintain interpretability we choose K

and H to keep 99% of the total variation of the corresponding data. Furthermore, we

set P3 = 2, that is we assume the air temperature scores of the leading H common

factors to follow a VAR(2) process or in other words the current air temperature course

is presumed to depend only on the temperatures of the two preceeding days. This allows

us to focus on the timelag selection in the approximate dynamic factor model (4.3). We

therefore apply a multivariate Bayesian information criterion (BIC) to the estimated

residuals ε̂f,t of equation (4.3) which we fit to our training data. For our application the

BIC is given by

BICm(P1, P2) = log(|Σ̂f |) +
M(P1, P2)

T
log(T ), (4.10)

where |Σ̂f | is the determinant of the estimated covariance matrix of the residuals ε̂f,t, T

is the number of days in the training sample and the number of parameters in the model

is given by M(P1, P2) = K(P1k + (P2 + 1)H). Optimal parameter combinations for all

three dynamic factor models are chosen by minimizing (4.10) considering all possible

combinations of P1 ∈ {1, . . . , 7} and P2 ∈ {0, . . . , 7}.
In the last part of this section the autoregressive model will be introduced that will

serve as benchmark in the data sample.
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4.1.3 The Benchmark Model

Instead of fitting factor models we may consider the data w̄t as simple univariate time

series w̄t̃ with t̃ = (t, h) indicating year, day and hour of the day. This series can then

be fitted with an autoregressive model applied directly to w̄t̃. It seems reasonable not

only to allow that the autoregressive parameters vary over the hour of the day but to

choose a model for each hour separately (see also Cottet & Smith, 2003). Assume that

the water temperature depends on (a) the water temperature of the previous hours, (b)

the water temperature at the same hour at previous days, (c) the air temperature at

the same hour and day and possibly previous days and (d) the air temperature of the

previous hours. To be specific, for h = 1, . . . , 24 we assume

w̄t,h = β1,hw̄t−1,h + · · ·+ βL1,hw̄t−L1,h

+ γ1,hw̄t,h−1 + · · ·+ γL2,hw̄t,h−L2

+ δ0,hāt,h + δ1,hāt−1,h + · · ·+ δL3,hāt−L3,h

+ η1,hāt,h−1 + · · ·+ ηL4,hāt,h−L4 + εt,h, (4.11)

where āt,h is the air temperature at time t and hour h. We have to choose the four lag

lengths L1, . . . , L4 and we therefore perform a hierarchical model selection in our training

data starting by comparing all models which contain only one effect. As comparison

criterion we use the ordinary (univariate) BIC given by

BICu(L1, . . . , L4) = −2 · l(L1, . . . , L4; w̄t, āt) +M(L1, . . . , L4) · log(T · 24),

where l(·; ·) is the log-likelihood, T ·24 is the number of observations (24 observations per

day for T days in the training sample) and the number of parameters to be estimated

is simply given by M(L1, . . . , L4) = L1 + L2 + (L3 + 1) + L4. In each step we check if

a smaller BICu value can be achieved by adding or dropping one term while preserving

the hierarchy. We consider the model as benchmark since it follows more traditional

time series modeling approaches. As seen below, however, the functional factor model

from above performs better in the data example considered here.
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In this section we described in detail the detrending of the data as well as the differ-

ent types of models that shall be compared in this chapter. The more complicated

estimation routines involving the EM-algorithm were presented and the model selection

strategies have been explained. All steps mentioned here will be applied to the training

sample. Having estimated the seasonal variations w̄t and āt and the optimal parameter

combinations for all models we can move on to producing forecasts which will be the

topic of the following section.

4.2 Forecasting

In the first part of this Section we will describe how forecasts for the next 24 hours can

be produced. The second part is focused on longer forecasting horizons. The straight

forward solution would be to forecast the first 24 hours and to plug the results in to

produce a prediction for the following day and so on. However, the results of this

procedure would lack in continuity between the single days and an approach will be

presented that can remedy this deficit. In the third part three criteria to measure the

forecasting performance will be introduced. Each one focuses on a different feature and,

later, in Section 4.3 all models will be compared in all three criteria. In the last part of

this section we present two methods to estimate pointwise forecasting intervals. The first

way to do this is to define intervals of constant width for all days of the year. Although

this approach is simple and may be justified for some applications a more realistic one

is to assume the width of the forecasting intervals to vary over the seasons as the data

shows strong water temperature variation during the warming up phase in spring and

only little changes in winter, for example.

4.2.1 One Day Ahead Forecast

Now, let t = (i, d) be a day of the forecasting sample and we want to give a forecast

for day t + 1 = (i, d + 1), i. e. the next 24 hours. To do so, we need observations of
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water and air temperature up to timepoint t and additionally the air temperature at

timepoint t+ 1 which, in practise, is unknown and has to be replaced by a meteorogical

forecast. However, in order to avoid forecasting errors caused by the uncertainty of these

forecasts we will use the observed temperatures in our comparison study. Assume that

all historical data up to timepoint t − 1 is known and at timepoint t there arrives new

information: the courses of water and air temperatures of that day and the forecasted air

temperatures for the next 24 hours at+1. For the Least Squares approach we calculate

f̂ t and ĝt+1 based on equation (4.4):

f̂ t = Λ̂>ww̄t and ĝt+1 = Λ̂>a āt+1,

where āt+1 = at+1 − µ̂a(d + 1). For the Maximum Likelihood method we take the LS

estimate ĝt+1 and run an E-Step to obtain
ˆ̂
ft based on equation (4.6). For the Full

Maximum Likelihood approach a second E-Step following (4.9) is needed to get
ˆ̂
ĝt+1.

Plugging in the new information into equation (4.3) yields a water temperature factor

forecast

ḟ t+1 = βf (∆1,P1f̃ t+1) + βg(∆0,P2 g̃t+1),

where we set f̃ t = f̂ t and g̃t = ĝt for LS, f̃ t =
ˆ̂
ft and g̃t = ĝt for ML and f̃ t =

ˆ̂
f̂t and

g̃t =
ˆ̂
ĝt for FullML. We can then define the water temperature forecast by

ẇt+1 = µ̂w(d+ 1) + Λ̂aḟ t+1.

Note that for the benchmark model the construction of forecasts is straight forward.

We simply have to iteratively forecast the next hour to obtain a one (or m days) ahead

forecast.

4.2.2 Longer Forecasting Horizons

Meteorological air temperature forecasts are nowadays given for a quite impressive long

forecasting horizon. Our intention is to make use of this information and develop a

multiple day ahead forecast for the water temperature as well. In principle, one could

easily plug in the one day ahead forecast ẇt+1 together with the meteorological air
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temperature forecast ȧt+2|t for day t + 2 issued at day t in our model. This allows to

obtain ẇt+2|t, the forecast for day t+2 issued at day t, and so on. However, our approach

does not guarantee that our forecast is continuous in the sense that ẇi(d+1)24 and ẇi(d+2)1

might not connect. To correct for this deficit there are in principle two possibilities.

Firstly, after calculation of the forecasted values one could use a simple smoothing step

to connect the forecasts. Alternatively, we could restructure the model by binning data

to time intervals of length m days. Let therefore index t = (i, d̃) stand for year i and

day sequence d̃ = (d, d+ 1, . . . , d+m− 1). Hence, wt is an (m · 24)-dimensional vector

and t+ 1 = (i, d+m, . . . , d+ 2m− 1). We can now run the same modelling exercise as

above but with higher dimensional time series for water and air temperature. Note that

dependent on the starting day for the binning we get m different models. In practice, we

use all m models and take the average of the resulting m estimates to run our forecast.

4.2.3 Forecasting Performance

After model selection and estimation have been carried out on the training sample, that is

after having fixed P1 and P2 for each of the dynamic factor models and L1, . . . , L4 for the

benchmark model, the forecasting performance is measured in the evaluation sample. We

therefore make use of the prediction error. Let ẇt denote the 24-dimensional forecasted

water temperature vector at timepoint t obtained by one of the above mentioned dynamic

factor models or the benchmark model. The prediction error is expressed with the

following measurements

Mean Squared Prediction Error MSPE = 1
T ′

T ′∑
t=1

(wt − ẇt)
>(wt − ẇt),

Mean Maximum Prediction Error MMPE = 1
T ′

T ′∑
t=1

max |wt − ẇt|,

Mean Squared Prediction Error
MSPM = 1

T ′

T ′∑
t=1

(
max(wt)−max(ẇt)

)2
,for the Maximum

where T ′ is the number of days in the forecasting sample. Note that each error crite-

rion focuses on a different feature. MSPE gives the mean of the accumulated hourly
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forecasting errors while MMPE measures the mean maximum daily difference between

hourly forecast and observed temperature. Finally, MSPM is used to evaluate the mean

difference between the daily forecasted and observed maximum temperature and it will

be used in Section 4.3.3 to allow a comparisons of our models to different approaches sug-

gested in the literature of hydrology which only focus on forecasting the daily maximum

temperature.

4.2.4 Forecasting Errors

Constant Forecasting Intervals The three fitting strategies (LS, ML and FullML)

allow directly the calculation of forecasting intervals in the following form. Taking the LS

estimates let Σ̂εw be the estimated covariance matrix based on the fitted model residuals

ε̂w,t = w̄t−Λwf̂ t. Accordingly, let Σ̂εf be the estimated covariance matrix of εf,t based

on the fitted dynamic factor model (4.3). Assuming εw,t and εf,t are independent it

follows directly that

Var( ˙̄wt+1) = ΛwΣεf Λ
>
w + Σεw .

Assuming normality, a (pointwise) 95% forecasting interval is then obtained roughly by

ẇt+1 ± 1.96

√
diag

(
V̂ar( ˙̄wt+1)

)
. (4.12)

We are ignoring estimation variability here, which is justifiable given the amount of data

we have at hand. For ML and FullML the forecasting intervals are calculated analogously

but with their fitted residuals resulting in different estimates for the variance matrices

Σεw and Σεf , respectively. Constant forecasting intervals, however, ignore the changes

of the variance over the year which can be observed in the dataset and are therefore a

suboptimal but easy solution if forecasting accuracy shall be assessed.

Time Varying Forecasting Intervals In order to account for the heteroscedasticity

over the seasons the estimated covariance matrices can be considered as functions in the

day of the year d, i. e. Σ̂εw(d) and Σ̂εf (d). In our application we use the weights of the
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Epanechnikov kernel which are defined by

K(x) =

{
3
4
(1− x2), if x ∈ [−1; 1]

0, if x /∈ [−1; 1],

and calculate the first covariance matrix estimate in the following way:

Σ̂εw(d) =

∑T
t=1K

(
d−doy(t)

b

)
ε̂w,tε̂

>
w,t∑T

t=1K
(
d−doy(t)

b

) ,

where b is a bandwidth and doy(t) is the day of the year for the t-th observation. Σ̂εf (d)

can be computed analogously. We replace the variance term in equation (4.12) with

V̂ar( ˙̄wt+1, d) = ΛwΣ̂εf (d)Λ>w + Σ̂εw(d).

In our application this will lead to wider forecasting intervals in spring when the river

water is warming up rapidly and in narrower ones in winter. This allows to assess the

quality of a forecast more reliably. Note that there is no straight forward extension of this

technique to m-days-ahead forecasts. For those we will give only constant forecasting

intervals.

In this section a detailed description of the construction of one-day ahead and smoothly

connected m-days ahead forecasts was given. We introduced three error criteria, each

one focusing on a different feature what makes it usefull for varying purposes. Finally,

we offered two possibilities to construct forecasting intervals which enable us to assess

the accuracy of a forecast. These methods will be applied to the evaluation sample and

the results are presented in the following section.

4.3 Application to the Dataset

Our data range from 1 July 2002 to 30 June 2007. As mentioned earlier we let a year

start in July and end in June so that we have hourly observations over five years of
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data in total. We use the first four years as training sample and will do forecasting

performance comparisons on the evaluation sample which ranges from 1 July 2006 to 30

June 2007.

In the first part of this section we describe the results of our DFM-forecasts in detail

before we will compare it with the benchmark model in the second part. In the third

part we will make use of the MSPM criterion introduced earlier to compare the DFM’s

with some approaches taken from the literature on hydrology which only aim to forecast

daily maximum water temperatures.

4.3.1 Forecasting Water Temperature with Dynamic Factor Models

At first we estimate the smooth seasonal components µw(d) and µa(d) for water and air

temperature from the training sample as described in Section 4.1.1. Figure 4.2 illustrates

the results. The left column corresponds to water and the right to air temperature. In

each column the topmost panel shows in black colour the observed temperature curves

of the four years of the estimation sample at 16:00 which is, in the mean, the warmest

hour of the day refering to water temperature. The red curve is the respective smooth

function, i. e. the 16th column of µw or µa, respectively. The green curve is the smooth

function for 07:00 which is the coldes hour in the mean (refering to water temperature).

Evidently, the difference between both smooths is bigger in summer than in winter.

Below the vertical line the cyclic basis functions Bc are plotted. The mid panel shows the

entire dataset including estimation and forecasting sample, separated by a vertical blue

dashed line. In red the smooth component is plotted this time all 24 hours stacked. Note,

that for the forecasting sample the smooth µ·(d) has been extrapolated. The bottom

panel shows a “zoom in” of the former on the 5 to 10 May 2007. It illustrates that

the discrete µ-functions can be interpreted as smooth terms. Note that, if interpreted

as continous functions, they do not show discontinuities between sequential days but

connect smoothly.

In a second step we perform a model selection using the multivariate BIC, see Sec-

tion 4.1.2.2, for all three DFM’s applied to the evaluation sample. As pointed out earlier

we have to choose the number of factors for water and air temperature which we fixed
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Figure 4.2: Plots in the left column show water temperatures, in the right one air tem-

peratures. Top panel: Temperature curves of four years at 16:00 with corre-

sponding smooth (red) and smoothed curve for 07:00 (green). Cyclic B-spline

basis functions are shown below. Mid panel: Temperatures of estimation and

forecasting sample (divided by a blue dashed line) with 24-hour smooth. Bot-

tom panel: “Zoom in” on the panel above for the time span 5 to 10 May

2007.
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Figure 4.3: Left panel: Loadings of the first three water temperature factors for the LS

method. Right panel: Loadings of the first five air temperature factors for

the LS method.

to K = 3 and H = 5, respectively. The factors are estimated by a principal components

analysis and our parameter choice maintains more than 99% of the total variation in the

data for all three approaches. The first three LS factors are shown in the left panel of

Figure 4.3 and cover 94.5%, 4.1% and 0.7%, respectively. While the first factor captures

the overall level, the second and third mirror the daily variation. The first five LS factors

for the air temperatures are shown in the right panel, they cover 83.8%, 10.8%, 2.8%,

1.0% and 0.6%, respectively. Note that the eigenvectors are not cyclic and do not start

and end at the same point. This is, in fact, desirable since the eigenvectors in this way

also capture changes in the (short term) level of the temperature, i. e. increments or

decrements of the temperature over the days.

Furthermore, we fixed the lag for the stochastic model of the air temperature (4.8)

in the FullML approach at P3 = 2 so we can focus on the parameter selection of P1
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Fitting optimal setting criterion

approach P1 P2 MSPE MMPE MSPM

LS 3 1 2.334 0.483 0.162

ML 3 1 2.383 0.486 0.165

FullML 3 1 2.516 0.502 0.173

Benchmark — — 3.636 0.596 0.252

Model (4.13) — — — — 1.545

Model (4.14) — — — — 4.507

Model (4.15) — — — — 0.970

Table 4.1: Performance comparison of all modelling approaches described in this chap-

ter. The upper part gives the optimal lag values for the factor approaches

estimated by minimizing the multivariate BIC.

and P2 in model (4.3). After finishing the model selection we produced one-day-ahead

forecasts for the entire evaluation sample. The results of all approaches together with the

optimal parameter combinations are shown in Table 4.1. We see that the LS approach

yields the smallest prediction error in all three criteria followed by the ML and FullML

approach. This might be due to the fact, that we considered the factor loadings as fixed

and estimated these by a PCA; which by itself ignores serial correlation as does the LS

estimation. Overall, the performance of the model is adequate for forecasting as will be

seen in the remaining part of this section. For simplification we will make use of the LS

method from now on.

The forecasting errors for the one-day-ahead LS forecast are visualized in the top

panels of Figure 4.4. Overall these errors are smaller in winter months than in summer

and are biggest for May and June when water starts to warm up quickly. Exemplarily,

we take two time windows to demonstrate the forecasting properties. First, we look at

the days 30 July to 6 August 2006. The mid panel of Figure 4.4 shows the data together

with an one-day-ahead LS forecast. The corresponding 95% forecasting intervals were

calculated using an Epanechnikov kernel and a bandwidth b = 45. Apparently, the
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Figure 4.4: Left top panel: Hourly LS forecasting errors ẇt−wt. Right top panel: Box-

plots of hourly forecasting errors grouped by calendar weeks. Mid panel:

One-day-ahead LS forecasts with pointwise time varying forecasting inter-

vals. Bottom panel: Three-days-ahead LS forecasts with pointwise constant

forecasting intervals.
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Figure 4.5: White circles indicate air temperature observations. Water temperature ob-

servations are shown as solid circles when lying in the forecasting intervals

and as red crosses otherwise. The green line gives the one-day-ahead LS fore-

cast for the water temperature and the grey areas mark the corresponding

95% forecasting intervals.

forecast behaves satisfactory as it suitably fits the data but we do see the discontinuities

at the break of the days. This can be corrected using a three-days-ahead forecast, which

is shown in the bottom panel of Figure 4.4 calculated at 29th July for 30th July to

1st August, and then calculated at 1st August 1st for 2nd to 4th August. As pointed

out earlier there is no straight forward extension of time varying forecasting intervals

for three days ahead forecasts and therefore constant intervals are given. Obviously,

they are quite narrow for the short range forecast and broaden for the second and third

forecasted day which is a consequence of the increasing uncertainty. Note that we do not
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see any observation outside the 95% forecasting intervals in both panels although there

are 144 hourly observations. This fact is due to the data quality and will be commented

later in Section 4.4. Secondly, in Figure 4.5 we take up the zoom-in example shown in

the bottom panels of Figure 4.2. This gives an example how a rapid change of the air

temperature is handled by the model, here, again, fitted with the LS method. The one-

day-ahead forecasts have been performed for 5 to 10 May 2007. On 7th May a significant

drop of the air temperature was observed. That day the maximum air temperature was

about 7◦C lower than on the preceeding day. The LS forecasting method is not able

to describe this rapid change directly and some consecutive observations drop below

their corresponding forecasting intervals. Those measurements are indicated as crosses

in the plot. On the following day, however, the situation has been adapted to and the

temperature lies within the forecasting intervals, again. Overall, the performance of

our forecast is promissing. Daily variation is exhibited and does change gradually over

the year, dependent on the autoregression. Temperature changes are captured and the

model looks capable to be applied in real practise.

4.3.2 Comparison to the Benchmark Model

The benchmark model was estimated for each hour separately as described in Section

4.1.3. It can be seen in Table 4.2 that there are only few hours where water temperatures

of the previous day (at the same hour) show a significant influence. More important are

water temperatures of preceeding hours. For most hours there are two to five earlier

measurements needed but in one case (hour 18) one includes up to 8 lagged hours. For

almost all timepoints the air temperature at the same hour was found significant. Only

few models contain air temperatures of previous days. Dependencies of water temper-

ature on foregoing air temperature measurements were important mostly for daylight

hours.

We compare the benchmark model to the dynamic factor models using again the

forecasting sample from 1 July 2006 to 30 June 2007. The model performance is included

in Table 4.1. The dynamic factor models show clear advantages in all criteria. They

also perform well compared to other modelling approaches form the hydorlogical field
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hour 1 2 3 4 5 6 7 8 9 10 11 12

L1 1 – – – 1 – – – – – 1 1

L2 4 4 4 2 3 2 3 4 4 2 2 4

L3 0 0 0 0 1 0 0 – 0 0 0 0

L4 – – – 3 – – – 3 4 4 5 2

hour 13 14 15 16 17 18 19 20 21 22 23 24

L1 1 2 – – – 1 1 1 – – – 1

L2 5 5 2 3 6 8 2 3 4 5 4 4

L3 0 0 0 0 0 2 0 0 0 0 0 0

L4 3 3 3 3 3 1 1 1 1 2 – –

Table 4.2: Optimal lag lengths for the different hourly benchmark models (4.11) chosen

by the univariate BIC.

as can be seen in the next section.

4.3.3 Comparison to Other Modellling Approaches in Hydrology

To the best of our knowledge there is no earlier attempt to forecast water temperatures

on an hourly basis so that no direct competitors are available. There are, however, al-

ternative approaches which focus on forecasting the daily maximum temperature. Using

our approach we can look at the forecasted daily maximum temperature and we ob-

tain a forecasting accuracy of order
√

MSPM ≈ 0.403◦C (The benchmark model yields√
MSPM ≈ 1.072◦C). This value is now compared with three approaches listed in Caissie,

El-Jabi & St-Hilaire (1998). In analogy to our paper they extract a seasonal component

to guarantee a first-order stationarity of the water and air temperature time series, re-

spectively. They suggest to fit the first harmonic component of a Fourier series to the

data or, alternatively, a sinusoidal function and to apply the modelling analysis on the

remaining air and water temperature residuals. We follow their idea but use a cyclic

B-spline basis. With t = (i, d) as above the decompositon of water and air temperature
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maximum has the form wmax
t = µmax

w (d) + w̄max
t and amax

t = µmax
a (d) + āmax

t , where µmax
w

and µmax
a are the seasonal components for maximum water and air temperature, respec-

tively, and w̄max
t and āmax

t give the corresponding temperature residuals. In analogy to

our analysis the first four years are used to estimate the parameters and the fifth year

with the same index set J as used above is the evaluation sample.

The first model presented in Caissie, El-Jabi & St-Hilaire (1998) is a multiple re-

gression analysis of the water temperature on the current and lagged air temperature

(Kothandaraman, 1971). Using our notation the model has the form

w̄max
t = (∆0,2ā

max
t )β1 + ε

(1)
t , (4.13)

where β1 is a three dimensional parameter vector and ε
(1)
t are the residuals at time point

t. Performing a least squares regression and fitting the model yields
√

MSPM = 1.243◦C.

The second model is a second-order Markov process which was first suggested by Cluis

(1972) and takes into account the autoregressive structure of the water temperature

data, that is,

w̄max
t = (∆1,2w̄

max
t )β2 + T āmax

t + ε
(2)
t , (4.14)

with β2 =
(
ρ1(1−ρ2)/(1−ρ2

1), (ρ2−ρ2
1)/(1−ρ2

1)
)>

and ρ1 and ρ2 as the autocorrelation

coefficients of the water temperature maximum for a lag of 1 and 2, respectively. In

(4.14), T is the thermal exchange coefficient which can be estimated by least squares

after determining β2 and substracting the corresponding terms from equation (4.14).

Applied to our dataset this model yields
√

MSPM = 2.123◦C. The third model presented

in Caissie, El-Jabi & St-Hilaire (1998) follows a Box-Jenkins approach (see Box, Jenkins

& Reinsel, 1994) applied to an equation described in Marceau, Cluis & Morin (1986),

i. e.,

w̄max
t = (δ1 + φ1)w̄max

t−1 − δ1φ1w̄
max
t−2 + ζ0ā

max
t

− ζ0φ1ā
max
t−1 + nt − δ1nt−1 + ε

(3)
t , (4.15)

with parameters estimated minimizing the squared residual sum. The prediction error

was calculated to
√

MSPM = 0.985◦C. Table 4.1 sumarizes the performance results of

all mentioned models.
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Note that for the estimation and for the forecasting of the DFM’s and the benchmark

model we used 23 times more data than was used for the three approaches described

in this section. Therefore, it is not surprising that they are all clearly beaten by the

former described models. However, we did this comparison to emphasize the great

advantage that bring our models over those more classical methods from the hydrology

field. We also want to point out that hourly data can be obtained at low cost. Hence,

the application of our more complex models can easily be justified.

In this section the models described in this chapter were applied to a dataset of hourly

water temperature measurements of the river Wupper. It turned out that the LS method

of the dynamic factor models is the overal best performing approach. Competitors like

the autoregressive benchmark model or univariate approaches are outperformed easily.

In the next section we will shortly comment on the quality of the dataset at hand.

4.4 Data Quality

The mid and bottom panels in Figure 4.4 display a forecasting example and give the

corresponding pointwise 95% forecasting intervals. Six days of data are shown which

results in a total of 144 hourly observations. If the intervals are estimated correctly

one should expect to find at least some measurements lying outside. As this is not the

case the conclusion can be drawn that the intervals are too wide. Figure 4.6 shows

whether an observation of the forecasting sample is inside or outside its corresponding

forecasting interval and the red line indicates the smoothed coverage probability which

evidently varies over the year. Overall, we achieved a 95.3% coverage as we desired

but for some months it is 100% while in the spring time when water is heating up it

sinks under 90% and in May even under 80%. We observed this effect when we first

calculated intervals of constant width over the year and tried to counter it by letting

the width vary in time as described in Section 4.2.4. We therefore experimented with

90



4 Application: Forecasting Water Temperature with Dynamic Factor Models
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Figure 4.6: Black dots indicate whether an observation was inside or outside its fore-

casting interval. The red line gives the smoothed coverage probability. The

global coverage probability was 95.3%.

different bandwidths b and it turned out that, although small enhancements could be

achieved, the coverage probability could not be evened out. The result can be seen in

Figure 4.6. We see the main error source for the forecasting interval width calculation

in the data quality. Firstly, there seem to have been a lot of missing values which were

simply interpolated linearly. This created a lot of artificial outliers. The top panel of

Figure 4.7 displays an example of multiple periods which were obviously interpolated

linearly. Similar data errors can be found in both training and forecasting sample and

it would have been more helpful if missing data were simply flagged as Not Available

so that we could decide whether to plug in an appropriate daily temperature course or

to drop the respective observations from all calculations. Secondly, along with the data

came stream flow measurements which we did not and do not want to account for. It is

beyond question that it has a significant impact on the heat up process of stream water

but as pointed out earlier upstream of the measurement site Laaken there are a number

of dams and the municipal utility agreed on another water management policy to avoid

abrupt level changes in the future. Nevertheless, such changes are contained in our data

91



4 Application: Forecasting Water Temperature with Dynamic Factor Models

February 2007

w
at

er
 te

m
pe

ra
tu

re
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 a
ir 

te
m

pe
ra

tu
re

●●●●●●●●●●●●
●
●●

●●●●●●●●●●
●
●●●●

●
●●●●●

●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●

●
●●●●●●●●●●●●●●●●

●
●
●
●●

●●●●●
●●●

●●●●●●●●●●●●

●

●

●
●●●

●
●
●
●●●

●●
●
●
●●●●

●

●

●

●
●
●●●

●
●
●
●
●●

●●
●
●
●

●●
●
●
●
●

●
●●

●
●●●

●
●
●
●●

●●●●●●●●●●●
●

●●●
●●

●●●●
●
●●●●●●●●●

●●●●
●
●

●

●

●

●

●●●

●

●
●
●
●
●●

●
●
●●●●●●

●
●

●

●

●
●

●

●

●

●
●

●
●

●
●
●
●●●●●

●●●
●
●

●

●

●
●●●

●
●

●
●●

●
●●

5.
0

6.
0

7.
0

8.
0

2.
5

5
7.

5
10

12
.5

15

17th 18th 19th 20th 21st 22nd

●

●

obs. air temp.
obs. water temp. inside forecasting interval
obs. water temp. outside forecasting interval            

LS water temp. forecast
95% forecasting interval

an example for erroneous data

May 2007

w
at

er
 te

m
pe

ra
tu

re
   

   
   

   
   

   
   

   
   

   
   

   

st
re

am
 fl

ow
   

   
   

   
   

   
   

   
ai

r 
te

m
pe

ra
tu

re
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   

●●●●●●●●●●

●
●

●●●●●●●●●●●●
●

●
●
●●●

●
●
●●●●●●●

●●

●
●

●●●●●●●
●
●
●

●

●

●
●
●●●

●
●
●

●
●
●
●●●●●●●●●

●

●
●
●●

●●●
●

●
●
●
●
●●

●●●●●●
●

●
●

●

●
●
●●

●●●●
●

●
●
●●●●

●
●●

●●
●
●
●●

●
●
●
●
●
●●●

●

●

●
●
●●●

●●●●●

●

●
●
●
●
●
●●●

●

●
●●

●
●
●●●●●●

●●●●
●

●

●
●
●●

●●
●●

●
●

●

●

●
●
●
●●

●●●
●

●

●

●

●
●
●
●●

●●●
●
●
●
●
●
●
●●●

●●●●

●
●
●
●●

●
●
●●●

●●●
●

●
●

●●

12
14

16
18

10
15

20
25

30
4

6
8

20th 21st 22nd 23rd 24th 25th

●

●

obs. air temp.
obs. water temp. inside forecasting interval
obs. water temp. outside forecasting interval            

LS water temp. forecast
stream flow
95% forecasting interval

the impact of stream flow on water temperature

Figure 4.7: Top panel: Observed water and air temperature from 17 to 22 February

2007 with corresponding point and interval forecasts. A part of the water

temperature observations seem to be a result of linear interpolation. Bottom

panel: Observed water and air temperature and stream flow measurements

from 20 to 25 May 2007 with corresponding point and interval forecasts.
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and as can be seen in the bottom panel of Figure 4.7 our forecasting model is unable

to handle these situations. In the example the stream was at a high level on Sunday,

20 May 2007 and after having started work on Monday the water supervisor closed a

dam which reduced the level from 10-12m3/sec to around 4m3/sec. As a consequence

the water temperature started to rise drastically although the air temperature stayed at

a more or less constant level and our model needs two days to adopt to the new setting.

However, as situations like this are improbable in future data we think disregarding

stream flow is feasible to keep the model as simple as possible.

4.5 Results

In this chapter we demonstrated the use of dynamic factor models for forecasting water

temperature. DFMs can be used to compress high-resolution temperature measurements

so that the dimension of the original time series to be forecasted is significantly reduced

without loosing too much information. The dimension reduction allows to employ vec-

torautoregressive time series models for the forecasting equation.

Our dynamic factor models easily outperform univariate models from the field of

hydrology which were built to forecast the daily maximum temperature. This is un-

surprising as our models are able to handle the large amount of data that comes with

hourly measurements. However, this is a key feature of DFMs. The additional data

necessary can be obtained at low cost and its incorporation yields a huge performance

improvement.

We also used another classical autoregressive model as benchmark for our DFMs which

was outperformed, as well. Furthermore, we compared three different estimation routines

for the latent common factors. The outcome of this is that the computationally easiest

approach yielded the best results which is an advantage for the practical implementation.

The LS routine described in this chapter has already been implemented and the tool

is employed by the Wuppertal municipal utility.
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Demand with Dynamic Factor

Models

In this chapter we will present a second application of dynamic factor models. We will

develop a general approach for the forecasting of energy demand. This is also partly

motivated through the need of water temperature management described in Section 1.1.

However, besides of being universally applicable to energy demand forecasting settings

our approach also performs well compared to established forecasting models in this field.

We will demonstrate the abilities of our methodology considering two data examples.

The first concerns the district heating demand in a citywide steam network in the city of

Wuppertal in Germany, the second gives the electricity demand in the state of Victoria,

Australia.

Forecasting demand for energy at an intraday resolution is an important problem

for both energy utilities and management organisations for a number of reasons. The

first is to ensure short term system stability; for example, to maintain a voltage range

across an electricity grid. The second is for infrastructure planning and maintenance;

for example, to ensure essential network maintenance is undertaken during times of

low demand, or using longer term forecasts to decide the mix of electricity generation

capacity or natural gas storage facilities that are built. The third reason is due to

the introduction of wholesale electricity and natural gas markets in many regions. In

wholesale markets suppliers and distributors bid for energy prior to dispatch, resulting

in a spot price for the commodity that varies intraday. These markets can be highly
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5 Application: Forecasting Energy Demand with Dynamic Factor Models

volatile, and participants rely on accurate forecasts of intraday demand to pursue optimal

bidding strategies. Another example is the framework of dynamic water temperature

management in the river Wupper, see Section 1.1. Here, a forecast of the hot tap water

demand is requiered to calculate the amount of waste heat that has to be dissipated

into the river. In this chapter we therefore treat energy demand in general and propose

new methodology to forecast energy demand at an intraday resolution. We employ

recent developments in semiparametric regression methodology to capture calendar and

meteorological components. We focus on forecast horizons of up to one week, and show

that residual serial dependence can be captured using multivariate time series models

which greatly enhance forecast accuracy.

The literature on intraday energy demand forecasting has been dominated by the

forecasting of electricity demand (also called load), although many of the models and

methods proposed are equally applicable to natural gas and steam. The literature is

extensive, and so is the number of competing models. For horizons of one day or less

univariate time series models (Taylor, Menezes & McSharry, 2006; Taylor & McSharry,

2007; Taylor, 2010) and artificial neural networks (Park et al. 1991; Darbellay and

Slama 2000) have proven particularly popular. Weather effects can be included, al-

though there is little evidence in the literature that there is much improvement to be

made at very short horizons of 6 hours of less. For longer horizons, semiparametric

regression methods have also been used to capture the extensive periodic component of

demand, along with weather based effects; for example, see Harvey & Koopman (1993),

Smith (2000), Mart́ın-Rodŕıguez & Cáceres-Hernández (2005) and Panagiotelis & Smith

(2008b). Multivariate regression and time series models with dimension equal to the

number of intraday periods have proven successful for forecasting demand over horizons

of up to one week; see Ramanathan et al. (1997), Cottet & Smith (2003), Soares &

Medeiros (2008) and references therein. And many studies have looked at the issue

of how temperature affects intraday demand in different locations (Harvey and Koop-

man 1993; Pardo, Meneu and Valor 2002; Liu et al. 2006; Cancelo, Espasa and Grafe

2008; Hor, Watson and Majithia 2005), and occasionally other meteorological variables

(Cottet & Smith, 2003; Panagiotelis & Smith, 2008b). Dordonnat et al. (2008) go a
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different route and model the effect of covariates as a time-varying parameter model,

which is similar to the time-varying periodic spline methodology of Harvey & Koopman

(1993). Recent overviews on modeling and forecasting electricity demand at an intraday

resolution can be found in Weron (2006), Soares & Medeiros (2008) and Taylor (2010).

Though the literature on electricity demand forecasting is well developed this does

not apply in the same way to the forecasting of heating demand. We refer to Nielsen

& Madsen (2000, 2006) and Dotzauer (2002) as central contributions in this field. We

will demonstrate in the chapter that both tasks, heating as well as electricity demand

forecasting can be handled with the same statistical model.

Our approach combines many of the insights and characteristics of previous ap-

proaches. We use semiparameteric regression methodology to estimate marginal mean

demand using both calendar (time of year and day type) and meteorological variables.

We introduce flexible high-dimensional basis representations for the unknown functions,

but ensuring smoothness by introducing a shrinkage penalty for the basis terms. Such an

approach has proven popular in the statistical literature (Eilers & Marx, 1996; Ruppert,

Wand & Carroll, 2003; Wood, 2006) and technical details are summarized in Section 2.1.

It has the advantage of allowing for semiparametric interaction effects (which are appar-

ent in our problem), and is both numerically quite stable and computationally efficient

for complex models; see Ruppert, Wand & Carroll (2009) for a comprehensive survey

and discussion. We use a multivariate model, where each intraday period has a separate

mean model. Allowing for diurnal variation in model components is a common feature

of a number of successful forecasting models (Cottet & Smith, 2003; Soares & Medeiros,

2008).

We also consider two multivariate time series models for residual demand that exploit

the fact that the multivariate vector is longitudinal (i e., that the elements of the mul-

tivariate vector are contiguous intraday observations). The first of these is a periodic

autoregression (PAR) (Pagano, 1978; Franses & Paap, 2004), which can account for

seasonal or periodic structure in a time series. This is the case here with period equal

to one day, and PARs have been used to forecast intraday electricity prices previously

(Broszkiewicz-Suwaja et al. 2004; Guthrie and Videbeck 2007; Panagiotelis and Smith
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2008a). The second multivariate time series model we consider is an approximate dy-

namic factor model (Sargent & Sims, 1977; Geweke, 1977). These are used extensively

to forecast macroeconomic time series; see Breitung & Eickmeier (2006), Stock & Wat-

son (2006) and Hallin & Lǐska (2007) for recent overviews and a detailed description of

the methodology as well as a literature review can be found in Section 2.4. Dynamic

factor models decompose a multivariate time series into a component driven by a low-

dimensional dynamic latent factor, and an orthogonal idiosyncratic error. Estimation

of the factors and factor loadings can be carried out with principal component analy-

sis (PCA) applied to the covariance matrix of the process (see Stock & Watson 2002a,

2002b) or the spectral density matrix (see Forni, Hallin, Lippi & Reichlin 2000, 2004,

2005). A third approach is to use functional PCA, see Ramsay & Silverman (2005).

We apply all three estimation methods and compare the resulting forecasts with those

obtained using the PAR.

We consider the following data examples. The first is forecasting demand for district

heating in a citywide steam network in the German city of Wuppertal. Steam for the

network is supplied from co-generating power stations, and is used for both space and

water heating. Co-generating power stations are energy efficient, have a low carbon

footprint, and have high market penetration in northern and central Europe, as well

as areas of North America. We find a strong temperature effect for heating demand

that is well captured using air temperature, along with minimum and maximum daily

temperature, but as interactions with the season. Over-and-above calendar and weather

effects, including a multivariate time series component dramatically improves the accu-

racy of forecasts by between 54% one day ahead, and 34% seven days ahead. The second

application is to aggregate electricity demand in the state of Victoria, Australia. Here,

weather sensitivity of demand proves to be strong, largely due to the high variation in

meteorological conditions. Again, including a multivariate time series component sub-

stantially improves the forecasts over-and-above calendar and weather effects. Over the

period January to September 2009, these improvements have an average daily mone-

tary value in the wholesale market of between $39,976 one day ahead and $9,040 seven

days ahead. In both applications, we find the dynamic factor models to provide better
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forecasts than the popular PARs.

The chapter is structured as follows. In Section 5.1 we outline the PAR and the three

variations on the dynamic factor models we employ to forecast residual demand. In

Section 5.2 we outline the semiparametric regression methodology we use to estimate

the marginal mean, based on calendar and meteorological variables. Sections 5.3 and

5.4 apply the methodology to the German district heating and Victorian electricity

problems, respectively; Section 5.5 concludes.

5.1 Time Series Component

Let yt denote energy demand observed at times t = 1, . . . , T . For each observation,

denote the intraday period as h(t), the day in the sample as d(t), and the day of the

year as doy(t). We assume the data are observed at N equally-spaced time points during

a day, so that 1 ≤ h(t) ≤ N . In our first application the data are observed hourly, so

that N = 24, while in the second the data are observed every half hour, so that N = 48.

We assume that yt depends upon covariates xt, which in our analysis includes calender

and meteorological variables, the influence of which differs during the hours of the day.

We employ the regression model

yt = µh(t)(xt) + ut, t = 1, . . . , T, (5.1)

where µh(t) is the regression function at hour h(t), and ut is residual demand with

E(ut) = 0. The specification of µh(t)(xt) is discussed in Section 5.2, while the component

ut is assumed to be a stationary time series, for which we consider two models: a periodic

autoregression (PAR), and a dynamic factor model.

5.1.1 Periodic Autoregression

If h = h(t), the PAR model is

ut =
∑
j∈Lh

ut−jβh,j + σhzt, (5.2)
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where βh,j are the autoregressive coefficients, σ2
h the variances, zt is a white noise process

and Lh a set of integers representing the lag structure in period h. We set

Lh = {1, . . . , Lh,1, N, 2N, . . . , Lh,2N} ,

so that an observation at intraday period h is directly related to the Lh,1 < N observa-

tions immediately prior, and the observations at the same intraday period on the Lh,2

preceding days. Following Franses & Paap (2004; Chapter 3), equation (5.2) can be

rewritten in vector form as follows. Let d = d(t), u(d) = (uN(d−1)+1, . . . , uNd)
>, then

Ψ0u(d) =
P∑
j=1

Ψju(d−j) + z(d),

where z(d) = (zN(d−1)+1, . . . , zNd)
>, P = 1 + b(max

h
(Lh) − 1)/Nc and Ψ0, . . . ,ΨP are

(N ×N) matrices with non-zero elements

Ψ0[h, k] =


1 if h = k,

0 if h < k,

−βh,h−k if h > k,

Ψj[h, k] = βh,h+Nj−k,

with βh,j = 0 if j /∈ Lh. Multiplying on the left by Ψ−1
0 results in the ‘reduced form’

vector autoregression

u(d) =
P∑
j=1

Ψ−1
0 Ψju(d−j) + e(d), (5.3)

with sparse coefficient matrices (Ψ−1
0 Ψj), j = 1, . . . , P and

Var(e(d)) = Ψ−1
0 diag(σ1, . . . , σN)(Ψ−1

0 )> = Σe .

Considering the form of Ψ0, the precision matrix Σ−1
e is band diagonal with max

h
(Lh,1)

bands.

Estimation can be undertaken using the reduced form at equation (5.3) as suggested

by Pagano (1978). This approach is pursued by Panagiotelis & Smith (2008a), who
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assume Lh,1 = 2 and Lh,2 = 1, so that P = 1. However, they assume the matrix

Ψ−1
0 Ψ1 is well-approximated using a sparse matrix with nonzero elements along the

leading diagonal and the three elements in the upper right hand corner. In our work we

assume zt ∼ N(0, 1), and estimate the unknown parameters by maximising the likelihood

constructed directly from equation (5.2). We condition on pre-period observations, so

that the likelihood is separable in the parameters broken down by hour h. In this case,

maximising the likelihood with respect to {βh,j, σh; j ∈ Lh} separately for each hour

corresponds to full maximum likelihood estimation. Stationarity can be checked (or

enforced) using the reduced form at equation (5.3) as discussed in Reinsel (1993) for a

vector autoregression. In both our empirical applications we find the estimated PAR to

be stationary.

The orders Lh,1 ≥ 0 and Lh,2 ≥ 0 are chosen by stepwise model selection based

on the BIC. Again, because the likelihood is separable we can undertake this for each

hour h separately. A step in the stepwise algorithm considers up to four moves from a

current position (L1,h, L2,h) corresponding to adding (−1, 0), (0,−1), (1, 0) or (0, 1) to

the position, and ignoring inadmissable values. Whichever of the (up to) five positions

that results in the lowest BIC is selected at that step. The initial position of this

algorithm is (L1,h = 1, L2,h = 0) and steps repeated until no move is made.

After estimation, point forecasts of future values of ut, for t > T , can be evaluated

directly from equation (5.2).

5.1.2 Dynamic Factor Models

In our second time series model we assume u(d) results from a stochastic process which

is driven by M � N unobserved latent factors f(d) = (fd1, . . . , fdM)> ∈ RM , so that

u(d) = Λf(d) + ε(d) = η(d) + ε(d), (5.4)

where Λ ∈ RN×M is a matrix of orthonormal factor loadings and ε(d) = (εd1, . . . , εdN)> is

a vector of white noise disturbances. Typically, M is much less than N , thereby reducing

the dimension of the problem greatly; for example, M = 3 in our model of heat demand

and M = 4 in our model of electricity demand. To identify the first two moments of u(d)
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we assume that E
(
f(d)

)
= 0, E

(
ε(d)

)
= 0, E

(
f(d)ε

>
(d)

)
= 0 and E

(
ε(d)ε

>
(d)

)
= Σε. The

factors are also assumed to be orthogonal, so that E(f(d)f
>
(d)) = Ω = diag(ω1, . . . , ωm),

and

Var
(
u(d)

)
= Σu = ΛΩΛ> + Σε = Ση + Σε. (5.5)

In the dynamic model the factors also follow a vector autoregression over days d of the

form

f(d)|f(d−1), . . . ,f(d−L) =
L∑
l=1

Blf(d−l) +w(d). (5.6)

Here the B1, . . . ,BL are (M ×M) autoregressive coefficient matrices and w(d) is a zero

mean disturbance with Cov(w(d)) a diagonal matrix.

Dynamic factor models are extensively treated in Section 2.4 and we outline below

three different ways to obtain estimates of both the factors and loading matrix Λ mainly

following Stock & Watson (2002a, 2002b) or Forni, Hallin, Lippi & Reichlin (2000, 2004,

2005). Conditional on the factor estimates, the unknown parameters in equation (5.6)

can be estimated using maximum likelihood with the assumption that w(d) follows a

Gaussian distribution. The lag length L is obtained by minimising a multivariate BIC

over the values {0, 1, . . . , 10}. We check stationarity of equation (5.6) as outlined in

Reinsel (1993, p. 26), and find that all our empirical results correspond to stationary

processes.

Method 1: Principal Components Least Squares

The first method is an approximate, but simple, approach based on a principal compo-

nent analysis (PCA) applied to the empirical covariance of u(d), denoted by Σ̂u. This is

in line with the approach of Stock & Watson described in Section 2.4.2. Let Λ̃ denote

the (N ×M) dimensional matrix of the M orthogonal eigenvectors of Σ̂u corresponding

to the M largest eigenvalues. Predicted factors are then obtained by a least squares

estimate denoted by

f̃LS(d) = (Λ̃>Λ̃)−1Λ̃>u(d) = Λ̃>u(d) .

Stock & Watson (2002a) show this provides consistent estimates of the factors if both

N, T → ∞. However, for N fixed, which is the case in our intraday demand models,
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the estimates are inconsistent unless Σε = σ2
εIN . Nevertheless, this is likely to have

only a minor impact in our analysis because we select M so that the columns of Λ̃

explain in excess of 90% of the variation in u(d), and Ση dominates Σε in the variance

decomposition at equation (5.5). A detailed justification for this is given in Section 2.4.4.

Method 2: Principal Components Functional Data Analysis

The second approach results from noting that the elements of u(d) are likely to be serially

dependent. This motivates an assumption that the columns of Λ are smooth functions

of the hour h, which we denote as Λ(h) = [Λ1(h), . . . ,Λm(h)], for h = 1, . . . , N . Consid-

ering u(d) as a random function u(d)(h) evaluated at the N intraday periods corresponds

to functional data. The analysis of such data is called ‘functional data analysis”; for

example, see Ramsay & Silverman (2005) and Ferraty & Vieu (2006). Estimation can

be carried out with functional principal component analysis, which corresponds to PCA

with an additional smoothing penalty on the estimate of Λj(h); see Ramsay & Silverman

(2005, Chapter 9.3). Denoting the resulting first m fitted functional principal compo-

nents with Λ̃(h), least squares predictions f̄
LS
(t) = Λ̃(h)>u(t)(h) for the factors can be

computed.

Functional principal component analysis has been applied and investigated in a num-

ber of scenarios; see for example Kneip & Utikal (2001) or Cardot, Faivre & Goulard

(2003). Theoretical properties are based on the Karhunen-Loève representation (see

Loève, 1978):

u(d)(h) =
∞∑
q=1

FqΛq(h), (5.7)

where Λq(h) is the q-th column of Λ(h), Fq =
∫
u>(d)(h)Λq(h)dh are random variables

with E(Fq) = 0, Var(Fq) = λq and λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ 0 are the eigenvalues of

the covariance function E
(
u(d)(h)u(d)(h)>

)
. Assuming that λq = 0 for all q > M allows

consistent estimation if N, T →∞, as shown in Chiou, Müller & Wang (2003). However,

when N is fixed, the estimates are approximate but not necessarily consistent. Again,

we are unconcerned about this because we select the M eigenfunctions to account for in
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excess of 90% of the variation, so that∑M
q=1 λq∑N

q=M+1 λq
> 9. (5.8)

Method 3: Spectral Density Decomposition

The third approach follows Forni, Hallin, Lippi & Reichlin (2000, 2004, 2005) who

propose to base the principal component analysis not on the (empirical) covariance

matrix Σ̂u of u(d), but on the spectral density matrix, see Section 2.4.3. Defining the

matrix of order k autocorrelations as Γk = E
(
u(d)u

>
(d−k)

)
, the spectral density matrix is

Φu(θ) =
1

2π

∞∑
k=−∞

e−ikθΓk,

for θ ∈ [−π, π]. In practice, the summation is approximated with a finite sum, and in

our empirical work we compute from k = −30 to k = 30, which corresponds to a time

lag of one month; see Forni, Hallin, Lippi & Reichlin (2005). Applying PCA to Φu(θ)

results in the following decomposition for the spectral density matrix:

Φu(θ) = R(θ)P (θ)R(θ) + Φε(θ) .

Here, R(θ) ∈ CN×k is the matrix of the eigenvectors corresponding to the k largest

eigenvalues ρ1(θ) ≥ . . . ≥ ρk(θ), P (θ) = diag(ρ1(θ), . . . , ρk(θ)) and Φε(θ) is the part of

the spectral density matrix that remains unexplained. Using this decomposition, the

variation of u(d) can be divided into two components:

Var
(
u(d)

)
=

∫ π

−π
R(θ)P (θ)R>(θ)dθ +

∫ π

−π
Φε(θ)dθ = Σ̌η + Σ̌ε , (5.9)

where the first integral can be evaluated numerically in practise. We estimate the ele-

ments of the factors f(d) as f̌dj = ǎTj u(d), where ǎj is the generalized eigenvector resulting

from a generalized eigenvalue decompostion of the couple Σ̌η and Σ̌ε that corresponds

to the j-th largest generalized eigenvalue. Details and an explicit description is found

in Forni et al. (2005) and are therefore omitted here. Forni et al. (2005) show in a
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number of simulations that their method provides better forecasts than the simple PCA

combined with least squares estimation of the factors outlined above. However, we show

that this does not extend to the demand forecasts in our empirical work.

All three methods require the estimation of the vector autoregression in equation (5.6),

but employ different estimates of the factors f(d) and the loading matrix Λ in equa-

tion (5.4). Using these, future values can be forecasted from the dynamic factor models

as

û(d) =
L∑
l=1

Λ̂B̂lf̂(d−l) , for d > d0 . (5.10)

Here, {f̂(d−1), . . . , f̂(d−L)} are either fitted factors or forecast values, while d0 is the

last day observed in the sample. Note that although we use a single forecasting equa-

tion (5.10), the fitted factors and estimates of the loading matrices Λ̂ and the parameter

matrices B̂l differ for the three estimation methods outlined. We label these three

forecasting methods DFM1, DFM2 & DFM3, respectively.

In this section we introduced four different models to capture the serial dependence in

the residual process u(d). Three of them are factor based approaches. We now introduce

the mean model that incorporates any external effects and that produces the residual

process u(d). We presented the residual models first to emphasize that the focus on our

modelling exercise is on this part of our analysis.

5.2 Mean Component

We now specify the mean component µh(t) in equation (5.1). This varies over intraday

periods, and we estimate the N regression means µ1, . . . , µN separately. The covariate

vector xt can contain both calendar and meteorological effects. For example, the former

typically includes a time trend, day type dummy variables and the day of the year

doy(t), while the latter can include air temperature variables, humidity and rainfall.

104



5 Application: Forecasting Energy Demand with Dynamic Factor Models

The covariates in our two studies include both continuous and dummy variables, which

we denote as ct = (ct1, . . . , ctpc)
> and st = (st1, . . . , stps)

>, respectively, so that, xt =

(s>t , c
>
t )> with p = ps + pc elements.

We model each of the dummy variables with a linear coefficient, but consider the

impact of the continuous covariates ctj as unknown smooth effects. The impact of

some covariates on demand are known to be highly nonlinear and have been modeled

previously as semiparametric effects; see Engle, Granger, Rice & Weiss (1986), Harvey

& Koopman (1993) and Smith (2000). Here, the effect is denoted fj(ctj), with fj a

smooth but unknown function that is to be estimated. We use penalized splines (see

Section 2.1), where each unknown function fj is expressed as a linear combination of

a large number of function basis terms, so that fj(ctj) = Bj(ctj)bj. Here, B(ctj) is a

cubic smoothing spline basis evaluated at ctj, and bj are the corresponding basis term

coefficients. These are estimated using a penalized likelihood with quadratic penalties

λjb
>
j Djbj for each unknown function, where Dj is a fixed penalty matrix and λj is a

smoothing parameter selected in a data driven way. This produces a function estimate

that is simultaneously both flexible and smooth. The approach has a long history in the

statistics literature (Wahba, 1990), and Ruppert, Wand & Carroll (2003, 2009) outline

its implementation, practicability and the high quality of the resulting estimates.

During some periods of the day the impact of the calendar and meteorological vari-

ables on energy demand may not be additive. For example, Smith (2000) and Cottet

& Smith (2003) demonstrate this using aggregate electricity demand and key meteo-

rological variables from New South Wales, Australia. We therefore consider bivariate

interaction effects in the model in the following three forms:

(i) All pairwise interactions between the dummy variables.

(ii) Interactions between the continuous variables and dummy variables in the form

stiγj(ctj), where γj is a smooth univariate function called a “varying coefficient”

by Hastie & Tibshirani (1993).

(iii) Bivariate functions fij(cti, ctj) for interactions between continuous covariates, using

a penalized bivariate function basis.
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To identify the model we assume that all smooth functions integrate to zero. Once

a model is selected for each intraday period, estimation of the mean components is

straightforward using the R-package mgcv provided by Wood (2006). Even though we

consider only bivariate interactions, the resulting model can include a large number

of smooth functions and linear coefficients. Therefore, we also identify a subset of ef-

fects from those above using the marginal BIC outlined below; see also Wager, Vaida

& Kauermann (2007) or Greven & Kneib (2010). Calculation of this requires the as-

sumption of a distribution for the disturbances ut, and for this purpose we assume a

first order Gaussian autoregression. Even though this is incorrect, it is likely to account

for a sufficient amount of serial dependence so as to have little or no impact on the

model choice. For example, Krivobokova & Kauermann (2007) demonstrate that the

use of penalized spline smoothing for fitting smooth functions is robust with respect to

mis-specifications of the correlation structure. When implementing this approach if an

interaction effect is included, we maintain a hierarchy by including the univariate ‘main

effects’ of both variables in the model. We demonstrate the ability of the method to

select parsimonious, but flexible, mean components in our empirical work.

The components µ̂1, . . . , µ̂N are estimates of the marginal mean demand. These can

be evaluated for future periods by employing future values of covariates. In the case

of calendar effects they are known exactly, whereas for any meteorological variables

forecasts need to be employed in practise. Demand is forecast over the horizon t > T

from the conditional mean

E(yt|FT ) = µ̂h(t)(xt) + ût ,

where ût is obtained from the PAR model, or the dynamic factor model as in equa-

tion (5.10), and FT is the filtration at time T .

The marginal Bayesian Information Criterion (BIC) that is used for the model se-

lection routine is build on the fact that smooth functions can be fitted with penalized

splines as originally suggested in Eilers & Marx (1996) and further developed in Ruppert,

Wand & Carroll (2003). We illustrate the idea with the simple model

yt = fj(ctj) + ut,
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with ctj as continuous covariate and fj as smooth but otherwise unspecified function.

We fit the function by replacing fj by some high dimensional basis Bj(xtj)bj with bj as

spline coefficient. A convenient and numerically stable basis is to use B-splines (de Boor,

1978) but in fact Bj can be any smoothing basis like cubic splines or thin plate splines,

see Wood (2006). To achieve a smooth fit a quadratic penalty λjb
>
j Djbj is imposed on

the spline coefficients, where Dj is an appropriately chosen penalty matrix and λj the

so called penalty parameter. One can now reformulate the penalty in a Bayesian view as

prior distribution imposed on the spline coefficients. The quadratic form itself mirrors

normality, i. e. bj ∼ N(0, σ2
jD
−
j ) with D−j as (generalized) inverse and σ2

j = σ2
th/λj.

Assuming normality for residual ut the resulting model is now of linear mixed model

style

yt|bj ∼ N(Bj(ctj)bj, σ2
u),

bj ∼ N(0, σ2
jD
−
j ).

Integrating out the spline effects bj gives the likelihood of the marginal model which can

be maximized with respect to the remaining parameters, see Wand & Ormerod (2008) for

details. In particular, the parameters can be estimated with maximum likelihood and the

smoothing parameters result as a byproduct of the maximum likelihood estimation, see

Wand (2003) for details and Kauermann, Krivobokova & Fahrmeir (2009) for asymptotic

investigation of this relation, see also Kauermann (2005). Letting l̂ denote the marginal

log likelihood of the fitted model we define the marginal BIC with

BIC = −2l̂ + p log(T ),

where p is the number of fitted parameters and T is the number of observations. The

criterion can now be used for model selection in the conventional way.

Similar to the PAR model selection described in Section 5.1.1 we pursue a hierarchical

stepwise model selection separately for each hour. Starting with the smallest model

containing only an intercept and a smooth seasonal component, we check in each step if

the inclusion or elimination of a variable or interaction effect leads to an improved BIC.

We stop the model selection procedure if no improvement can be achieved.
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In this section a selection strategy for the mean model was described. This is necessary

to limit the numerical burden by only considering the relevant external effects. In the

following two chapters the models presented up to now will be applied to both data

examples mentioned above.

5.3 Wuppertal District Heat Demand

Our first application is to forecast district heating demand in the city of Wuppertal

in North-Western Germany. Note that district heating demand in Wuppertal refers to

both hot water supply and household heating. Heating is induced by steam (measured in

tons per hour) taken from the district’s steam network which is fed by two co-generating

power stations. Steam has to be provided throughout the whole year and not only

in winter months. In our example the majority of heating demand is from large scale

consumers, with ten clients (out of 950 connected to the Wuppertal network) responsible

for 38% of the total demand. We examine hourly demand between 1 January 2006 to

30 June 2009, where the first three years are used to estimate our models, and forecasts

constructed for the last six months.

5.3.1 Mean Component

The covariates include the day of year doy(t), current air temperature and its daily

minimum and maximum, resulting in four continuous covariates. Dummy variables were

introduced for five basic day types: Sundays, Mondays, Saturdays, Fridays and Tuesdays

to Thursdays, where public holidays are classified as Sundays. A periodic cubic spline

basis is used for the univariate function of doy(t), and thin plate spline bases are used

for the remaining univariate functions; see Section 2.1.4. For the bivariate interactions

of the continuous variables a tensor product of the corresponding univariate bases is

used, which is both a flexible bivariate basis and ensures the overall mean remains

periodic in doy(t). A parsimonious subset of these effects at each hour is selected by the
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stepwise algorithm, in which the day type dummies are included or excluded as a block.

The resulting optimal models are listed in Table 5.1, with effects that are not selected

omitted.

The optimal models at each hour are similar to those in adjacent hours, which is a

result of the strong diurnal structure of the determinants of heating demand and not

an assumption of the model. For example, the day type is important between 05:00

and 20:00, but omitted overnight. Similarly, daily maximum temperature is important

between 17:00 and 08:00 the next day, and usually as a bivariate interaction with doy(t),

whereas minimum temperature has less of an effect, and only between 11:00 and 21:00.

Both current air temperature and doy(t) are important throughout the day. Interest-

ingly, the results suggest that the way in which meteorological conditions impact on

heating demand not only differs over the time of day, but also over season.

Figure 5.1 plots some of the estimated effects. Tuesday to Thursday is considered

as “baseline” demand, and panel (a) plots the estimated effect against the hour of

the day h. Panel (b) plots deviations for the other four day type dummies over the

period they are significant, and not surprisingly demand is lower during the weekends.

Panels (c) and (d) plot the estimated univariate effects of doy(t) and air temperature

at three different times of the day. The former shows increased demand for heating as

temperatures dip below around 15oC in a near linear fashion. This supports the popular

“heating degree days” measure, which is a parametric function often used to account

for the impact of air temperature on heating demand; for example, see Sailor & Muñoz

(1997). Unsurprisingly, demand for heating is higher in winter than summer.

5.3.2 Time Series Components & Forecasts

Both the PAR and dynamic factor models were estimated using the residuals from the

fitted mean component. Table 5.2 reports the optimal lag lengths L1,h and L2,h for the

PAR. The maximum value considered for both lags was 10, although selected intraday

lags are three hours or less, and inter-day lags are two days or less. In all three factor

models we found that three factors explained in excess of 90% of the total variation,

providing a substantial dimension reduction for the N = 24 dimensional multivariate
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5 Application: Forecasting Energy Demand with Dynamic Factor Models

Table 5.1: Effects in the marginal mean model for Wuppertal heat demand, as selected by

BIC. Each row corresponds to a different hour, and inclusion of a component

is denoted with “•” and exclusion by “−”; effects not selected at any hour are

omitted from the table. An adjusted R2 value for each regression equation is

also given.

Hour Main Effects Interactions Adj. R2

d
o
y

M
a
x
.

T
em

p
.

M
in

.
T

em
p

.

T
em

p
.

D
a
y

T
y
p

e

M
a
x
.T

em
p

.
&

d
o
y

T
em

p
.

&
d
o
y

00:00 • • - • - - • 0.906
01:00 • • - • - • - 0.906
02:00 • • - • - • - 0.909
03:00 • • - • - • • 0.910
04:00 • • - • - • - 0.909
05:00 • • - • • • - 0.908
06:00 • • - • • • - 0.905
07:00 • • - • • • - 0.902
08:00 • • - • • • - 0.904
09:00 • - - • • - • 0.908
10:00 • - - • • - - 0.907
11:00 • - • • • - • 0.914
12:00 • - • • • - • 0.917
13:00 • - • • • - • 0.912
14:00 • - • • • - • 0.921
15:00 • - • • • - • 0.925
16:00 • - • • • - • 0.924
17:00 • • • • • - • 0.924
18:00 • • - • • - • 0.926
19:00 • • • • • - • 0.929
20:00 • • - • • • - 0.924
21:00 • • • • - • - 0.922
22:00 • • - • - • - 0.922
23:00 • • - • - • - 0.918
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Figure 5.1: Estimated components from the mean model for heating demand in Wup-

pertal. Panel (a): Estimated baseline demand on Tuesday–Thursday against

hour of the day h. Panel (b): Deviations from the baseline demand for other

day types. Panels (c) and (d): Smooth seasonal and temperature effects at

three times of the day (10:00, 15:00 and 20:00).
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Hour h 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

Intraday Lag Lh,1 1 3 1 1 2 3 1 1 3 1 1 3

Inter-day Lag Lh,2 1 0 0 1 1 1 2 1 2 2 1 1

Hour h 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

Intraday Lag Lh,1 1 2 3 1 2 3 3 2 1 2 2 1

Inter-day Lag Lh,2 0 0 1 1 2 1 1 1 1 1 1 1

Table 5.2: Lags chosen for the PAR model applied to the heat demand data.

time series.

Forecasts are made between one and seven days ahead at the hourly resolution over the

first six months of 2009, and the absolute percentage errors (APEs) computed. Table 5.3

reports the mean, median and 90th percentiles of the daily mean APEs (that is the

daily MAPEs) for five models. Because higher daily MAPEs correspond to less accurate

forecasts, the 90th percentile corresponds to typical poor forecast days. Forecasts were

first produced using the marginal means {µ̂h(t)(xt); t > T} as a benchmark, which are

the same over the forecast horizon. For comparison, marginal mean forecasts were also

re-computed without the meteorological variables, and are also quoted in Table 5.3.

Unsurprisingly, the forecasts that take into account meteorological conditions are an

improvement over those that do not, and underline the potential value of incorporating

weather forecasts into energy forecasting models for such horizons- a common practise

in energy utilities. The optimal lag length of the vector autoregression of the factors in

equation (5.6) is L = 1 day.

The marginal mean (with weather) is taken as a reference, and the summaries for the

time series model forecasts quoted as percentage reductions against this benchmark. All

time series models provide a substantial and similar improvement in forecast accuracy

one day ahead, reducing the average daily MAPEs between 51% and 54%. For longer

forecast horizons the time series models continue to provide substantial improvements,

but the dynamic factor models dominate the PAR. In particular, DFM2 is the most

reliable when considering the 90th percentiles and the best performing overall. On

average, forecasts seven days ahead can be improved by 34.4% by employing DFM2,

even when already accounting for the nonlinear effect of key meteorological variables

and periodicity.
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Figure 5.2: Panel (a): forecasts of heating demand in Wuppertal for Tuesday 20 January

2009 made between one to seven days ahead using both the marginal mean

and DFM2 dynamic factor model. Also included is the observed demand.

Panel (b): forecast errors corresponding to the two forecasts.
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As an illustration, Figure 5.2 gives the hourly forecasts for Tuesday, 20 January 2009,

made one to seven days previously. Forecasts using the marginal mean and the best

performing time series model (DFM2) are plotted in panel (a), along with observed

heating demand. The corresponding forecast errors are also plotted in panel (b), and

the time series forecasts can be seen to converge to the marginal mean, which is because

the time series is stationary.

5.4 Victorian Electricity Demand

In the absence of demand shedding, electricity demand is equal to the load on a power

system. Forecasting electricity demand at an intraday resolution over a variety of hori-

zons is an important problem faced by electricity utilities worldwide. In this section we

forecast aggregate electricity demand in the Australian state of Victoria at a half-hourly

resolution. Victoria covers an area of 227,420 km2 and weather conditions can vary sub-

stantially across the state. However, because approximately 74% of the population live

in the capital city of Melbourne and its immediate surroundings, we use meteorological

conditions at this location. We employ half-hourly observations from the meteorological

stations Viewbank, Essendon and Moorabin, which are the three stations located in cen-

tral Melbourne. Because of their close proximity, there are only very minor variations

between the three sets of observations. The series feature short tracts of missing data,

and to construct a complete series we use the average of observations across the three

monitoring stations. We consider demand between 1 January 2006 to 30 September

2009, and employ the first three years of data as a training sample, from which we make

forecasts for the last nine months.

5.4.1 Mean Component

The meteorological variables used are air temperature, relative humidity, precipitation

and windspeed. We also include the daily maximum and minimum air temperature and

doy(t), resulting in seven continuous covariates. The same bases outlined in Section 5.3.1
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were used, along with the same day type dummies. Table 5.4 shows the optimal model

identified by the stepwise algorithm, which omits precipitation, humidity and windspeed

at all times of the day. In comparison, Panagiotelis & Smith (2008b) found these meteo-

rological variables to have a minor effect on Victorian electricity demand using a similar

semiparametric regression model, and the reason for the difference is two-fold. First,

daily maximum and minimum air temperature were not considered by Panagiotelis &

Smith (2008b), and if these are omitted here then humidity, the second strongest meteo-

rological variable identified by Panagiotelis & Smith (2008b), also features in our optimal

model. However, forecasts of both daily maximum and minimum air temperature are

readily available, so it is preferable to employ these. Second, the BIC is an approxima-

tion to the Bayesian posterior model probability, whereas the method of Panagiotelis &

Smith (2008b) computes these exactly given their choice of Bayesian priors. While BIC

is well-known to select sometimes overly parsimonious models compared to the exact

posterior model probability, this is less problematic in our approach because the time

series component can capture any residual weather effects.

The importance of seasonality, day type and air temperature in determining elec-

tricity demand is well-documented for many locations (Pardo, Meneu & Valor, 2002;

Moral-Carcedo & Vicens-Otero, 2005), and our empirical results confirm these findings.

Figure 5.3 plots the same effects as those presented for the German heating demand

study. The deviations in the day type effects in panel (b), from the baseline case in

panel (a), are now prevalent at all hours of the day. The relationship with air tem-

perature in panel (d) now displays the combined impact of both heating and cooling

demand, with an increase in electricity demand for high temperatures as well as low;

air-conditioning is commonplace in Victoria. The point of minimum demand varies at

different times of the day, as also documented for other electricity demand series by

a number of authors; for example, see Cottet & Smith (2003) and Moral-Carcedo &

Vicens-Otero (2005). The seasonal component in Figure 5.3(c) is markedly different

from that in Figure 5.1(c) for the same reason.
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Figure 5.3: Estimated components from the mean model for Victorian electricity de-

mand. Panel (a): Estimated baseline demand on Tuesday–Thursday against

hour of the day h. Panel (b): Deviations from the baseline demand for other

day types. Panels (c) and (d): Smooth seasonal and temperature effects at

three times of the day (10:00, 15:00 and 20:00).
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5 Application: Forecasting Energy Demand with Dynamic Factor Models

Table 5.5: Lags chosen for the PAR model applied to the electricity demand data.

Hour h 00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30

Intraday Lag Lh,1 2 2 1 5 3 2 2 1 1 1 5 4

Inter-day Lag Lh,2 1 – 1 1 1 – 1 3 3 1 1 1

Hour h 06:00 06:30 07:00 07:30 08:00 08:30 09:00 09:30 10:00 10:30 11:00 11:30

Intraday Lag Lh,1 4 1 2 2 2 1 2 1 2 2 3 1

Inter-day Lag Lh,2 1 1 3 1 1 1 1 1 1 – – 1

Hour h 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00 17:30

Intraday Lag Lh,1 2 1 1 2 2 2 2 1 1 4 4 1

Inter-day Lag Lh,2 1 1 1 – – – 1 – – – – 1

Hour h 18:00 18:30 19:00 19:30 20:00 20:30 21:00 21:30 22:00 22:30 23:00 23:30

Intraday Lag Lh,1 4 2 3 2 1 1 2 1 3 1 2 3

Inter-day Lag Lh,2 1 3 2 1 1 1 1 1 1 3 1 2

5.4.2 Time Series Component & Forecasts

The intraday lag length L2,h can be as long as 5 periods (2.5 hours), while inter-day lag

length L2,h can extend to 3 days at some hours of the day h (see Table 5.5). The latter

is probably due to the combined effect of thermal inertia and any residual weather effect

not captured by the mean component. In all three dynamic factor models M = 4 factors

are found to explain in excess of 90% of the total variance. The optimal lag length of the

factor vector autoregression in equation (5.6) is L = 3, which matches maxh{L2,h} = 3

in the PAR model.

Using all models we compute half-hourly forecasts of electricity demand up to seven

days ahead. Table 5.6 provides the summaries of daily MAPE values in the same format

as the German heating demand example. Incorporating weather variables into the mean

component reduces the mean daily MAPEs substantially from 4.77% to 2.91%, and the

90th percentile (typical poor forecast) of daily MAPEs from 9.1% to 5.2%. This is a

greater improvement than that observed for Wuppertal heating demand, which is likely

due to two reasons. First, district heating in Wuppertal is dominated by a small number

of large users who appear less weather sensitive than the approximately two million

households that dominate aggregate electricity demand in Victoria. Second, electricity

demand also comprises cooling demand, and this is both extensive and highly variable

Victoria, which experiences frequent extreme temperature variations during summer.
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5 Application: Forecasting Energy Demand with Dynamic Factor Models

Days Ahead

Method +1 +2 +3 +4 +5 +6 +7

PAR $30,602 $23,520 $19,948 $17,005 $13,667 $10,453 $7,855

DFM1 $38,473 $31,153 $23,300 $16,517 $13,735 $11,272 $8,410

DFM2 $39,142 $32,152 $24,077 $16,645 $14,086 $11,338 $8,183

DFM3 $39,976 $33,093 $26,136 $17,635 $14,762 $12,012 $9,040

Table 5.7: Average daily monetary value of the time series model forecasts for electricity

demand in Victoria over-and-above the marginal mean model. Results are

given for forecast horizons of between one and seven days ahead.

All time series models provide a substantial improvement in forecast accuracy over all

horizons. While there is less difference between the PAR and dynamic factor models

than in the previous application, again the dynamic factor models dominate, except for

the 90th percentile of daily MAPEs at horizons of 2 and 3 days ahead. On average,

forecasts from the DFM3 model dominate for horizons of between 2 and 7 days ahead,

although the DFM2 model is more accurate when considering the 90th percentile.

A monetary value of the improved forecast accuracy provided by the time series models

can be computed using the wholesale spot price as follows. Let ŷt be the forecast demand

(in MW per hour) from using a time series component, and Pt be the half-hourly spot

price (in $ per MW per hour). Then the monetary benefit of the improved forecast at

half hour t is

Bt = Pt(|yt − µh(t)(xt)| − |yt − ŷt|)/2 ,

and the daily benefit is the summation of the half-hourly benefits during a day. Table 5.7

provides the average daily monetary values computed over the nine month forecast hori-

zon, showing that this improvement has a sizable expected monetary value. Figure 5.4.2

illustrates the ability of the methodology to provide forecasts over a one week hori-

zon. Panel (a) plots forecasts of half-hourly demand for Sunday, 5 July 2009, made

from one to seven days previously using both the DFM3 model and the marginal mean.
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Figure 5.4: Panel (a): Forecasts of Victorian electricity demand for Sunday, 5 July

2009, made between one to seven days ahead using both the marginal mean

and DFM3 dynamic factor model. Also included is the observed demand.

Panel (b): forecast errors corresponding to the two forecasts.

122



5 Application: Forecasting Energy Demand with Dynamic Factor Models

Panel (b) provides the corresponding errors and demonstrates that the benefits of using

the dynamic factor model extend over the entire horizon.

5.5 Results

The approach we outline in this chapter can be applied to forecasting intraday demand

for electricity, gas and steam. The penalized spline smoothing methodology is well suited

to estimating complex semiparametric regression models of the type considered here. It

is straightforward to implement using the public domain software R, along with the

maximum likelihood estimators for the multivariate time series models. In our empirical

work we employ meteorological variables and show they can greatly enhance the accuracy

of demand forecasts over a one week horizon. Of course, in practise forecast values for

meteorological variables would have to be used, which is an approach widely employed

by electricity utilities, although the weather component could be omitted if required. In

the empirical work we find the expected relationship between current air temperature

and both heating and electricity demand. We confirm previous studies (Pardo, Meneu

& Valor, 2002; Cottet & Smith, 2003) that show that form of the relationship varies

during both the day and season, so that any heating and cooling degree day measures

constructed should also vary by day and season. Interestingly, maximum and mini-

mum daily temperature are also important, although they have often been overlooked

in previous studies.

After accounting for calendar and weather effects in the marginal mean models for

each intraday period, there is still substantial residual serial dependence. Modeling this

using the multivariate time series models provides a consistent improvement in forecast

accuracy, as well as making the whole approach robust to either mis-specification of the

mean, or omission of weather components. Last, one result of our empirical work that

was a surprise to us was that the dynamic factor models consistently out-perform the

PAR.
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6 Discussion and Perspective

Within the framework of dynamic water temperature management we argued that it is

helpful to know if the current season is running ahead or behind an average year. Given

this information conclusions can be drawn how much waste heat can be dissipated into

the stream water without interfering with the river wild life. We employed landmark-

based curve registration first suggested by Kneip & Gasser (1992) which is widely rec-

ognized as the most powerful curve registration model in the literature. However, as

we treat time series data instead of complete functional observations and as we wanted

to develop a procedure that can be applied online, the methodology of Kneip & Gasser

had to be modified appropriately. We defined four different online landmark criteria

that partly exploited the multivariate structure of the data at hand. From the resulting

landmarks the corresponding reference points in the average year can be estimated and

a time-warping function can be derived which was done by monotone smoothing with

quadratic programming. However, our approach did not fully match the ecological data

that we used to validate our results. This may partly be due to the small amount of

spawning data that we were able to obtain. More observations should be collected in

the future to get a better idea of the performance of our approach. Furthermore, our

bootstrap routine demonstrated that the landmarks coming from the four criteria differ

in variability. As we used smoothing techniques to calculate the time-warping functions

we did not include weights for the different landmarks. However, this aspect may be

worth further examination. Overall, the procedure seems to work fine for the presented

dataset but it is not a methodology that can be applied to any online monitored sea-

sonal time series. It remains a specialized approach that might be extended to other

river water temperature data.

The applications of approximate dynamic factor models presented in Chapters 4 and
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6 Discussion and Perspective

5 turned out to be quite successful.

In the case of water temperature forecast we showed that traditional univariate fore-

casting models are easily outperformed by our approaches. This is not too surprising as

our models are apt to handle a huge amount of information, far more than could be pro-

cessed using traditional time series models. However, this additional information can be

obtained at low cost and the resulting improvements strongly emphasize the superiority

of our dynamic factor model. The modelling routine was split into two parts. First we

extracted the houly annual mean temperature course to guarantee first-order station-

arity. This was done for both, water and air temperature data. We then formulated a

combined model that was able to predict water temperature factor scores based on wa-

ter and air temperature factors of previous days (and in the case of air temperature the

same day, as well). We discussed three types of factor estimation and it turned out that

the straight forwart least squares approach yielded the best result closely followed by

the competing maximum likelihood based routines. The classical autoregressive model

that we used as benchmark was outperformed, as well. It might be worthwile to test the

presented models on other stream water datasets to assess if the factor models prevail.

For the energy demand forecast we found similar results. For both, heat and electricity

demand, the dynamic factor models dominated the competing periodic autoregressive

model. The improvements were not so clear as in the previous chapter where water

temperature was treated. But this is not a surprise as at least high-resolution electricity

forecasts are already broadly discussed in the literature. We, again, pursued a two-stage

modelling where this time we incorporated the external effects in the mean model rather

than on the factor level. The examined models where built on the residual process

and we did an out-of-sample forecast to evaluate the performances. Although all three

factor models beat the benchmark it is not so easy to say which one of them is the

best as they perform more or less equally well. This may shed some positive light on

the first least squares based method that closely follows the suggestions of Stock &

Watson (2002a, 2002b) and in our application performed only marginally worse than

the other approaches but is far easier to implement. Applications to further data would

be necessary to identify the overall best performing candidate.
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