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Nicht in der Kenntnis liegt die Frucht,
sondern im Erfassen.

Bernhard von Clairvaux,
Über die Betrachtung, 105

1 Introduction

Biomembranes play a central role in both the structure and function of all biologi-
cal cells [34]. They serve as an interface between different areas within a cell. The
biomembrane consists of a liquid-like bilayer of amphiphile lipids, into which mem-
brane proteins and other macromolecules are inserted or attached, figure 1.1. The
major role of the lipids is to form a stable bilayer matrix with which the proteins in-
teract. The lipids are also responsible for the physicochemical characteristics of the
membrane, i.e. the structure and function of the membrane are determined by the
lipids. The proteins, e.g. receptors, enzymes and ion channels, are the biochemically
active components. Their functions are very versatile: transport (exchange of material
away over the membrane), enzyme activity, signal transmission (receptors), cell con-
nection, cell-cell recognition. The relative amounts of protein and lipid composition
vary significantly. The amount of proteins varies from 20% to 80% of the membrane’s
dry weight. In this thesis we investigate generic mechanisms of lipid-protein interac-
tions. In the following we introduce the single components.

Figure 1.1: Schematic drawing of a membrane [1]
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1 Introduction

1.1 Membrane Lipids

Membrane lipids are very diverse. Any single membrane can contain over 100 differ-
ent lipids. However, all the different lipid types have one thing in common, they are
amphiphiles. They consist of a hydrophilic head group and one or more hydrophobic
tails. The composition of the head group as well as the number of carbon atoms and
the number of double bonds in the tails differ from lipid to lipid. The most com-
mon class of lipids in biomembranes are the phospholipids. They consist of a polar
charged phosphate head group, followed by a semipolar glycerol backbone. The fatty
acid tail chains vary widely in length, branching and saturation. The acyl chains nearly
always have an even number of carbon atoms ranging from 14 to 24. The degree of
unsaturation indicates the number of double bonds within a fatty acid tail. A double
bond often places a kink in the molecule. Many phospholipid molecules have one
saturated and one unsaturated tail chain. Our model lipid corresponds to the lipid
dipalmitoyl phosphatidylcholine (DPPC), figure 1.2. This lipid belongs to the phos-
phatidylcholines, a class of the phospholipids. This is the most abundant lipid class in
mammalian membranes [58].
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tail chain
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Figure 1.2: Chemical structure of dipalmitoyl phosphatidylcholine

In an aqueous environment the lipids tend to assemble in different kinds of aggre-
gates: Bilayers, micelles and vesicles, figure 1.3. Due to their hydrophilic nature the
head group of the lipids points towards the water. In a bilayer the lipids form two
monolayers with all the tails oriented in the same direction. The two monolayers are
arranged such that the tails face each other and are shielded from the aqueous envi-
ronment by the head groups. A vesicle is a bilayer forming a closed structure. In a
micelle the lipids form a sphere with the head groups facing towards the water. The
inner part of the sphere contains the tails. Inverted micelles are spherical droplets
surrounded by lipids with the heads groups facing inwards towards the water. The
aggregate the lipids prefer depends on the molecular shape of the lipids.
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1.1 Membrane Lipids

(a) (b) (c) (d)

Figure 1.3: Aggregates of lipid molecules in an aqueous environment: Bilayer (a), vesi-
cle (b), micelle (c) and inverted micelle (d). The aqueous environment is
presented by the grey area.

Figure 1.4: Schematic drawing of various lipid phases found in phosphatidyl-
choline/water mixtures: (A) subgel Lc, (B) gel (untilted chains) Lβ, (B) gel
(tilted chains) Lβ′, (D) ripple gel Pβ′ (does not correspond with our percep-
tions [64, 66]), (E) liquid crystalline Lα, (F) fully interdigitated gel Lintβ , (G)
partially interdigitated gel, (H) mixed interdigitated gel. Reproduced from
[58].

Depending on the temperature, the lipid bilayer can exhibit different phases [58],
figure 1.4. In the liquid crystalline or fluid phase Lα the lipids are disordered and
behave like a fluid. At low temperatures the lipids are in the gel phase Lβ or Lβ′.
They are packed closely together and the tails show a high order. Since the lipids are
stretched in this phase the bilayer thickness is much larger than in the fluid phase. In
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1 Introduction

the case of the Lβ phase the tails are oriented along the bilayer normal, whereas in
the Lβ′ case the tails are tilted with respect to the bilayer normal. Between the fluid
and the gel phase, the ripple phase Pβ′ exists. In this phase the surface of the bilayer
shows a ripple structure. The phase transition Pβ′ → Lα is called main transition,
whereas the transition Lβ′ → Pβ′ is called pre-transition.

1.2 Membrane Proteins

In general proteins are built from amino acids [24, 109]. Each amino acid, figure 1.5,
consist of four groups: an amino (-NH2) group, a carboxyl (-COOH) group, an H atom
and a side chain R. In the α-amino acids the amino and the carboxyl group are at-
tached to the same carbon atom – the α-carbon atom. The various α-amino acids
differ in which side chain (R group) is attached to the α-carbon atom. Depending on
the polarity of the side chain the amino acids vary in their hydrophilic or hydropho-
bic character. The amino acids of proteins are linked together by peptide bonds.
These are amide bonds formed between the carboxyl group of one amino acid and
the amino group of an adjacent amino acid. The binding between the amino acid
is covalent. Depending on the number of amino acids in a sequence the molecule
is called peptide or protein. Proteins can be described by four structures. The pri-
mary structure describes the amino acid sequence. The secondary structure describes
the specific spatial arrangement of regularly repeated local structures stabilised by hy-
drogen bonds. Examples are α-helices and β-sheets. The tertiary structure describes
the overall three-dimensional configuration of the protein. The following bond types
are involved: ionic bonds, interpeptide hydrogen bonds, side-chain hydrogen bonds,
disulfide covalent bonds. A protein is said to have a quaternary structure if it is com-
posed of several polypeptide chains which are not covalently linked to one another.
The distribution of hydrophilic and hydrophobic amino acids determines the tertiary
structure of the protein, and their physical location on the outside structure of the
proteins influences their quaternary structure.

COOH COOH

R R

Cα CαH2N HH

L-amino acid D-amino acid

NH2

Figure 1.5: Basic structure of the α-amino acids [109]. The four groups can be attached
in two possible spatial configurations. These two configurations are mirror
images of one another and labelled as L and D, respectively.

Any membrane protein that interacts directly with the hydrophobic core of the
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1.2 Membrane Proteins

Figure 1.6: Schematic drawing of how proteins are attached to a lipid bilayer. Repro-
duced from [34].

lipid bilayer must be amphiphilic. The parts of the protein in contact with the aque-
ous environment are enriched with amino acids with polar and ionisable side chains,
whereas the part of the protein in contact with the hydrophobic tails contains amino
acids which are nonpolar.
Membrane proteins are classified as extrinsic or integral proteins, figure 1.6. The

distinction between extrinsic and integral only gives information about the strength
but not about the mode of attachment to the lipid bilayer. In general the proteins
are bound to the lipid bilayer through hydrophobic or electrostatic interactions. The
different ways how proteins are attached to the lipid bilayer are [34]:
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1 Introduction

(1) They interact with other proteins which are embedded in the lipid bilayer.

(2) They interact with the surface of the lipid bilayer.

(3)-(4) They interact with the lipid bilayer via a hydrophobic anchor or tail.

(5)-(6) Transmembrane proteins: They pass completely through the lipid bilayer once
or many times.

(7) They are covalently bound to a lipid.

Integral proteins are so tightly bound to the membrane lipids that they can be freed
only under denaturation conditions. Extrinsic proteins can be dissociated non-de-
structively from the membrane by relatively mild procedures.

1.3 Membrane-Protein Interactions

If one or more (transmembrane) proteins are incorporated into a lipid bilayer, this
leads to perturbations within the lipid bilayer, figure 1.7. All the perturbations de-
scribed in the following can generally be divided into symmetric and asymmetric per-
turbations. Symmetric perturbations leave the bilayer midplane unaffected and are for
example caused by a cylindrical inclusion. The two monolayers experience the same
deformation. If for example the inclusion has a cone-like structure, the perturbations
are asymmetric. In this case the perturbations have to be described, beside other
order parameters, in terms of the main curvature of the bilayer midplane [76].
If the length of the hydrophobic section of the protein is much smaller or much
larger than the hydrophobic thickness of the lipid bilayer, this has a strong effect on the
surrounding lipids and can also have an effect on the protein itself. This effect is called
hydrophobic mismatch. One distinguishes between positive hydrophobic mismatch, if
the hydrophobic length of the protein is much larger than the hydrophobic thickness
of the lipid bilayer, and negative hydrophobic mismatch, if the hydrophobic length of
the protein is much smaller than the hydrophobic thickness of the lipid bilayer. Even in
the absence of hydrophobic mismatch proteins affect the lateral structure of the lipid
bilayer: The number of possible conformations of the lipids is reduced in the vicinity
of proteins, in addition proteins can induce a tilt of the lipid molecules. Proteins can
induce a strong membrane curvature and last but not least affect the elastic properties
of the membrane and thereby change the fluctuation spectrum of the membrane.
A hydrophobic mismatch may have consequences on the one hand for the protein
properties and with this for the protein activity [26] and on the other hand for the
lipid properties and with this for the membrane functionality. The unfavourable expo-
sure of the hydrophobic surface of the protein to the water can be avoided through
different scenarios [55]. The proteins may aggregate in order to minimise the hy-
drophobic area exposed to the water. In the case of positive hydrophobic mismatch
the proteins may tilt in order to reduce the effective hydrophobic length. The protein
may tilt as a whole or the individual helices of which the protein might be composed
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1.3 Membrane-Protein Interactions

(a)
(b)

(c)

(d)

Figure 1.7: Protein-induced perturbations: (a) perturbation of the lipid conformation,
(b) induced tilt of the lipids, (c) induced lateral curvature, (d) negative and
positive hydrophobic mismatch.

may also experience a tilt [63]. In the case of negative hydrophobic mismatch the pro-
tein may not be incorporated into the lipid bilayer but instead localise at the surface.
The protein might be deformed. There may be a change in the backbone conforma-
tion or the helices of the protein might change the organisation of their hydrophobic
and hydrophilic side chains and thus adjust the hydrophobic length of the protein.
Certainly both effects can occur. The lipids can change the membrane thickness by
stretching or compressing their acyl chains. This also changes the local chain order
in the lipid bilayer. The lipids can assemble into another type of aggregate. Proteins
with a large hydrophobic section stabilise the gel phase, whereas proteins with a short
hydrophobic length stabilise the fluid phase. Hydrophobic mismatch can also lead to
non-lamellar phases, i.e. the inverted hexagonal phase. This can especially happen if
the membrane contains a large amount of lipids which prefer non-lamellar phases.
An example of a protein being very sensitive to the bilayer thickness is gramicidin

A [27, 57, 76]. It is a small 15-residue hydrophobic peptide, which forms dimeric
channels for cations and water. The formation and lifetime of gramicidin A channels
depend on the hydrophobic thickness of the membrane. An increase in the bilayer
thickness reduces the mean channel lifetime. The function of gramicidin A has been
investigated experimentally [27, 45, 57] as well as theoretically [46, 47, 48] using an
elastic theory. Gramicidin A causes an increase in ordering of the neighbouring lipids.
The interaction between integral proteins is of great importance for the functionality

of the membrane. On the one hand there are the direct protein-protein interactions,
for example van der Waals forces and electrostatic forces for charged inclusions. The

7



1 Introduction

van der Waals interactions are attractive and decrease with increasing distances be-
tween the proteins according to 1/R6. The electrostatic interactions are repulsive and
decay exponentially with increasing distances between the proteins. Since the electro-
static interactions are shielded by the aqueous environment of the membrane [5, 117],
they are often ignored in the analysis of protein-protein interactions. In general these
direct interactions are short-range, acting over a few Ångströms. On the other hand
the perturbation of the lipid bilayer by the proteins can induce indirect lipid-mediated
interactions. The lipid-mediated interactions have a long-range contribution, acting
over a few nanometres [12], if the inclusions couple to the local membrane curvature
resulting in a suppression of long wavelength bilayer fluctuations, and a short-range
contribution due to the local deformation of the lipid structure close to the protein.
Both the lipid-mediated interactions between proteins included in the membrane and
the influence of proteins on lipid bilayers have been intensively investigated for some
time [7, 35, 76]. Chapter 2 focuses on the different theoretical models used to de-
scribe lipid-protein as well as lipid-mediated protein interactions.
In this thesis we want to investigate the influence of transmembrane proteins on
the lipids on the one hand and the membrane-mediated interactions between trans-
membrane proteins on the other hand. In particular, we will investigate the influence
of hydrophobic mismatch. For this analysis we use a coarse-grained model.

1.4 Coarse-Graining

Many systems are characterised by structures and processes on very different time and
length scales and with a different number of degrees of freedom [6, 83]. Practically
even with modern computers it is still impossible to simulate a model system on
all time and length scales. One possibility to bypass this problem is to coarse-grain
the model under consideration. The idea behind coarse-graining is to collect many
microscopic degrees of freedom into fewer larger ones. Viewing a system at a coarser
level has the advantage that on the one hand one reduces the computational cost,
since unnecessary details are disregarded, and on the other hand the analysis of the
system is faster. Long time scale processes are slower than processes on larger time
scales. The reduction of degrees of freedom has the advantage that much larger time
spans can be simulated. The different levels of coarse-graining are:

• atomistic level: The atomistic level is a realistic (atomistic) description of the
system. All atoms of a molecule are considered.

• microscopic level: The structure of molecules is simplified.

• mesoscopic level: One considers minimal systems. Many atoms are combined to
one particle.

• macroscopic level: One does not consider single particles any more, instead the
system is described by continuum models.
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1.4 Coarse-Graining

Depending on the aim of the simulations it has to be decided what level of coarse-
graining and what kind of simulation method, e.g. molecular dynamic, Monte Carlo
or dissipative particle dynamic simulation, will be used.

Lipid and Protein Models

For the simulation of a pure lipid bilayer there is a big community of people involved
in all-atom simulations [15, 21, 53, 54, 67, 68, 69, 70, 110, 111, 112]. The advantage
of atomistic simulations is that they can be compared more directly to experiments.
The length and time scale of pure lipids in atomistic simulations is very limited: about
10-30nm in length and hundreds of nanoseconds in time [4].
The lipid bilayer models dealing with the system on a mesoscopic level [10, 11,

13, 14, 38, 39, 90, 102] differ not only in the representation of the lipids and the
used potentials but also in the representation of the aqueous environment. There are
models that use explicit solvent beads [38, 39] and models which are solvent-free. In
the latter type of models the hydrophobic interaction of the solvent is incorporated
into the interactions of the lipid beads [10, 13, 14].
If proteins are inserted into the lipid bilayer, one also has to decide how these

proteins will be modelled. The protein can be modelled on an atomistic level [42,
43, 110] or on a mesoscopic level. The protein models on the mesoscopic level differ
much from each other [11, 41, 46, 82, 89, 99, 106].

Previous Coarse-Grained Simulations of Lipid-Protein Interactions

The first computer simulations on lipid-mediated protein interactions were done by
Sintes and Baumgärtner in 1997 [103, 104, 105, 106]. They used a coarse-grained
membrane model with two cylindrical inclusions embedded in a lipid bilayer using
Monte Carlo simulation methods. They found that the inclusions exhibit two types of
attraction forces – short-range and long-range forces. Up to distances of the diame-
ter of the lipids the cylinders feel a depletion-induced attraction. The reason for this
interaction is that because of the spatial interaction between the lipids and the inclu-
sions, the inclusions are surrounded by a depletion zone. When the depletion zones
of the two inclusions overlap, this gives an extra free volume for the lipids and there-
fore an attractive force. At larger distances the inclusions feel a fluctuation-induced
attraction. The two regions are separated by a repulsive barrier for protein distances
somewhat larger than the lipid diameter. The fluctuation-induced attractive force is
related to the density and orientational fluctuations of the lipids. The density is not
only reduced in the depletion zone but it also decreases with increasing distance.
Brannigan and Brown [10] construct their proteins as a rigid assembly of coarse-

grained lipids: one hydrophilic bead, one interface bead and a different number of
hydrophobic beads. The thickness and length of the proteins are adapted by changing
the number of lipid chains, and the number of hydrophobic beads in the lipid chains,
respectively. They compare the thickness profiles obtained for a lipid bilayer in the
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1 Introduction

vicinity of one protein to an elastic theory. With this elastic theory they calculate the
effective interaction between two proteins inserted into the lipid bilayer.
De Meyer et al. [19] use a combination of dissipative particle dynamics methods
and Monte Carlo methods and Schmidt et al. [99] use dissipative particle dynamics
methods to simulate the coarse-grained model. The proteins are constructed by link-
ing together chains with one hydrophilic bead and a certain number of hydrophobic
beads. The thickness and length of the proteins are adapted by changing the num-
ber of chains, and the number of hydrophobic beads in the chains, respectively. De
Meyer et al. calculate the effective interaction potential between two proteins with
umbrella sampling methods as a function of the diameter and the length of the pro-
teins. Schmidt et al. integrate the force between two proteins in order to determine
the effective pair potential.

1.5 Present Work

This thesis is organised as follows. In chapter 2 we focus on the different theories
that exist in order to explain lipid-protein interaction from a theoretical point of view.
Chapters 3 and 4 introduce the model and the methods we use for our simulations.
In chapter 5 we analyse some characteristics of a pure lipid bilayer. In chapters 6 and
7 we present the results of incorporating one and two proteins into the lipid bilayer,
respectively. The results obtained from the computer simulations are compared to
two theories described in chapter 2.

10



2 Theories on Lipid-Protein Interactions

When a protein is inserted into a lipid bilayer, this can lead to different distortion
effects in the bilayer. On the one hand there is a change in the conformations of the
lipids surrounding the protein. This even happens in the case of zero hydrophobic mis-
match, i.e. if the size of the hydrophobic part of the protein matches the hydrophobic
thickness of the lipid bilayer bilayer [76]. On the other hand, in the case of positive
or negative hydrophobic mismatch, there may be structural changes of the lipids. I.e.
the lipids get stretched or compressed, which changes, for example, the area per lipid.
The perturbation of the lipid conformation induced by a protein can be charac-

terised by an order parameter. The order parameter measures the protein-induced
perturbation in lipid order and can be realised by different quantities, for example the
hydrophobic thickness, the bilayer area or the average acyl-chain orientational order
parameter [81]. Far away from the protein the order parameter is equal to the or-
der parameter measured in an undisturbed lipid bilayer. The distance over which the
order parameter is affected by the inclusion is described by the correlation length.
In this chapter we summarise different theories used to describe lipid-protein inter-

actions and lipid-mediated protein-protein interactions.

2.1 Mean Field Theory

The first theoretical study of lipid-mediated protein interactions was done by Marčelja
in 1976 [74] using mean field methods. He assumed that the structure of the neigh-
bouring lipids is disturbed by an integral protein [73] and furthermore that the length
of the inclusion fits the thickness of the lipid bilayer (no hydrophobic mismatch). The
lipid chains are arranged on a two-dimensional hexagonal lattice, whereas each lipid
occupies one lattice site. The order parameter nj at each lattice site j is defined as

nj =

〈

1

n

n∑

m=1

(

3

2

os2 vm −

1

2

)

〉

. (2.1)

n is the number of chain segments and νm describes the orientation of each chain
segment. The influence of the proteins on the surrounding lipids is expressed by
an explicit lipid-protein interaction contribution to the total energy of the system.
Marčelja found that up to three layers of neighbouring lipids are disturbed by the
protein. With increasing distance to the protein the disturbance effect decreases.
In a system containing two proteins, each of the proteins perturbs the structure of
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2 Theories on Lipid-Protein Interactions

the surrounding lipids. If the two proteins are close together or in contact, the to-
tal perturbation of the surrounding lipids is decreased, because the regions with the
disturbed lipids overlap. This lowers the free energy and causes an attractive force be-
tween the proteins. Depending on the relative strength of the direct protein-protein
interaction in comparison to the lipid-protein interaction the proteins are separated
by a layer of lipids or come into contact.
Schröder [100] assumed a lipid continuum to describe the lipid-mediated protein
interaction. The order parameter is taken to be the average of the second Legendre
polynom

ηj = 〈P2(ν)〉 , (2.2)

where ν describes the orientation. The fluctuations of the chain-order parameter are
decreased near the protein. Schröder derived an expression for the effective interac-
tion between two proteins: This potential is attractive as long as the proteins have the
same effect on the surrounding lipids. With increasing correlation length the range of
the effective interaction is increased.

2.2 Landau-de Gennes Theory

A very old approach to study lipid-protein interactions is the Landau-de Gennes the-
ory. In this theory the free energy is expanded in terms of an order parameter φ

[51, 53, 91, 92, 94]. The free energy F can be expressed as a function of φ and the
deviation of φ from its equilibrium value φ0 [94]:

FLdG =

∫

d2r
c

2
(∇φ)2 +

a

2
(φ − φ0)

2 . (2.3)

The first term accounts for the cost of spatial variations in φ. The last term represents
the restoring force tending to keep φ at its equilibrium value φ0. The variable c is
taken to be positive. Minimising the free energy yields the equation

(

ξ2∇2 − 1
)

φ(r) + φ0 = 0 . (2.4)

ξ =
√

c/a is the correlation length. Assuming the boundary conditions

φ(r → ∞) = φ0 (2.5)

φ(R) = φR (2.6)

with R the radius of the inclusion, the solution of equation 2.4 is

φ(r) = φ0 + (φR − φ0)
K0(r/ξ)

K0(R/ξ)
. (2.7)

K0 is the zeroth Bessel function of the second kind. For large values of r/ξ the Bessel
function can be replaced by its asymptotic function and equation 2.7 can be approxi-
mated by

φ(r) = φ0 + (φR − φ0)
√

R/r e(−r−R
ξ ) . (2.8)
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2.3 Elastic Theory

The order parameter can be quite versatile. Owicki et al. [91, 92] defined the order
parameter in terms of the area per molecule. Jähnig [51] defined the order parameter
in terms of a lipid order parameter that takes into account the lipid orientation. A
very popular order parameter is the thickness of the lipid bilayer. Since the order of
the lipid chains is connected to the bilayer thickness, an integral protein induces local
variations not only in the conformational order of the lipids but also in the bilayer
thickness [108].
We use φ to describe the local variations of the monolayer thickness from its equi-

librium value t0, the value of the monolayer thickness of an undisturbed lipid bilayer.
In this case φ0 = 0 and the two boundary conditions, equations 2.5 and 2.6, take the
form φ(r → ∞) = 0 and φ(R) = tR.
The exponential law, equation 2.8, has been used quite often to fit thickness profiles

obtained from simulations or molecular theories for membranes with a single inclusion
[28, 29, 41, 99, 108, 115, 116].

2.3 Elastic Theory

A very powerful tool for describing lipid-protein interactions is the elastic theory of
coupled monolayers. The idea is to introduce a certain number of order parameters
representing elastic degrees of freedom. The perturbation of these order parameters
with respect to their equilibrium value is evaluated by expressing the free energy as
an expansion in terms of the order parameters [76].
Different authors have introduced different elastic theories [3, 10, 16, 17, 18, 46,

47, 48, 49, 87, 88, 101]. These theories differ mainly in the number of elastic terms
they include and in the boundary conditions. All these theories have in common that
the monolayer deformation is described in terms of the local monolayer thickness.
We will focus on the most recent theory by Brannigan and Brown [10]. The free

energy of thickness deformations can be expressed as

F0 =

∫L

R

d2r

{
kA

2t2
0

φ2 + 2kcc0∇2
rφ + 2kc

ζ

t0

φ∇2
rφ +

kc

2

(

∇2
rφ
)2

+ kGdet (∂ijφ)

}

.

(2.9)
φ+t0 is the locally smoothed monolayer thickness with t0 being the equilibrium value.
kA is the compressibility modulus and ζ = c0 − c′0Σ0 is an extrapolated curvature with
c′0 = ∂c0/∂Σ|Σ=Σ0

. Σ is the area per lipid and Σ0 is the equilibrium value of the
area per lipid of an undisturbed lipid bilayer. kc is the bending rigidity and indicates
the energy cost of deviating from the spontaneous curvature c0. The spontaneous
curvature characterises the tendency and the magnitude of the monolayer head-tail
interface to curve to or from the water phase [16]. Bilayer-forming lipids have zero
spontaneous curvature, whereas non-bilayer forming lipids have a positive or negative
spontaneous curvature. Dan et al. [17] showed that an inclusion decouples the two
monolayers of a bilayer resulting in the fact that the spontaneous curvature of the
amphiphiles dominates the thickness deformation profile and the membrane-induced
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2 Theories on Lipid-Protein Interactions

interaction between proteins. The last term in equation 2.9 takes into account the
Gaussian curvature. The Gaussian rigidity kG measures the energy cost of saddle-like
deformations [96]. According to the Gauss-Bonnet theorem [95] the integral of the
Gaussian curvature over closed surfaces is proportional to the Euler characteristics of
this surface. In planar sheets this gives an uninteresting constant and thus is often
omitted. However, surfaces containing inclusions are no longer closed. Brannigan
and Brown showed that the membrane-mediated interactions between inclusions are
strongly affected by the Gaussian curvature and thus has to be accounted for.
The inclusion of radius R is centred at r = 0. The monolayer thickness deformation
at the surface of the inclusion is φ(R) = tR. The minimisation of the free energy,
equation 2.9, with respect to the variation in the deformation profile φ(r) yields the
Euler-Lagrange equation

kA

kct
2
0

φ +
4ζ

t0

∇2
rφ + ∇4

rt = 0 (2.10)

with the boundary conditions

φ(R) = tR (2.11)

∇2
rφ
∣

∣

∣

R
= −2

(

c0 +
ζ

t0

tR

)

−
kG

kcR
t′R (2.12)

∂rφ
∣

∣

∣

L
= 0 (2.13)

∇3
rφ
∣

∣

∣

L
= 0 , (2.14)

where ∂r = ∂/∂r, ∇2
r = (1/r)∂rr∂r, ∇3

r = ∂r∇2
r, and t′R = ∂rφ|R. The boundary condi-

tion 2.11 is the thickness matching condition: The height of the bilayer at the inclusion
is equal to the inclusion height. The boundary condition 2.13 indicates that the lipids
far away from the inclusions are not disturbed and therefore the thickness of the bi-
layer is equal to the thickness of an undisturbed bilayer. The boundary conditions 2.12
and 2.14 result from the minimisation of the free energy. For a single inclusion the
solution of equation 2.10 is

φ(r) = a1J0(α+r) + a2Y0(α+r) + a3J0(α−r) + a4Y0(α−r) (2.15)

with

α± =

√

√

√

√

2
ζ

t0

±
√

(

2
ζ

t0

)2

−
kA

kct
2
0

. (2.16)

J0(x) and Y0(x) are the zeroth order Bessel function of the first and second kind,
respectively. The deformation profile can be described by two characteristic length
scales: The decay length γ = 1/Im(α±) and the wavelength λ = 2π/Re(α±).
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2.3 Elastic Theory

The coefficients a1 to a4 are determined by the boundary conditions:

a1 = −a−Y1(α+L) (2.17)

a2 = a−J1(α+L) (2.18)

a3 = a+Y1(α−L) (2.19)

a4 = −a+J1(α−L) (2.20)

with

a± =

(

−2
(

c0 + ζ
t0

tR

)

+ α2
±tR

)

b0(α±) − kG

kcR
tRα±b1(α±)

−(α2
+ − α2

−)b0(α−)b0(α+) + kG

kcR
(α+b0(α−)b1(α+) − α−b0(α+)b1(α−))

(2.21)

and

b0 (α±) = Y0(α±R)J1(α±L) − Y1(α±L)J0(α±R) (2.22)

b1 (α±) = Y1(α±L)J1(α±R) − Y1(α±R)J1(α±L) . (2.23)

Inserting equation 2.15 into equation 2.9 and performing the integration, we get
the following equation for the free energy of the deformation:

F0 = πRkc

(

tR∇3
rφ
∣

∣

∣

R
− 2

(

c0 −
ζ

t0

tR

)

t′R

)

(2.24)

= πRkc

(

−

(

α3
+tR + 2α+

(

c0 −
ζ

t0

tR

))

a−b1(α+)

+

(

α3
−tR + 2α−

(

c0 −
ζ

t0

tR

))

a+b1(α−)

)

.
(2.25)

In the elastic model used so far only changes in properties of the free bulk mem-
brane, for example the area per lipid and the thickness, have been considered. How-
ever, inclusions may locally change the lipid properties, for example the lipid volume
or the lipid ordering, which may in turn affect the elastic properties of the membrane.
For varying lipid volume Brannigan and Brown [10] have demonstrated how such ef-
fects are incorporated into the theory. We want to adapt this in a more general way.
We consider some scalar quantity q(r), which is distorted from its bulk value q0 by

the inclusion and locally alters the membrane properties. By symmetry there are two
new terms in equation 2.9:

Fel = F0 + Fq with (2.26)

Fq =

∫L

R

d2r

{

K1

δq(r)

q0

φ + K2

δq(r)

q0

∇2
rφ

}

. (2.27)

δq(r)/q0 denotes the relative deviation of q. Assuming that δφ(r) decays to zero on
a length scale which is much smaller than the characteristic length scale of the elastic
profile we can write for the free energy Fq, equation 2.27 (cf. appendix B):

Fq = 2πtR

∫L

R

rdrK1

δq(r)

q0

+ 2πt′R

∫L

R

dr
δq(r)

q0

(K1r(r − R) + K2) . (2.28)
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2 Theories on Lipid-Protein Interactions

The extra terms change the boundary condition 2.12:

∇2
rφ
∣

∣

∣

R
= −2

(

c0 +
ζ

t0

tR −
1

2kcR

∫L

R

dr
δq(r)

q0

(K1r(r − R) + K2)

)

−
kG

kcR
t′R

= −2

(�c0 +
ζ

t0

tR

)

−
kG

kcR
t′R .

(2.29)

The spontaneous curvature is renormalised by the local distortion δq(r) according to�c0 = c0 −
1

2kcR

∫L

R

dr
δq(r)

q0

(K1r(r − R) + K2) . (2.30)

The overall free energy of the deformation can now be written as

Fel = πRkc

(

tR∇3
rφ
∣

∣

∣

R
− 2

(�c0 −
ζ

t0

tR

)

t′R

)

+ const , (2.31)

where the constant does not depend on the deformation profile.
Depending on the used parameters the membrane will either promote aggregation
of the two proteins or a finite spacing between the proteins. In general this interaction
is short-range.

2.4 Elastic Theory with Local Tilt

The elastic theories presented so far take into account only the main degree of free-
dom, the local thickness of the monolayers. A number of authors included another
degree of freedom in their elastic theory, the local tilt of the lipid chains [8, 30, 31,
32, 75]. This is of interest, because on the one hand integral proteins can induce a
perturbation of the lipids through their shape, and on the other hand the lipid tilt
degree of freedom reduces the lipid perturbation close to proteins [76].
Fournier [30, 31] presented an equation for the free energy taking into account the
membrane curvature and the lipid tilt in addition to the monolayer thickness:

F =

∫

d2r
B

2
u2 +

λ

2
(∇u)2 + cm∇u +

κt

2
m

2 +
κs

2
(∇m)2 +

Ks

2
(∇× m)2 . (2.32)

u(r) is the deviation in bilayer thickness and m(r) describes the molecular tilt dif-
ference. B corresponds to the chain stretching modulus and for the molecular tilt
difference new elastic parameters are introduced: Tilt modulus κt, splay modulus κs,
twist modulus K, c describes the coupling between the thickness and the tilt. Min-
imising the free energy equation in this case results in two equations, one for the
thickness profile u(r) and one for the tilt differencem(r).
The thickness mismatch induces an attraction between inclusions because of the
overlap of the depletion zone of the inclusions. The tilt difference on the other hand
induces a repulsion between like inclusions. Therefore inclusions producing no tilt
difference show a tendency to aggregate while inclusions producing a non-zero tilt
difference either repel each other or form two-dimensional crystals [30].
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2.5 Integral Equation Theory

2.5 Integral Equation Theory

Lagüe et al. [60, 61, 62] used a hypernetted chain integral projected onto the two-
dimensional space of the lipid bilayer plane. They assumed that the proteins are
repulsive objects, which interact with the hydrocarbon chains via a repulsive potential
but not with the polar headgroups. The perturbation affects only the lateral posi-
tions of the lipids. The hypernetted chain equation can be written in terms of a pair
of coupled integral equations. In order to compute the lipid-mediated potential of
mean force between two proteins one needs, beside the hypernetted chain equation,
the equations for the direct potential between proteins, the direct protein-lipid cor-
relation function for a single protein and a response function related to the density
fluctuations of lipid chains in the undisturbed lipid bilayer.
The lipid-mediated interaction between two proteins was found to be non-mono-

tonic. In the case of inclusions of small and medium radii it is repulsive at intermediate
distances and attractive at short range. In the event of inclusions with a large radius
it is repulsive over all distances.

2.6 Chain Packing Theory

A totally different approach is the mean field chain packing theory [28, 29, 44, 77, 78]
which aims at calculating the deformation free energy as a function of the hydropho-
bic mismatch. The key quantity in this theory is the probability distribution of chain
conformations, which any conformational property can be calculated from. The free
energy is described separately for the head and tail groups. The contribution from
the tail groups consists of an energetic and an entropic contribution. The distribu-
tion of chain conformations is derived by minimisation of the free energy subject to
packing constraints and geometric boundary conditions. The contribution from the
head groups is a function of the average area per chain and the interfacial curvature
between the head groups and the aqueous solution. The chain term is a sum of two
contributions. One of these terms is always positive, even in case of hydrophobic
matching, and results from the loss of conformational entropy imposed by the pres-
ence of the protein. The other contribution is related to the fact that in the case of
hydrophobic mismatch the lipids must either stretch or compress. The interaction free
energy between a transmembrane protein and the surrounding lipids has a minimum
in the case of hydrophobic matching.

2.7 Theory of Fluctuation-Induced Interactions

The last theory we want to present is the theory of fluctuation-induced interactions
[12, 22, 23, 36, 37, 40, 56, 86, 93, 118]. In the elastic theories presented so far
it was assumed that the elastic constants are uniform. The indirect interactions are
short-range and arise from a deformation field induced by an inclusion. In this theory
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2 Theories on Lipid-Protein Interactions

the proteins couple to the local membrane curvature. The indirect long-range interac-
tions fall off with 1/R4. At temperatures that are small relative to the bending energies
(the low temperature regime) the thermal fluctuations are unimportant, the interac-
tion is attractive or repulsive depending on the strength of the bending energies. The
energy scale is set by the bending energies. When the thermal fluctuations of the
membrane dominate, the fact that the fluctuation spectrum of the lipid bilayer is af-
fected leads to an attractive interaction for inclusions, which are much more rigid than
the surrounding membrane. For inclusions less rigid the interaction is attractive or re-
pulsive. The energy scale is set by the temperature and is independent of the bending
energies. The force, a Casimir force, is entropic and much larger for large distances
than van der Waals or screened electrostatic forces. Kim et al. [56] showed that these
curvature-mediated interactions are not pairwise additive. Chou et al. [12] showed
that the Gaussian curvature affects protein-protein attractions as well as thermody-
namics. Dommersnes and Fournier [22] have performed Monte Carlo simulations to
study the collective behaviour of identical inclusions imposing a local curvature on the
membrane. These simulations show a transition from compact clusters to aggregation
on lines or circles.

2.8 Conclusions

In this section we have presented different theories to describe lipid-protein interac-
tions. The local perturbation of the lipid structure leads to short-range interactions. If
the proteins affect the fluctuation spectra, the interactions are long-range.
In chapter 6 we use the Landau-de Gennes theory and the elastic theory to describe
the thickness deformation profile of a single protein. In chapter 7 the two theories
are used to describe the lipid-mediated interaction between two proteins.
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3 Coarse-Grained Model

In this chapter we present the coarse-grained membrane model we use for our simu-
lations. We use a generic bilayer model based on a lipid representation by Düchs and
Schmid [25] and a solvent model by Lenz and Schmid [65]. We have expanded the
model to simulate coarse-grained proteins in form of simple rigid cylinders.

3.1 Bilayer Model

Our bilayer model consists of a self-assembled bilayer of lipids in a solvent environ-
ment [25]. Each lipid is represented by one head bead of diameter σh and six tail
beads of diameter σt, figure 3.1. The head beads are slightly larger than the tail beads,
σh = 1.1σt.

Θ

Figure 3.1: Sketch of the model lipid

Beads not connected with each other interact via a truncated and lifted Lennard-
Jones potential:

ULJ, lifted(r) =

{
ULJ(r/σ) − ULJ(rc/σ) , if r < rc

0 , otherwise
(3.1)

with

ULJ(r/σ) = ǫ

(

(σ

r

)12

− 2
(σ

r

)6
)

. (3.2)

r = |r| is the distance between two interacting beads. The parameter σ is the mean
value of the diameters of the interacting beads. Head-head and head-tail interactions
are purely repulsive (rc = σ) and tail-tail interactions also have an attractive compo-
nent (rc = 2σ). The adjacent beads of the lipid chain are bound to each other by a
finite extensible nonlinear elastic potential (FENE potential):

UFENE(r) = −
1

2
ǫ(∆rmax)

2 log(1 −

(

r − r0

∆rmax

)2
)

. (3.3)
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3 Coarse-Grained Model

bead-bead ǫ σ rc

head-head 1.0 1.1 1.0σ

head-tail 1.0 1.05 1.0σ

head-solvent 1.0 1.1 1.0σ

tail-tail 1.0 1.0 2.0σ

tail-solvent 1.0 1.05 1.0σ

Table 3.1: Parameters of the Lennard-Jones potential

UFENE: ǫ = 100 r0 = 0.7 ∆rmax = 0.2

UBA: ǫ = 4.7

Table 3.2: Parameters of the bond-length and bond-angle potential

r0 is the equilibrium bond length and ∆rmax is the maximal deviation. This poten-
tial ensures that the bond length is always between r0 − ∆rmax ≤ r ≤ r0 + ∆rmax.
Additionally, chains are given a bending stiffness by a bond-angle potential:

UBA(Θ) = ǫ(1 − 
os(Θ)) . (3.4)

Θ is the angle between three adjacent beads, figure 3.1. The tables 3.1 and 3.2 sum-
marise the parameters we use for the different potentials for all our simulations.
The solvent environment is represented by explicit solvent beads [65]. They behave
like unbound head beads, except for not interacting with each other. This kind of
solvent model has the advantage of being computationally cheap. Only solvent beads
close to the lipid bilayer contribute to the energy calculation. The lipid bilayer has
the whole structure and flexibility, whereas the solvent cannot develop any internal
structures. Physically, the solvent probes the accessible free volume on the length
scale of the head beads. The lipid bilayer gets stabilised by the attractive interaction
between the lipid tails and the entropic effect that the solvent has more accessible
volume, if the lipids group together.
For the simulations the initial configuration is created by setting up a perfectly or-
dered bilayer in the xy-plane where the lipid chains point into the z-direction (the
bilayer normal). Afterwards the system is simulated until it is equilibrated. The system
is said to be equilibrated, when all observables fluctuate around its equilibrium value
without showing any particular trend.
The model has two fundamental simulation units: The length unit σt and the energy
unit ǫ. All quantities of the system can be expressed in these two units.

3.1.1 Bilayer Characterising Quantities

The bilayer thickness 2t and the height h of the bilayer midplane are defined as the
difference and the average value of the average z-position of the head beads of the
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3.1 Bilayer Model

upper and lower monolayer, respectively:

2t = 〈z〉upper − 〈z〉lower (3.5)

h =
1

2

(

〈z〉upper + 〈z〉lower
)

. (3.6)

t is the monolayer thickness. The equilibrium monolayer thickness of an undisturbed
lipid bilayer is denoted by t0.
The area per lipid Σ is twice the area of the xy-plane divided by the number of lipids

N in the system:

Σ =
2LxLy

N
. (3.7)

In this definition we assume that the number of lipids in both monolayers is equal.
The equilibrium value of the area per lipid of an undisturbed lipid bilayer is denoted
by Σ0.
The bilayer thickness and the area per lipid are two values which are very well

measurable in experimental membranes. We can therefore use these two quantities
to convert the simulation units σt and ǫ to SI units. In the fluid phase the equilibrium
bilayer thickness is 2t0 = 6.1 ± 0.05σt and the equilibrium area per lipid is Σ0 =

1.36 ± 0.005σ2
t. The corresponding experimental values for DPPC are: 2t0 = 39.2Å

and Σ0 = 62.9Å2 [84]. If we compare the temperature of the main transition of our
model, kBTm = 1.2ǫ, kB = 1, 3806504(24) · 10−23J/K the Boltzmann constant, with
the corresponding experimental value for DPPC, Tm = 42◦C [58], we can identify an
energy scale. The two conversion factors are: σt = 6Å and ǫ ∼ 0.36 · 10−20J.
The end-to-end vector l of a lipid is defined as the difference vector between the

head bead and the last tail bead. With this vector we can analyse the order of the
lipids within the bilayer. The chain order parameter Sz shows how good the lipids are
aligned to the z-axis:

Sz =
1

2

〈

3

(

lz

l

)2

− 1

〉

. (3.8)

The norm of the end-to-end vector l = |l| is the chain length. lz is the z-component
of the end-to-end vector.
The overlap O of the two monolayers can be defined in two different ways. One

possibility is to calculate the overlap according to monomer characteristics via an
overlap integral:

OI =

∫Lz

0

ρtailupper(z)ρ
tail
lower(z)dz . (3.9)

ρtailupper, lower is the density of the tail beads in the upper and lower monolayer, respec-
tively. Lz is the length of the simulation box in z-direction. The other possibility is to
define the overlap via chain characteristics [59]:

OC =
2(lz − t)

lz
. (3.10)
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3 Coarse-Grained Model

lz is the z-component of the end-to-end vector and t is the monolayer thickness
defined in equation 3.5.

3.2 Protein Model

The proteins are modelled as rigid cylinders of diameter σp = 3σt and correspond
to simple β-helices. They are oriented along the z-axis, the bilayer normal, and are
not allowed to tilt. In biological membranes this can be realised by an anchoring
mechanism between the transmembrane proteins and the lipid bilayer.
The proteins are free to move in all three directions of the lipid bilayer, realised by
a movement of the protein centre. The interaction is described by the repulsive part
of the Lennard-Jones potential, equation 3.2, which is radially shifted by σ0:

Urep,P(r) =

{
ULJ

(

r−σ0

σ

)

− ULJ(1) , if r − σ0 < σ

0 , otherwise .
(3.11)

Since the interaction between the proteins and the lipid and solvent beads is re-
stricted to the xy-plane, r =

√

x2 + y2 is the distance in the xy-plane. This implies
that the protein covers the whole length of the simulation box in z-direction. The
proteins are repulsive (hydrophilic) over their whole length. The coefficients σ and σ0

in equation 3.11 are defined as σ = 0.5(σt + σi), (i = h,t,s), σ0 = σt for bead-protein
interactions and σ = σt, σ0 = 2σt for protein-protein interactions.
Additionally, the proteins attract the tail beads on a “hydrophobic” section of length

L. This is described by another attractive potential, which depends on the z-distance
between the tail bead and the protein centre:

Uatt,P(r, z) = Uattr(r) · WP(z) (3.12)

with

Uattr(r) =






ULJ(1) − ULJ(2) , if r − σ0 < σ

ULJ
(

r−σ0

σ

)

− ULJ(2) , if σ < r − σ0 < 2σ

0 , otherwise
(3.13)

and WP(z) a weight function that is unity over a length L − 2σt and slopes smoothly
to zero:

WP(z) =






1 , if |z| ≤ l
os2 (1.5 (|z| − l)) , if l < |z| < l + π
3

0 , otherwise
(3.14)

with l = L/2 − σt. Table 3.3 outlines the coefficients we use for our simulations.
To summarise, the protein length is equal to the length of the simulation box in
z-direction. On a length L the proteins are hydrophobic. Above and beyond this part
the proteins are hydrophilic. Since the length of the simulation box fluctuates during
the simulation (cf. chapter 4) the lengths of these two hydrophilic parts also fluctuate.
In the simulations two parameters are varied: the hydrophobic length L of the
proteins and the parameter ǫpt. ǫpt tunes the strength of the lipid-protein interaction,
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3.2 Protein Model

bead-protein ǫ σ rc σ0

head-protein 1.0 1.05 1.0σ 1.0

solvent-protein 1.0 1.05 1.0σ 1.0

tail-protein 1.0 . . . 6.0 1.0 1.0σ 1.0

protein-protein 1.0 1.0 1.0σ 2.0

Table 3.3: Parameters of the Lennard-Jones potential for the bead-protein interactions

i.e. the hydrophobicity of the protein. In order to simulate proteins of different
diameters we vary the parameter σ0 while keeping all other parameters constant. To
simulate a protein corresponding to a simple α-helix we set σp = 1σt and σ0 = 0.

3.2.1 Protein Model with Tilt

The orientation of the protein along the z-axis is a geometrical constraint. Especially
in the case of hydrophobic mismatch it is interesting to study how the proteins behave
to avoid the hydrophobic mismatch. In an extension of the protein model the proteins
are allowed to tilt and rotate. The proteins are modelled as rigid sphero-cylinders with
a finite length L and a direction dP, figure 3.2. The components of the direction vector
are between zero and one with a length of the direction vector equal to one. If the
z-component of the direction vector is one and the x- and y-component are zero the
protein is oriented along the z-axis.
The interaction of the protein with the head, tail and solvent beads is realised ac-

cording to the equations 3.11 and 3.12, where the distance is now calculated in three
dimensions. The distance r =

√

x2 + y2 is replaced by the distance rt and the z-
distance z between tail beads and protein is substituted by rp, figure 3.2. The dis-
tance vector rt between each bead and the protein is defined as the shortest distance
between the bead and the protein axis. In practice this is realised by calculating the
perpendicular point F on the protein axis. If this point is outside of the protein, i.e.
outside of the section L, the distance to the nearest end-point L1,2 = P ± L

2
dP of the

protein is calculated. P is the centre point of the protein. The distance vector rp is
defined as the connecting vector between the perpendicular point F and the centre of
the protein P.
The tilt angle θP and the rotation angle φP of the protein are calculated according

to

dP,x = sin(θP) 
os(φP) (3.15)

dP,y = sin(θP) sin(φP) (3.16)

dP,z = 
os(θP) . (3.17)

In order to change the two angles the direction vector dP is changed using an algo-
rithm introduced by Marsaglia [71]. Two uniformly distributed random numbers r1

and r2 of the interval (−1, 1) with S = r2
1 + r2

2 < 1 are generated. The direction vector
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PL

B2
F2

B1

dp

F1

rp

rt

rt

L2

L1

Figure 3.2: Distance calculation if the protein of length L is allowed to tilt and rotate.
P is the centre of the protein. dP is the direction vector. The distance
vector rt is the shortest distance between the protein and the bead B: The
perpendicular point F of each bead B and the protein axis is calculated. If
F is outside of the protein, the distance between the bead and the nearest
end-point of the protein, L1 or L2, is calculated, as in the case of bead B2.
The distance vector rp is the connecting vector between P and F.

dP is changed according to

dP,x = dP,x + 2r1

√
1 − S · ∆ (3.18)

dP,y = dP,y + 2r2

√
1 − S · ∆ (3.19)

dP,z = dP,z + 1 − 2S · ∆ (3.20)

with ∆ the tilt range. Afterwards the direction vector is normalised to one.
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4 Methods

The system is simulated using Monte Carlo methods at constant pressure P, tempera-
ture T and particle number N with periodic boundary conditions in a simulation box
of variable size and shape. The simulation box is a parallelepiped spanned by the
vectors (Lx,0,0), (syxLx,Ly,0), (szxLx,szyLy,Lz). All Li and sj are allowed to fluctuate.
The fluctuation of the simulation box guarantees that the membrane is tension-free.
This can be ensured by calculating the pressure tension. When the simulation box
changes its shape the bead coordinates are rescaled accordingly. The calculation of
the distance vector rij between two particles i and j is done according to the mini-
mum image convention, i.e. the distance between i and the nearest picture of particle
j, with respect to the boundary condition, is calculated. The programme is parallelised
using a geometrical decomposition scheme.

4.1 Monte Carlo Simulations

The idea behind Monte Carlo simulations [33] is to compute thermal averages of an
observable A of a system in equilibrium:

〈A〉 =

∫
dr

NA
(

r
N
) exp (−βU

(

r
N
))

∫
drN exp (−βU (rN))

. (4.1)

U is the potential energy and β = (kBT)−1 with T the temperature of the system and
kB the Boltzmann constant.
The algorithm for our Monte Carlo simulations works according to the following

simple scheme. The moves are accepted with respect to the Metropolis criterion:

1. Select a bead at random. Calculate its energy U(r).

2. Move the bead by a random displacement r′ = r + dr. Calculate its new energy
U(r′).

3. Accept the move from r to r
′ with probability

acc(o → n) = min (1, exp{
−β
[

U(r′) − U(r)
]})

. (4.2)

x. Every x steps do a volume and/or a shear move. Calculate the old energy
U(rN,V).
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Volume move: Change the length Li by dli, L′
i = Li + dli. All particle positions

are rescaled ri = ri · (1.0 + dli/Li).

Shear move: Change the shift sji by dsji, s′ji = sji + dsji. All particle positions
are sheared rj = rj + ri · dsjiLi/Lj.

Calculate the new energy U(r′N,V ′). Accept the change according to

acc(o → n) = min(1, exp{
−β
[

U(rN,V ′) − U(rN,V)

+ P(V ′ − V) − Nβ−1 ln(V ′/V)
]})

.
(4.3)

The move ranges dr of the beads and the change ranges dl and ds of the simulation
box are chosen so that the acceptance rate is about 30%.

4.2 Pressure Profile

For a system in equilibrium the internal pressure must be equal to the external pres-
sure acting on the system. This can be ensured by calculating the pressure tensor of
the system. For example in dissipative particle dynamics simulations the calculation
of the pressure tensor can be used to check, if the time step is of appropriate size
[2, 52].
The pressure tensor of a system with N particles and a volume V at a temperature

T consists of a kinetic part Pkin and a potential part PU [107, 114]:

P = Pkin + PU . (4.4)

The kinetic part can be expressed by a generalisation of the ideal gas law:

Pkin =
NkBT

V
1 . (4.5)

1 is the 3× 3 unity matrix. The potential part is obtained from the virial theorem [33]:

PUαβ = −

〈

1

V

N∑

i=1

rα
i

dU

dr
β
i

〉

(4.6)

=

〈

1

V

N∑

i=1

rα
i F

β
i

〉

(4.7)

=

〈

1

V

∑

i<j

rα
ijF

β
ij

〉

, (4.8)

where ri is the position of particle i and Fi =
∑

j,i6=j Fij is the total force acting on
that particle. If using periodic boundary conditions it is better not to use the absolute

26



4.2 Pressure Profile

zn−1 zn zn+1 zn+2

1

2 3

zj

zj

zj

zjzj

zj

4
45

zi

zi

zi

zi

zi zi

δz

Figure 4.1: Pressure profile – illustration of the pressure distribution according to the
Irving-Kirkwood convention

positions of the particles but the distance vector rij = ri−rj between particles i and j.
This distance vector is calculated according to the minimal image convention. In the
above equations we have used the following relation between force and potential:

Fij = F(rij) = −
dU(|ri − rj|)

drij

= −
dU(|ri − rj|)

dri

=
dU(|ri − rj|)

drj

. (4.9)

For the force we assume that all interactions in the system can be reduced to pair
interactions Fij = −Fji.
In an equilibrated system the non-diagonal elements of the pressure tensor vanish

and the diagonal elements are equal to the applied pressure P. In order to calculate
the local distribution of the pressure in a system P(r), we use the ansatz by Irving
and Kirkwood [50]. Since the system is rotationally symmetric around the z-axis, the
pressure tensor only depends on the position z. The system is divided along the z-axis
into s slices with width δz = Lz/s. Lz is the length of the simulation box in z direction.
The pressure contribution in slice n, extending from zn to zn+1, is:

Pn
αβ =

〈

Nn

Vn

〉

kBT δαβ +

〈

1

Vn

∑

i<j

rα
ij F

β
ij · In

〉

. (4.10)

Ns is the number of particles in slice s. The volume Vs of slice s is Vs = LxLyδz, where
Lx and Ly are the lengths of the simulation box in x- and y-direction, respectively. The
function In is a weight function and expresses the contribution of zij = zi − zj to slice
n, figure 4.1. We assume that zi < zj:

In =






(zn+1 − zn)/zij zi ≤ zn & zj ≥ zn+1 (case 1)
(zj − zn)/zij zi < zn & zn < zj < zn+1 (case 2)

(zn+1 − zi)/zij zn < zi < zn+1 & zj > zn+1 (case 3)
1 zn < zi ≤ zj < zn+1 (case 4)

0 else (case 5) .

(4.11)
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In our simulations we have three different kind of potentials. The Lennard-Jones
potential (equation 3.1) and the FENE-potential (equation 3.3) are pair interactions.
The resulting forces are

FLJ,lifted(rij) =






12ǫ
σ

(

(

σ
rij

)13

−
(

σ
rij

)7
)

rij

rij
, if rij < rc

0 , otherwise
(4.12)

and

FFENE(rij) = −ǫ
1

1 −
(

rij−r0

∆rmax

)2
(rij − r0)

rij

rij

. (4.13)

The bond-angle potential is a three-particle potential. The bond angle between three
adjacent beads i, j and k is 
os(Θ) =

rjirjk

|rji||rjk|
(4.14)

with rji = rj − ri and rjk = rj − rk. With equation 4.14 the bond-angle potential
(equation 3.4) between the beads i, j and k can be written as

Uijk = ǫ (1 + 
os(Θijk)) = ǫ

(

1 +
rji · rjk

|rji||rjk|

)

. (4.15)

The resulting forces on the beads i, j and k are:

Fi = −
dUijk

dri

=
ǫ

|rji||rjk|

(

rjk − rji · rjk

rji

|rji|2

)

=
dUijk

drji

=: −Fji , (4.16)

Fj = −
dUijk

drj

=
−ǫ

|rji||rjk|

(

rji + rjk − rji · rjk

(

rji

|rji|2
+

rjk

|rjk|2

))

, (4.17)

Fk = −
dUijk

drk

=
ǫ

|rji||rjk|

(

rji − rji · rjk

rjk

|rjk|2

)

=
dUijk

drjk

=: −Fjk . (4.18)

The contribution of the bond-angle potential of the beads i, j and k to the pressure
tensor is

PU, BAαβ =
1

V

(

rα
i F

β
i + rα

j F
β
j + rα

kF
β
k

)

(4.19)

=
−ǫ

V |rji||rjk|

(

(rα
j − rα

i )r
β
jk −

rji · rjk

|rji|2
(rα

j − rα
i )r

β
ji

+ (rα
j − rα

k)r
β
ji −

rji · rjk

|rjk|2
(rα

j − rα
k)r

β
jk

) (4.20)

=
−ǫ

V |rji||rjk|

(

rα
jir

β
jk −

rji · rjk

|rji|
2

rα
jir

β
ji + rα

jkr
β
ji −

rji · rjk

|rjk|2
rα
jkr

β
jk

)

(4.21)

=
1

V

(

rα
jiF

β
ji + rα

jkF
β
jk

)

. (4.22)
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Figure 4.2: Distribution of the bond-angle potential according to (a) Irving-Kirkwood
and (b) Götz-Lipowsky

Thus the three-particle interactions can be reduced to pair interactions. In order to
distribute the contribution rji ⊗ Fji + rjk ⊗ Fjk to the local pressure profile, we have
two possibilities, figure 4.2:

(a) We use the Irving-Kirkwood convention and distribute the contribution on the
two bonds 1 and 2:

1: Fi ⊗ (ri − rj) = Fji ⊗ rji

2: Fk ⊗ (rk − rj) = Fjk ⊗ rjk .

(b) We use an alternative way by Götz and Lipowsky [39] and distribute the contri-
bution on the three bonds 1, 2 and 3:

1: 1
3
(Fi − Fj) ⊗ (ri − rj) = 1

3
(2Fji + Fjk) ⊗ rji

2: 1
3
(Fj − Fk) ⊗ (rj − rk) = 1

3
(2Fjk + Fji) ⊗ rjk

3: 1
3
(Fi − Fk) ⊗ (ri − rk) = 1

3
(Fji − Fjk) ⊗ rki .

In the equations above we have used the following identities:

Fi = −Fji

Fk = −Fjk

Fj = −Fi − Fk = Fji + Fjk .

(4.23)

We will see later that the difference between the results obtained with the two distri-
butions is negligible.

4.3 Parallelisation

Our programme is parallelised with MPI [79] using a geometrical decomposition
scheme [97, 113]. The idea is to define active regions represented by the light blue
areas in figure 4.3. Each processor gets one of these active regions. The distance be-
tween the regions is slightly larger than the maximum interaction range of the beads.
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Figure 4.3: Parallelisation using a geometrical decomposition scheme. The grey areas
are the active regions. Only beads in these active regions, the dark blue
filled circles, will be moved during a Monte Carlo step. Reproduced from
[97].

This is important to avoid interactions between beads in various active regions. Only
the beads inside the active regions will be moved during a Monte Carlo step. Moves
out of the active region will be rejected. To make sure that ergodicity is fulfilled, the
offset of the active regions, represented by the red arrow in figure 4.3, is regularly
moved by a random value.
In order to parallelise our system, we divide it into Nx × Ny × 1 subsystems, i.e.
we need Nx × Ny processors. We do not divide the system in z-direction because
of the possibility of one processor only getting solvent beads, which do not interact
with each other. Processor 0 is the master processor: It is responsible for reading
in configurations, writing configurations and doing the measurements. Dividing the
system into subsystems, we deal with three different kinds of regions:

• central region: The system can be divided into Nx×Ny central regions. The sys-
tem size of each central region is (Lx/Nx,Ly/Ny,Lz). Each bead belongs exactly
to one central region.

• active region: The active region is a subsystem of the central region. The offset
of this region is 10% larger than half of the maximal interaction range of the
beads. The maximal interaction range is the maximum of σ · rc for the head, tail
and solvent beads. The size of the active region is the size of the central region
minus two times the offset of the active region.

• boundary: Each central region is covered by a boundary region of the same size
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as the offset of the active regions.

The offset of the active region, represented by the red arrow, is regularly randomly
chosen. It is within the range [(0,0,0),(Lx/Nx,Ly/Ny,Lz)]. Doing a new decomposition
of the system, each processor decides to which new central region its beads belong
and sends the according beads to the other processors. One has to bear in mind that
the boundaries overlap with the active regions of the other processors. Therefore the
volume and shear moves have to be done directly after a decomposition. Each pro-
cessor calculates the energy of its central beads including the interaction with beads
from other central regions which are in the boundary of the processor. Afterwards
the master processor takes the sum of the contributions from the different processors.
Before a configuration can be written or measurements of the system can be done,
the new positions of the beads inside the active region have to be sent to the master
processor. This is also done before a new decomposition of the system, because the
master processor needs to know every position change of the beads.
An important component for parallel computing is to determine whether a pro-

gramme is performing well. The values we are most interested in are the speedup and
the efficiency of a parallel programme [80]:

• speedup(p): (time of the serial programme) / (time of the parallel programme,
using p processors)

• efficiency(p): (time of the serial programme) / (number of processors p)*(time of
the parallel programme, using p processors)

In table 4.1 we summarise some results of the parallelisation of a model system
of 3200 lipids and 24612 solvent beads. We simulated 10000 Monte Carlo steps (ev-
ery 10 steps decomposition, every 50 steps volume and shear moves, every 100 steps
measurements, every 1000 steps writing the configuration) on the parallel computer
jump.fz-juelich.de (IBM p690 cluster (Power4++ with 1.7GHz)). The number of beads
in the active region is an approximated value. It depends on the number of beads in
each central region and thus is different for every active region and every decomposi-
tion.

no. of processors user time [sec] no. of beads in active regions
serial 1 11621 47012

2 × 2 × 1 4 4038 8000

3 × 3 × 1 9 2537 3500

4 × 4 × 1 16 2033 1600

5 × 5 × 1 25 1753 900

6 × 6 × 1 36 1668 500

Table 4.1: Parallelisation of the model system: User time and number of beads in the
active region for different numbers of processors.
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Figure 4.4 shows the speedup and the efficiency of the parallelisation of the model
system calculated from the values of table 4.1. According to Amdahl’s law

speedup(p) ≤ 1

f + (1 − f)/p
, (4.24)

where f is the fraction of time spent on unparallelisable work and p is the number
of processors. The speedup is always less than or equal to 1/f no matter how many
processors are used. Typically f is between 5 − 20%. In our case f is 12%. The reason
for this high f is that the reading/writing and the measurements are still serial. In case
we do the measurements and write out the configurations less often, we can speed
up the programme. Another problem is that through the parallelisation extra work
like communication has to be done by the processors. The more processors used,
the more communication there is between the processors. This can also be seen in
table 4.1. With an increasing number of processors the number of beads in the active
region that are moved decrease. Therefore the programme spends a lot of time for
the communication between the processors.
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Figure 4.4: Speedup and efficiency as a function of the number of processors for the
model system. The dashed line is calculated according to equation 4.24
with f = 12%.
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5 Characteristics of a Pure Lipid Bilayer

In this chapter we investigate some characteristics of a pure lipid bilayer in the fluid
phase, P = 2.0ǫ/σ3

t, kBT = 1.3ǫ, and in the gel phase, P = 2.0ǫ/σ3
t, kBT = 1.0ǫ.

These characteristics are inter alia the pressure profile and the fluctuation spectra.
The system sizes range from 200 to 7200 lipids, and the simulations run up to 8 million
Monte Carlo steps. The equilibration time was 4 million Monte Carlo steps for the
analysis of the long-range fluctuations and 1 million Monte Carlo steps otherwise.
For all simulations the moves altering the simulation box were attempted every 50th
Monte Carlo step. In case the simulations were carried out on a parallel computer the
domain decomposition was done every 10th Monte Carlo step.

Figure 5.1: Phase diagram of our lipid model. Reproduced from [64, 66].

The bilayer model shows a very rich phase diagram (obtained from Olaf Lenz), fig-
ure 5.1. In the fluid phase Lα the lipids are disordered and more or less oriented
parallel to the bilayer normal. They have a very high mobility in the plane of the
membrane. In the gel phase Lβ′ the lipids are very ordered and in a stretched config-
uration. The lipid chains are tilted towards the bilayer normal. In the interdigitated
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gel phase Lintβ the lipid are again stretched but the two monolayers are interdigitated.
The lipid chains show no tilt any more. Between the Lβ′ phase and the Lα phase there
is the ripple phase Pβ′ . In this phase the bilayer exhibits a height-varying ripple struc-
ture. Depending on the history of the system, it shows a symmetric or asymmetric
ripple phase.

5.1 Pressure Profiles

Although the overall tension of real membranes in solution vanishes, the distribu-
tion of tension within the membrane is not uniform [39, 102]. It depends on the
membrane composition and chemical structure of the lipids. The internal tension dis-
tribution can be calculated via the pressure tensor, chapter 4.2. The interfacial tension
profile γ is given by

γ(z) = PN(z) − PT(z) , (5.1)

where PN and PT are the normal and tangential component of the pressure tensor,
respectively:

PN(z) = Pzz(z) and PT(z) =
1

2
(Pxx(z) + Pyy(z)) . (5.2)

The overall tension of the system is defined by the integral

Γ =

∫∞

−∞
(PN(z) − PT(z))dz . (5.3)

The first and second moment of the tension profile, equation 5.1, correspond to the
spontaneous curvature c0 and the Gaussian rigidity kG [96]:

kcc0 = −

∫∞

0

γ(z)(z − z0)dz (5.4)

kG = 2

∫∞

0

γ(z)(z − z0)
2dz . (5.5)

kc is the bending rigidity and z = z0 is the “inextensibility plane”, the plane in which
an infinitesimal volume element is not compressed or extended if the monolayer is
bent.
We measured the tension profile for the fluid and the gel phase for systems with

200, 288, 400 and 3200 lipids, figure 5.2. The system was centred around z = 0 and
divided into slices of length δz = 0.125σt. Since the length of the simulation box
varied, the size of the slices varied.
Qualitatively our tension profiles show the same characteristics as the tension pro-
files measured by Götz and Lipowsky [39] and others [68, 70, 90, 102]. The interfacial
tension is much higher in the gel phase

(

between −8ǫ/σ3
t and 4ǫ/σ3

t

)

than in the fluid
phase

(

between −0.7ǫ/σ3
t and 0.7ǫ/σ3

t (ǫ/σ3
t ≃ 0.2 kbar)

)

.
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Figure 5.2: Tension profile γ(z) for systems of different sizes (200, 244, 800, 3200 lipids)
in the gel phase (left) and the fluid phase (right). The bottom panels show
the corresponding density profiles ρ(z) of solvent, head and tail beads in
the system with 200 lipids.

Figure 5.3 (a) and (b) show the different contributions to the tension profile from
the different potentials. A comparison of the distribution of the bond-angle potential
according to Irving-Kirkwood and Götz-Lipowsky as described in section 4.2 can be
found in panel (c). Looking at figure 5.3 (a) and (b) we can relate the different peaks
to the different potentials: The first positive peak is related to a small positive surface
tension between head and solvent beads. Since the interaction between head and
solvent beads is purely repulsive, there is a reduction in density. This reduction in
the solvent density leads to an increasing pressure. Since the head beads do not
cover the surface of the lipid bilayer closely, there is a contact area between tail and
solvent beads. The system tries to minimise this contact area resulting in a negative
peak in the head region. The positive peak in the tail region reflects the fact that
the tails attract each other. In the middle of the membrane, at z = 0, the density
is again reduced and the negative peak indicates that the monolayers are strongly
bound to each other. The positive contribution of the bond-angle potential indicates
that the tails fluctuate and thus deviate from straight configurations. The positive
contribution of the bond-length potential indicates that the lipids are stretched. The
different contributions are much larger in the gel phase than in the fluid phase. The
only exception is the contribution from the tail-solvent interaction indicating that the
solvent is much more shielded from the tails in the gel phase.
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Figure 5.3: Different contributions to the tension profile γ(z) for a system with 200

lipids in the gel phase (left) and the fluid phase (right). (a) Contributions
from the Lennard-Jones (LJ), bond-angle (BA) and bond-length (BL) poten-
tial. (b) Contributions of the head (H), tail (T) and solvent (S) beads to the
Lennard-Jones potential. (c) Comparison of the distribution of the bond-
angle potential according to Irving-Kirkwood (IK) and Götz-Lipowsky (GL).
(d) Density profiles ρ(z) of the head, tail and solvent beads. The dotted
black line in panel (a) and (b) is the total tension profile. The dashed brown
line in panel (d) shows the total bead density.
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gel phase fluid phase
number of lipids Γ0

[

ǫ/σ2
t

]

Γ2 [ǫ] Γ0

[

ǫ/σ2
t

]

Γ2 [ǫ]

200 −0.03 ± 0.1 −121 −0.02 ± 0.1 2.8

288 0.004 ± 0.2 −119 −0.003 ± 0.1 2.7

800 0.03 ± 0.2 −119 −0.04 ± 0.1 2.0

3200 0.008 ± 0.03 −119 −0.02 ± 0.03 2.8

Table 5.1: Values for the first moment Γ0 and the second moment Γ2 of the tension
profile for systems of different sizes in the gel and the fluid phase.

gel phase fluid phase
Parameter Value (LJ units) Value (SI units) Value (LJ units) Value (SI units)

kcc0 11.1 ± 0.1ǫ/σt −0.3 ± 0.1ǫ/σt

c0 1.01 ± 0.01σ−1
t 1.68nm−1 −0.05 ± 0.02σ−1

t −0.08nm−1

kG −60 . . . 0ǫ −22 . . . 0 · 10−20J −0.26 [−2.8 . . . 0]ǫ −1 . . . 0 · 10−20J

Table 5.2: Values for the spontaneous curvature and the Gaussian rigidity for the gel
and the fluid phase measured in a system with 200 lipids. In the fluid phase
we have chosen z0 = 2.6σt. The values in SI units are calculated using
σt ∼ 6Å and ǫ ∼ 0.36 · 10−20J. c0 is calculated using the value for kc obtained
from the fit of the fluctuation spectra, cf. section 5.2.

In the fluid phase the profiles are broadened in large systems due to large height
fluctuations. Because the height fluctuations in the gel phase are very small we do not
see this effect in the tension profiles. We assume that the tension profile γ(z) bases
on a size independent intrinsic tension profile γint(z):

γ(z) =

∫

H
(

z − z′
)

γint
(

z′
)

dz′ . (5.6)

H(z) is the distribution of interface heights and depends on the system size. The
zeroth moment Γ0 =

∫∞
−∞ γ(z)dz and the second moment Γ2 =

∫∞
−∞ γ(z)z2dz do not

depend on the shape of the function H(z) for symmetric tensionless bilayers with∫
γ(z)dz = 0. The first moment Γ1 =

∫∞
−∞ γ(z)|z|dz, however, depends on the system

size, cf. appendix A. Table 5.1 summarises the values for Γ0 and Γ2 for the gel and the
fluid phase.
As we can see, Γ0 is zero within the error in all systems, and Γ2 does not depend

on the system size. Since the lower integration bound in equation 5.5 is finite, the
Gaussian rigidity, equation 5.5, nevertheless depends on the system size. The equa-
tions 5.4 and 5.5 are therefore only applicable in small systems. In order to calculate
c0 and kG we use the data from the system with 200 lipids. The monolayer cur-
vature kcc0 = −0.3 ± 0.1ǫ/σt is slightly negative in the fluid phase. In the gel phase
kcc0 = 11.1±0.1ǫ/σt is positive. When the system goes from low to high temperatures
the tails disorder and occupy more membrane area, and c0 decreases and changes sign
as a result. The value for the Gaussian rigidity depends on the position of the plane
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Figure 5.4: Tension profile γ(z) of a system with 288 lipids in the fluid phase for dif-
ferent values of the pressure (top panel). The temperature is kBT = 1.3ǫ

and the pressure is P = 0.5ǫ/σ3
t (black line), P = 1.0ǫ/σ3

t (red line), and
P = 2.0ǫ/σ3

t (blue line), respectively. The other three panels show the cor-
responding density profiles ρ(z) for the head (red line), tail (blue line) and
solvent (black line) beads.

z0. Positive values can be excluded, because a positive Gaussian rigidity would im-
ply that the bilayer favours saddle-shape configurations. These configurations would
destabilise flat bilayer structures on large scales and promote interconnected struc-
tures like cubic phases or sponge-like structures. Because our bilayers remain flat for
all system sizes, only negative values of kG are physically reasonable. We choose z0 as
the “neutral” plane where γ(z) crosses zero.

Table 5.2 summarises the spontaneous curvature and the Gaussian rigidity. Our
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Figure 5.5: Tension profile γ(z) of a system with 288 lipids in the fluid phase for
different values of the pressure and the temperature (top panel). Left
side: P = 0.5ǫ/σ3

t, kBT = 1.2ǫ (black line), kBT = 1.3ǫ (red line). Right
side: P = 1.0ǫ/σ3

t, kBT = 1.25ǫ (black line), kBT = 1.3ǫ (red line), and
kBT = 1.35ǫ (blue line). The other three panels show the corresponding
density profiles ρ(z) for the head (red line), tail (blue line) and solvent
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value for c0 in the fluid phase has the same order of magnitude as the values obtained
from all-atoms simulations of DPPC c0 = −0.02 . . . − 0.05nm−1 [70] and experimental
values c0 = −0.04nm−1, kG/kc ∼ −0.8 [72].

As a last point we want to analyse the effect of the external pressure and the tem-
perature on the tension profile, figures 5.4 and 5.5. For a system containing 288 lipids
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5 Characteristics of a Pure Lipid Bilayer

in the fluid phase we varied on the one hand the pressure for a fixed temperature and
on the other hand the temperature for a fixed pressure. The density of solvent beads
obeys the ideal gas law PV = NkBT . It decreases with either decreasing pressure or
increasing temperature. At a fixed temperature the tension profiles become flatter
with decreasing pressure. Because of the decreasing pressure from outside the head
and tail density profiles are less pronounced. For a pressure P = 1.0ǫ/σ3

t the tension
profiles exhibit the same characteristics as the profiles for a pressure P = 2.0ǫ/σ3

t, ex-
cept for being more shallow. With increasing temperature the profiles become flatter.
In the case of P = 0.5ǫ/σ3

t the three middle peaks become one so that only three
peaks are left. In the case of kBT = 1.2ǫ there is a distinct overlap between the tail
profiles of the upper and lower monolayer.

5.2 Fluctuation Spectra

Membranes are not perfectly flat but can exhibit significant thermal fluctuations,
which lead to deformations in the bilayer height and thickness [96]. The analysis
of the fluctuation spectrum is a widely used procedure to calculate the elastic con-
stants of model membranes [9, 14, 20, 38, 67, 69]. We analyse the fluctuations within
an elastic theory introduced with Brannigan and Brown [9].
The two monolayers can be described by four independent fluctuating fields: two
for the mesoscopic bending deformations and two for the microscopic protrusions.
It is assumed that the volume per lipid is constant and only the area per lipid Σ

fluctuates. Furthermore it is assumed that the height and thickness fluctuations as
well as the fluctuations in the protrusions are decoupled. The change in free energy
due to the fluctuations can then be written as

F =

∫

A

dxdy

{
kc

2

(

∇2z+
)2

+ kλλ
+2 + γλ

(

∇λ+
)2

+ 2γλ∇z+ · ∇λ+

+
kA

2t2
0

(z−)2 + 2kcc0∇2z− + 2kcζ
z−

t0

∇2z− +
kc

2

(

∇2z−
)2

+ kλλ
−2 + γλ

(

∇λ−
)2

+ 2γλ∇z− · ∇λ−

}

.

(5.7)

kA is the compressibility modulus, ζ = c0 − c′0Σ0 is an extrapolated curvature with
c′0 = ∂c0/∂Σ|Σ=Σ0

, kc is the bending rigidity, and c0 is the spontaneous curvature.
The parameters kλ and γλ describe the protrusions. The quantities z+ and z− are the
locally smoothed height of the bilayer midplane and the deviations in the monolayer
thickness, whereas the quantities λ+,− are the average and half the difference of the
protrusion fields. The height h of the bilayer midplane and the monolayer thickness t

are defined as

h = z+ + λ+ , (5.8)

t = z− + λ− + t0 . (5.9)
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5.2 Fluctuation Spectra

The spectra of the bilayer height and the monolayer thickness fluctuations, 〈|h(q)|2〉
and 〈|t(q)|2〉, are given by

〈|h(q)|2〉 =
kBT

kcq4
+

kBT

2(kλ + γλq2)
, (5.10)

〈|t(q)|2〉 =
kBT

kcq4 − 4kcζq2/t0 + kA/t2
0

+
kBT

2(kλ + γλq2)
. (5.11)

To determine the spectra for our membranes the system is divided into Nx × Ny

bins in the xy-plane. In each bin the z-value of the mean head position is separately
determined for both monolayers. The bilayer height h(x, y) and monolayer thickness
t(x, y) with respect to t0 is calculated according to equations 3.5 and 3.6. These two
fields are Fourier transformed:

f(qx, qy) =
LxLy

NxNy

∑

q

f(x, y)e−i(qxx+qyy) (5.12)

with (qx, qy) = 2π(Nx/Lx,Ny/Ly). Because Lx and Ly fluctuate during the simulation
qx and qy fluctuate, too; therefore the values of |h(q)|2 and |t(q)|2 are collected in
q-bins of size 0.1. In each bin the averages 〈|h(q)|2〉 and 〈|t(q)|2〉 are evaluated.
The fluctuation spectrum for the fluid phase was obtained for a system containing

3200 lipids and 24615 solvent beads that was divided into Nx = Ny = 20 bins. To
measure the fluctuation spectrum for the gel phase a system with 7200 lipids and
72000 solvent beads was used and divided into Nx = Ny = 40 bins. The curves of the
different spectra are shown in figure 5.6 and the results of the fit are summarised in
table 5.3.
The height fluctuations are Goldstone modes, hence the height spectrum diverges

for small wavelength modes. The thickness spectrum is limited by the equilibrium
bilayer thickness and tends towards a constant value for small wavelength values. At
small q2 the fluctuation spectra are dominated by the bending deformations. For
larger values for q2 the spectra are dominated by the protrusion modes. The protru-
sion modes are equal for the height and thickness fluctuations. These observations are
consistent with observations from other simulations [67, 69]. We see that the theory
fits the data of the fluid phase in an excellent way. The inset of figure 5.6 shows the
fit of the thickness profile to the Landau-de Gennes theory, because the equation 2.3
can also be used to deduce an equation for the monolayer thickness fluctuation spec-
trum. To make the analysis comparable, we have included a protrusion contribution
and fitted the monolayer thickness deformations to

〈|t(q)|2〉 =
kBT

4(a + cq2)
+

kBT

2(kλ + γλq2)
. (5.13)

Not surprisingly, the Landau-de Gennes theory cannot reproduce the peak at non-zero
q in 〈|t(q)|2〉, hence it misses one important characteristic of the thickness spectrum.
The fit of the data of the gel phase to the elastic theory is not satisfying.
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Figure 5.6: Fluctuation spectra of the height (black circles) and the thickness fluctua-
tions (red squares) of the membrane in the gel phase (left) and the fluid
phase (right). The dashed line shows the fit to the elastic theory, equa-
tions 5.10 and 5.11. The inset in the right figure shows the thickness data
for the fluid phase alone with a fit to the Landau-de Gennes theory, equa-
tion 5.13.

gel phase fluid phase
Parameter Value (LJ units) Value (SI units) Value (LJ units) Value (SI units)

kc 10.3 ± 0.5ǫ 3.7 · 10−20J 6.2 ± 0.4ǫ 2.2 · 10−20J
ζ/t0 0.15 ± 0.1σ−2

t 0.42nm−2 0.15 ± 0.09σ−2
t 0.42nm−2

kA/t2
0 2.6 ± 0.3ǫ/σ4

t 7.2 · 10−20J/nm4 1.3 ± 0.3ǫ/σ4
t 3.6 · 10−20J/nm4

kλ 6.5 ± 0.2ǫ/σ4
t 18 · 10−20J/nm4 1.5 ± 0.1ǫ/σ4

t 4.2 · 10−20J/nm4

γλ 1.23 ± 0.1ǫ/σ2
t 3.4 · 10−20J/nm2 0.007 ± 0.01ǫ/σ2

t 0.7 · 10−22J/nm2

γ2
λ/kλkc 0.02 5 · 10−6

Table 5.3: Elastic constants of the membrane in the gel and the fluid phase obtained
from the fit of the height and thickness spectrum. The SI values are calcu-
lated using σt ∼ 6Å and ǫ ∼ 0.36 · 10−20J.

The elastic theory assumes that the fluctuations in the height, thickness and pro-
trusions are decoupled. The strength of the coupling between bending modes and
protrusion modes can be estimated by the coupling parameter γ2

λ/kλkc. For the fluid
phase this parameter is indeed much smaller than unity. For the gel phase the value
is much larger but still negligible.
The elastic constants obtained for our model in the fluid phase have the same order
of magnitude than those obtained based on all-atom simulations of DPPC [67], other
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Figure 5.7: Fluctuation spectra of the height (black circles) and the thickness fluctu-
ations (red squares) of the membrane in the fluid phase, if the system
is divided along one direction: Nx = 40,Ny = 1 bins (upper figure),
Nx = 1,Ny = 40 bins (lower figure). The dashed lines are the fits to the
elastic theory, taken from figure 5.6.

coarse-grained models [9], kc ∼ 4 · 10−20J, kA/t2
0 ∼ 1.1 · 10−20J/nm4, ζ/t0 ∼ 0.18nm−2,

and those based on experimental estimates kc ∼ 5 − 20 · 10−20J, kA/t2
0 ∼ 6 · 10−20J/nm4

[72].
Figures 5.7 and 5.8 show the fluctuation spectra if the system is only divided along

one direction. In the fluid phase the system is divided into Nx = 40,Ny = 1 and
Nx = 1,Ny = 40 bins. There is no significant difference for the spectra in x- and y-
direction: The system is isotropic. If we compare these data to the curves we got by
fitting the data obtained for a system divided in both directions simultaneously to the
elastic theory, taken from figure 5.6, we see that these theoretical curves agree very
reasonably with the data for small q2 values. There are differences for large values
of q2 where the system is dominated by the protrusion modes. The protrusions are
averaged away due to the averaging process along the direction of the system.
In the gel phase the system is divided into Nx = 60,Ny = 1 and Nx = 1,Ny = 60

bins. The lipids are tilted and can be characterised by two angles: θ describes the
tilt angle towards the z-axis and φ is the angle in the xy-plane. Therefore the whole
system is rotated by the angle −φ before we measure the fluctuation spectra. If we
divide the system in the x- and y-direction simultaneously, the rotation of the system
has no influence on the fluctuation spectra, as we can see in the left side of figure 5.8.
If the system is divided along the tilt direction the height fluctuations are suppressed
on large scales. The thickness fluctuations are suppressed on small scales. If the system
is divided perpendicular to the tilt direction the thickness fluctuations are suppressed
on all length scales. In this case the protrusion modes on the large length scale are
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Figure 5.8: Fluctuation spectra of the membrane in the gel phase. The left figure
shows the fluctuation spectra if the system is divided intoNx = 40,Ny = 40

bins. The black circles and the red squares show the height and thickness
fluctuation spectra of the original system, respectively. The violet circles
and the blue squares show the height and thickness fluctuation spectrum,
respectively, if the system is rotated according to the angle −φ in the xy-
plane. The right upper and lower figure show the fluctuation spectra if the
system is divided into Nx = 60,Ny = 1 and Nx = 1,Ny = 60 bins, respec-
tively. The system is rotated before the fluctuation spectra are measured.

not equal for the height and thickness spectrum.

5.3 Conclusions

The calculation of the pressure tensor shows that the lipid bilayer is in a tension-
free state. Additionally we could extract the spontaneous curvature and the Gaussian
rigidity from the tension profile. With the elastic theory we could fit the height and
thickness fluctuation spectra in an excellent way. Furthermore, we could extract elastic
constants we need for the analysis of the deformation profiles of a single protein
(cf. chapter 6) and the analysis of the effective interaction between two proteins (cf.
chapter 7).
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6 Lipid Bilayer with One Protein in the
Fluid Phase

In this chapter we investigate a lipid bilayer with one protein in the fluid phase, P =

2.0ǫ/σ3
t, kBT = 1.3ǫ. The analysis is done for different system sizes. Furthermore we

compare on the one hand the deformation profiles for proteins of different diameters
and on the other hand the deformation profile of a protein oriented along the z-axis
to the deformation profile of a sphero-cylinder protein, which is allowed to tilt. The
last point in this chapter is the calculation of the change in free energy if the protein
is removed from the lipid bilayer. The simulations run between 3 and 5 million Monte
Carlo steps with equilibration times up to 1million Monte Carlo steps. Moves altering
the simulation box were attempted every 50th Monte Carlo step. In the simulations
carried out on a parallel computer, the domain decomposition was reshuffled every
10th Monte Carlo step.

6.1 Bilayer Deformation

In order to investigate the deformation of a bilayer by a single protein we measure
the bilayer thickness as a function of the distance from the protein in a system con-
taining 3176 lipids. The values for the hydrophobic length L are chosen such that we
have one case of negative (L = 4σt), no (L = 6σt), and positive (L = 8σt) hydrophobic
mismatch. The hydrophobicity parameter ǫpt is varied between 1.0 and 6.0, whereas
a hydrophobicity of ǫpt = 1.0 is sufficient to trap the centre of the protein inside the
lipid bilayer, figure 6.1.

Figure 6.1: Cross-section snapshot of a model membrane with one protein. The hy-
drophobic length L = 6σt roughly matches that of the lipid bilayer. The
hydrophobicity parameter is ǫpt = 1.0. The blue circles are the heads and
the yellow lines show the tail bonds. The hydrophobic part of the protein
is represented by the red cylinder. The solvent beads are omitted for clarity.
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Figure 6.2: Radial membrane thickness profiles in the vicinity of a protein with a
hydrophobic length L = 4σt (top panels), L = 6σt (middle panels) and
L = 8σt (bottom panels) and hydrophobicity parameters ǫpt as indicated.
The solid lines show the fit to the elastic theory, equation 2.15 with the
boundary condition 2.29.

Figure 6.2 shows the thickness profiles for different values of L and ǫpt. The thick-
ness is measured according to equation 3.5 as a function of the distance from the
protein. Although the radius of the protein is R = 1.5σt, the curves start at R = 2.0σt,
because up to this distance the head beads are repelled due to the Lennard-Jones
potential.
We observe that the hydrophobicity parameter must exceed a certain value in order
to produce classical hydrophobic matching. When the hydrophobicity is too small the
protein repels the lipids independent of the value of L. The bilayer surfaces get pinned
by the protein for values of the hydrophobicity parameter larger than ǫpt = 4.0. This
is the critical value where touching the protein surface is about as favourable for tail
beads, from an energetic point of view, than being immersed in the bulk. The maximal
contact energy of a tail bead in contact with a plane of tail beads is 4ǫ.
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6.1 Bilayer Deformation

The thickness profiles are not strictly monotonic but rather show a characteristic
over- or undershooting at the distance r ∼ 6σt. This weakly oscillating behaviour was
also observed in previous coarse-grained [10, 115] and atomistic [15] simulations of
protein-induced membrane deformations.
The solid lines in figure 6.2 are the fit to the elastic theory, equation 2.15 with the

boundary condition 2.29. When fitting the data we set

y := ∇2
rφ
∣

∣

∣

R
= −2

(�c0 −
ζ

t0

tR

)

−
kG

kcR
t′R (6.1)

for the boundary condition and use y as a fit parameter. This has the advantage that
we can measure the renormalised curvature �c0 as a function of the Gaussian rigidity
kG. The second fit parameter is tR. Furthermore we set t0 = 3.0σt for the asymptotic
monolayer thickness and Rel = 1.5σt and 2.0σt, respectively. The radius Rel = 1.5σt

corresponds to the real protein radius and the radius Rel = 2.0σt corresponds to the
point where the data starts. The results for the fit parameters are summarised in
table 6.1.
The theory describes the thickness profiles very well. The fit curves show no dif-

ference for the two values of Rel, because a difference due to Rel is adjusted by the
fit parameter y and with this by the renormalised curvature �c0 as we see in table 6.1.
For Rel = 2.0σt the renormalised curvature obtained for the data for L = 4σt and a
hydrophobicity parameter ǫpt = 5.0, 6.0 corresponds to the spontaneous curvature we
obtained from the tension profile. Otherwise none of the values for the renormalised
curvature agree to the value of our measured spontaneous curvature. The effective
hydrophobic length of the protein is defined as Leff = 2(t0 + tR). The exact relation
between tR and L is not quite clear, because the lipid-protein interaction is smooth
and varies on the length scale σt. For values ǫpt > 4.0 the values obtained for Leff are
reasonable close to L, well within 1σt.
In order to compare the elastic theory to the Landau-de Gennes theory we use the

data for ǫpt = 6.0, figure 6.3. In the case of the Landau-de Gennes theory, equa-
tion 2.7, we fit the three profiles simultaneously using ζ as one common fit parameter
and three separate fit parameters tR, table 6.2. The exponential fit cannot reproduce
the oscillatory behaviour of the profiles, but otherwise the fit is quite reasonable. The
values obtained for the effective hydrophobic length Leff are in this case larger than
the values obtained for the elastic theory, but they are still quite close to L, well within
1σt. For the pure version of the elastic theory, equation 2.15 with the boundary con-
dition 2.12, we have varied c0 and kG within the error with tR as sole fit parameter.
None of the fits are satisfactory. The pure version of the elastic theory describes the
profiles in terms of bulk membrane properties. As we saw earlier the data can be fit-
ted very nicely by replacing the spontaneous curvature c0 by a renormalised curvature�c0. As we can see from table 6.1, �c0 depends on L showing that the local structure
of the lipids surrounding the protein contributes to the boundary condition. Branni-
gan and Brown [10] also observed such an effect and explained it by the effect of a
non-constant lipid volume. In their model the volume per lipid varied fundamentally
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6 Lipid Bilayer with One Protein in the Fluid Phase

L [σt] ǫpt Rel [σt] tR [σt] Leff [σt] �c0

[

σ−1
t

]

4 1.0 1.5 −1.7 2.6 0.02 [0.16 . . . − 0.15]

4 2.0 1.5 −1.21 3.58 −0.01 [0.07 . . . − 0.11]

4 3.0 1.5 −0.97 4.06 −0.01 [0.06 . . . − 0.09]

4 4.0 1.5 −0.82 4.36 −0.04 [−0.01 . . . − 0.09]

4 5.0 1.5 −0.67 4.66 −0.11 [−0.11 . . . − 0.10]

4 6.0 1.5 −0.66 4.68 −0.11 [−0.12 . . . − 0.11]

6 1.0 1.5 −1.36 3.28 0.03 [0.14 . . . − 0.11]

6 2.0 1.5 −0.66 4.68 0.01 [0.05 . . . − 0.06]

6 3.0 1.5 −0.28 5.44 0.01 [0.04 . . . − 0.02]

6 4.0 1.5 −0.04 5.92 −0.01

6 5.0 1.5 0.16 6.32 −0.01 [−0.03 . . . 0.01]

6 6.0 1.5 0.18 6.36 0.05 [0.06 . . . 0.03]

8 1.0 1.5 −1.51 2.98 0.08 [0.24 . . . − 0.10]

8 2.0 1.5 −0.27 5.46 0.13 [0.21 . . . 0.03]

8 3.0 1.5 0.56 7.12 0.15 [0.18 . . . 0.11]

8 4.0 1.5 0.78 7.56 0.16 [0.18 . . . 0.14]

8 5.0 1.5 0.92 7.84 0.19 [0.21 . . . 0.15]

8 6.0 1.5 0.93 7.86 0.22 [0.26 . . . 0.17]

4 1.0 2.0 −1.22 3.56 0.08 [0.18 . . . − 0.03]

4 2.0 2.0 −0.9 4.2 0.04 [0.1 . . . − 0.03]

4 3.0 2.0 −0.72 4.56 0.04 [0.09 . . . − 0.02]

4 4.0 2.0 −0.66 4.68 0.005 [0.04 . . . − 0.04]

4 5.0 2.0 −0.64 4.72 −0.05 [−0.04 . . . − 0.07]

4 6.0 2.0 −0.63 4.74 −0.06 [−0.05 . . . − 0.07]

6 1.0 2.0 −0.97 4.06 0.07 [0.15 . . . − 0.02]

6 2.0 2.0 −0.49 5.02 0.03 [0.06 . . . − 0.01]

6 3.0 2.0 −0.19 5.62 0.02 [0.04 . . . − 0.001]

6 4.0 2.0 −0.04 5.92 −0.01

6 5.0 2.0 0.11 6.22 −0.01 [−0.02 . . . 0.002]

6 6.0 2.0 0.19 6.38 0.022 [−0.02 . . . 0.024]

8 1.0 2.0 −1.0 4.0 0.12 [0.22 . . . 0.01]

8 2.0 2.0 −0.03 5.94 0.1 [0.14 . . . 0.06]

8 3.0 2.0 0.61 7.22 0.08

8 4.0 2.0 0.79 7.58 0.08 [0.07 . . . 0.09]

8 5.0 2.0 0.93 7.86 0.1 [0.07 . . . 0.11]

8 6.0 2.0 0.97 7.94 0.1 [0.09 . . . 0.12]

Table 6.1: Fit of the radial thickness profiles to the elastic theory: tR (monolayer de-
formation at the surface of the protein), Leff (effective hydrophobic length
of the protein), �c0 (renormalised curvature). The radius is set to Rel = 1.5σt

and 2.0σt, respectively. The asymptotic value for the monolayer thickness is
t0 = 3.0σt. The value of the renormalised curvature belongs to a Gaussian
rigidity kG = −0.26ǫ. The values in case the Gaussian rigidity is changed
within its error are in brackets.
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Figure 6.3: Radial membrane thickness profiles in the vicinity of a protein of hy-
drophobic length L = 4σt (top panels), L = 6σt (middle panels) and
L = 8σt (bottom panels) and a hydrophobicity parameter ǫpt = 6.0 com-
pared to the fit to the Landau-de Gennes theory (red line) and to the
elastic theory with fixed spontaneous curvature c0 = −0.05σ−1

t and Gaus-
sian rigidity kG = −0.26ǫ (black line) and to the elastic theory where c0

is replaced by �c0 (dotted line). The brown lines indicate the range of the
fit at fixed c0 and kG, if both quantities are varied within the error. The
left hand side corresponds to a protein radius Rel,LdG = 1.5σt and the right
hand side corresponds to a protein radius Rel,LdG = 2.0σt.

with the distance from the protein. In our model the lipid volume is almost constant
throughout the system.

The question arising is what kind of quantity might effect the membrane properties
and renormalise the curvature term at the surface. Figure 6.4 shows some candidates.
In the top panels there are the thickness as well as the volume per bead, respectively.
The volume per bead is, as already mentioned, almost constant at all distances from
the protein. It is decreased close to the protein due to the attractive tail-protein inter-
action. Then a small depletion zone follows, where the volume per bead is increased.
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6 Lipid Bilayer with One Protein in the Fluid Phase

RLdG = 1.5σt RLdG = 2.0σt

L [σt] tR [σt] Leff [σt] tR [σt] Leff [σt]

4 −0.94 4.12 −0.64 4.72

6 0.3 6.6 0.2 6.4

8 1.44 8.88 1 8

Table 6.2: Fit of the radial thickness profiles for the ǫpt = 6.0 data to the Landau-de
Gennes theory: tR (monolayer deformation at the surface of the protein),
Leff (effective hydrophobic length of the protein). The radius RLdG in equa-
tion 2.7 is set to 1.5σt and 2.0σt, respectively. The asymptotic monolayer
thickness is t0 = 3.0σt. The decay length is ζ = 2.0 ± 0.1σt.

It is remarkable that the curves are almost identical for the three different hydrophobic
protein lengths.
The next panels show the area density of all beads, and that of the head beads. The
number of beads per area is enhanced close-by the protein for the case of positive
and zero hydrophobic mismatch. In the case of negative hydrophobic mismatch it is
reduced. This is a consequence of the fact that tail-protein attraction is related to the
hydrophobic length of the protein. The larger the hydrophobic length of the protein,
the larger the area over which lipid tails get attracted by the protein. A larger area
attracts more lipid tails than a smaller one.
The number of heads per area and the hydrophilic shielding parameter are related
to the shielding of the hydrophobic membrane interior from the solvent. The shield-
ing is achieved by the head beads and the head density is therefore a measure of
the effectiveness of shielding. Since the lipid volume is constant in our model, the
head density is directly related to the monolayer thickness and thus cannot directly
contribute to the renormalised curvature. The head density is enhanced close to the
protein. This is an indirect consequence of the attractive protein-tail interaction. At
intermediate distances the head density goes up in the case of positive mismatch and
goes down in the case of negative mismatch.
The hydrophobic shielding parameter, shown in the next panel, was introduced by
de Meyer et al. [19]. It is defined as the ratio of head density and tail density. The
hydrophobic shielding parameter shows the same behaviour as the head density for
intermediate distances. Over-shielding for positive mismatch and under-shielding for
negative mismatch. Close to the protein the curves turn around. This is in agreement
with the observations of de Meyer et al. [19].
The right panel in the third row shows the local chain order parameter Sz. It is
calculated according to equation 3.8 using the bond vectors between two neighbour-
ing beads. The order is increased close-by the protein. Not surprisingly the lipids are
stretched the most in the case of positive mismatch. In contrast the lipids are more
ordered in the case of negative mismatch than in the hydrophobically matching case.
At larger distances the profile decays monotonically for the case of positive mismatch
and matching. It exhibits a non-monotonic dip in the case of negative mismatch. In
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Figure 6.4: Radial profiles of various quantities as a function of the distance from the
centre of a protein of hydrophobic length L = 4σt (black circles), L = 6σt

(red diamonds) and L = 8σt (blue squares) and a hydrophobicity parameter
ǫpt = 6.0
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Figure 6.5: Radial profiles of various quantities as a function of the distance from the
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(red diamonds) and L = 8σt (blue squares) and a hydrophobicity parameter
ǫpt = 1.0
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the negative mismatch case the two monolayers overlap much more than in the hy-
drophobic matching case, figure 6.4, bottom panels. Therefore the fact that the lipids
are much more ordered in the negative matching case is not surprising any more.
The bottom panels show the monolayer overlap calculated according to equa-

tion 3.9 and 3.10. The chain criterion overlap parameter is negative far away from
the protein indicating that the two monolayers are very well separated. Close to the
protein the overlap parameter turns positive in the negative mismatch case. The pro-
tein pulls the lipids inwards and thus enforces an overlap. For the case of positive
mismatch and matching protein the overlap parameters remain negative and more or
less constant. The curves calculated using the overlap integral are shifted to positive
values, but besides this show the same characteristics. Even far away from the protein
the monolayers have some overlap in the centre of the bilayer.
From these curves it is not clear which quantity contributes to the renormalised cur-

vature. Either we have not found it or most of these quantities affect the renormalised
curvature in a concerted way.
Figure 6.5 shows the same quantities for a hydrophobicity parameter ǫpt = 1.0.

From the thickness profiles we know that the protein repels the lipids independent
of the hydrophobic length L. First of all we notice that the different quantities show
the same behaviour mostly independent of the hydrophobic length L. If we compare
these profiles to the profiles for ǫpt = 6.0 we can say something about the influence of
ǫpt on these quantities. As we already know, the bilayer thickness close to the protein
increases with an increasing hydrophobicity parameter. The volume at direct contact
to the protein decreases a little with increasing hydrophobicity parameter. The beads
per area and the tails per area increase, while the heads per area decrease with increas-
ing ǫpt. This effect is due to the increasing attraction between the tail beads and the
protein. Since more tail beads come into contact with the protein the head beads are
repelled. The behaviour of the heads per area is reflected in the hydrophilic shielding
parameter. The (bond) chain order parameter increases with increasing hydrophobic-
ity parameter indicating that the lipids get stretched. The behaviour described so far
is valid independent of the hydrophobic length L. The only parameter that shows a
different behaviour dependent on L is the overlap parameter. In the case of negative
hydrophobic mismatch, L = 4σt, the overlap parameter increases with increasing ǫpt.
Whereas in the case of positive hydrophobic mismatch, L = 8σt, and hydrophobic
matching, L = 6σt, the overlap parameter decreases. For ǫpt = 1.0 the overlap param-
eter is about zero around the protein. In the case of negative hydrophobic mismatch
the two monolayers show an overlap, whereas the two monolayers do not overlap in
the other two cases. With increasing distance to the protein the chains get stretched
and the two monolayers overlap.

6.2 Influence of the System Size on the Thickness Profile

When we fitted the thickness profiles we set a value for the asymptotic monolayer
thickness t0 which was actually slightly smaller than the monolayer thickness of an
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Figure 6.6: Radial membrane thickness profiles of a lipid bilayer of various sizes: (i)
776 lipids and 6153 solvent beads (black circles), (ii) 1776 lipids and 13846

solvent beads (red diamonds), and (iii) 3176 lipids and 24615 lipids (blue
squares). The hydrophobic length of the protein is L = 4σt (upper panels),
L = 6σt (middle panels), and L = 8σt (bottom panels). The hydrophobicity
parameter is ǫpt = 1.0 (left) and ǫpt = 6.0 (right).

undisturbed lipid bilayer (t0 = 3.05σt, section 3.1.1). Theoretically the thickness far
away from the protein should be equal to the thickness of an undisturbed lipid bilayer.
But this is not the case in our simulations; for distances far away from the protein the
thickness profiles do not reach the value for the undisturbed bilayer thickness. In this
section we investigate the thickness profiles on the one hand for different system sizes
and and on the other hand for different amounts of solvent beads, and analyse the
reason for this thickness thinning behaviour. First of all we vary the number of lipids
and solvent beads: (i) 776 lipids and 6153 solvent beads, (ii) 1776 lipids and 13846

solvent beads, and (iii) 3176 lipids and 24615 solvent beads, figure 6.6.
The thickness profiles for these different system sizes exhibit the same oscillatory
behaviour independently of the system size. However, with decreasing system size
the value for the bilayer thickness far away from the protein decreases. For the two
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Figure 6.7: Radial membrane thickness profiles of a lipid bilayer with 776 lipids and dif-
ferent amounts of solvent beads in the vicinity of a protein of hydrophobic
length L = 6σt and a hydrophobicity parameter ǫpt = 6.0: (i) 6153 sol-
vent beads (black circles), (ii) 12307 solvent beads (red diamonds), and (iii)
18461 solvent beads (blue squares).

larger system the asymptotic thickness is about 5.9 − 6.0σt. For the system with 776

lipids the asymptotic thickness is about 5.7 − 5.8σt. Between the smallest and the
largest system the thickness difference is very obvious and beyond the error of the
simulation.
As a next step we vary the amount of solvent beads for the system with 776 lipids: (i)

6153 solvent beads, (ii) 12307 solvent beads, and (iii) 18461 solvent beads, figure 6.7.
For these simulations we set the hydrophobic length of the protein L = 6σt and the
hydrophobicity parameter ǫpt = 6.0. With increasing number of solvent beads the
thickness far away from the protein decreases. The only difference between the three
systems is the amount of solvent beads and with this the length of the simulation box
in z-direction. Since the length of the protein cylinder is equal to the simulation box in
z-direction, Lz, the solvent beads can not occupy the whole volume of the simulation
box. This excluded volume increases with increasing number of solvent beads. The
change in free energy F of the protein-solvent system is:

F(Z,A,Ns) = −kBTNs ln(∫

dre−βU(r)

)

(6.2)

= −kBTNS ln(AZ + 2π

∫

rdr
(

e−βU(r) − 1
)

Z

)

(6.3)

= −kBTNs ln ((A − A0)Z) (6.4)

= −kBTNs (ln(A) + ln(1 − A0/A) + ln(Z)) (6.5)

≃ −kBTNs (ln(A) − A0/A + ln(Z)) . (6.6)
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6 Lipid Bilayer with One Protein in the Fluid Phase

Ns is the number of solvent beads and A = LxLy is the area of the system. Z =

Lz − d is the length of the simulation box that is occupied by the solvent with d

the thickness of the lipid bilayer. The solvent volume is Vs = A · Z. We have set
A0 := 2π

∫
rdr(exp(−βU(r)) − 1) with U(r) the interaction potential between protein

and solvent beads. For a protein of diameter σp = 3σt one has A0 ≃ 4πσ2
t.

The pressure is the derivative of the free energy F with respect to the volume V :

P = −
∂F
∂V

. (6.7)

Applying this relation on equation 6.6 we get

PN = −
1

A

∂F
∂Z

=
kBTNs

AZ
(6.8)

PT = −
1

Z

∂F
∂A

=
kBTNs

ZA
+

kBTNsA0

ZA2
(6.9)

for the normal and tangential component of the pressure, PN and PT. The difference
of the normal and tangential component is

PN − PT = −
kBTNs

AZ

A0

A
. (6.10)

Each protein incorporated into the lipid bilayer contributes this amount to the total
pressure difference of the system. The tension is obtained by integrating the pressure
difference over the z-direction:

Γ = −

∫Lz

0

kBTNs

AZ

A0

A
dz (6.11)

= −
kBTNs

AZ

A0

A
Lz (6.12)

= −P
A0

A
Lz . (6.13)

In the last equation we have inserted the ideal gas law: PVs = kBTNs with P the
pressure applied to the system. This (local) tension induced by the excluded volume
effect has to be balanced by the lipid bilayer resulting in a positive tension inside the
lipid bilayer so that the whole system is in a tension-free state. This positive tension
induces a thinning of the bilayer thickness. Figure 6.8 (obtained from Jörg Neder)
shows the mean thickness of a pure lipid bilayer as a function of the tension of the
system. There is a linear dependence of the bilayer thickness from the tension of the
system.
Table 6.3 shows the theoretical values, calculated according to equation 6.13, and
measured values for the tension of the system with 776 lipids, one protein and dif-
ferent numbers of solvent beads. In order to measure the tension far away from the
protein we have two options. One possibility is to measure the tension profile in a
thin rectangular slice of the simulation box which is far away from the protein. If
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Figure 6.8: Mean bilayer thickness of a pure lipid bilayer as a function of the tension
of the system (data obtained from Jörg Neder)

Ns Vs

[

σ3
t

]

A
[

σ2
t

]

Lz [σt] 2t0 [σt] Γt
[

ǫ/σ2
t

]

Γs
[

ǫ/σ2
t

]

Γc
[

ǫ/σ2
t

]

6153 4000 578 14.9 5.74 0.65 0.6 ± 0.2 0.5 ± 0.1

12307 8000 597 21.1 5.58 0.89 0.8 ± 0.2 0.9 ± 0.1

18461 12000 617 27 5.42 1.1 1.0 ± 0.2 1.3 ± 0.1

Table 6.3: System with 776 lipids, one protein and different numbers of solvent beads
Ns (solvent volume Vs): Collection of the values for the area A = LxLy

and z-length of the simulation box, Lz. The thickness 2t0 is the thickness
of the lipid bilayer far away from the protein. Γt is the theoretical value of
the membrane tension calculated according to equation 6.13. Γs and Γc are
the tension measured in a thin rectangular slice (s) and in a cylinder (c) as
described in the text.

both particles are inside the rectangular slice, the pressure tensor can be calculated as
described in section 4.2. If one bead is inside and the other outside the rectangular
slice, the point of intersection between the connection line between the two beads
and the rectangle is calculated. The weight function, equation 4.11, is applied to the
connection line between the point of intersection and the bead inside the rectangular
slice. The other possibility is to measure the tension as a function of the distance from
the protein. In this case the tension is measured in concentric cylinders around the
protein. The connection line between two beads is calculated, and we analyse how
much of this line falls into every cylinder. For the tension we take the last cylinder’s
value which is completely within the simulation box. For cylinders partly outside the
simulation box we get an uncertainty due to the periodic boundary conditions. The
two methods give results of the same order. The measured value for the tension cor-
responds within the uncertainty to the calculated values of the tension. If we compare
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6 Lipid Bilayer with One Protein in the Fluid Phase

the measured values for the thickness far away from the protein and the correspond-
ing tension of our simulations to the data of figure 6.8, we see that they correspond
very well.
Appendix C.1 gives a summary of the simulations carried out in systems of different
sizes for different values of the hydrophobic length of the protein and different values
of the hydrophobicity parameter.

6.3 Comparison between Different Protein Diameters

In this section we compare the thickness profile for a system with a protein which
corresponds to a β-helix of diameter σp = 3σt ≃ 18Å with the thickness profile ob-
tained for a protein of diameter σp = 1σt ≃ 6Å corresponding to an α-helix. We
use the label “thick protein” for the protein of diameter σp = 3σt and the label “thin
protein” for the protein of diameter σp = 1σt. Like in the case of the thick protein
two parameters are varied: the hydrophobic length L of the protein, L = 4σt, 6σt,
8σt, and the hydrophobicity parameter ǫpt, ǫpt = 1.0, 6.0. Figure 6.9 shows the radial
thickness profiles as a function of the distance from the protein together with the fit to
the elastic theory, equation 2.15 with the boundary condition 2.29. The profiles show
the same non-monotonic oscillatory behaviour as in the case of the thick protein. For
a hydrophobicity ǫpt = 1.0 the lipids get repelled, and for ǫpt = 6.0 the tail-protein
interaction is strong enough to produce hydrophobic mismatch. The fit parameters of
the elastic theory are summarised in table 6.4. Like in the case of the thick protein
none of the values for the renormalised curvature agrees with the value of the spon-
taneous curvature we measured from the tension profile. The effective hydrophobic
length of the protein Leff corresponds within 1σt to the values of L.
Comparing the thickness profiles of the thin protein to the thickness profiles of the
thick protein, we see that the lipids get much more repelled in the case of the thick
protein. For a hydrophobicity of ǫpt = 1.0 the bilayer thickness in contact with the
protein is between 3 − 4σt for the thick protein and between 4 − 5σt for the thin
protein. The overshooting seems a little more distinct in the case of the thick protein.
For ǫpt = 6.0 the profiles for the thin protein look as if they have just been shifted.
The thickness of the bilayer in contact with the protein is slightly higher in the case
of positive hydrophobic mismatch, and in the case of negative hydrophobic mismatch
the thickness of the bilayer in contact with the protein is a bit smaller. As expected the
thickness far away from the protein in the case of the thin protein is larger than in the
case of the thick protein. The renormalised curvature is much smaller in the case of the
thin protein as in the case of the thick protein. If we fit the data for ǫpt = 6.0 to the
Landau-de Gennes theory, table 6.5, the decay length is slightly smaller compared to
the decay length in the case of the thick protein. The fact that the perturbation length
does not vary much with the inclusion’s radius, was also observed in other coarse-
grained simulations [41]. For a radius RLdG = 0.5σt the effective hydrophobic length
of the protein differs considerably from the actual value. For a radius RLdG = 1.0σt it
is within 1σt close to the actual value.

58



6.3 Comparison between Different Protein Diameters

4

5

6

7

T
hi

ck
ne

ss
 [σ

t] 

4

5

6

7

T
hi

ck
ne

ss
 [σ

t] 

0 2 4 6 8 10 12 14 16 18 20
Distance from Protein [σt]

5

6

7

8

T
hi

ck
ne

ss
 [σ

t]

εpt = 1.0

εpt = 6.0 

L=4σt

L=6σt

L=8σt

Figure 6.9: Radial membrane thickness profiles in the vicinity of a protein with diam-
eter σp = 1.0σt. The hydrophobic length of the protein is L = 4σt (upper
panel), L = 6σt (middle panel), L = 8σt (lower panel) and the hydropho-
bicity parameter is ǫpt = 1.0 (black circles) and ǫpt = 6.0 (red diamonds).
The solid lines show the fit to the elastic theory, equation 2.15 with the
boundary condition 2.29.

The quantity A0 in equation 6.13 depends on the diameter of the protein and with
this also the induced tension. A0 is about 4πσ2

t for a protein of diameter 3σt and
2πσ2

t for a protein of diameter 1σt. In the case of the thick protein the induced
tension shows a very strong dependence on the system size. The asymptotic bilayer
thickness increases clearly with increasing system size. In the case of the thin protein
the system size dependence is not so distinct, appendix C.2. The asymptotic bilayer
thickness almost agrees for the two different system sizes.
As a last point we want to look at the radial profiles of other quantities rather than

the thickness, figures 6.10 and 6.11. If we compare these profiles to the profiles of
a thick protein, figures 6.5 and 6.4, we see that the diameter does not have much
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Rel = 0.5σt

L [σt] ǫpt tR [σt] Leff [σt] �c0

[

σ−1
t

]

4 1.0 −1.19 3.68 −0.04 [0.32 . . . − 0.48]

4 6.0 −0.55 4.96 −0.21 [−0.33 . . . − 0.07]

6 1.0 −0.86 4.34 0.06 [0.46 . . . − 0.42]

6 6.0 0.34 6.74 0.07 [0.05 . . . 0.09]

8 1.0 −0.56 4.94 −0.01 [0.17 . . . − 0.23]

8 6.0 1.02 8.1 0.27 [0.31 . . . 0.22]

Rel = 1.0σt

L [σt] ǫpt tR [σt] Leff [σt] �c0

[

σ−1
t

]

4 1.0 −0.85 4.36 0.01 [0.13 . . . − 0.13]

4 6.0 −0.6 4.86 −0.1 [−0.09 . . . − 0.11]

6 1.0 −0.5 5.06 0.06 [0.17 . . . − 0.07]

6 6.0 0.3 6.6 0.03 [0.01 . . . 0.05]

8 1.0 −0.39 5.28 0.01 [0.07 . . . − 0.06]

8 6.0 0.98 8.02 0.12 [0.08 . . . 0.17]

Table 6.4: Fit of the radial thickness profiles to the elastic theory: tR (monolayer de-
formation at the surface of the protein), Leff (effective hydrophobic length
of the protein), �c0 (renormalised curvature). The radius is set to Rel = 0.5σt

and 1.0σt, respectively. The asymptotic value for the monolayer thickness is
t0 = 3.03σt. The value of the renormalised curvature belongs to a Gaussian
rigidity kG = −0.26ǫ. The values in case the Gaussian rigidity is changed
within its error are in brackets.

RLdG = 0.5σt RLdG = 1.0σt

L [σt] tR [σt] Leff [σt] tR [σt] Leff [σt]

4 −1.51 3.04 −0.88 4.3

6 0.74 7.54 0.43 6.92

8 2.33 10.72 1.36 8.78

Table 6.5: Fit of the radial thickness profiles for the ǫpt = 6.0 data to the Landau-de
Gennes theory: tR (monolayer deformation at the surface of the protein),
Leff (effective hydrophobic length of the protein). The radius RLdG in equa-
tion 2.7 is set to 0.5σt and 1.0σt, respectively. The asymptotic monolayer
thickness is t0 = 3.03σt. The decay length is ζ = 1.8 ± 0.1σt.

influence on the characteristics of these profiles. Small differences are only observed
in the case of a hydrophobicity parameter ǫpt = 1.0 for the behaviour of the bond
order parameter. The length of the lipids in direct contact to the protein is more or
less constant, they are perhaps a little bit stretched. In the case of the thick protein
the lipids are compressed. For distances larger than about 10σt from the protein, the
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Figure 6.10: Radial profiles of various quantities as a function of the distance from the
centre of a thin protein with hydrophobic thickness L = 4σt (black circles),
L = 6σt (red diamonds), and L = 8σt (blue squares) and a hydrophobicity
parameter ǫpt = 1.0
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Figure 6.11: Radial profiles of various quantities as a function of the distance from the
centre of a thin protein with hydrophobic thickness L = 4σt (black circles),
L = 6σt (red diamonds), and L = 8σt (blue squares) and a hydrophobicity
parameter ǫpt = 6.0

62



6.4 Protein with Tilt

bond order parameter shows the same behaviour for the thin and the thick protein.

6.4 Protein with Tilt

In the simulations presented so far the protein is oriented along the z-axis. In the
protein model with tilt the long cylinder which covers the whole z-axis is exchanged
with a sphero-cylinder. Simulation runs in systems of different sizes with the sphero-
cylinder show that the system size does not have an influence on the simulation re-
sults. The thickness of the lipid bilayer measured far away from the protein is equal
within the error for different system sizes and corresponds to the value of an undis-
turbed lipid bilayer. This is expected, because the induced tension is a result of an
excluded volume effect that is not present in the case of the sphero-cylinder proteins.
As before we change the hydrophobic length of the protein L, L = 4σt, 6σt, 8σt as
well as the hydrophobicity parameter ǫpt, ǫpt = 1.0, 6.0. The protein diameter σp is
set to σp = 1σt and σp = 3σt.
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Figure 6.12: Comparison of the radial thickness profiles in the vicinity of a protein of
diameter σp = 1σt with a length equal to the z-length of the simulation
box (black circles) and a protein of finite length, which is allowed to tilt
(sphero-cylinder, red diamonds). The hydrophobicity parameter is ǫpt =

1.0 (left) and ǫpt = 6.0 (right). The hydrophobic length of the protein is
L = 4σt, 6σt, 8σt (from top to bottom). The data are obtained from a
system with 3194 lipids.

The thickness profiles of a system containing one sphero-cylinder protein, regard-
less whether it is allowed to tilt or not, show only few differences from the thick-
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Figure 6.13: Comparison of the radial thickness profiles in the vicinity of a protein of
diameter σp = 3σt with a length equal to the z-length of the simulation
box (black circles) and a protein of finite length, which is allowed to tilt
(sphero-cylinder, red diamonds). The hydrophobicity parameter is ǫpt =

1.0 (left), ǫpt = 2.0 (middle) and ǫpt = 6.0 (right). The hydrophobic length
of the protein is L = 4σt, 6σt, 8σt (from top to bottom). The data for
ǫpt = 2.0, where the protein is allowed to tilt, are obtained for a system
with 776 lipids. All other data are obtained from a system with 3176 lipids.

ness profiles of a system containing one large protein. Figures 6.12 and 6.13 show
a comparison between the thickness profiles of a long protein with length equal to
Lz oriented along the z-axis and a sphero-cylinder protein which is allowed to tilt.
The protein diameter is σp = 1σt and σp = 3σt, respectively. The profiles show the
same characteristics within the error. The only exception is the thickness profile for
a sphero-cylinder protein of hydrophobic length L = 4σt and a hydrophobicity pa-
rameter ǫpt = 1.0. In this case the binding force between the lipid bilayer and the
protein is not strong enough to keep the protein inside the lipid bilayer – the protein
“swims” in a straight conformation on the lipid bilayer with only a part of the protein
touching the lipid bilayer. This is not an effect of the rotational degree of freedom,
but of the finite protein length. We have done simulations in order to check this for
the sphero-cylinder protein, where on the one hand the protein is allowed to tilt and
on the other hand is aligned along the z-axis. The last point is realised by setting the
possible tilt range of the protein to zero. In some of the simulation runs the protein
remained inside the lipid bilayer, whereas in other simulation runs the protein left the
lipid bilayer. This is independent of whether the protein is allowed to tilt and also
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6.4 Protein with Tilt

σp = 3σt σp = 1σt

L [σt] ǫpt θ(776 lipids) [◦] θ(3176 lipids) [◦] θ(794 lipids) [◦] θ(3194 lipids) [◦]

4 1.0 4.63 6.12 13.4 12.55

4 2.0 4.64 8.13

4 6.0 2.71 3.02 4.71 4.37

6 1.0 3.15 3.12 5.23 5.17

6 2.0 2.69 4.5

6 6.0 1.52 1.48 2.23 2.27

8 1.0 2.17 2.19 3.86 3.44

8 2.0 1.75 2.44

8 6.0 0.97 0.96 1.45 1.46

Table 6.6: Maximal tilt angle θ for one sphero-cylinder protein of diameter σp = 3σt

and σp = 1σt, respectively. The rotation angle φ is between [−π, π]. For
L = 4σt and ǫpt = 1.0 the protein left the lipid bilayer.

independent of the system size. A hydrophobicity parameter of ǫpt = 2.0 is sufficient
to keep the protein within the lipid bilayer. Figure 6.13 shows this for the case of a
protein diameter σp = 3σt. In this case the simulations were carried out in a system
with 776 lipids. All other simulations were carried out in systems with 3176 lipids.
The reason why the possible tilt has no influence on the thickness profiles is that the

maximal protein tilt angle is very small. It is always less than 15◦ and 10◦ for a protein
of diameter σp = 1σt and σp = 3σt, respectively, cf. table 6.6. The tilt angle is larger
for the thin protein compared to the thick protein. This effect was also observed by
Venturoli et al. [115] in the case of a transmembrane protein and by Nielsen et al.
[89] in the case of a transmembrane nanotube. For a fixed hydrophobic length the
tilt angle decreases with the increase of the hydrophobicity parameter. For a fixed
hydrophobicity parameter the tilt angle decreases with increasing hydrophobic length
of the protein. This is in contrast to the observations of Venturoli et al. but agrees
with the observations of Jörg Neder, who models the protein as a bead object [85]. In
agreement with Venturoli et al. he observes that a further increase in the hydrophobic
length, L = 10σt, results in an increase of the tilt angle.
Figures 6.14 and 6.15 show the radial profiles of some interesting quantities as a

function of the distance from the protein for a hydrophobicity parameter ǫpt = 1.0.
For a hydrophobic length L = 6σt and 8σt the profiles are within the uncertainty equal
to the profiles obtained for a long protein with length equal to Lz. In case of the
protein swimming on the lipid bilayer the profiles show the behaviour that we would
except for a lipid bilayer without any proteins. The only exception are the profiles for
the beads per area and the heads per area. In this case there is a little enrichment
of beads and heads, respectively, around the protein. This can be explained by the
fact that even though the protein is not fully inside the lipid bilayer, some part is still
inside the lipid bilayer interacting with the lipids.
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Figure 6.14: Protein of diameter σp = 1σt, which is allowed to tilt (sphero-cylinder
protein): radial profiles of various quantities as a function of the distance
from the centre of the protein. The hydrophobic length is L = 4σt (black
circles), L = 6σt (red diamonds), and L = 8σt (blue squares) and the
hydrophobicity parameter is ǫpt = 1.0.
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Figure 6.15: Protein of diameter σp = 3σt, which is allowed to tilt (sphero-cylinder
protein): radial profiles of various quantities as a function of the distance
from the centre of the protein. The hydrophobic length of the protein is
L = 4σt (black circles), L = 6σt (red diamonds), and L = 8σt (blue squares)
and the hydrophobicity parameter is ǫpt = 1.0.
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6 Lipid Bilayer with One Protein in the Fluid Phase

6.5 Calculation of the Free Energy Using Thermodynamic
Integration

The incorporation of one or more proteins into a lipid bilayer leads to a change in the
free energy. One possibility to measure the change in free energy is to try to bring a
protein inside a bilayer without taking lipids out and then measuring the difference in
energy. Since this is very difficult to do within the simulation [85], we use the method
of thermodynamic integration [119].

The free energy F is defined in terms of the partition function ZK:

F = −kBT ln(ZK) (6.14)

ZK =
1

h3NN!

∫

Ω

e
−

H(Γ )

kBT dΓ . (6.15)

H is the Hamiltonian which depends, in our case, only on the configuration of the
system and is thus identical to the potential energy of the system:

H (Γ) = H
(

r
N
)

=
∑

i<j

Uij

(

r
N
)

+
∑

i

Uip

(

r
N
)

. (6.16)

The potential energy has a contribution from the bead-bead interaction Uij and a
contribution from the bead-protein interaction Uip. The idea is to rescale the bead-
protein interaction by a factor α, 0 ≤ α ≤ 1. Depending on α the bead-protein
interaction then is between zero for α = 0 and the original value of Uip for α = 1. We
substitute the bead-protein potential Uip by a new potential �Uip:�Uip

(

r
N, α

)

= − ln(1 + α
(

e−Uip(rN) − 1
))

. (6.17)

The Hamiltonian now has the form

H
(

r
N, α

)

=
∑

i<j

Uij

(

r
N
)

+
∑

i

�Uip

(

r
N, α

)

. (6.18)

Figure 6.16 shows the run of the “rescaled” Lennard-Jones potential for different
values of α. The change in the free energy F is

∆F =

∫1

0

∂F
∂α

dα − ∆ (6.19)
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Figure 6.16: Rescaled Lennard-Jones potential, equation 6.17, with rc = σt, σ = 2 for
different values of α
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)
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∂ lnZK
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∂α
(6.20)
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h3NN!ZK

∫
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dΓ
∂H
(

r
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exp(−
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)
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=

〈

∂H
(

r
N, α

)

∂α

〉

(6.22)

=

〈

∑

i

∂�Uip

(

r
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)

∂α

〉

(6.23)

=

〈

∑

i

1 − e−Uip(rN)

1 + α
(

e−Uip(rN) − 1
)

〉

(6.24)

and ∆ ≃ 178 the change in free energy for a free protein (equation 6.4)

∆ = −kBTNs ln(Vs − A0(Lz − d)) + kBTNs ln(Vs) . (6.25)

For our simulations we used an equilibrated configuration with 776 lipids, 6153

solvents and one protein with length equal to Lz and a hydrophobic length L = 6σt.
We did independent simulation runs with different values for α. Figure 6.17 shows
the mean value of the bead-protein interaction and the parameter ∂F/∂α, calculated
according to equation 6.24, for different values of ǫpt. The mean value of the bead-
protein interaction energy is between zero for α = 0 and the original value of the
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Figure 6.17: Mean rescaled bead-protein interaction for different values of the hy-
drophobicity parameter ǫpt as a function of α (top panel). Mean value
of the derivative of the free energy after α for different values of the hy-
drophobicity parameter ǫpt as a function of α (bottom panel).

interaction energy for α = 1. ∂F/∂α is monotonic for all values of ǫpt between
0.1 ≤ α ≤ 0.9. For very small and very large values of α the curve diverges. For a
hydrophobicity parameter between ǫpt = 4.0 and 6.0 something happens in dF/dα:
There is a step in the curves for approximately α = 0.95. Normally such a step indicates
a phase transition. Since we have a system of finite size this can not be the case. It
is not clear what happens in the system. The values for the change in free energy
∆F are collected in table 6.7. The change in free energy is large for small ǫpt and
decreases for increasing hydrophobicity. ∆F gets negative at about that value of ǫpt,
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1 2 3 4 5 6
εpt
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Figure 6.18: Change in free energy ∆F as a function of the hydrophobicity parameter
ǫpt, table 6.7

ǫpt 1.0 2.0 3.0 4.0 5.0 6.0

∆F 203 160 104 36 −38 −112

Table 6.7: Values for the change in free energy ∆F depending on the hydrophobicity
parameter ǫpt

where we get a step in 〈∂F/∂α〉, figure 6.17. For this value of ǫpt we get an adequate
pinning of the lipids. The attractive lipid-protein interaction dominates the repulsive
lipid-protein interaction.
Figure 6.19 shows for ǫpt = 6.0 the thickness profiles for different values of α.

For small values of α the lipids penetrate into the protein. For α = 0.0 there is no
bead-protein interaction at all and the bilayer shows the behaviour of an undisturbed
system. The thickness profile fluctuates a bit, but is more or less constant. With in-
creasing values of α the bilayer thickness far away from the protein decreases until for
α = 1 the thickness profile has the well-known form. The tension of the system mea-
sured in a small rectangular slice increases with increasing bead-protein interaction,
because with increasing bead-protein interaction the excluded volume of the solvent
beads increases resulting in an increasing tension.

6.6 Conclusions

A protein inserted into a lipid bilayer has a strong influence on the surrounding lipids.
The elastic theory with a renormalised curvature in the boundary condition fits the
simulation data of the thickness profiles in an excellent way. The fitted renormalised
curvature does not agree with the measured spontaneous curvature. The thickness
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Figure 6.19: Thickness profile for a hydrophobic length L = 6σt and a hydrophobicity
parameter ǫpt = 6.0 for different values of α. The tension measured in
a small rectangular slice is −0.02 ± 0.4, 0.1 ± 0.2, 0.31 ± 0.3, 0.32 ± 0.2,
0.46 ± 0.1, 0.63 ± 0.1 for α = 0.0, 0.2, 0.4, 0.6, 1.0, respectively.

profiles as well as the other profiles show the same behaviour for a strong hydropho-
bicity parameter for different values of the protein diameter. A possible tilt of the
protein has no influence on the perturbation of the lipid bilayer because the tilt angle
is very small.
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7 Lipid Bilayer with Two Proteins in the
Fluid Phase

Two proteins inserted into a lipid bilayer do not only interact directly with each other
but there are also lipid-mediated interactions. In this chapter we investigate on the
one hand the effective pair potential between two proteins and on the other hand the
deformations of the lipid bilayer induced by the proteins. All investigations are done
for a lipid bilayer in the fluid phase, P = 2.0ǫ/σ3

t, kBT = 1.3ǫ. The system consists of
744 lipids, 6153 solvent beads and two proteins. The simulations run up to 4 million
Monte Carlo steps with equilibration times up to 1 million Monte Carlo steps. Moves
altering the simulation box were attempted every 50th Monte Carlo step.

7.1 Effective Interaction between Two Proteins

The effective pair potential between two proteins is measured for different values of
the hydrophobic length L of the proteins and the hydrophobicity parameter ǫpt. Fig-
ure 7.1 shows two snapshots of a system containing two proteins. The hydrophobic
thickness of the proteins, L = 6σt, roughly matches that of the lipid bilayer. The pro-
teins were set up in a distance equal to their diameter. If the tail-protein interaction
is weak, ǫpt = 3.0, the proteins are pressed together by the lipids. At high tail-protein
interactions, ǫpt = 6.0, the proteins are separated by a single lipid layer.

(a) ǫpt = 3.0 (b) ǫpt = 6.0

Figure 7.1: Cross-section snapshot of a model membrane with two proteins. The hy-
drophobic length L = 6σt roughly matches that of the lipid bilayer. The
hydrophobicity parameter is (a) ǫpt = 3.0, (b) ǫpt = 6.0. The blue circles are
the heads and the yellow lines show the tail bonds. The hydrophobic part
of the proteins is represented by the red cylinders. The solvent beads are
omitted for clarity.

In order to calculate the effective pair potential w(r) between two proteins we have
to determine the radial distribution function g(r) as a function of the protein-protein
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7 Lipid Bilayer with Two Proteins in the Fluid Phase

distance r:
w(r) = −kBT ln g(r) . (7.1)

The radial distribution function is obtained by an umbrella sampling procedure. We
did several independent simulation pre-runs i, where the protein-protein distance
r was constrained to stay in a given range r ∈ [rmin ,i,rmax ,i]. Adjacent windows
[rmin,rmax] overlap. From these simulation pre-runs we deduced an estimate for the
distribution of distances h(r) in each window. In a second run the simulation in each
window was repeated by using 1/h(r) as a re-weighting function. This was done to
improve the statistics in the valleys. The radial distribution function g(r) was obtained
by multiplying the distribution of distances with the re-weighting function and setting
the different pieces of the different windows together.
Figure 7.2 shows the effective pair potential for different values of the hydrophobic
length L of the proteins and different hydrophobicity parameters ǫpt. Except for a hy-
drophobicity parameter ǫpt = 1.0, where the interaction is too weak, the curves show
an oscillatory shape. The oscillations have a period of approximately 1σt indicating
that they are caused by packing effects of the lipid chains.
In the case of ǫpt = 1.0 the characteristics of the curve correspond qualitatively
to the findings of Sintes and Baumgärtner [104]. The effective pair potential shows a
minimum at close distances followed by a shallow maximum. Apart from the first min-
imum the minima become more shallow with increasing distance and/or decreasing
hydrophobicity parameter ǫpt. With increasing ǫpt the layering effect becomes more
pronounced. The lipids pack more tightly, if they are closer to the protein surface.
This is a result of the strong Lennard-Jones potential we use as interaction potential.
The first minimum disappears for high hydrophobicity parameters and deepens with
decreasing ǫpt. It is a result of different effects: First, there is the direct protein-protein
interaction and the solvent-induced interaction between the hydrophilic protein sec-
tion located outside of the lipid bilayer. When the proteins come into contact the
volume of the two proteins get reduced resulting in an attractive force between the
two proteins. The amplitude of this interaction is shown in the inset of the bottom
panel of figure 7.2. Second, we have the depletion-type interaction induced by the
lipids. They maximise their translational and conformational entropy by pushing the
proteins together. This effect is strongest at low ǫpt, where the proteins and the
lipids repel each other. The last effect is a bridging interaction induced by the lipids.
At higher ǫpt the lipids gain from being in contact with the proteins. They tend to
squeeze themselves between the proteins, pushing them apart, and the height of the
first minimum goes up. The competition between the depletion interaction and the
lipid bridging effect accounts for the preferred arrangement of the proteins in the
membrane which depends on ǫpt, figure 7.1.
The hydrophobic mismatch between the proteins and the lipid bilayer has an in-
fluence on the strength of the layering and the effective contact energy between the
proteins. Additionally, for a hydrophobic length L = 4σt (negative hydrophobic mis-
match) and L = 8σt (positive hydrophobic mismatch), there is a smooth attractive
interaction that superimposes the packing interaction at distances r > 4σt.
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Figure 7.2: Effective pair potential w(r) between two proteins with hydrophobic
length L = 4σt (negative hydrophobic mismatch, top panel), L = 6σt (no
hydrophobic mismatch, middle panel), L = 8σt (positive hydrophobic mis-
match, bottom panel) for different values of the hydrophobicity parameter
ǫpt. The inset in the bottom panel shows the interactions generated out-
side of the membrane (solvent-mediated depletion interaction and direct
interaction) for hydrophobically matched inclusions (solid line) and the ad-
ditional contribution of solvent-induced interactions at L = 4σt (dashed
line) and L = 8σt (dotted line).
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Figure 7.3: Effective interaction potential between two proteins according to the elas-
tic theory (black lines) and the Landau-de Gennes theory (red lines) for
proteins with different hydrophobic length L. The thick grey line shows
the simulation data for L = 4σt, ǫpt = 6.0 for comparison. On the left hand
side we set Rel,LdG = 1.5σt and on the right hand side we set Rel,LdG = 2.0σt.

Now we would like to compare the smooth long-range contribution to the Landau-
de Gennes and the elastic theory, figure 7.3. The theoretical curves are calculated
numerically by minimising the free energy, equation 2.3 or equation 2.9 with �c0 re-
placing c0, for a system containing two proteins at given distance r with the boundary
condition φ = tR at the surface of the protein. The model parameters are taken from
the fit of the fluctuation spectra and the fit of the thickness profiles. In the Landau-de
Gennes calculation the parameter 4a in equation 2.3 is identified with the reduced
area compressibility modulus kA/t2

0. The fit of the thickness spectrum did not pro-
duce dependable parameters a and c, whereas the value of kA is compatible with
independent simulation data of the lipid area increase at finite surface tension [85].
To calculate the free energy, the corresponding integrals are discretised in real space
using a square lattice with spatial discretisation parameter h and a second order differ-
ence scheme to evaluate the derivatives. The boundary condition was implemented
by setting φ = tR inside the inclusion. The energy was minimised via a steepest de-
scent method [98]. The final accuracy was

∫
d2r|δF/δφ| ≤ 10−6. The curves shown

in figure 7.3 were obtained using the spatial discretisation h = 0.5σt and a system of
size 30 × 20σ2

t with periodic boundary conditions, which corresponds to the situation
in the Monte Carlo simulations. The Landau-de Gennes theory as well as the elastic
theory predicts an attractive interaction for distances r < 6σt. At larger distances the
Landau-de Gennes theory predicts an attractive interaction. The elastic theory shows
a repulsive interaction at larger distances with a peak at about r ∼ 8σt. The simula-
tion data show no indication for the existence of such a positive peak. In the case of
one protein included in the lipid bilayer the elastic theory gives much better results
than the Landau-de Gennes theory. In the case of two proteins the predictions of the

76
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Landau-de Gennes theory fit to our simulation data better than the predictions of the
elastic theory. This should not be overestimated. The weakly oscillatory behaviour of
the effective pair potential in the elastic theory is generated by soft peristaltic modes
in the fluctuation spectrum, which has been shown to leave a clear signature in the
shape of the distortion profiles around single proteins. The simulation data suggest
that the effect of this mode on the lipid-mediated interactions between two proteins
is destroyed by some yet unknown mechanism. As in the case of the analysis of
the radial thickness profiles in the vicinity of one single protein, we have done the
analysis for two values for the protein radius: Rel,LdG = 1.5σt, the real radius, and
Rel,LdG = 2.0σt, the point where the curves start. In general the curves show the same
behaviour, independently of the protein radius. The only difference is the depth of
the starting point of the curves. This minimum lies deeper in the case of a radius
Rel,LdG = 1.5σt.
Our finding that the lipid-mediated interaction between proteins tends to be at-

tractive indicate that it is most favourable for the proteins to cluster. This is consistent
with the findings of de Meyer et al. [19]. Their effective pair potentials are also always
negative, except for proteins with very large diameters.

7.2 Bilayer Deformation

Section 6.1 dealt with the deformation profiles of a lipid bilayer in the vicinity of
one single protein. In this section we want to look at the deformation profiles of a
lipid bilayer with two proteins. We analyse the thickness as well as the hydrophilic
shielding parameter, the (bond) chain order parameter Sz and the (chain criterion)
monolayer overlap as two dimensional profiles, figures 7.4-7.10. For this purpose we
have rotated the whole system so that the connecting line between the two proteins
is on the x-axis. The data of the figures are obtained from the umbrella sampling
simulations. The system has been divided along the x- and y-axis in bins of size 1σ2

t.
Since the proteins moved slightly during the simulations, according to their umbrella
window, one has to be somewhat careful with the interpretation of the data in the
bins at direct contact to the proteins.
The thickness profiles of the lipid bilayer show a similar behaviour as in the case of

one single protein incorporated into the lipid bilayer. Far away from the protein the
thickness is significantly decreased (5.3 − 5.5σt) in comparison to the case of one sin-
gle protein (5.7 − 5.8σt) in a system of comparable size. The reason for this is that the
pressure difference according to the solvent excluded volume effect is raised for every
protein. So in the case of two proteins there is an increase in the pressure difference
and with this in the tension resulting in a further thinning of the lipid bilayer. For
small distances where the two proteins touch, the thickness is distinctly decreased in
the case of negative hydrophobic mismatch. The thickness increases with increasing
distance to the connecting line between the proteins up to a value of about 5.4σt

and stays more or less constant. At intermediate protein-protein distances the thick-
ness between the two proteins is increased but still much smaller than for distances
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7 Lipid Bilayer with Two Proteins in the Fluid Phase

far away from the proteins. For large protein distances the thickness between the
two proteins is further increased but still does not reach the value far away from the
proteins. For the case of hydrophobic matching and positive hydrophobic mismatch
the thickness profiles for small protein-protein distances show the behaviour as if one
single protein were incorporated into the lipid bilayer. At intermediate distances the
thickness between the proteins is increased. At large protein-protein distances the
thickness between the proteins is further decreased but still increased in comparison
to the thickness far away from the proteins.
Figures 7.4 to 7.7 compare the thickness profiles obtained from the simulation runs
to the thickness profiles calculated with the elastic theory. The parameters are the
same we used for the calculation of the effective interaction potential. The protein-
protein distance 3.5σt is the minimal protein distance we could calculate with the
elastic theory. In general, there are much more fluctuations in the simulation data
than in the theory data.
At a protein-protein distance of about 6.5σt (figure 7.5) the elastic theory predicts a
minimum in the thickness between the two proteins for a hydrophobic length L = 4σt

and a maximum in the thickness between the two proteins for a hydrophobic length
L = 6σt and L = 8σt. We do not observe this minimum and maximum between the
proteins in the simulation data. The elastic theory predicts a positive effective pair
potential for protein-protein distances between 6.0 − 10.0σt. There is a maximum in
the pair potential for a protein-protein distance of 8.0σt. Perhaps this maximum and
minimum, respectively, in the thickness profiles is responsible for the maximum in the
effective pair potential obtained by the elastic theory.
Figure 7.6 shows the thickness profiles for a protein-protein distance of about 8.0σt.
The maximum between the proteins in the case of hydrophobic matching and negative
hydrophobic mismatch is not so obvious any more.
For a protein-protein distance of about 11.0σt the thickness between the two pro-
teins is smaller in the case of the negative hydrophobic matching case, and larger in
the case of hydrophobic matching and positive hydrophobic mismatch, respectively,
for the data obtained from the simulations in comparison to the data obtained from
the theory.
There are obvious differences between the thickness profiles obtained from the
simulation data and the thickness profiles obtained from the theory. These differences
could be the cause of the discrepancy between the effective pair potential obtained
from simulation, and elastic theory, respectively. The lipids rearrange themselves as
the proteins move closer together. Consequently, the local distortion profiles δq/q0 in
equation 2.27 change at small protein distances. This in turn affects the renormalised
curvature term �c0 which then depends on the distance between the two proteins and
varies spatially on the protein surface.
The hydrophilic shielding parameter is increased in the case of negative hydropho-
bic mismatch. The profile shows the same undershooting behaviour as in the case
of one single protein. At intermediate distances the hydrophilic shielding parameter
is still increased around the proteins, but the undershooting is not so pronounced
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any more as in the case of small protein-protein distances. For large protein-protein
distances the hydrophilic shielding parameter is decreased between the proteins but
still increased in comparison to the value far away from the proteins. In the case of
hydrophobic matching and positive hydrophobic mismatch the hydrophilic shielding
parameter is decreased at direct contact to the proteins for all protein-protein dis-
tances. With increasing protein-protein distance the hydrophilic shielding parameter
increases between the two proteins.
The bond chain order parameter Sz is increased for all distances at direct contact to

the proteins independent of the hydrophobic length of the proteins. The value for the
chain order parameter is higher, about 0.8, for the case of hydrophobic mismatch. At
intermediate protein-protein distances the chain order parameter between the two
proteins is slightly increased. For large protein-protein distances the chain order pa-
rameter measured between the proteins is only increased slightly compared to the
chain order parameter measured at any other place far away from the proteins.
The last quantity we want to look at is the chain criterion monolayer overlap.

Around the proteins the two monolayers overlap in the case of negative hydropho-
bic mismatch. With increasing distance to the proteins the two monolayers become
very well separated. At intermediate protein-protein distances the two monolayers
overlap between the two proteins. This overlap further decreases with increasing
protein-protein distance and is about zero for large protein-protein distances. For hy-
drophobically matching proteins the overlap of the two monolayers is nearly constant
over the whole range of distances to the proteins and distances between the two
proteins. The two monolayers are very well separated. For positive hydrophobic mis-
match the two monolayers are again very well separated, but the separation between
the two monolayers increases for some distance to the proteins and then decreases
again.
In summary we can say that these profiles show pretty much the same behaviour as

the profiles obtained in the vicinity of one single protein.
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Figure 7.4: Comparison of the two-dimensional thickness profiles in the vicinity of two
proteins of hydrophobic length L = 4σt (upper panels), L = 6σt (middle
panels) and L = 8σt (lower panels). The left hand side (a) is obtained from
umbrella sampling simulations (protein-protein distance 2.9σt − 3.05σt).
The right hand side is obtained from the elastic theory (protein-protein
distance 3.5σt).
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(a) 6.3σt − 6.8σt
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Figure 7.5: Comparison of the two-dimensional thickness profiles in the vicinity of two
proteins of hydrophobic length L = 4σt (upper panels), L = 6σt (middle
panels) and L = 8σt (lower panels). The left hand side (a) is obtained from
umbrella sampling simulations (protein-protein distance 6.3σt−6.8σt). The
right hand side is obtained from the elastic theory (protein-protein distance
6.5σt).
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(a) 7.5σt − 8.5σt
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Figure 7.6: Comparison of the two-dimensional thickness profiles in the vicinity of two
proteins of hydrophobic length L = 4σt (upper panels), L = 6σt (middle
panels) and L = 8σt (lower panels). The left hand side (a) is obtained from
umbrella sampling simulations (protein-protein distance 7.5σt−8.5σt). The
right hand side is obtained from the elastic theory (protein-protein distance
8.0σt).
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(a) 10.0σt − 12.0σt
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Figure 7.7: Comparison of the two-dimensional thickness profiles in the vicinity of two
proteins of hydrophobic length L = 4σt (upper panels), L = 6σt (middle
panels) and L = 8σt (lower panels). The left hand side (a) is obtained from
umbrella sampling simulations (protein-protein distance 10.0σt − 12.0σt).
The right hand side is obtained from the elastic theory (protein-protein
distance 11.0σt).
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Figure 7.8: Two-dimensional profile of the hydrophilic shielding parameter in the
vicinity of two proteins of hydrophobic length L = 4σt (upper panels),
L = 6σt (middle panels) and L = 8σt (lower panels) and a hydrophobic-
ity parameter ǫpt = 6.0 for three different protein-protein distances: (a)
2.9σt − 3.05σt, (b) 6.3σt − 6.8σt, (c) 10.0σt − 12.0σt
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Figure 7.9: Two-dimensional profile of the chain order parameter Sz in the vicinity
of two proteins of hydrophobic length L = 4σt (upper panels), L = 6σt

(middle panels) and L = 8σt (lower panels) and a hydrophobicity parameter
ǫpt = 6.0 for three different protein-protein distances: (a) 2.9σt − 3.05σt,
(b) 6.3σt − 6.8σt, (c) 10.0σt − 12.0σt
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Figure 7.10: Two-dimensional profile of the (chain criterion) monolayer overlap in the
vicinity of two proteins of hydrophobic length L = 4σt (upper panels),
L = 6σt (middle panels) and L = 8σt (lower panels) and a hydrophobic-
ity parameter ǫpt = 6.0 for three different protein-protein distances: (a)
2.9σt − 3.05σt, (b) 6.3σt − 6.8σt, (c) 10.0σt − 12.0σt
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7.3 Comparison between Different Protein Diameters

7.3 Comparison between Different Protein Diameters

In section 6.3 we analysed the influence of the protein diameter on the interaction
between one single protein and the lipids. In this section we investigate the influ-
ence of the protein diameter on the effective pair potential between two proteins.
We repeated the umbrella sampling simulations described in the first section for two
proteins of diameter σp = 1σt. Figure 7.11 shows the effective pair potential between
two proteins of hydrophobic length L = 6σt and hydrophobicity parameter ǫpt = 1.0

and 6.0, respectively.
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Figure 7.11: Effective pair potential w(r) between two thin proteins with hydrophobic
length L = 6σt for two different values of the hydrophobicity parameter
ǫpt

In the case of ǫpt = 6.0 the curve shows the oscillatory behaviour as well as the same
number of maxima and minima as in the case of the protein of diameter σp = 3σt.
The height and depth of the minima and maxima of both curves are a little reduced in
comparison to the corresponding curves obtained for a protein of diameter σp = 3σt.
Especially the first minima and maxima, respectively, show a different behaviour. One
reason for the discrepancy in the first maxima is the interaction induced by the solvent.
But nevertheless there is no big difference between the curves for the different protein
diameters. Figure 7.12 shows the predictions of the elastic theory and the Landau-de
Gennes theory for a protein radius Rel,LdG = 0.5σt and Rel,LdG = 1.0σt. Since we
only have data for the hydrophobic length L = 6σt, which is the most uninteresting
case regarding the two theories, we cannot say much about the comparison between
theory and simulation data.
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Figure 7.12: Effective interaction potential between two proteins according to the
elastic theory (black line) and the Landau-de Gennes theory (red line)
for thin proteins with hydrophobic length L = 6σt. The thick grey line
shows the simulation data for comparison. On the left hand side we set
Rel,LdG = 0.5σt and on the right hand side we set Rel,LdG = 1.0σt.

7.4 Protein with Tilt

In the analysis done so far the length of the two proteins is equal to the length of
the simulation box in z-direction. The analysis of the simulations with one protein
incorporated into the lipid bilayer showed that in the case of the large system there
is only little difference between the results obtained for a protein with length equal
to the simulation box and a sphero-cylinder protein. There is a little difference in the
thickness profiles due to the tension induced by the solvent beads. The measurement
of the effective pair potential is done in a small system. In this case the system is
too small to balance the tension very well. The thickness is very clearly reduced. To
ensure that the induced tension does not have any influence on the effective pair
potential between two proteins, we repeated the umbrella sampling simulations for
two sphero-cylinder proteins of diameter σp = 3σt. For simplification we used the
re-weighting function obtained in section 7.1. We focus only on the data for the
hydrophobicity parameter ǫpt = 4.0 and ǫpt = 6.0, respectively, for the three different
values of the hydrophobic length. To make the results comparable we measured the
distance between the two proteins in the xy-plane. The simulations were done on the
one hand for two sphero-cylinder proteins, which were not allowed to tilt and on the
other hand for two sphero-cylinder proteins, which were allowed to tilt.
Figure 7.13 shows the effective pair potential for two sphero-cylinder proteins,
which are allowed to tilt. For a better comparison we included the curves obtained
for two proteins with a length equal to the simulation box in z-direction. The possible
tilt has no influence on the global characteristics of the curves. The only difference
between the curves for the sphero-cylinder proteins compared to the long proteins is
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Figure 7.13: Comparison of the effective pair potential w(r) between two sphero-
cylinder proteins, which are allowed to tilt (red and orange curve) and
two proteins with a length equal to the simulation box in z-direction (cyan
and violet curve). The hydrophobic length of the proteins is L = 4σt (top
panel), L = 6σt (middle panel), and L = 8σt (bottom panel). The hy-
drophobicity parameter is ǫpt = 4.0, and ǫpt = 6.0 respectively.

observed for distances up to 4σt. In the direct contact region the potential is increased
in comparison to the long proteins. The reason for this is the depletion-induced inter-
action with the solvent.
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7.5 Conclusions

With umbrella sampling methods we obtained the effective pair potential between
two proteins. The tension induced by the solvent has no influence on the effective
pair potential. This was ensured by repeating the umbrella sampling simulations with
two sphero-cylinder proteins.
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We have presented a generic coarse-grained model to investigate lipid-protein inter-
actions. The analysis of a pure lipid bilayer gave us the possibility to extract some
basic characteristics of the lipid bilayer, for example the spontaneous curvature and
the Gaussian rigidity. We showed that the elastic theory provides an excellent de-
scription of the peristaltic and bending fluctuations. Furthermore from the fluctuation
spectra we could extract the elastic constants.
The deformation of the lipid bilayer induced by an inserted protein follows a non-

monotonic behaviour. We were able to calculate the characteristics of the curve with
an extended version of the elastic theory – we have introduced a renormalised curva-
ture. The renormalised curvature is clearly influenced by certain (unknown) factors.
An artefact of our protein model is that the solvent introduces an internal tension

resulting in a thinning of the lipid bilayer. We have analysed this thinning and were
able to satisfactorily explain the reason for this behaviour. With an extension of the
protein model, a model where the protein is allowed to tilt, we could show that the
restriction of the alignment of the protein along the bilayer normal has no influence
on the results. One reason is that due to the quite strong lipid-protein interaction the
protein only tilts slightly.
With umbrella sampling methods we measured the effective pair potential between

two proteins. The elastic theory as well as the Landau-de Gennes theory are not able
to reproduce our findings. The curves exhibit an oscillating behaviour due to the hard
Lennard-Jones potential we use for the bead-protein interaction. The induced tension
does not have any influence on the curves.
Apart from the analysis of the tension profile as well as the fluctuation spectra of

a pure lipid bilayer we have done all studies in the fluid phase. In the gel phase the
protein-protein interactions would be rather different. In this case one should do
a two-dimensional analysis. In the gel-phase the lipid chains are tilted towards the
bilayer normal. An adequate study includes not only the analysis with respect to the
protein-protein distances but also the analysis with respect to the tilt angle of the
lipids and the angle of the connecting line of the two proteins.
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Appendix A

System Size Dependence of the Tension
Profile

Due to the height fluctuations the tension profile depends on the system size. With
increasing system size the tensor profile is broadened. We assume that the tension
profile γ(z) bases on a size independent intrinsic surface tension profile γint(z):

γ(z) =

∫

H
(

z − z′
)

γint
(

z′
)

dz′ . (A.1)

H is the distribution of interface heights and depends on the system size. It obeys the
following equations:

∫

H (z)dz = 1 and
∫

H (z) zdz = 0 . (A.2)

In the following we analyse the system size dependence of the different moments
of the tension profile, equation A.1.

Γ0 =

∫

γ(z)dz =

∫

dz

∫

dz′H
(

z − z′
)

γint
(

z′
)

=

∫

γint
(

z′
)

dz′
∫

H
(

z − z′
)

dz

︸ ︷︷ ︸
1

=

∫

γint
(

z′
)

dz′ = Γ .

Since the overall tension Γ of the system is zero, the zeroth moment vanishes inde-
pendently of the system size.

Γ2 =

∫

γ(z)z2dz =

∫

dz

∫

dz′H
(

z − z′
)

γint
(

z′
)

z2

u=z−z′
=

∫

du

∫

dz′H(u)γint
(

z′
) (

u + z′
)2
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Appendix A System Size Dependence of the Tension Profile

=

∫

dz′γint
(

z′
)

︸ ︷︷ ︸
Γ=0

∫

duH(u)u2 + 2

∫

dz′γint
(

z′
)

z′
∫

duH(u)u

︸ ︷︷ ︸
0

+

∫

dz′γint
(

z′
)

z′2
∫

duH(u)

︸ ︷︷ ︸
1

=

∫

γint
(

z′
)

z′2dz′ .

The second moment is also independent of the system size. In contrast the first
moment of the tension profile depends on the system size:

Γ1 =

∫

γ(z)|z|dz =

∫

dz

∫

dz′H
(

z − z′
)

γint
(

z′
)

|z|

u=z−z′
=

∫

dz′
∫∞

−∞
duγint

(

z′
)

H(u)|u + z′|

u+z′<0
= −2

∫

dz′γint
(

z′
)

∫−z′

−∞
duH(u)

(

u + z′
)

= −2

∫

dz′γint
(

z′
)

z′
∫−z′

−∞
duH(u)

− 2

∫

dz′γint
(

z′
)

∫−z′

−∞
duH(u)u .

We make the following ansatz H(u) = NL exp (−u2/2w2
L

)

and get for the two different
parts of the last equation:

∫−z

−∞
duH(u)u =

∫∞

z

duH(u)u = NL

∫∞

z

duu exp(−u2/2w2
L

)

= NLw2
L exp(−z2/2w2

L

)

= w2
LH(z)

∫−z

−∞
duH(u) =

∫∞

z

duH(u) =

∫∞

z

NL exp(−u2/2w2
L

)

du

=

√
π

2

(

1 − Erf
(

z/
√

2wL

))

.

Erf (z) = 1 − 2/
√

π
∫∞

z
exp (−u2

)

du is the error function. In summary we get for the
first moment:

Γ1 =

∫

|z|γ (z)dz = 2

∫

dz′γint
(

z′
)

(

z′
√

π

2

(

Erf
(

z√
2wL

)

− 1

)

− w2
LH
(

z′
)

)

.

Since H as well as wL are system size dependent, the first moment depends also on
the system size.
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Appendix B

Calculation of the Free Energy in the
Elastic Theory

We consider a scalar quantity q(r), which is distorted from its bulk value q0 by the
inclusion. This quantity alters the membrane properties, therefore the free energy,
equation 2.9, is extended by two new terms:

Fq =

∫L

R

d2r

{

K1

δq(r)

q0

φ + K2

δq(r)

q0

∇2
rφ

}

. (B.1)

δq/q0 denotes the relative deviation of q. Terms that do not depend on φ or that are
of higher than quadratic order in the deviations φ and δq/q0 have been disregarded.
We assume that δq decays to zero on a length scale, which is much smaller than the
characteristic length scales of the elastic profile. For an inclusion centred at r = 0 we
can set φ = tR + t′R(r − R). For the first term we get

2π

∫L

R

rdrK1

δq(r)

q0

φ = 2π

∫L

R

rdrK1

(

tR + t′R (r − R)
) δq(r)

q0

= 2πtR

∫L

R

rdrK1

δq(r)

q0

+ 2πt′R

∫L

R

r (r − R) drK1

δq(r)

q0

, (B.2)

while the second term yields

2π

∫L

R

rdrK2

δq(r)

q0

((1/r)∂rr∂rφ) = 2π

∫L

R

drK2

δq(r)

q0

(∂rr∂rφ)

= 2πK2

δq(r)

q0

(r∂rφ)
∣

∣

∣

L

R
− 2π

∫L

R

drK2

(

∂r

δq(r)

q0

)

(r∂rφ)

= 2πK2

δq(r)

q0

(r∂rφ)
∣

∣

∣

L

R
− 2πK2

δq(r)

q0

(r∂rφ)
∣

∣

∣

L

R

+ 2π

∫L

R

drK2

δq(r)

q0

(∂rφ)

= 2πt′R

∫L

R

drK2

δq(r)

q0

. (B.3)

Inserting equation B.2 and B.3 into equation B.1 gives

Fq = 2πtR

∫L

R

rdrK1

δq(r)

q0

+ 2πt′R

∫L

R

dr
δq(r)

q0

(K2 + K1r (r − R)) . (B.4)
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The total free energy Fel, equation 2.26, now has the form

Fel = 2π

∫L

R

rdr

(

kA

2t2
0

φ2 + 2kcc0∇2
rφ + 2kc

ζ

t0

φ∇2
rφ +

kc

2

(

∇2
rφ
)2

+ kG

(∂rφ) (∂rrφ)

r

)

+ 2πtR

∫L

R

rdrK1

δq(r)

q0

+ 2πt′R

∫L

R

dr
δq(r)

q0

(K2 + K1r(r − R))

(B.5)

with ∂rr = ∂2/∂r2. We vary Fel with respect to φ and t′R while keeping tR fixed:

δFel = 2π

∫L

R

rdr

(

kA

t2
0

φδφ + 2kcc0∇2
rδφ + 2kc

ζ

t0

(

φ∇2
rδφ + δφ∇2

rφ
)

+ kc∇2
rφ∇2

rδφ + kG

(∂rδφ) (∂rrφ) + (∂rφ) (∂rrδφ)

r

)

+ 2πδtR

∫L

R

rdrK1

δq(r)

q0

+ 2πδt′R

∫L

R

dr
δq(r)

q0

(K2 + K1r(r − R)) .

Partial integration:

= 2π

∫L

R

rdr

(

kA

t2
0

φ + 4kc
ζ

t0

∇2
rφ + kc∇4

rφ

)

δφ

+ 2π

(

2kcc0r(∂rδφ)
∣

∣

∣

L

R
+ 2kc

ζ

t0

rφ(∂rδφ)
∣

∣

∣

L

R
+ kcr(∂rδφ)∇2

rφ
∣

∣

∣

L

R

− kcrδφ∇3
rφ
∣

∣

∣

L

R
+ kG(∂rδφ)(∂rφ)

∣

∣

∣

L

R
− 2kc

ζ

t0

r(∂rφ)δφ
∣

∣

∣

L

R

)

+ 2πδtR

∫L

R

rdrK1

δq(r)

q0

+ 2πδt′R

∫L

R

dr
δq(r)

q0

(K2 + K1r(r − R))

= 2π

∫L

R

rdr

(

kA

t2
0

φ + 4kc

ζ

t0

∇2
rφ + kc∇4

rφ

)

δφ (B.6)

+ 2πδt′R

(

− 2kcc0R − 2kc
ζ

t0

RtR − kcR∇2
rφ
∣

∣

∣

R
− kGt′R

+

∫L

R

dr
δq(r)

q0

(K2 + K1r(r − R))

) (B.7)

+ 2πδtR

(

2kc
ζ

t0

Rt′R + kcR∇3
rφ
∣

∣

∣

R
+

∫L

R

rdrK1

δq(r)

q0

)

(B.8)

= 0 .

tR is kept fixed, and therefore the variation δtR is zero. Since δφ and δt′R = ∂rδφ|R
are different from zero the braces B.6 and B.7 must be zero giving the Euler-Lagrange
equation

∇4
rφ +

kA

kct
2
0

φ + 4
ζ

t0

∇2
rφ = 0 (B.9)
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and the boundary condition

∇2
rφ
∣

∣

∣

R
+

kG

kcR
t′R = −

(

2c0 + 2
ζ

t0

tR −
1

kcR

∫L

R

dr
δq(r)

q0

(K2 + K1r(r − R)

)

= −

(

2�c0 + 2
ζ

t0

tR

) (B.10)

with �c0 = c0 −
1

2kcR

∫L

R

dr
δq(r)

q0

(K2 + K1r(r − R)) . (B.11)

Inserting equation 2.15 into equation 2.26 and doing the partial integration we get

Fel = 2π

∫

rdr

(

kA

2t0

φ2 + 2kcc0∇2
rφ + 2kc

ζ

t0

φ∇2
rφ +

kc

2
(∇2

rφ)2

+ kG

(∂rφ)(∂rrφ)

r

)

+ 2πtR

∫

rdrK1

δq(r)

q0

+ 2πt′R

∫

dr
δq(r)

q0

(K2 + K1r(r − R))

= 2π

∫

rdr

(

kA

2t2
0

φ + 2kc
ζ

t0

φ∇2
rφ +

kc

2
∇4

rφ

)

︸ ︷︷ ︸
= 0 Euler-Lagrange-Equation

φ

+ 2π

(

kc

2
r∂rφ∇2

rφ
∣

∣

∣

L

R
−

kc

2
rφ∇3

rφ
∣

∣

∣

L

R
+ 2kcc0r∂rφ

∣

∣

∣

L

R
+ kG(∂rφ)(∂rφ)

∣

∣

∣

L

R

)

+ 2πtR

∫

rdrK1

δq(r)

q0

+ 2πt′R

∫

dr
δq(r)

q0

(K2 + K1r(r − R))

= π
(

−kcRt′R∇2
rφ
∣

∣

∣

R
+ kcRtR∇3

rφ
∣

∣

∣

R
− 4kcc0Rt′R − kGt′Rt′R

)

+ 2πtR

∫

rdrK1

δq(r)

q0

+ 2πt′R

∫

dr
δq(r)

q0

(K2 + K1r(r − R))
(B.12)

= πkcR

(

tR∇3
rφ
∣

∣

∣

R
− 2t′R

(�c0 −
ζ

t0

tR

))

+ const. (B.13)

for the free energy of the deformation. To achieve the last line we inserted the bound-
ary condition B.10 and replaced c0 with �c0, equation B.11.
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Appendix C

Collection of System Characteristics

In this appendix we collect the system characteristics of different simulation runs for
systems of different size containing one protein with a length equal to the simulation
box in z-direction: area A = Lx · Ly, volume V = Lx · Ly · Lz, z-length of the simulation
box Lz. Furthermore we have measured the tension inside the system in a small
rectangular slice far away from the protein as well as in cylinders around the protein.

C.1 Protein of Diameter σp = 3σt

We investigated three different system sizes: a small system with 776 lipids and 6153

solvent beads, table C.1, a middle-size system with 1776 lipids and 13846 solvent
beads, table C.2, and a large system with 3176 lipids and 24614 solvent beads, ta-
ble C.3. The large system is about a factor of 4 larger than the small system.
The variables area, volume and Lz are constant in the range of the uncertainty for

the different values of the protein length L and hydrophobicity parameter ǫpt. The
value for the z-length shows a strong dependence of the system size indicating a large
tension difference between the three different system sizes.

C.2 Protein of Diameter σp = 1σt

For a protein of diameter σp = 1σtwe did the analysis in systems of two different sizes,
tables C.4 and C.5. We focused our attention only on the hydrophobicity parameters
ǫpt = 1.0 and ǫpt = 6.0. Between the two systems the difference in Lz is not as
pronounced as in the case of the thick protein. The bilayer thickness only shows little
difference depending on the system size, figure D.1.
The values for the volume of the system are comparable to the corresponding values

of the volume of a system with one thick protein. In the large system the effect of the
solvent-induced tension is not so pronounced, therefore the values of the area and Lz

also show only little difference. For a small system the solvent-induced tension has a
strong effect on the system with one thick protein. The difference between the area
and Lz is very clear.
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L [σt] ǫpt A
[

σ2
t

]

V
[

σ3
t

]

Lz [σt] Γslice
[

ǫ/σ2
t

]

Γcylinder
[

ǫ/σ2
t

]

4 1.0 576 ± 3 8611 ± 5 14.9 ± 0.1 0.6 ± 0.2 0.6 ± 0.1

4 2.0 581 ± 4 8609 ± 3 14.8 ± 0.1 0.7 ± 0.2 0.6 ± 0.1

4 3.0 582 ± 2 8608 ± 6 14.8 ± 0.1 0.6 ± 0.1 0.6 ± 0.1

4 4.0 581 ± 3 8602 ± 4 14.8 ± 0.1 0.6 ± 0.2 0.6 ± 0.1

4 5.0 581 ± 2 8600 ± 4 14.8 ± 0.1 0.6 ± 0.2 0.6 ± 0.1

4 6.0 585 ± 3 8603 ± 6 14.7 ± 0.1 0.8 ± 0.2 0.7 ± 0.1

6 1.0 578 ± 3 8608 ± 5 14.9 ± 0.1 0.6 ± 0.2 0.6 ± 0.1

6 2.0 578 ± 2 8604 ± 5 14.9 ± 0.1 0.6 ± 0.3 0.6 ± 0.1

6 3.0 578 ± 2 8598 ± 3 14.9 ± 0.1 0.6 ± 0.2 0.6 ± 0.1

6 4.0 579 ± 1 8595 ± 4 14.8 ± 0.1 0.6 ± 0.2 0.6 ± 0.1

6 5.0 578 ± 1 8596 ± 4 14.9 ± 0.1 0.6 ± 0.2 0.7 ± 0.1

6 6.0 577 ± 2 8587 ± 3 14.9 ± 0.1 0.7 ± 0.2 0.7 ± 0.1

8 1.0 578 ± 3 8607 ± 3 14.9 ± 0.1 0.6 ± 0.2 0.7 ± 0.1

8 2.0 575 ± 3 8597 ± 3 15.0 ± 0.1 0.7 ± 0.3 0.6 ± 0.1

8 3.0 573 ± 3 8584 ± 3 15.0 ± 0.1 0.6 ± 0.2 0.7 ± 0.1

8 4.0 569 ± 4 8577 ± 5 15.1 ± 0.1 0.5 ± 0.2 0.6 ± 0.1

8 5.0 568 ± 2 8568 ± 5 15.1 ± 0.1 0.7 ± 0.2 0.7 ± 0.1

8 6.0 568 ± 1 8569 ± 3 15.1 ± 0.1 0.7 ± 0.2 0.6 ± 0.1

Table C.1: System with 776 lipids and 6153 solvent beads: Mean values for the area A,
volume V and z-length of the simulation box Lz for different values of the
hydrophobic length L of the protein and the hydrophobicity parameter ǫpt.
The thickness of the lipid bilayer far away from the protein is approximately
2t0 = 5.7 ± 0.1σt. The theoretical value for the tension is Γtheory = 0.6 ±
0.1ǫ/σ2

t.
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C.2 Protein of Diameter σp = 1σt

L [σt] ǫpt A
[

σ2
t

]

V
[

σ3
t

]

Lz [σt] Γslice
[

ǫ/σ2
t

]

Γcylinder
[

ǫ/σ2
t

]

4 1.0 1262 ± 3 19395 ± 9 15.4 ± 0.1 0.3 ± 0.2 0.4 ± 0.1

4 2.0 1260 ± 3 19391 ± 10 15.4 ± 0.1 0.3 ± 0.2 0.4 ± 0.1

4 3.0 1264 ± 4 19387 ± 8 15.3 ± 0.1 0.3 ± 0.2 0.4 ± 0.1

4 4.0 1266 ± 3 19386 ± 4 15.3 ± 0.1 0.2 ± 0.1 0.3 ± 0.1

4 4.0 1268 ± 2 19388 ± 8 15.3 ± 0.1 0.3 ± 0.2 0.4 ± 0.1

4 6.0 1266 ± 2 19378 ± 7 15.3 ± 0.1 0.3 ± 0.2 0.3 ± 0.1

6 1.0 1261 ± 4 19386 ± 6 15.4 ± 0.1 0.3 ± 0.1 0.4 ± 0.1

6 2.0 1264 ± 4 19383 ± 5 15.3 ± 0.1 0.3 ± 0.2 0.4 ± 0.1

6 3.0 1264 ± 3 19382 ± 6 15.3 ± 0.1 0.3 ± 0.2 0.3 ± 0.1

6 4.0 1261 ± 4 19376 ± 4 15.4 ± 0.1 0.3 ± 0.2 0.3 ± 0.1

6 5.0 1259 ± 3 19371 ± 5 15.4 ± 0.1 0.3 ± 0.2 0.2 ± 0.1

6 6.0 1259 ± 2 19370 ± 6 15.4 ± 0.1 0.4 ± 0.2 0.4 ± 0.1

8 1.0 1260 ± 4 19393 ± 5 15.4 ± 0.1 0.3 ± 0.2 0.3 ± 0.1

8 2.0 1260 ± 5 19379 ± 5 15.4 ± 0.1 0.2 ± 0.2 0.2 ± 0.1

8 3.0 1259 ± 5 19371 ± 7 15.4 ± 0.1 0.2 ± 0.2 0.4 ± 0.1

8 4.0 1257 ± 3 19360 ± 4 15.4 ± 0.1 0.3 ± 0.2 0.4 ± 0.1

8 5.0 1256 ± 3 19352 ± 5 15.4 ± 0.1 0.1 ± 0.2 0.2 ± 0.1

8 6.0 1256 ± 3 19348 ± 7 15.4 ± 0.1 0.3 ± 0.2 0.2 ± 0.1

Table C.2: System with 1776 lipids and 13846 solvent beads: Mean values for the area
A, volume V and z-length of the simulation box Lz for different values of the
hydrophobic length L of the protein and the hydrophobicity parameter ǫpt.
The thickness of the lipid bilayer far away from the protein is about 2t0 =

5.9 ± 0.1σt. The theoretical value for the tension is Γtheory = 0.3 ± 0.1ǫ/σ2
t.
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L [σt] ǫpt A
[

σ2
t

]

V
[

σ3
t

]

Lz [σt] Γslice
[

ǫ/σ2
t

]

Γcylinder
[

ǫ/σ2
t

]

4 1.0 2218 ± 5 34486 ± 13 15.5 ± 0.1 0.2 ± 0.1 0.1 ± 0.1

4 2.0 2209 ± 7 34480 ± 8 15.6 ± 0.1 0.1 ± 0.2 0.2 ± 0.1

4 3.0 2211 ± 9 34470 ± 8 15.6 ± 0.1 0.2 ± 0.1 0.2 ± 0.1

4 4.0 2221 ± 7 34474 ± 5 15.5 ± 0.1 0.1 ± 0.1 0.2 ± 0.1

4 5.0 2222 ± 14 34488 ± 8 15.5 ± 0.1 0.2 ± 0.1 0.3 ± 0.1

4 6.0 2228 ± 8 34477 ± 7 15.5 ± 0.1 0.1 ± 0.1 0.2 ± 0.1

6 1.0 2215 ± 7 34483 ± 8 15.6 ± 0.1 0.1 ± 0.1 0.1 ± 0.1

6 2.0 2218 ± 4 34464 ± 8 15.5 ± 0.1 0.1 ± 0.1 0.3 ± 0.1

6 3.0 2215 ± 3 34473 ± 8 15.6 ± 0.1 0.1 ± 0.1 0.3 ± 0.1

6 4.0 2212 ± 7 34472 ± 5 15.6 ± 0.1 0.2 ± 0.2 0.2 ± 0.1

6 5.0 2221 ± 6 34456 ± 8 15.5 ± 0.1 0.1 ± 0.2 0.2 ± 0.1

6 6.0 2215 ± 6 34464 ± 5 15.6 ± 0.1 0.1 ± 0.2 0.2 ± 0.1

8 1.0 2219 ± 6 34480 ± 7 15.5 ± 0.1 0.2 ± 0.2 0.2 ± 0.1

8 2.0 2214 ± 5 34466 ± 7 15.6 ± 0.1 0.2 ± 0.1 0.3 ± 0.1

8 3.0 2210 ± 9 34459 ± 13 15.6 ± 0.1 0.1 ± 0.2 0.2 ± 0.1

8 4.0 2210 ± 10 34444 ± 13 15.6 ± 0.1 0.1 ± 0.2 0.2 ± 0.1

8 5.0 2217 ± 5 34436 ± 14 15.5 ± 0.1 0.2 ± 0.1 0.2 ± 0.1

8 6.0 2223 ± 8 34435 ± 8 15.5 ± 0.1 0.1 ± 0.2 0.1 ± 0.1

Table C.3: System with 3176 lipids and 24614 solvent beads: Mean values for the area
A, volume V and z-length of the simulation box Lz for different values of the
hydrophobic length L of the protein and the hydrophobicity parameter ǫpt.
The thickness of the lipid bilayer far away from the protein is approximately
2t0 = 6.0 ± 0.1σt. The theoretical value for the tension is Γtheory = 0.2 ±
0.1ǫ/σ2

t.
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C.2 Protein of Diameter σp = 1σt

L [σt] ǫpt A
[

σ2
t

]

V
[

σ3
t

]

Lz [σt] Γslice
[

ǫ/σ2
t

]

Γcylinder
[

ǫ/σ2
t

]

4 1.0 559 ± 2 8618 ± 5 15.4 ± 0.1 0.3 ± 0.2 0.3 ± 0.1

4 6.0 556 ± 3 8609 ± 5 15.5 ± 0.1 0.2 ± 0.2 0.1 ± 0.1

6 1.0 553 ± 3 8613 ± 5 15.6 ± 0.1 0.1 ± 0.3 0.4 ± 0.1

6 6.0 555 ± 2 8603 ± 6 15.5 ± 0.1 0.3 ± 0.1 0.2 ± 0.1

8 1.0 556 ± 3 8612 ± 4 15.5 ± 0.1 0.1 ± 0.2 0.3 ± 0.1

8 6.0 548 ± 2 8583 ± 4 15.7 ± 0.1 0.3 ± 0.2 0.3 ± 0.1

Table C.4: System with 794 lipids, 6153 solvent beads and a thin protein: Mean values
for the area A, volume V and z-length of the simulation box Lz for different
values of the hydrophobic length L of the protein and the hydrophobicity
parameter ǫpt. The theoretical value for the tension is Γtheory = 0.3±0.1ǫ/σ2

t.

L [σt] ǫpt A
[

σ2
t

]

V
[

σ3
t

]

Lz [σt] Γslice
[

ǫ/σ2
t

]

Γcylinder
[

ǫ/σ2
t

]

4 1.0 2198 ± 6 34488 ± 9 15.7 ± 0.1 0.1 ± 0.2 0.2 ± 0.1

4 6.0 2190 ± 6 34473 ± 7 15.7 ± 0.1 0.1 ± 0.2 0.1 ± 0.1

6 1.0 2186 ± 9 34481 ± 7 15.8 ± 0.1 0.1 ± 0.2 0.1 ± 0.1

6 6.0 2199 ± 6 34471 ± 8 15.7 ± 0.1 0.1 ± 0.1 0.2 ± 0.1

8 1.0 2188 ± 9 34480 ± 9 15.8 ± 0.1 0.1 ± 0.2 0.1 ± 0.1

8 6.0 2189 ± 5 34466 ± 11 15.7 ± 0.1 0.1 ± 0.1 0.2 ± 0.1

Table C.5: System with 3194 lipids, 24615 solvent beads and a thin protein: Mean
values for the area A, volume V and z-length of the simulation box Lz

for different values of the hydrophobic length L of the protein and the
hydrophobicity parameter ǫpt. The theoretical value for the tension is
Γtheory = 0.1 ± 0.1ǫ/σ2

t.
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Appendix D

Additional Figures

D.1 Protein of Diameter σp = 1σt

Figure D.1 shows the thickness profiles in the vicinity of one thin protein for a system
with different numbers of lipids and solvent beads: (i) 794 lipids and 6153 solvent
beads, (ii) 3194 lipids and 24615 solvent beads. There is still a small difference in the
thickness far away from the protein due to the tension induced by the solvent, but
this difference is not as pronounced as in the case of one thick protein.

D.2 Protein with Tilt

The two figures D.2 and D.3 compare the membrane thickness profiles in the vicinity
of a single protein with a length equal to the simulation box and a sphero-cylinder
protein of finite length, which is not allowed to tilt. This is achieved by setting the tilt
range to zero. The protein diameter is σp = 1σt, figure D.2, and σp = 3σt, figure D.3.
As already mentioned in section 6.4 the difference between the profiles is ne-

glectable. Possible reasons for the difference are the statistics as well as the fact
that there is a tension induced by the solvent, in the case of the protein with a length
equal to the simulation box in z-direction. The last point plays especially a role for the
thickness far away from the protein.
As a last point we want to compare the membrane thickness profiles in the vicinity

of a sphero-cylinder protein of diameter σp = 3σt in a lipid bilayer of different sizes: (i)
776 lipids and 6153 solvent beads, (ii) 3176 lipids and 24615 solvent beads, figure D.4.
The differences in the curves are neglectable. Especially for the thickness far away
from the protein we do not see a dependence on the system size.
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Figure D.1: Radial membrane thickness profiles in the vicinity of a thin protein of a
lipid bilayer of various sizes: (i) 794 lipids and 6153 solvent beads (black
circles), (ii) 3194 lipids and 24615 solvent beads (red diamonds). The hy-
drophobic length of the protein is L = 4σt (upper panels), L = 6σt (middle
panels) and L = 8σt (bottom panels). The hydrophobicity parameter is
ǫpt = 1.0 (left) and ǫpt = 6.0 (right).
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Figure D.2: Comparison of the radial thickness profiles in the vicinity of a protein of
diameter σp = 1σt with a length equal to the z-length of the simulation
box (black circles) and a protein of finite length, which is not allowed
to tilt (sphero-cylinder, red diamonds). The hydrophobicity parameter is
ǫpt = 1.0 (left) and ǫpt = 6.0 (right). The hydrophobic length of the protein
is L = 4σt, 6σt, 8σt (from top to bottom). The data are obtained from a
system with 3176 lipids.
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Figure D.3: Comparison of the radial thickness profiles in the vicinity of a protein of
diameter σp = 3σt with a length equal to the z-length of the simulation
box (black circles) and a protein of finite length, which is not allowed
to tilt (sphero-cylinder, red diamonds). The hydrophobicity parameter is
ǫpt = 1.0 (left), ǫpt = 2.0 (middle) and ǫpt = 6.0 (right). The hydrophobic
length of the protein is L = 4σt, 6σt, 8σt (from top to bottom). The data
for ǫpt = 2.0, where the protein is allowed to tilt, are obtained from a
system with 776 lipids. All other data are obtained from a system with
3176 lipids.
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Figure D.4: Radial membrane thickness profiles in the vicinity of a sphero-cylinder
protein of diameter σp = 3σt of a lipid bilayer of various sizes: (i) 776 lipids
and 6153 solvent beads (black circles), (ii) 3176 lipids and 24615 solvent
beads (red diamonds). The hydrophobic length of the protein is L = 4σt

(upper panels), L = 6σt (middle panels) and L = 8σt (bottom panels). The
hydrophobicity parameter is ǫpt = 1.0 (left) and ǫpt = 6.0 (right).
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