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1 Introduction

In recent decades, imaging became a very powerful tool, offering new possibilities for diagnostic
investigations. The development of imaging techniques such as positron emission tomography
(PET), computer tomography (CT) or magnetic resonance imaging (MRI) enable physicians
to examine pathological disorders in a noninvasive fashion by means of high-resolution three-
dimensional images. Recently, the diagnostic power of such methods was further enhanced by
the introduction of multivariate imaging protocols and setups. In multivariate images, elements
of the three-dimensional data array are not only associated with a single signal value but with a
signal vector of several values. If the images are recorded in a multimodal setup, the multivariate
nature of the image data arises from the simultaneous application of different imaging techniques
(e.g. CT/PET or CT/MRI/PET), whereas in unimodal setups, only one technique is utilised for
e.g. acquisition of multitemporal images consisting of temporal image sequences. Even though
multivariate imaging techniques provide new information, integrating and evaluating the much
wider range of information is challenging task for human observers. Nevertheless, multivariate
imaging techniques have demonstrated to be beneficial in various fields of medical and cogni-
tive sciences and, for instance in breast cancer diagnosis, are moving from research to practical
applications.

In the European Union, breast cancer is the most common type of cancer affecting women,
responsible for 4% of deaths in the female population [Eustat, 2004] and 17.5% of cancer deaths
[Tyczynski et al., 2002]. Breast cancer often affects young women and is the main cause of
mortality in women aged between 45 and 64. It is estimated that in the year 2000 there were
350000 new breast cancer cases in Europe. If diagnosed in an early stage, breast cancer has an
encouraging cure rate. About 97% of women diagnosed with localised breast cancer will survive
five years after diagnosis. Thus, early detection of breast cancer continues to be the key for
effective treatment, and screening of the breast with X-ray mammography has become part of
regular medical check-ups in industrial nations. Recently, dynamic contrast-enhanced magnetic
resonance imaging (DCE-MRI) has been identified as a valuable complementary technique for
breast imaging. In particular for examination of young women, in which X-ray mammography
is less helpful due to the denser tissue of the breast, DCE-MRI has demonstrated to be highly
sensitive for the detection of cancer. This finding motivated the initiation of several ongoing
studies evaluating the potential of DCE-MRI as a screening tool for young women or women
at high risk by virtue of genetic predispositions. In DCE-MRI, a temporal sequence of three-
dimensional MRI images of the female breast is recorded, depicting the temporal course of the
concentration of a contrast agent in breast tissue. The temporal kinetics of the concentration
enable radiologists to infer valuable information not only for differentiating between healthy and
pathologically affected tissue, but also for distinguishing innocuous benign disorders from life-
threatening carcinoma. Even though this information is inherent in the multitemporal image
sequence, it does not become evident to the observer by means of the individual images. Hence,
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tools are required to aid physicians in analysing the recorded image data.

The aim of the work as presented in this thesis is to develop computational approaches for DCE-
MRI data analysis in breast cancer diagnosis. Central component of the presented approaches
will be techniques from the field of artificial neural networks and machine learning1. Artificial
neural networks allow to analyse DCE-MRI data from a data-driven and model-free perspective,
which differs from the common model-based perspective predominant in clinical practice. While in
model-based analysis mathematical models describing the measured signal itself or the physiologi-
cal process underlying the signal are postulated on the basis of existing knowledge, artificial neural
networks make possible to derive such models from the DCE-MRI data themselves, eliminating
the requirement that physicians enunciate their medical expertise explicitly in a mathematical
form.

A central concept of such data-driven approaches to DCE-MRI analysis will be example-based-
learning : Training signals reflecting the temporal kinetics of contrast agent concentrations in
single voxels are exposed to unsupervised artificial neural networks which in turn autonomously
reveal categories of similar signals by virtue of their statistical features. Such signal clusters can
often be ascribed to different types of tissue such as healthy, benign or malignant tissue and
may reveal hidden regularities and structures in the data. Supervised artificial neural networks
are able to derive knowledge for the distinction of predetermined classes of signals, e.g. signals of
healthy and cancerous tissue, from a sequence of training examples which were assigned by e.g.
a human ’supervisor’ to one of the considered classes. Therewith, their application is especially
expedient if the signal classes can not be modelled explicitly owing to limited a-priori knowledge
or high complexity. After adaptation, the trained neural network is able to generalise from the
seen to unseen examples and can be applied for detecting signals of the corresponding classes in
DCE-MRI sequences of new cases.

1.1 Outline of this Thesis

This thesis can be divided into two parts. The imaging technique and concepts of supervised com-
putational learning are presented in the first part. In chapter 2, magnetic resonance imaging and
its physical foundations nuclear magnetism and relaxation processes are briefly described. Various
aspects of breast cancer diagnosis by means of dynamic contrast-enhanced magnetic resonance
imaging are presented in chapter 3. After a short overview of the anatomy of the breast, patho-
logical disorders and the underlying changes in tissue vascularity are explained. Subsequently,
basic principles of DCE-MRI data acquisition and interpretation are presented, including a sum-
mary of existing approaches for manual, model-based and model-free data analysis. In chapter 4,
two fundamental principals of computational learning are presented. Furthermore, the supervised
learning algorithms being utilised in this work and aspects that need to be considered for their
application are explained. To the end of the chapter, techniques for comparing the performance
of artificial neural networks with e.g. human experts are elucidated.

In the second and central part of the work for this thesis, new applications of artificial neural

1Albeit computer scientists performing theoretical research in either field frequently emphasise the distinction of
both fields, both terms are used exchangeable in the following due to the thesis’ application-oriented focus.
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networks in DCE-MRI analysis are introduced, evaluated and discussed. The evaluations are
based on DCE-MRI sequences which were provided by the City Centre Hospital of the University
of Munich and by the Institute of Cancer Research, UK which is a member of the British Magnetic
Resonance Imaging for Breast Screening (MARIBS) study. In chapter 5, a system for detection
of suspicious lesion masses is presented. Lesion detection is regarded as a binary classification
task, and different supervised artificial neural networks are applied to distinguish between healthy
and suspicious tissue by means of characteristics of their signals as measured by DCE-MRI.
An algorithm which facilities the detailed analysis of the lesion’s architecture is introduced in
chapter 6. DCE-MRI data of a small group of training cases are correlated by supervised artificial
neural networks with label information derived from manual segmentations of the corresponding
lesions and their classification in terms of histological examination of biopsy samples. The trained
predictors are able to distinguish signals caused by benign, malignant and normal tissue and
are applied for augmenting visualisations of DCE-MRI data with pseudo-colours, reflecting the
distributions of different signal classes in heterogenous lesion tissue. A technique for systematic
comparison of pseudo-colouring methods is presented in chapter 6. Its application is demonstrated
by means of a case study, in which the artificial neural networks based pseudo-colouring introduced
in chapter 6 is compared with the three-time-points method, a model-based clinical standard
protocol for DCE-MRI analysis. Visualisation of DCE-MRI data from the perspective of image
fusion is investigated in chapter 8. Statistical properties of DCE-MRI sequences are evaluated
by unsupervised artificial neural networks for combining the individual images of a sequence to
new images. The resulting images are compressed visualisations of the entire image sequence
and conspicuously display spatial locations of lesion masses. The thesis concludes with a short
summary and discussion, followed by a brief sketch of future directions of research.
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2 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is an imaging technique which has shown to be a valuable
source of information in various fields of medical diagnosis including brain diseases, spinal disorder,
angiography and tumour diagnosis [Hamm et al., 1994]. The MRI signal arises from the nuclear
magnetism of hydrogen atoms which are mainly located in the fat and water of the body. By
applying an external magnetic field B0, the spins of nucleons are aligned. Thereby, the nucleons
can take over two discrete energetic levels. Excitation by an appropriate radio frequency (RF) pulse
causes a change of the spin alignments and absorption of a certain amount of energy proportional
to the energetic difference of the two levels. Simultaneously, magnetic field gradients are applied
along the three spatial axes to encode the spatial position of the nucleons. After the RF pulse
is turned of, the nucleons return to the natural alignment caused by the magnetic field B0. In
doing so, the absorbed energy is emitted as photons which are recorded by the MRI scanner. A
three dimensional image can then be obtained by a inverse Fourier transformation of the recorded
information. Therewith, MRI is a noninvasive and radiation free imaging technique from which
three-dimensional images with high tissue contrast can be obtained.

The following chapters give a brief overview of the physical foundation of MRI. A more detailed
introduction can be found e.g. in [Webb, 2003] or [Hornak, 2004]. The application of MRI for
the acquisition of dynamic contrast-enhanced image sequences for the purpose of breast cancer
diagnosis will be discussed in more detail in chapter 3.

2.1 Nuclear Magnetism

The physical effect utilised by MRI is the spin of particles such as protons or electrons. A proton
spinning around an internal axis has a certain angular moment P and, as a charged particle, a
magnetic moment µ. The relation between the magnitude of both quantities is given by

|µ| = γ|P| , |P| = h

2π

√
3

2
(2.1)

with the particle-specific gyromagnetic ratio γ and Planck’s constant h. In the following we will
focus on hydrogen nucleons with γ = 42.58MHz/T. Since the magnitude of P is quantised, so
is the magnitude of µ. The magnetic moment can be regarded as a combination of the vectors
(µx,µy,µz). In the presence of a strong magnetic field B0 in the direction of the z-axis, µz is
given by

µz = γPz = γ
h

2π
mI (2.2)

with the nuclear magnetic quantum number mI = ±1
2 in the case of a hydrogen nucleon. The

difference between the magnitude of (2.2) and the total magnetic moment (2.1) indicates that the
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Figure 2.1: Placing a spinning charged particle in an external magnetic field B0 causes an orientation of
the magnetic moment which is parallel or antiparallel to the direction of B0. Both states correspond to
different energy levels E↑↑ and E↑↓ with an energy difference of ∆E = hν with the resonance frequency
or Larmor frequency ν. In a magnetic field, the high energetic state E↑↑ is commonly occupied by a
smaller number of particles than the low energetic state E↑↓ (Figure adapted from [Webb, 2003]).

magnetic moment is only partially aligned either parallel or antiparallel to the external magnetic
field B0 (Fig. 2.1, left).

Both states can be interpreted as energy levels with

E↑↑ = −γhB0

4π
and E↑↓ = +

γhB0

4π
, (2.3)

and the transition of a hydrogen nucleon from the low energy level E↑↑ to the high energy level
E↑↓ can be initiated by a photon with the energy ∆E = hγB0/2π = hν with ν as the resonance
frequency or Larmor frequency. The same energy is emitted if the transition proceeds in the
reverse direction.

If a group of spins is exposed to a magnetic field B0, each spin is oriented either parallel
or antiparallel to B0 (Fig.2.1, right). The ratio N↑↓/N↑↑ between the number of spins in the
high energetic state N↑↓ and the number of spins in the low energetic state N↑↑ depends on the
temperature T and is described by the Boltzmann statistics

N↑↓
N↑↑

= exp
(
−∆E

kT

)
(2.4)

with the Boltzmann’s constant k. At room temperature, there are less spins in the high energy
state than in the low energy state. Thus, the magnitude of a signal as measured by the MRI
scanner is proportional to the population difference N↑↓ −N↑↑.

8



B0B0

1B

x y x y

z z(c)(b)

0

x y

z(a)

B0

m

Figure 2.2: (a) In a magnetic field B0 along the z-axis, the individual spins (dashed) are parallelly or antipar-
allelly aligned to B0. The individual spins can be accumulated to a spin-packet with a magnetisation
vector along the z-axis. The magnetisation vectors of several spin packets in turn can be accumulated
to the net magnetisation vector m. (b) By a second magnetic field B1 along the y-axis, the net
magnetisation can be turned into the xy-plane. (c) After switching B1 off, the net magnetisation
dephases and returns from the xy-plane to the equilibrium (relaxation).

2.1.1 Spin Packets

A group of spins can be regarded as a spin packet with a magnetisation vector representing the
magnetic field caused by the individual spins. Further on, the magnetisation vector of several spin
packages can be accumulated to the net magnetisation vector m = (mx,my,mz). At equilibrium,
the external magnetic field B0 and the equilibrium magnetisation m0 are both oriented along the
z-axis with mz = m0 (Fig. 2.2, a).

2.1.2 T1/T2 Processes

By exposing the spin packets to photons with a wavelength of the resonance frequency or Larmor
frequency ν = γB0/2π, by e.g. applying a second pulsing magnetic field B1 along the direction
of the y-axis, the net magnetisation vector can be tipped by an angle α towards the xy-plane.
For α = 90◦ the net magnetisation vector rotates in the xy-plane (mz = 0) with a frequency
equal to the Larmor frequency (Fig. 2.2, b). The B1 pulse needed for an α = 90◦ tip is called
90◦-pulse. From this state, the net magnetisation returns to its equilibrium state (Fig. 2.2, c).
This relaxation process is described by

mz(t) = m0

[
1− exp

(
− t

T1

)]
(2.5)

and depends on the spin-lattice relaxation time (T1).

The second observable effect is the dephasing of the net magnetisation. Immediately after the
RF pulse, the individual spins summing-up to the net magnetisation vector are precessing with
a coherent phase in the xy-plane. This phase coherence gradually disappears once the pulse is
turned off. The return of the transverse net magnetisation mxy to the equilibrium is described by

mxy(t) = mx0y0exp
(
− t

T2

)
(2.6)
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Figure 2.3: The transverse magnetisation rotating about the z-axis can be measured by placing a RF coil
around the x-axis. The current induced by the time-varying magnetic flux is a function of time and
follows a sine wave that decays due to the dephasing of the spin packets. The frequency domain
spectrum of the signal’s Fourier transform exhibits a single peak at the Larmor frequency.

with T2 as the spin-spin relaxation time. The observable time constant T2∗ depends on the
molecular interactions (described by T2) and on inhomogeneity of B0 (described by T2Inhomo):

T2∗ = T2 + T2Inhomo.

Since T2Inhomo is very small, the observable T2∗ is reasonably well approximated by T2 and we
will continue to use T2 for the sake of simplicity.

T1 and T2 are tissue-specific constants which are the basis of the tissue contrast of MR images.
Thus, valuable information about a tissue segment can be derived by measuring the temporal
course of the T1/T2 relaxation process after applying a certain RF-pulse sequence. This is done
by measuring the current which is induced during the relaxation process in a RF coil due to the
time-varying magnetic flux. For instance, the transverse magnetisation rotating about the z-axis
induces a current in a RF coil which is located around the x-axis. Interpreting the current as
a function of time yields a sine wave which decays over time due to the dephasing of the spin
packets. The measured temporal signal is converted from time- to frequency-domain using the
inverse Fourier Transform. The frequency spectrum of the Fourier Transform then exposes a
peak of certain magnitude at the resonance frequency of hydrogen nucleons in water (Fig. 2.3).
Typically, a second peak appears because of the chemical shift which causes a slightly different
resonance frequency for hydrogen nucleons in fat.

2.2 Magnetic Resonance Imaging

2.2.1 Spatial Decomposition of MR Signals

So far, the measured signal arises from the entire body placed in the magnetic field. Lauterbur
realised in 1973 that a spatial variation of the magnetic field causes a resonance frequency that
depends on the spatial coordinate of the spin [Lauterbur, 1973]. For instance, a one-dimensional
linear gradient Gx along the x-axis leads to the linearly varying resonance frequency

νx = γ(B0 + xGx) = ν0 + γxGx (2.7)

with the magnetic field B0 and frequency ν0 at the isocentre. This gradient is also called frequency
encoding gradient Gν .
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Figure 2.4: (a) The magnetic field gradients along the x/y/z-axis are generated by a passage of current
through suitably designed coils (black). The RF pulse is generated by an additional coil such as
the sketched bird cage coil (red) for imaging of the brain. (b) A suitable 90◦-pulse, simultaneously
activated with a slice selective gradient (in this case Gz), excites only spins located in a certain slice
perpendicular to the direction of the gradient. The spatial resolution in the plane is induced by the
frequency encoding gradient Gν which is a linear combination of the gradients along the remaining
two axes.

The image information can be recovered by utilising the backprojection technique [Lauterbur,
1973], in which NMR spectra are recorded for varying directions of the frequency encoding gra-
dient. For instance, for a yz-plane image of an object, the angle θ between the magnetic field
gradient and the y-axis is varied within the range of [0◦; 360◦]. For each angle, an NMR spectrum
is recorded which shows several peaks depending on the spatial variation of ν. The sequence
of NMR spectra can be backprojected through space by a computer calculating e.g. the inverse
Radon transformation [Dean and Rodrick, 1983]. The angle θ of the frequency encoding gradient
Gν is controlled by linearly combining two gradients Gx and Gy according to

Gx = Gν cos θ

Gy = Gν sin θ.

A third gradient Gslice = Gz, in this case along the z-axis, combined with a suitable shape of
the pulse with frequency νpulse determines the z-coordinate of the perpendicular image plane in
which spins are measured by affecting only nucleons precessing with a frequency in the range of
νpulse±∆νpulse. This gradient is also called slice selective gradient. For suitably chosen gradients
controlling θ and a suitable Gslice and νpulse, the imaging plane can be placed either in coronal
(perpendicular to the y-axis), axial (perpendicular to the z-axis) or sagittal (perpendicular to the
x-axis) orientation1.

1By convention, the z-axis is in the direction of the head-to-foot axis, the y-axis is along the spine-to-abdomen
axis and the x-axis from side-to-side.
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It is important to note the temporal order in which the different gradients are applied (Fig.2.4).
The slice selective gradient Gslice is simultaneously applied with the RF pulse and causes only
spins in a slice perpendicular to the gradient to be affected by the pulse. After the pulse and the
slice selection gradient are turned off, the frequency encoding gradient Gν composed of Gx and
Gy is turned on and the current induced into the RF coil is recorded.

Rather than using a single pulse for exciting spins in a certain slice, MR images are measured
using sophisticated pulse-sequences such as the spin-echo-sequence. In this case, a 90◦-pulse is
emitted each TR seconds (repetition time), followed by an 180◦-pulse after TE seconds (echo
time) causing the spins to partially rephase and produce an echo signal.

2.2.2 T1/T2-Weighted Imaging Sequences

The pixel intensity I(x, y) of an MR image acquired using a spin-echo sequence is described by

I(x, y) ∝ ρ(x, y)
(
1− exp

[
−TR

T1

])
︸ ︷︷ ︸

T1-weighting

exp
[
−TE

T2

]
︸ ︷︷ ︸
T2-weighting

with ρ(x, y) as the proton density. Varying values for TR and TE control the sensitivity of the signal
to the T1/T2-relaxation process and result in MR images with different image characteristics. If
TR is set to a value much larger than the T1 value of any tissue in the region-of-interest (ROI),
the T1-weighting term converges to zero and the sensitivity of the signal to the T1-relaxation
process diminishes. The same effect is yielded for the T2-weighting term by choosing TE much
smaller than the T2 value of any tissue within the ROI. Cancelling both terms yields the proton
density image in which the pixel intensity I(x, y) depends solely on the proton density ρ(x, y).

In practice, the TR and TE parameters have to be adjusted by the operator to reasonable
values in order to facilitate the distinction of different types of tissue, blood vessels or other
anatomical structures in the MR image. The TR and TE values as well as the design of the RF
coils significantly influence the quality of the image information.

2.2.3 Multispectral Magnetic Resonance Imaging

In multispectral magnetic resonance imaging, a sequence of three-dimensional MRI images from
the same ROI is recorded. Each image of the stack is generated with different T1/T2-weighting.
Assuming that the images are correctly registered, i.e. they expose no motion artefacts, each
spatial position in the displayed ROI is associated with a vector of intensity values, each reflecting
the signal intensity as measured with a different parameterisation of the MR scanner. Multispectral
images facilitate the discrimination of different tissue types and are used to e.g. distinguish gray
matter, white matter, cerebrospinal fluid from pathological structures such as multiple sclerosis or
carcinoma in the brain (see e.g. [Holden et al., 1995,Vaidyanathan et al., 1995,Valdes-Cristerna
et al., 2004]).

2.2.4 Contrast Agents

In order to enhance the contrast between certain types of tissue, contrast agents (CA) are often
used to alter relaxation times. After intravenous administration of the contrast agent, the CA
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molecules rapidly distribute throughout the bloodstream before they are eliminated through the
kidney. During this time, a signal enhancement can be achieved for tissue with increased vascular-
ity or affinity to the CA molecules. Furthermore, examination of the CA concentration course over
time allows to infer information about physiological parameters of the local tissue. The technique
for acquisition of such temporal kinetic signals reflecting the temporal course of the local CA
concentration is called dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and
will be described in more detail in the following chapter.

Paramagnetic contrast agents such as gadolinium based chelate (Gd-DTPA) shorten the T1
value of tissue. Tissue that tends to accumulate CA molecules rapidly is displayed with increased
brightness in T1-weighted images, which in turn can be recorded faster due to the shortened T1
value. In contrast to the paramagnetic CA, superparamagnetic CA shorten the T2 and T2∗ time
and are mainly accumulated in healthy tissue. They consists of small magnetic particles which
possess high magnetic moments and therewith cause inhomogeneities in the local magnetic field.
Superparamagnetic CAs are also called negative contrast agents. Whereas the tumour inten-
sity remains unaffected, healthy tissue accumulating the CA molecules appears with suppressed
brightness in T2-weighted spin-echo sequences.

2.2.5 Multislice and 3D Imaging

A crucial aspect of MR imaging is the time needed for the acquisition of a single MR image.
Since the acquisition time predominantly depends on the desired resolution of the in-plane image
matrix and the repetition time TR, a trade-off between acquisition time and image resolution
exists. In general, the matrix resolution should be as high as possible to minimise the partial-
volume-effect and to facilitate examination of small anatomical structures. The partial-volume-
effect describes the fact that the signal measured for each voxel arises from the entire tissue
in a small, three-dimensional cuboid and, therewith, might be caused by a mixture of different
tissue types. The smaller the volume element, i.e. the higher the matrix resolution that displays
a certain field-of-view, the less likely the signal measured for a voxel is affected by the partial-
volume-effect. Constraints on the acquisition time may arise from the investigated region of the
body. For instance in imaging the abdomen, the image should be ideally acquired within a single
breath-hold (5 to 25 seconds) in order to avoid motion artefacts. Another example are DCE-MRI
sequences in which a larger number of images has to be recorded over a time span of several
minutes. These temporal constraints come into conflict with the acquisition time of a single high
resolution image matrix which can last up to several minutes depending on the hardware, matrix
resolution and repetition time.

Several techniques have been proposed to accelerate image acquisition. In a single slice se-
quence, only the relaxation of spins located in a single plane determined by the slice selective
gradient are recorded. Nevertheless, MRI provides the ability to simultaneously record the relax-
ation of spins in several parallel slices (multislice imaging). Instead of affecting only spins with
a resonance frequency in the range of νpulse ±∆νpulse, spins with a resonance frequency in one
of the n non-overlapping frequency bands [νpulse1 ±∆νpulse], . . . , [νpulsen

±∆νpulse] are affected
in quick succession and the T1 relaxation of the spins in the corresponding n slices is measured
simultaneously. The maximum number of slices that can be examined simultaneously is limited
by the ratio TR/TE. Additionally, the slices have to be placed with a sufficient spatial distance
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to each other in order to avoid partial excitation of the spins in the slices on either side of the
currently selected slice. Whereas the multislice imaging technique acquires the image of a three
dimensional volume as a sequence of one or several tomographic slices leading to a temporal shift
between certain slices, ’true’ three-dimensional images can be recorded using more sophisticated
sequences such as the three-dimensional fast low-angle-shot (3D FLASH) sequence.

2.3 Summary

MRI is a nonionizing imaging technique which allows for acquisition of three-dimensional images
with high spatial resolution and excellent soft-tissue contrast. The MRI signal arises from the
spin-lattice and spin-spin relaxation of hydrogen nuclei in a static magnetic field after excitation
by sequences of electromagnetic pulses at the resonance frequency of hydrogen. Encoding of
spatial information into the signal is accomplished by superimposing three orthogonal magnetic
field gradients, resulting in a spatially dependent resonance frequency and phase of hydrogen
nuclei. The signal is measured as a current which is induced in a tuned receiver coil due to the
time-varying flux caused by the relaxing nuclei. This signal, which likewise is a function of time,
is converted by inverse Fourier transform into the spatial domain to produce an image.

The characteristics of MR images can be altered by varying the imaging parameters echo
time and repetition time. This causes the signal to become more sensitive either to the T1 or T2
relaxation process and allows for enhancing the contrast between specific types of soft-tissue. The
contrast between different types of healthy tissue as well as between healthy and pathologically
altered tissue can be further improved by adminstration of a contrast agent affecting the relaxation
times of tissues.
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3 Dynamic Contrast-Enhanced MR Imaging in Breast
Cancer Diagnosis

In the European Union, breast cancer is the most common type of cancer affecting women [Eustat,
2004]. About 350,000 women were diagnosed with breast cancer in 2000, representing about
26.5% of all female cancers diagnosed [Tyczynski et al., 2002]. Breast cancer risk is strongly
correlating to age. About 80% of all cases occur in women over 50 years of age. At the same
time, breast cancer is the most common cancer diagnosed in women under 35 years of age.
Several risk factors have been identified such as age at first birth, age at menopause or family
history of breast cancer. If diagnosed in an early stage, breast cancer has an encouraging cure
rate. About 97% of women diagnosed with localised breast cancer will survive five years after
diagnosis. Therefore, large screening studies have been initiated to diagnose breast cancer at a
very early stage.

Today, X-ray mammography (XRM) is the mainstay of screening and diagnosis of breast cancer.
Thereby, the three-dimensional breast is typically displayed as two two-dimensional images (one
cranio-caudal view and one lateral-oblique view). Even though XRM is the current standard
screening technique with a sensitivity between 69% and 90%, it has been criticised for being less
helpful in diagnosing cancer in denser tissue of younger women, adjacent to implants or following
surgery or radiotherapy [Rankin, 2000]. The specificity of XRM has been reported to be in the
range of 10% to 40% and up to 75% of mammographically detected suspicious masses are benign
at biopsy [Rankin, 2000]. Additionally, there are concerns about the repeated radiation exposure
of XRM, in particular if it is used as a screening tool for younger women.

In this situation, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has
shown to have impressive potential for detection, diagnosis and monitoring of abnormalities in the
breast of younger women [Brown et al., 2000]. In contrast to XRM, the radiation free DCE-MRI
technique provides a detailed three-dimensional image of the breast which allows for detecting le-
sions with high sensitivity. The acquisition of a temporal sequence of images after administration
of a contrast agent into the bloodstream also enables physicians to infer information about the
state and architecture of lesions. The temporal kinetic signal associated with each voxel allows for
distinguishing normal, benign and malignant tissue by means of individual signal characteristics.
The sensitivity of DCE-MRI ranges between 93% and 100% [Brown et al., 2000] with a specificity
between 37% and 85% [Orel and Schnall, 2001]. The large diversity of reported specificity val-
ues is mainly caused by the lack of general accepted standards for imaging protocols and image
interpretation. Several studies (e.g. [Brown et al., 2000]) were initiated to examine the value of
DCE-MRI as a screening technique for young women or women at high risk by virtue of genetic
predispositions. Current goals are to evaluate the effect of DCE-MRI on clinical decisions, the
technical performance of the equipment and to determine the most sensitive and specific imaging
parameters.
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Figure 3.1: Main anatomical structures of the female breast. Malignant disorders mainly appear in the
ducts or lobules.

This chapter briefly describes the main aspects of DCE-MRI of the breast for the purpose
of breast cancer diagnosis. First, the elementary pathophysiological changes in the tissue of
carcinoma are explained, because these are the basis for the detection and characterisation of
lesions by DCE-MRI. Starting with the assessment scheme proposed by Kuhl et al., 1999 for
the purpose of lesion characterisation by means of visual exploration of temporal kinetic signals,
existing model-based and data-driven approaches for computer aided diagnosis (CAD) will briefly
be reviewed. The interested reader is referred to Heywang-Köbrunner and Beck, 1995 for a more
detailed discussion of pathophysiological and radiologic aspects of DCE-MRI based diagnosis of
breast cancer.

3.1 Anatomy and Disorders of the Breast

The female breast mainly consists of adipose tissue and connective tissue surrounding the func-
tional structures producing milk during lactation. Starting from the mamilla on the surface of
the breast, the functional structure branches to approximatively 20 mammary ducts which drain
milk from different segments of the breast referred to as lobes. Each mammary duct branches
to several lobules which consist of milk producing glands. These glands are connected by the
terminal ducts with the mammary ducts. In addition to the ducts and lobules, blood vessels and
lymph vessels are also especially important for the growth and spread of tumours.

Lesion

Lesion is the general notion for an abnormal change in structure of an organ or part due to an
injury or disease; especially one that is circumscribed and well defined (Encyclopedia Britannica
Online). They are divided into benign disorders and malignant disorders. Benign disorders are
innocuous and do no harm to health whereas malignant disorders tend to infiltrate healthy tissue,
to develop metastases, i.e. new lesion masses in other organs, and, in the end, to cause death
if not treated effectively. Until a final diagnosis is ultimately determined, each lesion has to be
regarded as a suspicious mass which potentially is a malignant disorder.
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Benign Disorders

Benign disorders frequently come along with symptoms such as pain or palpable masses which
are similar to those of life-threatening carcinoma. The most common are fibroadenoma which are
solid, smooth, firm lumps. Fibroadenoma are most commonly found in women in their late teens
or early 20s but can occur in women of any age. The visual appearance of fibroadenoma depends
on the tissue components from which they evolve, but is also influenced by other factors such as
age and hormonal status of the patient [Piccoli, 1997].Due to the sometimes similar appearance of
certain malignant lesions, fibroadenoma demand for a careful analysis, including various imaging
modalities [Heywang-Köbrunner and Beck, 1995]. Cysts are fluid filled cavities which also appear
as palpable lumps. They are most common in women over the age of 35 who have not reached
the menopause. Further types of benign disorders are nipple disorder, mastitis (inflammation or
infection of the breast) or changes caused by open-biopsy, radiation or chemotherapy.

Malignant Disorders or Carcinoma

Malignant disorders or carcinoma mainly appear in the ducts and lobules and can be subdivided
in invading and non-invading types. Invading carcinoma such as the infiltrating ductal or lobular
carcinoma, which are by far the most common type of breast cancer, spread into the surrounding
tissue and build metastases. Non-invading types such as the ductal carcinoma in situ initially
do not break through the walls of ducts or blood vessels and spread only in the duct itself.
Nevertheless, if this type of cancer is not recognised early, it may develop the ability to spread
into surrounding tissues and, therewith, becomes an infiltrating ductal carcinoma. A detailed
assessment of the lesion type and stage can be obtained from a histopathological examination of
tissue samples obtained by core needle biopsy.

Vascular Structure of Tumours

Tumour growth commonly comes along with an increased vascular expansion by which the nutri-
ent supply is adjusted to the metabolic needs of cancerous tissue. Two main components of this
process are angiogenesis and vasculogenesis, i.e. sprouting of new capillaries from existing blood
vessels and denovo development of blood vessels. Thereby, the vascular structure of cancerous
tissue shows several distinguishing characteristics such as spatial heterogeneity of vascular struc-
tures, poorly formed and fragile vessels or extreme heterogeneity of vascular density [Collins and
Padhani, 2004]. Histopathological examination of tissue samples allow for analysing neovascular-
ity which has shown to be correlated with the tumour grade; a 40% increase in vessel structures
doubles the risk of metastases.

In contrast to the histopathological examination of biopsy samples, MRI provides a noninvasive
technique for assessing the vascular characteristic of tissue. To this end, the accumulation of
contrast agent (CA) molecules in the tissue is examined. The temporal progression of this process
depends on the delivery of CA (perfusion), the ability of CA to leak out of the vasculature (the
vascular permeability) and the ability of tissue to take up CA (the extracellular or extravascular
volume) [Leach, 2001]. Since all three properties are affected by the vascular properties of different
types of tissue as well as by the pathological changes of vascular structure in cancerous tissue,
examination of the temporal kinetic signal describing the temporal course of the CA concentration
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Figure 3.2: The sequence of the three-dimensional pre- and post-contrast images can be interpreted as a
four-dimensional image volume. Each voxel with spatial position p is associated with vector sp depicts
the temporal course of the signal intensity which reflects the contrast agent concentration in the local
tissue.

in the local tissue enables physicians to discern different tissue types as well as different states of
lesions.

3.2 Dynamic Contrast-Enhanced MR Image Sequences

For the examination of the process of CA molecule accumulation in tissue, a temporal sequence
of nt MR images is recorded. Although different protocols for DCE-MRI exist, a typical protocol
allows for the recording of at least one MR image, referred to as precontrast image, before bolus
administration of a CA and two or more MR images, referred to as postcontrast images, after CA
administration. As an example, the DCE-MRI sequence recorded in the MARIBS study [Brown
et al., 2000] consists of two precontrast and five postcontrast images recorded with a delay of
90sec. Each image of the sequence is a three-dimensional array of voxels. The extent of the tissue
region represented by a single voxel is frequently anisotrop, i.e. a cuboid with unequal side length.

The signal value spt of the voxel with the spatial coordinate p = (x, y, z) is related to the
concentration of CA in the corresponding tissue element at the moment of acquisition of the t-th
image. Assuming that the images of a DCE-MRI sequence either exhibit no motion artefacts
due to the prone position of the patient in the MR scanner or have been coregistered by a post-
processing with a suitable registration algorithm, the entire image sequence can be interpreted as
a four-dimensional image volume with three spatial and one temporal dimension (Fig. 3.2). The
voxel with the spatial position p is associated with a vector

sp = (sp1, . . . , spnt) ∈ S (3.1)

describing the temporal course of the CA concentration in the local tissue and can be interpreted
as a point in a signal space S.

Depending on the T1/T2-weighting used for the image acquisition, the temporal course of
the signal intensity allows to infer information about different physiological parameters of the
tissue [Collins and Padhani, 2004]. Using a T2-weighted image sequence, the signal is sensitive to
the vascular phase of CA delivery and primarily depends on the physiological properties of blood
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Figure 3.3: Illustration of the extent of the body region employed displayed by the images recorded at the
City Centre Hospital of the University of Munich (left) and the MARIBS screening study (right). In
both cases, the patient is placed in a prone position. In case of the Munich group, both breasts and
the major part of the thorax are displayed by the images. The image voxels expose a regular extension
in the axial plane. For the MARIBS cases, the displayed region of the body is limited to both breasts
and the extent of voxels is regular in the coronal plane.

volume and perfusion. In a T1-weighted image sequence, the signal is sensitive to the presence
of CA in the extravascular-extracellular space (leakage space) and thus reflects the physiological
parameters microvessel perfusion, permeability and extracellular leakage space. These parameters
correlate with the microvessel density and the vascular-endothelial-growth-factor which induces
a characteristic growth of neovasculature [Leach, 2001]. Since the experiments in this thesis only
consider T1-weighted image data, the remaining sections will focus on the signal characteristics
of T1-weighted image sequences.

3.2.1 DCE-MRI Data Sets

The analytical methods presented in this thesis are evaluated using the DCE-MRI sequences
recorded for two different groups of cases. The images of the two groups differ due to application
of different imaging protocol, but also in the examined cases. The first group of cases, referred
to as Munich group, was examined at the City Centre Hospital of the University of Munich and
consists of cases, which were all suspicious regarding to a first physical examination and XRM.
The second group of cases, referred to as MARIBS group, are participants of the MARIBS breast
screening study which is carried out by several hospitals in the United Kingdom. The study
investigates the value of DCE-MRI for the screening of women with a family history of breast
cancer suggesting a genetic predisposition.

Munich Data Set

Images of the Munich group were acquired with patients placed in a prone position and display
both breasts and the major part of the thorax (Fig. 3.3, left). The imaging process was performed
with a 1.5 T system1 equipped with a dedicated surface coil to enable simultaneous imaging of
both breasts. First, transversal images were acquired with a STIR (short tau inversion recovery)
sequence (TR=5600ms, TE=60ms, flip-angle=90◦, TI=150ms, matrix size of 256× 256 pixels,
slice thickness 4mm), followed by a dynamic T1-weighted gradient echo sequence (3D FLASH,
TR=12ms, TE=5ms, flip angle=25◦) consisting of 32 to 34 slices in transversal slice orientation

1Magneton Vision, Siemens, Erlangen, Germany
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Table 3.1: Histological classification and size (number of marked voxels) of the six benign lesions in the
Munich group.

Case ID Lesion classification Size

B1 Fibroadenoma 169

B2 Fibrous mastopathy 497

B3 Scar 26

B4 Lymph node 113

B5 Granuloma with signs of inflammation 99

B6 Chronic mastitis 25

Table 3.2: Histological classification and size (number of marked voxels) of the six malignant lesions in the
Munich group.

Case ID Lesion classification Size

M1 Ductal carcinoma 207

M2 Scirrhous carcinoma 68

M3 DCIS (ductal carcinoma in situ) 49

M4 Status post mastectomy, multilocullar recur-
rent ductal carcinoma

743

M5 Ductal papillomatosis, transition into papil-
lary carcinoma

169

M6 Ductal carcinoma 284

with a matrix size 256 × 256 pixels with pixel size of 1.37 × 1.37mm (in-plane resolution) and
an effective slice thickness of 4mm. The dynamic study consisted of nt = 6 measurements with
an interval of 110sec. The first image was acquired prior to a bolus injection of a paramagnetic
contrast agent2, immediately followed by the other five measurements.

The group consists of twelve cases which were suspicious according to a first physical examina-
tion and XRM. Subsequent to the acquisition of the DCE-MRI data, the images were interpreted
by a radiologist with several years of experience in breast cancer diagnosis. For this purpose, the
DCE-MR images were displayed with a clinical standard software. After correlating the DCE-
MRI information with the XRM images, the radiologist marked lesion voxels with a cursor on the
screening device. According to the histological examinations of the marked lesions, six lesions are
classified as benign (Tab. 3.1) and six as malignant disorders (Tab. 3.2).

MARIBS Data Set

The DCE-MRI sequences of the MARIBS group were acquired within the scope of the UK multi-
centre breast cancer screening study MARIBS. The primary objective of the study is to test
whether MR imaging can be used with equal or better sensitivity and specificity than XRM for
the screening of premenopausal women at high risk of developing breast cancer.

The image data of the eight cases considered in this thesis were acquired for a high-sensitivity
MRI examination of both breasts, which is routinely performed during the first visit of the patient

2Magnevist, Schering, Berlin, Germany

20



Table 3.3: Lesion classification as denoted in the DCE-MRI diagnosis form sheet and lesion size (number
of marked voxels) of the benign cases in the MARIBS group.

Case ID Primary disorder Secondary disorder Size

B006A Fibrocystic change, sclerosing lym-
phocytic lobulitis

- 324

B013A Fibroadenoma, fibrocystic change - 2657

B015A Fibroadenoma, fibrocystic change,
apocrine metaplasia

- 846

Table 3.4: Lesion classification as denoted in the DCE-MRI diagnosis form sheet and lesion size (number
of marked voxels) of the malignant cases in the MARIBS group.

Case ID Primary disorder Secondary disorder Size

M005A Non-invasive lobular, invasive duc-
tal/lobular carcinoma, (grade II)

Fibrocystic changes 2634

M007A Non-invasive ductal, invasice tubular
carcinoma, (grade I)

Fibrocystic change, periductal masti-
tis, sclerosing adenosis, other

175

M009A Non-invasive lobular ductal, invasive
ductal, (grade II)

Fibrocystic changes 902

M094A Non-invasive ductal, invasive ductal,
(grade III)

- 4307

M104A Invasive, not assessable, (grade III) - 668

(Visit A). Each DCE-MRI sequence consists of seven three-dimensional MRI volumes, recorded
with a separation of 90sec using a standardised protocol consisting of a fast spoiled gradient echo
sequence (FLASH) with TR=12ms, TE=5ms, flip-angle=35◦ and a field-of-view=340mm ×
170mm in coronal slice orientation. Each voxel of the 256× 128× 64 image volume represents a
1.33mm×1.33mm×2.5mm sized tissue volume. Before recording the third volume, a gadolinium-
based contrast agent was administered with a bolus injection.

The DCE-MRI image volumes were evaluated by an experienced radiologist, who marked image
regions displaying the primary disorder. Secondary disorders were recorded on the diagnosis form
sheet but not marked in the image volume. According to the diagnosis form sheet, five cases
exhibit malignant (Tab. 3.4) and three cases benign (Tab. 3.3) disorders.

3.3 Interpretation of DCE-MRI Data

According to Heywang-Köbrunner and Beck, 1995, a typical evaluation of a DCE-MRI study
consists of

1. Search for or exclusion of an area of enhancement.

2. Analysis of the enhancement characteristics, which are:

• Presence, speed and amount of enhancement

• Presence and speed of washout

• Morphology
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Figure 3.4: Coronal slice of an image volume from a case of the Munich group. The upper left image
depicts the extent of the ROI (white box) which content is displayed with a zoom factor of 2.5 in
the remaining three images. The white circle encloses the lesion whose segmentation is reflected by
white pixels. The upper right image depicts the ROI with intensity values reflecting the precontrast
signal. The intensity values of the two images in the bottom row reflect signal values in the first
and last postcontrast image, respectively. In particular the margin of the lesion exposes a clear signal
enhancement in the postcontrast period.

Due to its physiological features, breast tissue affected by benign or malignant disorders tends
to accumulate significantly more contrast agent molecules than healthy tissue. Therefore, sus-
picious tissue masses expose temporal kinetic signals which exhibit signal enhancements in the
postcontrast period (Fig. 3.4). A standard approach for detecting such enhancing tissue regions
is the examination of subtraction images. A subtraction image is computed by subtracting the
precontrast image from one of the postcontrast images. The image displays non-enhancing tis-
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Figure 3.5: Three main types of temporal kinetic patterns can be observed for breast lesions. Signals of
type Ia/Ib exhibiting a steady uptake over the entire postcontrast period are likely to be measured
for benign tissue. Malignant tissue typically exhibits kinetic signals with a strong uptake followed by
a wash-out in the late postcontrast period (Type III). Signals of type II are rated as suspicious for
malignancy according to the strong signal uptake followed by a course with indistinct characteristics
in the late postcontrast period (Figure adapted from [Kuhl et al., 1999]).

sue with low gray values whereas strong enhancing tissue such as carcinoma appear with high
intensities. However, typically a number of tissue regions exists which exhibit a certain signal
enhancement, although they are not affected by a pathological disorder. For a thorough eval-
uation, several subtraction images based on different postcontrast images should be examined.
Heywang-Köbrunner and Beck, 1995 propose that at least the subtraction images based on one
early and one late postcontrast image have to be considered in addition to the original images of
the DCE-MRI sequence.

Subsequent to the localisation and delineation of the extent of lesions, they have to be examined
with respect to signs which are indicative for benign or malignant disorders of the local tissue.
For this purpose, the radiologist evaluates the enhancement patterns of different lesion voxels and
the morphology of the entire tissue mass.

3.3.1 Enhancement Patterns

The temporal kinetic signal s enables experienced radiologists to infer qualitative information
about the physiological parameters of the local tissue. As these physiological parameters are
strongly influenced by the type and state of the tissue, distinct temporal kinetic patterns can
be observed for different types of tissue. Temporal kinetic signals can either be measured for
single voxels or for a larger, manually marked region-of-interest (ROI). The examination of signals
associated with single voxels provides the most detailed information about the lesion. Neverthe-
less, the examination of all voxels of a lesion is extremely time-consuming and becomes quickly
impracticable for lesions of middle or large size. Further more, the assessments of individual tem-
poral kinetic signals have to be correlated with those of the neighbouring voxels, because isolated
signals with a suspicious temporal course are frequently caused by e.g. a larger vessel and not
by a disorder of the tissue. Thus, lesions are typically analysed by displaying the average kinetic
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signals of all voxels inside manually placed ROIs. Evaluation of entire lesions by means of average
kinetic signals of a small number of manually placed ROIs substantially reduces the expenditure
of time. However, the ROIs have to be placed very carefully in order to avoid an effect which
is comparable to the partial-volume effect: Averaging the kinetic signals of a ROI which covers
a larger number of voxels of healthy and cancerous tissue may lead to an indistinct time course
signal which misleadingly indicates unsuspicious tissue.

According to Kuhl et al., 1999, three major types of temporal kinetic signals can be distinguished
for lesion tissue. The first type of signal exhibits a CA concentration that either continuously
increases (Type Ia, Fig. 3.5, green) or flattens in the intermediate and late postcontrast period
(Type Ib, Fig. 3.5, blue). The second type of signal (Type II, Fig. 3.5, yellow) shows an initial
uptake of CA concentration in the early postcontrast period followed by constant CA concentration
in the intermediate and late postcontrast period. Finally, signals of type III (Fig.3.5, red) expose
a clear wash-out of CA concentration in the intermediate and late postcontrast period after a
significant signal uptake in the early postcontrast period. Non-lesion tissue such as fat or muscles
typically exhibits temporal kinetic signals which do not show any or only weak enhancements
over the entire considered period of time. For the categorisation of the signal time curves, the
short-time series are plotted as relative enhancement curves as calculated by

spt =
spt − sp1

spt
· 100, t = 1, . . . , nt (3.2)

with sp1 as the signal intensity at position p in the precontrast image.

Kuhl et al., 1999 showed that type Ia/Ib signals are likely to be yielded from benign lesions
such as fibroadenoma (fibrocystic changes). Type III signals are rated as indicative for malignant
tissue, whereas type II signals are rated as suggestive for malignancy. The provided experiments
considering a cohort of 266 cases indicate a sensitivity of 91% and a specificity of 83% (diagnostic
accuracy 86%), if lesions are classified using the described categorisation scheme.

3.3.2 Morphological Patterns

Additional information can be obtained from the morphological structure of the entire lesion.
Properties such as characteristics of the margin (smooth, lobulated, irregular or spiculated),
internal spatial homogeneity of the lesion (homogeneous, intermediate, heterogenous), presence
of peripheral enhancements (rim enhancement) or internal non-enhancing septation give rise to a
malignant or benign state of lesions [Szabo et al., 2003]. For a reliable assessment of morphological
characteristics of lesions, MR images need to have high spatial resolution. On the other hand,
the assessment of temporal kinetic signals demands a high temporal resolution, which is achieved
at the expense of spatial resolution.

In practice, the optimal diagnostic performance is achieved by the combined assessment of the
lesion’s morphology and its temporal kinetic signals [Orel, 1999]. The combination of both types
of diagnostic criteria is also suggested by the experiments of Szabo et al., 2003, who evaluated
the impact of the different diagnostic criteria on the diagnostic performance of a proposed scoring
scheme. Table 3.5 shows a brief summary of the major characteristics of benign, suspicious and
malignant lesions.
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Table 3.5: Summary of morphological and kinetic characteristics of benign, suspicious and malignant lesions.
Morphological properties describe spatial patterns of entire lesion masses. The temporal kinetic patterns
reflect characteristics of the course of temporal kinetic signals which either refer to single voxels or to
ROIs consisting of several voxels.

Lesion type Morphology Temporal Kinetic Pattern

Benign Smooth margin, homogenous tissue Steadily increasing signal, decreasing
slope in the late postcontrast period

Suspicious Poorly defined margin Strong uptake, plateau in the late
postcontrast period

Malignant Irregular or spiculated margin, het-
erogenous tissue, rim enhancement

Strong uptake, washout

3.3.3 Challenges of DCE-MRI Data Interpretation

Due to the lack of standardised protocols for DCE-MR imaging, there are no general guidelines
for the interpretation of the image data. The definitions of diagnostic criteria such as strong
signal uptake, heterogenous enhancement or spiculated margin are subjective and strongly depend
on the experience of the investigator. As a consequence, a certain inter- and intra-observer
variance [Leong et al., 1999,Piccoli, 1997], i.e. varying outcomes from different observers or from
repeated assessments by the same observer, has been reported in the domain of DCE-MRI [Orel
and Schnall, 2001]. The individual interpretation strategy typically depends on the preferences
of the investigator, who has to adapt to the given technical capabilities of the imaging hardware
such as the temporal and spatial resolution, but also to the patient population with its prevailing
histological features.

There has been a variety of attempts to quantify the characteristics of kinetic signals by using
measurements such as the slope of enhancement. However, manually chosen parameters such as
thresholds, above which certain measurements have to be considered as indicative for malignant
or benign tissue, still depend on the investigators experience and may vary with the deployed
imaging protocol.

Apart from the varying imaging protocols, the multitemporal nature of the image data turns
the interpretation of DCE-MR images into a challenging task for a human investigator. The
key-information of the DCE-MRI data, i.e. the temporal kinetic of the signals, is fragmented and
distributed over the entire image sequence. To take full advantage of the DCE-MRI data, the
investigator has to examine all images of the sequence simultaneously rather than subsequently.
For the localisation of enhancing tissue regions, the information of several subtraction images has
to be correlated to assure that fast as well as slow enhancing lesions are detected. Following the
localisation of suspicious masses, the temporal kinetic signals associated with the lesion voxels
have to be examined in order to characterise the lesion as malignant or benign. Due to the
heterogenous nature of cancerous tissue, average temporal kinetic signals of whole-lesion ROIs
commonly exhibit only indistinct signal characteristics. In fact, reliable results are only obtained
if the kinetic signals of individual lesion voxels or averaged signals of ROIs, carefully placed at
the most enhancing regions, are examined (Fig. 3.6). The placement of such ROIs by means of a
conventional display of the three-dimensional image data, i.e. two-dimensional slices of the original
image volumes and the subtraction images, strongly depends on the expertise of the radiologist
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Figure 3.6: Two temporal kinetic signals as measured for a case with a histological proven malignant
lesion. The green curve reflects the course of the average signal of a whole-lesion ROI, enclosing
all lesion voxels as marked by the manual lesion segmentation. The blue curve depicts the average
signal of a ROI which was manually placed over a strong enhancing subregion of the lesion. Due to
the heterogeneity of the cancerous tissue, the average signal of the whole-lesion ROI exposes signal
characteristics which are more likely for benign tissue. In contrast, the average signal of the manually
placed ROI exhibits signal characteristics which are suggestive for malignancy and, therewith, indicates
a lesion classification which is concordant with the outcome of the histological examination.

and may vary for repeated examination or for examination by different radiologists.

The continually growing demands for scanners with an increasing spatial and temporal resolution
facilitating the examination of ever smaller anatomical structures is the driving force for the rapidly
enhancing capabilities of modern imaging hardware. In this situation, the manual evaluation
of the multitemporal data by a radiologist may become a limiting factor for the utilisation of
such advanced scanners in clinical practice. Radiologists are faced with an increasing amount of
information obtained from various, increasingly powerful imaging modalities. As a consequence,
there is a substantial demand for CAD systems to assist radiologists in the examination and
interpretation of the information by e.g. optimising the display of DCE-MRI data or providing a
semiautomatic placement of ROIs to limit the expenditure of time and to attenuate the inter-
and intra-observer variability.

3.4 Computer Aided Diagnosis Systems

The acquisition of DCE-MR images as well as the acquisition of images with other imaging
techniques are highly computerised processes which lead to an increasing amount of data due
to the rapidly enhancing capabilities of modern imaging hardware. To avoid that the human
investigator becomes a limiting factor in the diagnostic process, an increasing demand for CAD
systems assisting the human expert exists.

Focussing on breast cancer diagnosis based on DCE-MRI data, the application of CAD systems
is motivated by the properties of the complex image data, namely:
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• A high spatial resolution of MR images displaying the region of interest as a three-dimensional
image consisting of several hundreds two-dimensional image slices. These images provide
a large amount of spatial information about tissue and anatomical structures. At the same
time, the phenomenons under investigation, i.e. pathological disorders of tissue, are typically
represented by only a very small fraction of voxels.

• A temporal dimension of data which causes the key-information to be distributed on a large
number of three-dimensional images. Subtle differences of certain magnitudes between a
very small number of voxels provide evidence to cancerous masses, whereas other signal
variations are caused by blood flow or artefacts which mainly stem from respiration and
heart beat motions.

• A multiparameter component, which can be introduced by acquisition of images with differ-
ent T1/T2-weightings. Variation of the influence of the two relaxation processes leads to a
varying contrast between different anatomical structures and may facilitate the elimination
of tissue regions misleadingly identified as suspicious.

From these properties and from the conceptional formulation of DCE-MRI data analysis [Heywang-
Köbrunner and Beck, 1995], the following three main areas of application of CAD systems in
DCE-MRI analysis can be formulated:

I Efficient visualisation of the entire image data in order to provide access to the key-
information of the DCE-MRI data and to facilitate manual data exploration.

II Localisation of suspicious masses in order to reduce the amount of image information
that has to be evaluated by the investigator by guiding the investigator’s attention directly
to the spatial locations of suspicious masses.

III Characterisation of suspicious masses in order to assist manual examination or to per-
form a fully automatic classification of lesion compartments or entire lesions resulting in
pathophysiological assessments.

In recent years, different CAD systems for DCE-MRI data have been proposed. The area of
application of such tools ranges from software providing a platform for data exploration and
manipulation (e.g. [Subramaninan et al., 2004], [Engelmeier et al., 2004]) to analytical methods
evaluating the measured signal in order to provide an assessment of the local tissue or quantitative
information about its physiological parameters. Such analytical methods can be subdivided into
two groups. The first group are model-based techniques which employ an explicitly formulated
mathematical model of the physiological process underlying the recorded signal. The second group
consists of data-driven techniques which derive implicit models by a data-driven adaptation to
the measured image data.

3.5 Model-Based Image Analysis

Model-based approaches such as pharmacokinetic models or the three-time-points (3TP) method
are based on explicitly defined mathematical models describing the physiological process underlying
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Figure 3.7: Pharmacokinetic models provide mathematical models for the temporal kinetic signals exam-
ined in DCE-MR image sequences. The models consider contrast agent concentration in as well as
the exchange of contrast agent molecules between tissue compartments. The temporal kinetic pat-
terns as measured by a T1-weighted DCE-MRI protocol reflect the temporal course of contrast agent
concentration in the extravascular-extracellular-space compartment.

the measured signal or the course of the measured signal itself. Thus, both methods depend
on an extensive a-priori knowledge about the phenomenon under investigation. Evaluation of
the measured temporal kinetic patterns with one of these models allows to infer quantitative
information about physiological parameters describing the vascular properties of the local tissue.

3.5.1 Pharmacokinetic Models

Pharmacokinetic models [Tofts and Kermode, 1991,Tofts, 1997,Tofts et al., 1999] are widely used
for modelling dispersion profiles of molecules such as drugs or contrast agents in the tissue. Phys-
iologically meaningful parameters are combined in a mathematical model describing the temporal
change of molecule concentration in the considered tissue compartments (Fig.3.7). Fitting these
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models to a recorded signal such as the DCE-MRI signal describing the change of CA concentra-
tion enable physicians to infer quantitative information about the underlying physiologic process.
This information in turn can be displayed as a parametric map. Parametric maps illustrate spatial
variations of physiological parameters by voxels displayed in pseudo-colours reflecting the local
parameter values.

DCE-MRI considers the dispersion of contrast agent molecules in the tissue. More precisely,
the signal of a T1-weighted imaging sequence is predominately sensitive to the quantity of CA
molecules in the extravascular-extracellular-space of tissue. The complexity of the physics behind
MRI prohibits a complete and detailed model and certain simplifications are necessary. The most
frequently used pharmacokinetic models (see [Tofts et al., 1999] for a brief overview) consider only
a limited number of compartments such as the blood plasma compartment and the extravascular-
extracellular-space compartment. Furthermore, most models assume [Tofts, 1997]:

1. A uniformly distributed CA inside the compartment Ci, Cj .

2. A linear intercompartment flux kij of CA molecules between two compartments Ci, Cj ,
i.e. a flux which is proportional to the difference between the CA concentration in both
compartments.

3. Time invariant and constant parameters describing the compartments during the period of
data acquisition.

The mathematical description of all kinetic models used for DCE-MRI analysis can be ascribed
to the generalised kinetic model [Tofts et al., 1999]

∂Cl

∂t
= Ktrans(Cp − Cl/ve) = KtransCp − kepCl

with Cl as the concentration of CA in the lesion tissue and Cp being the concentration of CA
in the arterial blood plasma. The parameters of interest are the transfer constant Ktrans and
kep = Ktrans/ve with ve being the fractional volume of extravascular-extracellular-space. Ktrans

reflects the flux of CA molecules through the vascular endothelium whereas kep relates to the
flux between the extravascular-extracellular-space compartment and the blood plasma compart-
ment. The combination of both parameters provides information about perfusion and vascular
permeability and allows for assessing the ’leakiness’ of vasculature, which reflects the angiogenesis
within a tumour [Leach, 2001].

In practice, values for Ktrans and kep are estimated by a least-square fit of the model to the
temporal kinetic signal sp as measured at the spatial position p. A voxel-by-voxel evaluation of the
entire lesion using the pharmacokinetic model leads to position dependent tuples (Ktrans,kep)p.
These can be displayed as pseudo-colours superimposed on a two-dimensional (Fig. 3.8) or three-
dimensional visualisation of a MR image (e.g. [Hellwig et al., 2002]) and provide a physiologically
meaningful visualisation of the data depicting the spatial variation of tumour vasculature through-
out the lesion.
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Figure 3.8: Parametric map depicting the local value of Ktrans as pseudo-colours. The image indicates a
high microvessel density (high KTrans) at the margin of the lesion surrounding a necrotic core. Both
properties are indicative for malignancy. (Image provided by David Collins, Cancer Research, UK.)

3.5.2 Three-Time-Points Method

Even though the three-time-points (3TP) method [Kelcz et al., 2001, Weinstein et al., 1999]
is literally not a pharmacokinetic model, it provides a pseudo-colouring of lesion voxels which
has shown to be related to the tissue parameters Ktrans and extravascular-extracellular-space
fractional volume ve. A 3TP based voxel-by-voxel colouring of lesions requires DCE-MRI sequences
consisting of one precontrast, one early postcontrast and one late postcontrast image as measured
at time points t1, t2 and t3, respectively. The strength of the signal uptake in the early postcontrast
period is mapped to the intensity of the pseudo colour, whereas the presence of a wash-out is
mapped to the colour hue. Both values are obtained from a computational inexpensive model,
which allows for a rapid evaluation of lesions.

Signal Model of 3TP

Let each voxel with spatial coordinate p be associated with a temporal signal triple sp =
(spt1 , spt2 , spt3). Then, each voxel is mapped to a pseudo colour cp = (hp, ip) with colour
hue hp and intensity ip. The colour intensity is calculated by

ip =
spt2 − spt1

t2 − t1

and displays the strength of the signal uptake between the precontrast and the early postcontrast
image. For the purpose of visualisation, the intensity corresponding to the strongest signal uptake
observed for a certain lesion is scaled to 255. The colour hue reflects presence or absence of a
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Figure 3.9: Left: Illustration of the 3TP pseudo-colouring scheme. The intensity of the pseudo-colour
reflects the amount of signal uptake between the precontrast and the early postcontrast image. The
colour hue reflects presence or absence of a significant wash-out in the postcontrast period. Right:
The 3TP calibration map illustrates the relation between pseudo-colours and values of the (Ktrans, ve)
tuple. A typical parameter tuple for malignant (M) and benign (B) tissue is indicated by the white
crosses, respectively.

significant signal wash-out between the two postcontrast images:

hp =


red : if spt3 < spt2 ∧ |spt2 − spt3 | > σspt2

blue : if spt3 > spt2 ∧ |spt2 − spt3 | > σspt2

green : else

The parameter σ controls the tolerance for the comparison of the two postcontrast values. Only
a signal change of a certain magnitude, e.g. 10% of the early postcontrast value, is rated to be
indicative for presence or absence of a significant signal wash-out (see Fig.3.9, left).

Pathophysiological Interpretation and Model Calibration

The pathophysiological interpretation of the 3TP outcome is given by a calibration map which il-
lustrates the relation between pseudo-colours c and tuples of physiological parameters (Ktrans, ve)
[Weinstein et al., 1999]. Artificial temporal kinetic patterns are generated for tuples (Ktrans, ve)
with Ktrans, ve ∈ [0; 1] using the pharmacokinetic model of Tofts and Kermode, 1991 and are
mapped to pseudo-colours by 3TP. These pseudo-colours are displayed at the corresponding posi-
tions (Ktrans, ve) leading to a two-dimensional calibration map (Fig. 3.9, right). The (Ktrans, ve)
parameter space is subdivided by 3TP into three regions. Tissue with high microvessel density
and permeability (high Ktrans) and high cell density (low ve), which in combination is indicative
for cancerous tissue, is displayed intense red. A low cell density (high ve) and a low microvessel
density and permeability (low Ktrans) is indicative for benign tissue and is displayed blue. Both
regions are separated by a green region marking parameter tuples with indistinct pathological
interpretations.

The relation between (Ktrans, ve) tuples and associated pseudo-colours depends on the toler-
ance parameter σ and the design of the MRI protocol (time points of image acquisition, T1/T2
weighting, etc.). All parameters have to be faithfully selected in order to obtain an optimal pixel-
mapping function. In practice, the time points of image acquisition as well as σ are chosen for a
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Figure 3.10: Image of 3TP evaluation of a recurrent ductal carcinoma. The 3TP pseudo-colours are
superimposed on the precontrast image of the DCE-MRI sequence. The lesion was manually segmented
by a radiologist, who marked voxels exhibiting significant intensity enhancements in the subtraction
images. Subsequently, the marked lesion voxels were evaluated using 3TP. The erratic distribution of
red, blue and green voxels illustrates the heterogeneity of cancerous tissue.

certain imaging protocol by evaluating the corresponding calibration maps. Thereby, the pseudo-
colour at two positions B = (0.3min−1, 0.5) and M = (0.95min−1, 0.5) in the (Ktrans, ve)-space
are regarded particularly. The corresponding parameter tuples have shown to be typical for benign
and malignant tissue, respectively. The pixel-mapping function is well calibrated, if the positions
M and B are simultaneously located in the red and blue region, and both regions are separated
by a green corridor of adequate width (Fig. 3.9, right).

Figure 3.10 shows axial, coronal and sagittal slices of a three-dimensional DCE-MR image.
Voxels of the recurrent ductal carcinoma were manually labelled by a radiologist who marked
significantly enhancing regions of tissue by means of subtraction images. Subsequently, the
lesion voxels were coloured using the 3TP technique. Although the entire lesion is classified
as a carcinoma according to the histopathologic examination, the distribution of lesion voxels
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indicated as malignant (red), benign (blue) or suspicious (green) illustrates the heterogeneity of
lesion tissue and a considerable number of voxels with indistinct wash-out characteristics. If lesions
are examined with the 3TP technique, Kelcz et al., 2001 suggest to regard lesions exposing more
than 15% red voxels as being malignant whereas lesions exposing more than 50% blue voxels and
low intensities are likely to be benign.

3.5.3 Limitations of Model-Based Techniques

Model-based techniques provide an effective approach to analyse DCE-MRI signals with simple
paradigms. Nevertheless, such paradigms require an explicit formulation of a reasonable math-
ematical model of the underlying physiological processes. Thus, their application is restricted
on processes of low complexity, the investigator has reasonable knowledge of. Furthermore,
each model makes a number of assumptions that may not be valid for every tissue or tumour
type [Collins and Padhani, 2004].

Apart from requiring a mathematical model of the underlying process, fitting such a model to
the measured data is a non-trivial task. Adaptation of the model parameters is computational
expensive which deters the use of pharmacokinetic models at the workbench. The adapted model
frequently does not fit the measured data exactly, leading to uncertainty about the reliability
of the estimated parameter values. Additionally, indications for systematical overestimations of
the Ktrans parameters by commonly accepted models for DCE-MRI analysis have recently been
reported [Collins and Padhani, 2004].

3.6 Data-Driven Image Analysis

Data-driven techniques based on Artificial Neural Networks (ANN) provide a basis for a more
explorative approach to DCE-MRI data analysis. Unsupervised ANNs can directly be applied for
the analysis of the DCE-MRI data recorded for the case which is currently under investigation.
Thereby, a predefined number of clusters of signals is determined. Each cluster consists of temporal
kinetic signals which are similar in the signal space according to a certain metric and may refer to
a specific type of tissue such as benign or malignant. The outcome of the clustering process can
be displayed as a three-dimensional image in which the colour of each voxel reflects the index of
the prototype which is most similar to the corresponding temporal kinetic signal.

While unsupervised ANNs autonomously identify reasonable signal clusters from the data, su-
pervised ANNs are applied in order to distinguish predefined signal classes, e.g. signals of normal
and suspicious tissue. To this end, supervised ANNs correlate the signal information of the DCE-
MR images with label information such as manual segmentations of lesions during an adaptation
or training process. After adaptation of the ANN with the labelled data of a small cohort of
cases, the trained ANN can be applied to infer the specified label, which is unknown for unseen
cases, from the corresponding DCE-MRI sequences.

In contrast to model-based techniques which are limited to analysing temporal kinetic patterns,
ANNs facilitate simultaneous processing of more general input patterns which may combine mor-
phological features, features of the temporal dynamics of signals, multiparameter information
derived from images with different T1/T2 weighting or texture information computed for small
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image patches. On the other hand, the outcome of the data-driven techniques typically can not
be interpreted in terms of physiologically meaningful quantities.

3.6.1 Applications of Supervised Artificial Neural Networks

Supervised ANNs, primarily multilayer perceptrons (MLP), have been employed for the evaluation
of DCE-MRI data in different setups.

Lucht et al., 2001 employed a MLP to classify temporal kinetic signals of carcinoma, fibroade-
noma, benign proliferative changes and parenchyma. Training data was collected by measuring
average kinetic patterns of ROIs which were placed on compartments of lesions according to
the parametric map obtained from a pharmacokinetic model. The trained classifier revealed
84% sensitivity and 81% specificity for the discrimination of benign and malignant signals but a
poor performance for the subclassification of benign signals in fibroadenoma or benign prolifera-
tive changes. Additional experiments indicated an optimal performance for temporal sequences
consisting of 28 measurements and a clearly reduced performance for sequences consisting of 3
measurements (78% sensitivity and 76% specificity). In [Lucht et al., 2002] the same setup was
used for supervised segmentation of entire image volumes.

Tzacheva et al., 2003 utilised a MLP for classifying entire lesions as benign or malignant.
The input patterns were features derived from a single static contrast-enhanced magnetic reso-
nance image (CE-MRI) which was recorded with an imaging protocol with active fat suppression.
Strong enhancing regions, i.e. potentially cancerous masses, were identified by a region-oriented
segmentation of the contrast-enhanced image based on intensity thresholds. The segmented im-
age was subsequently converted into a binary image. For each positive region, a pattern vector
was computed combining mass margin and mass shape features in addition to simple texture
features. These feature vectors were evaluated by a MLP to distinguish malignant regions from
parenchyma and blood vessels. The system yielded 90% sensitivity and 91% specificity.

Abdolmaleki et al., 2001 trained a MLP to distinguish averaged kinetic signals of ROIs which
were manually placed by a radiologist over malignant or benign tissue. The input pattern associ-
ated with each ROI consisted of quantitative features extracted from the kinetic signal such as the
area-under-the-signal-curve, steepest slope in the wash-in part or the signal intensity after one,
two and five minutes. Two additional features represented the age of the patient and the size of
the associated ROI. A comparison of the ANN classification performance with those from a group
of experienced radiologists and a group of low-experienced radiologists indicated that the ANN
(97% sensitivity and 64% specificity) outperforms the latter and yields a performance comparable
with an experienced radiologist.

The mentioned applications of supervised algorithms have in common that they either depend
on dedicated imaging protocols [Tzacheva et al., 2003] or an extensive interaction with the user.
The setup proposed by Lucht et al., 2002 requires the radiologist to manually place ROIs in
the DCE-MR images in order to collect examples of tumour signals subsequently used for MLP
training. A model-based technique (a pharmacokinetic model) is utilised for guiding the ROI
placement, which in general is undesirable for the development of a second data-driven analysis
setup. Abdolmaleki et al., 2001 propose a ANN based evaluation of average kinetic signals of
ROIs, which were placed over the most enhancing region of each lesion. Since the same working
step has to be performed for each new case, the application of this approach still depends on
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interactions with the user. Additionally, the preceding working step, i.e. the localisation and
delineation of the extent of the suspicious mass itself, is not considered in this work. In fact,
results of a detailed comparison of learning algorithm based approaches for the localisation and
delineation of suspicious masses with clinical standard procedures such as the manual evaluation
of subtraction images have not yet been reported.

Apart from the shortcomings of their conceptional design, all most approaches have in common
that they employ a multilayer perceptron. Even though the MLP is perhaps the most frequently
used supervised classification algorithm in biomedical applications, recent advances in the area
of machine learning and artificial neural networks have led to new supervised learning techniques
which are easier to handle and are likely to achieve superior classification performance. For
instance kernel-based techniques such as the support vector machine have shown impressive results
in various applications. At the same time, they only require a small number of systematically
tuneable hyperparameters as described in the following chapter.

3.6.2 Applications of Unsupervised Artificial Neural Networks

Several variants of unsupervised learning techniques have been employed for the purpose of visual-
isation and exploration of DCE-MRI data. These techniques solely utilise information as provided
by the input patterns and reveal clusters of examples with similar signal characteristics or provide
a compact display by transforming the high dimensional data.

Wismüller et al., 2002 and Meyer-Bäse et al., 2004 examined the application of vector quanti-
sation (VQ) algorithms for learning of prototypes of temporal kinetic signals representing clusters
in the signal space consisting of kinetic signals with similar characteristics. Wismüller et al., 2002
subsequently used the prototypes to segment the image volumes. Each voxel was labelled with the
index of the prototype which is most similar to the associated temporal kinetic signal. The authors
were able to segment the lesion mass from surrounding tissue as well as to find subdivisions of
lesions in compartments with homogenous signal characteristic.

Jacobs et al., 2003 applied the iterative self-organising data analysis (ISODATA) algorithm, i.e.
a kmeans-like VQ algorithm with a dynamic number of prototypes, for processing multiparameter
DCE-MRI data. The input patterns were different combinations of static contrast-enhanced and
non-enhanced MR images with a T1- or T2-weighting and optional fat-suppression. Based on the
clustering result, a score was derived for the discrimination of malignant and benign lesions. Using
the T1- and T2-weighted, enhanced and non-enhanced static images as features, the classification
yielded 89% sensitivity and 74% specificity which is comparable to the performance of approaches
evaluating the temporal kinetic signals of T1-weighted image sequences.

The determination of typical temporal kinetic signals which are more reliable than signals aver-
aged over entire lesions was considered by Chen et al., 2004. A fuzzy c-means (FCM) clustering
algorithm was applied for segmenting lesion masses in compartments of similar signals, each rep-
resented by an averaged temporal kinetic pattern with lower variance. The averaged temporal
kinetic pattern exhibiting the strongest initial enhancement was used as a prototype for the le-
sion. For the following classification of the lesion as benign or malignant, the quantitative features
maximum uptake, peak location, uptake rate and wash-out rate were calculated and evaluated by
a linear discriminant analysis (LDA). The comparison of the classification performance with that
yielded by a LDA evaluating the temporal kinetic pattern averaged over the entire lesion indicated
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significantly increased performance of the FCM based classification scheme.
Yoo et al., 2002 applied independent component analysis (ICA) for the purpose of lesion detec-

tion and characterisation. The extracted independent components were interpreted as reference
waveforms showing certain characteristics of the temporal kinetic signals. Subsequently, the DCE-
MR sequence was displayed as a single three-dimensional grey value images with voxel intensities
reflecting the correlation of the corresponding temporal kinetic pattern with a user-selected ref-
erence waveform. Since the ICA was able to extract reference waveforms with typical signal
characteristics of malignant tissue, the malignant compartments of the lesions were highlighted
in the corresponding correlation images.

3.7 Summary

DCE-MRI has proven to be a valuable imaging technique which is highly sensitive to the vascular
changes of cancerous tissues. Beside morphological features, the key-information is the course of
the concentration of contrast agent molecules in the tissue as measured in form of temporal se-
quences of three-dimensional MR images. Examination of the temporal kinetic signals enables the
investigator to localise and characterise suspicious masses, but is a laborious and time-consuming
task due to the multitemporal nature and the large amount of image data.

Computer aided diagnosis systems using model-based or data-driven techniques are currently
under investigation. Model-based approaches are based on explicitly defined mathematical models
of underlying physiological processes and demand for a-priori knowledge. Even though the phar-
macokinetical models use several convenient simplifications, they provide valuable information
with a clear histopathological meaning.

Data-driven approaches using supervised and unsupervised artificial neural networks have re-
cently been identified as an appropriate alternative technique. ANN based systems derive implicit
models of the temporal kinetic signals during data-driven adaptation processes. Thus, they do
not rely on a-priori knowledge about the underlying processes and can be applied even if signal
characteristics are complex.

In this thesis, modern machine learning techniques and ANNs are applied for the three main work
tasks of DCE-MRI analysis, namely efficient data visualisation, localisation of suspicious masses
and characterisation of suspicious masses. The goal is to develop applications based on ANNs
which are consistently data-driven and do not depend on preprocessing steps based on model-
based techniques. The proposed applications will only require data acquired during standard
clinical diagnosis processes, which are geared towards the medical requirements of breast cancer
diagnosis and not to the requirements of ANN applications.

36



4 Supervised Learning - Concepts, Algorithms and
Evaluation

In this chapter, basic ideas of supervised learning algorithms are discussed. After a brief review
of two principles of supervised learning, the supervised learning algorithms employed in this thesis
are introduced. Techniques for evaluating the performance of classification models are described
in the last section.

4.1 Concepts of Supervised Learning

Machine learning algorithms and artificial neural networks (ANN) are frequently applied to the
task of classification, in which objects have to be assigned to a finite number of known categories
or classes Ω = {ωk}, k = 1, . . . , nΩ. For classifying objects using an ANN, consistent vectorial
descriptions of objects have to be provided. These vectorial descriptions may consist of three
different types of features:

• Quantitative features reflecting continuous values e.g. the measurements of physical pa-
rameters.

• Ordinal features describing enumerated, discrete states of objects such as the grade of
pathological tissue disorders.

• Nominal features describing the presence or absence of certain attributes e.g. ’smoker’ or
’non-smoker’ for clinical patients.

The collection of nin features selected for the description of objects spans the data space
X = IRnin and the vectorial description xi of the i-th object can be regarded as a point in X .
Each point is attributed by a label y as a member of one of the considered classes ωk. A simple,
but nonetheless effective and frequently used method for classifying objects with unknown class
labels is the comparison of the objects with a set Γ of examples with known class labels. The
similarity of two objects xi and xj is measured by the distance d(xi,xj) of two objects in X using
a suitable metric. Thus, the k-nearest-neighbour (kNN) classifier [Hastie et al., 2001] designates
an unlabelled object as a member of the majority class under its k closest examples xj ∈ Γ.

Contrary to the intuitive assumption that an increasing number of features facilitates discrimina-
tion of different object classes, artificial learning algorithms frequently suffer from high dimensional
data spaces. Introduction of new features does not necessarily lead to a more effective discrimina-
tion of the objects. The information provided by new features may be completely irrelevant for the
discrimination of the considered classes or is redundant, because the same information is already
provided by other features. The phenomenon of degenerating performance of ANNs evaluating
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high dimensional data is referred to in literature as curse of dimensionality [Bishop, 1995]. Since
it is commonly not known in advance which subset of features provides discriminative information,
two main concepts for dimensionality reduction exist.

Feature selection techniques either iteratively add features to an initially empty set of active
features (forward selection) or iteratively remove a feature from the set of active features initially
containing all features (backward selection). After each iteration, the goodness of the active
set is evaluated by training the deployed classifier and evaluating its classification performance
(wrapper method) or by evaluating a reasonable criterion independent of the classification task
(filter method).

The second concept for avoiding the curse of dimensionality is to find a smaller subset of meta
features x̄ ∈ X̄ , dim(X̄ ) < dim(X ) which are weighted linear or nonlinear combinations of the
original features. Such features are obtained by optimisation of a reasonable criterion such as
minimising the least square criterion

E =
N∑

i=1

‖x−AT x̄ + µx‖ (4.1)

with the mean µx and mixing matrix A as in principal component analysis (PCA) [Jolliffe, 1986]
or maximising the mutual information in independent component analysis (ICA) [Hyvärinen et al.,
2001] for a set of N objects. These techniques belong to the group unsupervised learning methods,
since they do not rely on labelled objects.

Once a suitable object description has been found, a supervised learning algorithm can be
adapted using a set Γ = {(x, y)i}, i = 1, . . . , N of N labelled examples. Each example is a tuple
consisting of the vectorial description xi ∈ X and the class label yi. Depending on the number
of classes to distinguish, the class membership can either be coded by a scalar yi = {±1}, as in
the case of a binary data set, or by a nΩ-dimensional vector yi = δij using the 1-of-nΩ scheme
with δij = 1 if xi belongs to class ωj and δij = 0 otherwise, as in the case of a multi-class data
set.

4.1.1 Empirical Risk Minimisation

During adaptation of a supervised classification algorithm, the parameter set θ of the classification
function

fθ : X 7→ Y, (4.2)
x → y(x) (4.3)

has to be learned from a set of labelled training data Γ sampled from the underlying data dis-
tribution p(x, y). A classification function fθ with parameters θ adapted to a certain problem is
also referred to as a classification model. The discrimination function associates each example
x ∈ X with a target vector y(x) = fθ(x) or target scalar y(x) = fθ(x) indicating the assigned
class ω ∈ Ω according to the utilised coding scheme. One strategy for systematically adapting the
parameters θ is the empirical risk minimisation principle [Vapnik, 1995]. Thereby, the parameters
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Data Space

Figure 4.1: A classification model that minimises the empirical risk is not necessarily a minimiser of the
expected risk. Both models (dashed and solid lines) depicted in the figure are able to separate the
training examples of the two classes (red and blue circles) with no error. Nevertheless, it is unlikely
that the model depicted by the solid line performs well on unseen examples, since the course of the
decision boundary does not reflect the regularity of the data distribution reasonably well.

θ are adapted to minimise the empirical risk or the training error

RΓ
emp[fθ] =

1
N

N∑
i=1

l(xi, yi, fθ) (4.4)

measured on the training set Γ using a loss-function l. As an example, RΓ
emp[fθ] corresponds to

the fraction of classification errors for a fixed set Γ of N examples with label y ∈ {±1} if the
zero-one loss function

l(xi, yi, fθ) =
1
2
|yi − fθ(xi)| (4.5)

is used. By minimising the empirical risk, the classifier learns a model of the underlying process
generating the data. But a low empirical risk does not imply a low expected risk

Rexp[fθ] =
∫

l(xi, yi, f)dP (x, y) (4.6)

for the underlying, typically unknown, joint probability distribution function P (x, y), although
this generalisation on unseen data is the ultimate goal of learning. Nevertheless, the law of large
numbers suggests that

RΓ
emp[fθ] →

N→∞
Rexp[fθ], (4.7)

which is the main motivation for the empirical risk minimisation (ERM) induction principle.

Bias-Variance Tradeoff

It turns out that straightforward minimisation of the empirical risk RΓ
emp[fθ] as suggested by

the ERM principle is problematic. If the classification model fθ is allowed to be taken out of a
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Figure 4.2: Bias-variance tradeoff for choosing a classifier of reasonable complexity. The complexity of a
model should be selected such that it is sufficient to minimise the expected risk. Selecting a more
complex model may lead to further reduction of the empirical risk but not of the expected risk. In this
case, the model is said to overfit the training data.

family of functions of arbitrary complexity, there will be a large number of models that perfectly
reproduce the class label for the given training set. However, this does not necessarily imply that
these models carry information about the true data distribution and are able to infer the label for
unseen examples equally well (Fig. 4.1).

Beside the empirical risk, the complexity or capacity of the model represented by a classifier has
to be considered during training. A model of increasing complexity naturally leads to a decreasing
RΓ

emp[fθ] but not necessarily to a decreasing Rexp[fθ]. If the model is too complex it may overfit
the data, whereas a model which is not flexible enough may underfit the data (Fig. 4.2). This
phenomenon is also known as the bias-variance-tradeoff [Hastie et al., 2001]. In consequence, the
function fθ is usually constrained to e.g. a set of smooth decision boundaries since the underlying
true decision boundary is often smooth in real-world problems.

Most classifiers are controlled by certain parameters which influence the complexity of the
represented model like the number of nearest neighbours in the case of the kNN. These hyperpa-
rameters1 are frequently selected manually by training a classifier with different parameterisations
and approximating the corresponding prediction error on a separate test set of unseen examples
by n-fold cross-validation or by the leave-one-out error [Hastie et al., 2001].

4.1.2 Structural Risk Minimisation

An alternative concept of learning is the structural risk minimisation (SRM) principle. The reader
is referred to the book of Vapnik, 1995 for a detailed introduction. In SRM, learning aims at
finding an appropriate trade-off between minimisation of empirical risk and model complexity.
Model parameters are estimated by minimising an upper bound on the expected risk. With a

1The term hyperparameters refers all parameters of learning algorithms that have to be manually adjusted by the
user.
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Figure 4.3: The VC dimension h of an optimal hyperplane can be bounded by the radius-margin-bound,
i.e. the ratio of the radius D of the smallest sphere enclosing all training examples and the margin γ
being the distance between the closest training examples and the hyperplane. Since D is constant for
a given set of training examples, maximising the margin gives the smallest value for the bound on h.

probability of 1 − η with η ∈ [0; 1], the classification model fθ that minimises the empirical risk
RΓ

emp[fθ] on the given training set Γ satisfies

RΓ
exp[fθ] ≤ RΓ

emp[fθ] +

√
h

N

(
log

2N

h
+ 1
)
− 1

N
log

η

4
, (4.8)

where h is a quantity referred to as Vapnik-Chernovenkis (VC) dimension [Vapnik, 1995]. The
VC dimension of a family of classifiers is a measure of the complexity of the space of all solutions
that can be generated for any given data set. The right hand side of (4.8) is often referred to as
the VC bound. A convenient property of the VC bound is that it is distribution-free, i.e. one does
not need to know the distribution of the data to estimate the convergence rate of the learning
algorithm, although tighter bounds could be derived if the data distribution functions were known.

For the family of hyperplanes, Vapnik showed that the VC dimension is bounded by the radius-
margin-bound

h ≤

(
D

γ

)2

, (4.9)

with γ being the margin of the hyperplane, i.e. the distance of the hyperplane to the closest
training example, and D being the radius of the smallest sphere enclosing all examples in Γ
(Fig 4.3). This finding indicates that the maximum margin hyperplane, i.e. the hyperplane with
the largest possible distance to the closest training example, gives the smallest value of the VC
bound and can be expected to yield the highest generalisation power. The SRM principle is the
theoretical foundation of the support vector machine algorithm [Vapnik, 1995], which combines
the computation of maximum margin hyperplanes with implicit data transformations by nonlinear
Mercer’s kernels [Schölkopf et al., 1999a].
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4.2 Support Vector Machine

In recent years, kernel based methods have gained much attention from the machine learning
community. The most well-known kernel based algorithm is the (support vector machine) SVM
[Vapnik, 1995, Schölkopf and Smola, 2002], which has shown superior performance for a wide
range of binary classification tasks [Schölkopf and Smola, 2002, Bennett and Campbell, 2000,
Cristianini and Shawe-Taylor, 2000]. The success of the SVM algorithm is based on several
appealing properties. Firstly, training of the SVM follows the SRM principle and leads to a
classification function which separates two classes ω+ (y = 1) and ω− (y = −1) by a maximum
margin hyperplane. Since this hyperplane is the unique solution of a quadratic programme,
the adaptation process is not sensitive to local minima. Secondly, introducing nonlinear kernel
functions fulfilling the Mercer’s theorem [Schölkopf and Smola, 2002, Schölkopf et al., 1999a]
executes the algorithm implicitly in a new feature space F and leads to nonlinear discrimination
functions in X . Additionally, nonvectorial or structured data such as gene-sequences or text
documents can be processed by the SVM as well as by other kernel-based methods using suitable
kernel functions which embed the nonvectorial data in vectorial feature spaces [Shawe-Taylor and
Cristianini, 2004, Meinicke et al., 2004, Leslie et al., 2002]. Finally, due to the availability of
efficient adaptation algorithms and the low number of hyperparameters that have to be adjusted
by the user, the SVM can be handled easily even by non-machine-learning experts.

4.2.1 Maximum Margin Hyperplanes

One of the most well-known algorithm for discriminating examples of two classes is the perceptron
proposed by Rosenblatt, 1958. The perceptron is an iterative method for computing a hyperplane
separating the examples of a binary labelled training set Γ. The adaptation process successively
minimises the training error RΓ

emp. Novikoff, 1962 proved that a consistent solution is found
after a finite number of iterations, given that the training examples of the two classes are linearly
separable. Figure 4.4 illustrates the drawback of solely considering the training error during
adaptation of the hyperplane. Both hyperplanes (bold black line and dashed gray line) in figure
4.4 are consistent solutions, i.e. they separate the two classes without misclassification of any
training example. The final solution as found by the perceptron (dashed gray line) may vary
significantly by reason of the large number of different but consistent hyperplanes that can be
placed between the examples of the two classes. Nevertheless, the training set is just a limited
representation of the underlying distribution p(x, y) and limited deviations ∆x from the training
samples have to be assumed for new examples. Therefore, considering the training error as
well as the margin γ, i.e. the distance to the closest training example, during training leads
to a statistically more stable discrimination function [Shawe-Taylor and Cristianini, 2004]. The
classification outcome of the maximum margin hyperplane (bold black line), i.e. the hyperplane
with the largest possible distance γ to the closest training example, does not change as long as
‖∆x‖ < γ holds.

Formally, the hyperplane fθ with θ = (w, b) is parameterised by a weight vector w and a bias
b leading to the classification function

fθ(x) = 〈w,x〉+ b.
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Figure 4.4: In contrast to a hyperplane found by the perceptron algorithm (dashed gray line), the maximum
margin hyperplane (bold black line) maximises the distances to the closest training examples. This
maximum margin hyperplane is solely defined by the support vectors (solid circles) located in the
margin corridor depicted by the gray region. By introducing slack variables ξi, an adjustable amount
of margin errors is tolerated in order to further increase the margin of the hyperplane.

The continuous outcome fθ(x), which is also referred to as score or margin value of x, reflects
the signed perpendicular distance of x to the hyperplane. The sign of the score indicates on which
side of the hyperplane the example is located and thus corresponds to the assigned class label

y(x) = sgn[fθ(x)].

Without loss of generality, only canonical hyperplanes with

min
i=1,...,N

|〈w,xi〉+ b| = 1, xi ∈ Γ

are considered in the following. Since the outcome for the closest training example is fixed to
1, the corresponding distance or the margin of the hyperplane is 1

‖w‖ . Therefore, minimisation

of the norm ‖w‖ maximises the margin γ of the hyperplane and adaptation of the SVM can be
formulated as a constrained optimisation problem:

min
w,b

〈w,w〉 (4.10)

subject to yi(〈w,xi〉+ b) ≥ 1, i = 1, . . . , N. (4.11)

Even though the solution θ is statistically stable presuming γ is large, it is not robust in the
sense that a single training example can significantly change the solution. Furthermore, a feasible
solution only exists if the examples xi ∈ Γ are linearly separable. In order to obtain a more robust
solution, the constraints (4.11) are relaxed by introducing slack variables ξi ≥ 0. The soft margin
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formulation of the optimisation problem then becomes:

min
w,b

〈w,w〉 + C

N∑
i=1

ξi (4.12)

subject to yi(〈w,xi〉+ b) ≥ 1− ξi, i = 1, . . . , N (4.13)
ξi ≥ 0, i = 1, . . . , N (4.14)
C > 0. (4.15)

(4.16)

The objective function (4.12) has now the form of a regularised risk function [Thikhonov and
Arsenin, 1977]

RΓ
reg[fθ] = Ω[fθ] + CRΓ

emp[fθ],

with the regularisation variable C controlling the trade-off between the regularisation term Ω[f ]
controlling the complexity of the classifier and the empirical risk RΓ

emp[fθ] with the soft-margin
loss function

l(xi, yi, fθ) = max(0, 1− yifθ(xi)).

Depending on the value of C, an adjustable amount of margin errors (yifθ(xi) < 1) or misclassified
training examples (yifθ(xi) < 0) is tolerated in order to increase the margin of the hyperplane.

The soft margin optimisation problem can be solved by adopting the Lagrange theory [Cristianini
and Shawe-Taylor, 2000] leading to the corresponding primal form

LP (w, b, ξ,α, r) =
1
2
〈w,w〉+ C

N∑
i=1

ξi −
N∑

i=1

αi[yi(〈w,xi〉+ b)− 1 + ξi]−
N∑

i=1

riξi.

Differentiating the primal form with respect to w, b and ξ imposing stationarity,

∂LP (w, b, ξ,α, r)
∂w

= w −
N∑

i=1

yiαixi = 0, (4.17)

∂LP (w, b, ξ,α, r)
∂ξi

= C − αi − ri = 0, (4.18)

∂LP (w, b, ξ,α, r)
∂b

=
m∑

i=1

yiαi = 0, (4.19)

(4.20)

and resubstituting the obtained relations into the primal form leads to the dual form of the
objective function:

LD(w, b, ξ,α, r) =
N∑

i=1

αi −
1
2

N∑
i,j=1

yiyjαiαj〈xi,xj〉.
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The corresponding Karush-Kuhn-Tucker complementary conditions are

αi

[
yi(〈w,xi〉+ b)− 1 + ξi

]
= 0, i = 1, . . . ,m

ξi(αi − C) = 0, i = 1, . . . ,m.

They imply that non-zero slack variables only occur for examples xi whose distance is less than
the desired margin 1

‖w‖ , whereas xi with 0 < αi < C lies at the target distance of 1
‖w‖ .

In practice, the maximum margin hyperplane is computed by maximising the dual form of
the objective function, because it is parameterised by a unique kind of parameters, the so-called
Lagrange coefficients α. The optimal parameters α are determined by solving the following
constrained quadratic optimisation problem:

max
α

N∑
i=1

αi −
1
2

N∑
i,j=1

yiyjαiαj〈xi,xj〉 (4.21)

subject to
N∑

i=1

yiαi = 0 (4.22)

0 ≤ αi ≤, C, i = 1, . . . , N. (4.23)

The classification function of the maximum margin hyperplane is then given by a weighted linear
combination of examples xi ∈ Γ

fθ(x) =
m∑

i=1

yiαi〈xi,x〉+ b, (4.24)

which is commonly defined by only a small number of training examples (the so called support
vectors), since the majority of αi tends to be zero. The class label of an unseen example x is still
derived from the sign of the output fθ(x).

4.2.2 Kernel Functions

The introduction of the regularisation variable C controlling the trade-off between minimisation of
model complexity and training error allows to compute an optimal hyperplane even for nonlinearly
separable training data. To further extend the discriminative power of the linear classification
method, input data are frequently mapped by a nonlinear transformation

Φ : X → F
x 7→ Φ(x)

to a new, high-dimensional feature space F , in which the linear algorithm will then be executed.
A hyperplane in F corresponds to a nonlinear discrimination function in X by virtue of the
nonlinear relationship between X and F . Even if the training data are more likely to be linearly
separable if they are transformed to a high dimensional feature space, two aspects have to be
considered. The first aspect is the already mentioned curse of dimensionality, which can be
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avoided by a reasonable regularisation of the maximum margin hyperplane. The second aspect is
the increasing computational expense if the maximum margin hyperplane is explicitly computed
in F . The latter is alleviated by the application of the kernel trick which was first published by
Aizerman et al., 1964 and allows for executing the SVM algorithm in F implicitly.

For an implicit execution of the SVM in a high or even infinite dimensional feature space which
is nonlinear related to X , a remarkable property of the corresponding quadratic programme given
by (4.21)-(4.23) is exploited. Training examples xi,xj ∈ Γ only appear as pairwise inner products,
and the N × N matrix I with entries Ii,j = 〈xi,xj〉 provides sufficient information about the
training data for adapting the SVM. In order to compute the maximum margin hyperplane in
some F implicitly, the matrix I is replaced by a kernel matrix K with entries

Ki,j = K(xi,xj) = 〈Φ(xi),Φ(xj)〉.

The entries Ki,j are calculated by a computational inexpensive, nonlinear kernel function K(xi,xj)
and correspond to the inner product 〈Φ(xi),Φ(xj)〉 in a feature space induced by some nonlinear
transformation Φ, provided the kernel function fulfils Mercer’s condition [Schölkopf et al., 1999a,
Schölkopf and Smola, 2002]. After substituting the kernel function into (4.24), the discrimination
function, i.e. the maximum margin hyperplane in F , is given as a linear expansion of weighted
kernel functions

fθ(x) =
N∑

i=1

yiαiK(xi,x) + b

and corresponds to a nonlinear discrimination function in X . Frequently used kernel functions are
the the linear kernel

K(xi,xj) = 〈xi,xj〉, (4.25)

the polynomial kernel

K(xi,xj) = 〈xi,xj〉p (4.26)

which corresponds to a mapping Φ in the space of all monomials of degree p and the Gaussian
kernel

K(xi,xj) = exp
(
−‖xi − xj‖2

2σ2

)
, (4.27)

which allows for computing the maximum margin hyperplane in an infinite dimensional feature
space [Cristianini and Shawe-Taylor, 2000]. Since the substitution of a kernel function K(xi,xj)
for the inner product 〈Φ(xi),Φ(xj)〉 in the quadratic programme and in the discrimination function
removes any appearance of Φ, the transformation Φ underlying the selected kernel function needs
not be known explicitly.

4.2.3 Hyperparameter Selection

The discriminative power of the SVM depends crucially on the adjustment of hyperparameters
such as the type and parametrisation of the kernel function and the regularisation parameter
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C. Unless properties of the data suggest a specific kernel function, the function is commonly
chosen by testing different standard kernels such as the linear kernel, the Gaussian kernel or the
polynomial kernel on the training data. Although several approaches for automatic hyperparameter
adjustment by optimising a suitable performance measure [Chapelle et al., 2002, Duan et al.,
2003a,Keerthi, 2002] or by using genetic algorithms [Friedrichs and Igel, 2004] have been proposed,
the standard approach for a low number of hyperparameters, e.g. for the two hyperparameters
σ and C as in the case of SVMs with Gaussian kernel, is still a grid-search in the corresponding
parameter space: Subsequently to the choice of a finite set of values for each hyperparameter the
performance of the SVM for all combinations of hyperparameter values is evaluated either on a
separate test set or by cross-validation on the training data. The combination of hyperparameter
values yielding the best performance is then chosen as the optimal parametrisation for the given
task.

4.2.4 Multi-Class Extensions

The basic version of the SVM algorithm considers only the case of binary classification, and there
is no direct formulation of the SVM for the multi-class case in which examples of nΩ classes
have to be distinguished. Even though some formulations for solving multi-class problems by a
single SVM-like optimisation problem have been proposed (see e.g. [Hsu and Lin, 2002]), decom-
position schemes are still the most frequently used approaches for multi-class SVMs. Thereby,
the multi-class problem is decomposed into a set of binary problems, each solved by a separate
binary SVM. The outcomes of the individual binary classifiers are combined to a final multi-class
prediction. This divide-and-conquer strategy of multi-class classification is not restricted to the
SVM, but can also be used with every other binary classification algorithm. The most frequently
used decomposition schemes are one-versus-all and one-versus-one, but other, more sophisticated
approaches have been proposed (e.g. [Platt et al., 2000,Dietterich and Bakiri, 1995]).

One-Versus-All Decomposition

In the one-versus-all approach, nΩ binary SVMs are trained. The k-th classifier is trained to
discriminate examples of class ωk from examples of the remaining classes. An unseen example x
is then assigned to the class given by

argmax
k=1,...,nΩ

fθk
(x) (4.28)

with fθk
(x) as the signed margin value of the k-th binary SVM.

One-Versus-One Decomposition

In the one-versus-one scheme, a single binary classifier is trained for each possible pair of classes.
Thus, the multi-class problem is decomposed into nΩ(nΩ−1)

2 binary problems. For the classification
of an unseen example, the binary response sgn[fθkl(x)] of the classifier distinguishing examples
from class ωk versus examples from class ωl is considered as a vote either for class ωk or for ωl.
The example is finally assigned to the class which obtains the highest number of votes (Max-Win
strategy).
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Directed Acyclic Graph Support Vector Machine

An alternative approach for recombining the outputs of nΩ(nΩ−1)
2 binary classifiers is the directed

acyclic graph support vector machine (DAGSVM) [Platt et al., 2000]. The DAGSVM is composed

of a rooted binary directed acyclic tree with nΩ(nΩ−1)
2 internal nodes. Each node corresponds to

one of the classification models discriminating examples of two classes. For the classification of
an unseen example, the graph is traversed starting from the root node. At each node, the next
subgraph is selected according to the output of the classification model corresponding to the
current node. Thus, for the calculation of the finally assigned class label as given by the final
leaf, only a subset of the classifiers has to be applied to the unseen example, which reduces the
evaluation time.

Error-Correcting-Output-Codes Framework

The one-versus-all and one-versus-one schemes can be regarded as a special case of the more
general error-correcting-output-codes (ECOC) framework proposed by Dietterich and Bakiri, 1995.
In its early version, the multi-class problem is decomposed by adapting nK classifiers on different
partitions of the training data. Subsequently, the binary responses of the nK binary classification
models for an unseen example x are combined to a nK-dimensional output vector o. This vector
is evaluated by a decoding matrix D ∈ {±1}nΩ×nK containing an unique code vector for each
class. The final class response is determined by calculating the best matching code vector using

argmin
k=1,...,nΩ

d(Dk•,o) (4.29)

with d(Dk•,o) as the Hamming distance between o and the k-th row of D containing the code
vector of class ωk. Later, the ECOC scheme was extended by [Allwein et al., 2000] to take
the continuous margin values into account. For this purpose, the Hamming-based decoding was
replaced by a decoding which employs a suitable loss-function.

In [Hsu and Lin, 2002] the different decomposition schemes for multi-class classification using
binary SVMs are compared by means of standard benchmark data sets. Even though a significantly
larger number of binary SVMs has to be trained for the one-versus-one and DAGSVM scheme,
the training time as well as the evaluation time of unseen examples can be shorter than for the
one-versus-all scheme. The computational complexity of the SVM training scales about quadratic
to cubic with the number of training examples [Schölkopf et al., 1999b]. Thus, solving a larger
number of smaller quadratic programmes can be computational less expensive than solving a
smaller number of larger quadratic programmes. The computational expense of classifying an
unseen example is dominated by the number of kernel evaluations, which depends on the number
of support vectors. In the case of nonlinear kernel functions like the Gaussian kernel the number of
support vectors and, therewith, the number of kernel evaluations needed for classifying an example
typically increases with the number of training examples. For the multi-class data sets considered
by Hsu and Lin, 2002, the total number of support vectors of the one-versus-one solution was
smaller than for the one-versus-all solution resulting in an increased evaluation time for the latter
scheme. In terms of accuracy, the experiments indicated comparable performance of one-versus-
one and one-versus-all schemes with Gaussian kernel, but a slightly superior performance of the
former scheme if the problem is solved by a set of SVMs with linear kernel.
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4.2.5 Output Calibration

Class membership probability estimates, i.e. a-posteriori probabilities P (ωk|x), are frequently
desired as output from a classifier in order to combine the classification outcome with additional
information sources for decision making. The SVM as well as many other classifiers only returns
margin values or scores fθ(xi), fθ(xj) ∈ [−∞;∞] describing the confidence that the examples
xi,xj belong to class ω+. These score values allow for ranking of the examples from the least
probable to the most probable members of class ω+ under the assumption that P (ω+|xi) <
P (ω+|xj) whenever fθ(xi) < fθ(xj). In order to obtain accurate estimates of a-posteriori
probabilities from the SVM, the scores have to be calibrated by a suitable transformation function.

Calibrated Outputs for Binary SVMs

The simplest approach for obtaining a-posteriori probabilities from the binary SVM algorithm is
by binning the range of scores as it is recommended for naive Bayes classifiers by Zadrozny and
Elkan, 2001. Thereby, the a-posteriori probability P (ω+|x) of an unseen example x is estimated
by the fraction of positive training examples within the bin containing the corresponding score
fθ(x).

Platt, 2000 proposed a post-processing of the SVM outcome fθ(x) by a scaling function. Driven
by the fact that the relation between the empirical class membership probability P (ω+|f(x) = s),
i.e. the number of training examples x with assigned score f(x) = s divided by the total number
of training examples, and the score appears to follow the course of a sigmoid function for many
data sets, the parametric model

P (ω+|x) =
1

1 + exp[w1fθ(x) + w0]
(4.30)

of a sigmoid function is utilised for postprocessing. The model parameters w0 and w1 are computed
by minimising the negative log-likelihood [Bishop, 1995] using the Levenberg-Marquardt algorithm
[Press et al., 1986]. Recently, the approach was numerically improved by Lin et al., 2003 who
also replaced the Levenberg-Marquardt method by a simple Newton’s method with backtracking
line search for parameter optimisation.

Calibrated Outputs for Multi-Class SVMs

Several approaches have been proposed in order to obtain a-posteriori probabilities from a multi-
class SVM. In [Duan et al., 2003b] a softmax function

P (ωk|x) =
exp(wkfθk

(x) + wk0)∑nΩ
k=1 exp(wkfθk

(x) + wk0)
(4.31)

is used for combining the margin values fθk
(x) of the nΩ binary SVMs of an one-versus-all multi-

class SVM. The parameters of the softmax layer are selected by optimising a regularised form of
the negative log-likelihood leading to the constrained optimisation problem:

min ENLL = 1
2‖w‖

2 − λ
∑m

i=1 log[P (ω = yi|xi)] (4.32)
subject to wk, wk0 > 0, k = 1, . . . , nΩ, (4.33)
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with ‖w‖2 =
∑nΩ

k=1(w
2
k + w2

k0). For the one-versus-one multi-class SVM, the softmax layer is
adjusted according to

P (ωk|x) =
exp(

∑
l 6=k wklfθkl

(x) + wk0)∑nΩ
k=1 exp(

∑
l 6=k wklfθkl

(x) + wk0)
(4.34)

with fθkl
(x) as the margin value discriminating examples of class ωk versus ωl. In [Wu et al.,

2004], a-posteriori probabilities are obtained from a one-versus-one multi-class SVM by pairwise-
coupling [Hastie and Tibshirani, 1998].

Parameter Fitting

For fitting the parameters of the scaling function, the data set {(fθ(xi),yi)} has to be carefully
selected in order to avoid over-fitting. The margin values fθ(xi),xi ∈ Γ of the training set Γ
used for adaptation of the SVM only provide substantially biased estimates of the distribution of
score value for examples beyond the margin (non support vectors). The training examples near
the margin with (yifθ(xi) ≈ 1) are forced to take an absolute value of 1. Examples that fail the
margin with (1 − yifθ(xi) > 0) are also biased as they are pushed towards the margin by the
corresponding Lagrange coefficients αi. Thus, Platt, 2000 suggests to fit the parametric model
either to the score values calculated for examples of a hold out Γ̄ ⊂ Γ disjoint to the training set
used for adapting the SVM or to the score values obtained from a n-fold-cross-validation process
on the training data. To this end, the training set is divided into n disjoint subsets. After adapting
the SVM with the union of n − 1 subsets, the score values are calculated for examples of the
unseen subset. By repeating this process for all permutations of the n subsets, significantly less
biased score values can be obtained for the entire training set.

4.3 Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a classical statistical approach for discriminating examples
of two or more classes by hyperplanar decision boundaries for which computation different but
related techniques have been proposed in the past (see [Hastie and Tibshirani, 1998]). One of
the most well-known method is the Fisher’s linear discriminant [Bishop, 1995] which regards the
task of discriminating examples of the two classes ω+, ω− as a dimensionality reduction problem.
Examples xi ∈ Γ are mapped to a one-dimensional space by projecting them onto a vector w
(Fig 4.5). The sign of the classification function

fθ(xi) = w0 + 〈xi,w〉

with θ = (w, w0) provides a class label according to y(xi) = sgn[fθ(xi)]. Therewith, the
classification function corresponds to a hyperplane in X with a perpendicular distance of w0 to
the origin. The vector w determined by the Fisher’s linear discriminant maximises the Rayleigh
coefficient

J(w) =
wTBw
wTWw

,
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Figure 4.5: The normal vector w perpendicular to the hyperplane of the Fisher’s linear discriminant lies in
the direction that maximises the separability of the examples of class ω+ (red) and ω− (blue) after
projection onto w.

measuring the ratio of the between-class scatter wTBw and the within-class scatter wTWw for
a training set Γ. The between-class scatter matrix B is given by

B = (µ− − µ+)(µ− − µ+)T

with the class-specific sample mean µ+,µ− computed by

µi =
1

Nωi

∑
x∈ωi

xi.

The within-class scatter matrix W is defined as

W = W+ + W−

with the class-specific scatter matrices

Wk =
∑

xi∈ωk

(xi − µk)(xi − µk)
T .

The vector w maximising J(w) can then be derived from the eigenvalue problem

W−1Bw = λw

with some constant λ. Due to the fact that in this particular case Bw lies always in the direction
of (µ− − µ+) and the scale factor is irrelevant, the optimal w can also be calculated by

w = W−1(µ− − µ+)
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leading to the classification function

fθ(x) = w0 + xTW−1(µ− − µ+). (4.35)

The constant shift w0 can be obtained by minimising the empirical error on the training set
Γ. Alternatively, w0 can be calculated directly, whenever the class-conditional densities are mul-
tivariate normal

p(x|ωk) =
1

(2π)
nin
2 det(Σk)

1
2

exp
(
−1

2
(x− µk)

T Σ−1
k (x− µk)

)
,

with equal covariance matrices Σ = Σ+ = Σ− for both classes ω+ and ω− [Hastie et al., 2001].
In case of a two class problem, the class label can be determined by means of the sign of the
log-ratio

log
P (ω−|xi)
P (ω+|xi)

= log
P (ω−)
P (ω+)

+ log
p(xi|ω−)
p(xi|ω+)

= log
P (ω−)
P (ω+)

− 1
2
(µ− + µ+)T Σ−1

k (µ− − µ+) (4.36)

+xT
i Σ−1(µ− − µ+).

Since W is proportional to the sample covariance matrix Σ of the entire training set Γ [Bishop,
1995], (4.36) is equivalent to (4.35) with

w0 = log
P (ω−)
P (ω+)

− 1
2
(µ− + µ+)T Σ−1

k (µ− − µ+). (4.37)

This finding suggests choosing w0 such that the hyperplane is shifted to the position where the
a-posteriori probabilities of both classes are equal.

A related discrimination function can be formulated by using Bayes’ theorem and explicit mod-
elling of the class-conditional densities. The a-posteriori probability of membership of class ω+ is
given by

P (ω+|x) =
p(x|ω+)P (ω+)

p(x|ω+)P (ω+) + p(x|ω−)P (ω−)
.

If the class-conditional densities p(x|ω+) and p(x|ω−) are modelled as normal distributions with
equal covariance matrix and examples x are assigned to the class having the largest a-posteriori
probability then both classes are separated by a hyperplanar decision boundary. In contrast to the
Fisher’s linear discriminant, the output is within a fixed range of [0; 1] and can be interpreted in
terms of probabilities.

4.4 Local Sigmoid Map

The local sigmoid map (LSM) is a supervised hierarchical artificial neural network which employs
a divide-and-conquer scheme [Jacobs et al., 1991] for solving binary and multiclass classification
tasks. The discrimination function
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fθ : X 7→ Y = [0; 1]nΩ

x → y(x)

associates each example x ∈ X with a target vector y(x) = fθ(x) indicating the assigned
class by the largest component according to the 1-of-nΩ scheme. The function is modelled by
subdividing a complex classification task into a number of less complex partial tasks, each requiring
a classification function of lower complexity. The entire training process consists of two steps:

1. Approximation of the distribution of the pooled training examples by a set of prototypes
{wl},wl ∈ X , l = 1, . . . , nV as computed by an arbitrary Vector Quantisation (VQ)
algorithm [Hastie et al., 2001]. The resulting prototypes describe a partition of the data
space in nV subregions or voronoi cells according to

Vl = {x ∈ X : ‖wl − x‖ < ‖wm − x‖,∀l 6= m}, l, m = 1, . . . , nV .

2. Supervised adaptation of a local expert for each voronoi cell. Thereby, the local expert
associated with the l-th voronoi cell Vl is adapted for the classification function

f̃l : Vl 7→ Y
x → y(x),

which maps each example x ∈ Vl to the target vector y(x) by a single-layer neural network
with softmax activation function:

yk(x) =
exp(βT

k x)∑nΩ
k=1 exp(βT

k x)
, k = 1, . . . , nΩ.

Thus, the LSM is formally defined by the set

Θ =
{(

w, {βk}
)
l

}
, k = 1, . . . , nΩ, l = 1, . . . , nV

of nV tuples (w, {βk}), each defining a single local expert. The prototype w ∈ X defines the
location and subregion associated with the expert. The set {βk} is the parametrisation of the
corresponding layer of nΩ neurons with softmax activation function. For notational simplicity it is
assumed that a constant component x0 is appended to each example x before being exposed to the
neuron layer. Thereby, the bias term β0 is incorporated into each parameter vector β ∈ IRnin+1.

This architecture of an ANN has been realised in different variants before. In [Ritter et al.,
1992], the local linear map (LLM) algorithm is proposed which combines online-kmeans vector
quantisation with linear regression functions. Martinetz et al., 1993 replaced the online-kmeans
vector quantisation algorithm by the more robust neural gas algorithm. While the application of
linear regression functions allows to approximate functions f : X 7→ Y = IRnout , the LSM uses
single-layer neural networks with softmax activation functions for the classification of examples.
Each example is mapped to a nΩ-dimensional target vector y(x) ∈ Y = [0; 1]nΩ with the k-th
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component yk(x) indicating the a-posteriori probability P (ωk|x), and the according class is given
by

argmax
ωk∈Ω

P (ωk|x).

This modification of the LLM architecture simplifies further processing of the outcome, since each
component of y(x) has a well-defined range. For instance in chapter 6, the outcome of the LSM
classifying malignant, normal and benign tissue can directly be interpreted as a RGB colour and
utilised for computing pseudo-colour images of DCE-MRI data.

4.4.1 Prototype Adaptation

For the approximation of the distribution of training examples (x, ·) ∈ Γ in X in terms of vector
quantisation, the prototypes {(w, ·)l} are adapted using the neural gas (NG) algorithm [Martinetz
et al., 1993]. The NG algorithm proved to be efficient and robust against different initialisation
conditions. In contrast to the kmeans algorithm, which only adapts the prototype which is closest
to the presented example according to a certain metric, the NG algorithm adapts a certain number
of prototypes considering their rank order to overcome local minima.

After initialisation of the prototypes with a random subset of the training data, the distortion
error is minimised by a stochastic gradient descent. For each example (x, ·) ∈ Γ randomly selected
at iteration step t, the rank rl(x) ∈ {0, 1, . . . , nΘ−1} of each prototype wl is calculated according
to the distance d(x,wl) = ‖x−wl‖ with r = 0 as the rank of the closest prototype. Afterwards,
each prototype wl is adapted according to

∆wl = εt · h(σt, rl) · (x−wl), (4.38)

with learning rate εt and the neighbourhood function

h(σt, rl) = exp
(
− rl

σt

)
, (4.39)

which decreases with each iteration step t. After adapting the prototypes, X is tessellated in nV
voronoi cells using the winner-takes-all (WTA) rule

w∗(x) = argmin
(w,·)∈Θ

‖x−w‖, (4.40)

which assigns each example x ∈ X to its closest prototype w∗(x).

4.4.2 Local Expert Adaptation

After approximating the distribution of the pooled training data, the parameters {(·, {βk}l} of
the nV single-layer ANNs need to be trained in order to map examples x to the output value
y(x). To this end, the empirical risk as measured by the cross-entropy error [Bishop, 1995]

l(xi,yi, f) = −
nΩ∑
k=1

yik ln[yk(xi)] (4.41)
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Figure 4.6: Evaluation of an example x by a LSM operated in the hard-gating mode. First, the best
matching prototype w∗(x) is determined. The output y(x) is then calculated by presenting the
examples to the local expert associated with w∗(x).

is minimised using stochastic gradient descent. For each example (x,y)i ∈ Γ randomly selected
at iteration step t, the closest prototype w∗(xi) is determined using the WTA-rule (4.40). The
parameter vectors {βk} associated with w∗(xi) are adapted according to

∆βk = −ηt ·
(
yk(xi)− yik

)
· xi, k = 1, . . . nΩ (4.42)

with a learning rate ηt which decreases with each iteration step t.

4.4.3 Classification of Unseen Examples

Figure 4.7 depicts a solution of the LSM (nV = 6) for a binary data set in which each class
is generated by two Gaussian distributions. The left image shows the distribution of training
examples (x,y)i ∈ Γ for the classes ω1 (red crosses) and ω2 (blue circles). The locations of the
six prototypes are marked by solid black diamonds. The y1(x) = y2(x) or P (ω1|x) = P (ω2|x)
isoline is indicated as a black line. The right image exposes the same isoline in addition to the
colour coded a-posteriori probability P (ω1|x). For the shown solution, the LSM is operated in
the hard gating mode: The VQ layer acts as a hard gating network and directs the input pattern
to a single local expert using the WTA-rule. The outcome y(x) is then solely determined by the
ANN associated with the best matching prototype w∗(x) (see Fig. 4.6). Since each neuron of the
single-layer ANN distinguishes the examples by a linear function, the collectivity of local experts
leads to a piecewise-linear classification function fθ(x) (black line). In the hard-gating operation
mode, improper strong variations of the outcome may appear at the contact points of two voronoi
cells indicated by the discontinuities in the colours of certain subregions of X . Even though two
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Figure 4.7: Results of a LSM operated in the hard-gating mode, for the synthetic two class data set used
in [Ripley, 1996]. Left: Distribution of training examples of the classes ω1 (red crosses) and ω2 (blue
crosses). The black line indicates the y1(x) = y2(x) or P (ω1|x) = P (ω2|x) isoline. Right: The colour
reflects the a-posteriori probability P (ω1|x). In both images the nV = 6 prototypes are displayed as
solid black diamonds. Discontinuities at the contact point of the voronoi cells can be observed by
means of the vertices of the class border and the rapidly changing colouring in certain regions.
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Figure 4.8: Same images as in Fig. 4.7, but calculated with a LSM operated in the soft-gating mode with
φ = 1. The y1(x) = y2(x) isoline (black) and the colour coding of P (ω1|x) now varies smoothly and
exposes no discontinuities at the contact points of two voronoi cells.

examples xi,xj are close in the X , the corresponding outcome yi(x),yj(x) can vary significantly
if each example is located in a different voronoi cell, i.e. is evaluated by a different local expert.

In order to avoid such discontinuities, the LSM can also be operated in a soft-gating mode:
Unseen examples are evaluated by all nV local experts and the VQ layer acts as a soft-gating
network which combines the individual outcomes yl(x) of the l = 1, . . . , nV local experts, each
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weighted by a coefficient zl(x), to the final result y(x) calculated by

y(x) =
1

Z(x)

nV∑
l=1

zl(x)yl(x).

The normalisation coefficient

Z(x) =
1∑nV

m=1 zm(x)

assures that the components of y(x) accumulate to one. The impact of l-th local expert on the
final outcome is determined by a nonlinear function of the Euclidean distance d(wl,x) = ‖wl−x‖2

between the associated prototype wl and the input x and is calculated by

zl(x) = exp
(
−d(wl,x)

φ

)
.

The parameter φ controls the decay for an increasing distance d(wl,x). For φ → 0, the outcome
of the LSM operated in the soft-gating mode becomes equivalent to that of the LSM operated
in the hard-gating mode.

The data of figure 4.7 but processed with a soft-gating LSM (φ = 1) can be observed in figure
4.8. The influences of the smoothing properties become obvious if the course of the class border
(black line) is investigated. In contrast to the solution of the hard-gating LSM, the class border
smoothly varies in the considered region of the data space.

4.5 Assessment of Classification Performance

In the previous sections, different classification algorithms have been introduced which will be
the fundamental components of the computer aided diagnosis (CAD) methods proposed in the
following chapters. Each supervised classification algorithm comes with a certain number of
hyperparameters which have to be adjusted manually by the operator to reasonable values. The
choice of different algorithms as well as the variation of the algorithm’s hyperparameters leads
to classification models with varying characteristics and the operator has to decide which one
is suitable for a given task. A second aspect, which is especially important for CAD systems
in medical data domains, is the comparison of the performance of a CAD system with a ground
truth as derived from an established diagnosis procedure such as a manual assessment of a human
expert or the outcome of a laboratory test. Since this ground truth can also be interpreted as the
outcome of a ’classifier’, unique schemes can be derived for the comparison of classification models
with a reference model, which can either be an accepted ground truth or a second classification
model.

In the following, two schemes for assessing classifier performance will be introduced. The first
scheme is based on the evaluation of the confusion matrix and thereby assesses the concordance
of class labels assigned by two classifiers. The second scheme utilises the receiver operating
characteristics (ROC) analysis for the assessment of classification models. In contrast to the
confusion matrix, the ROC analysis does not only assess the accuracy of the assigned class label,
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but also evaluates the discriminatory power of the assigned confidence value inducing a ranking
on a set of classified examples. For both schemes, different indices are derived which summarise
the performance of a certain classification model as a single scalar value.

4.5.1 Confusion Matrix Based Model Assessment

Most indices used for measuring the performance of classification models are based on the in-
formation provided by the confusion matrix. Assuming the classification model f as well as the
reference model r attribute each example xi ∈ Γ, i = 1, . . . , N as a member of one of the nΩ

classes ωk, k = 1, . . . , nΩ. In this case, the confusion matrix C is a nΩ × nΩ matrix with entries
Ckl reflecting the number of examples designated as a member of ωl by the reference model and
as a member of ωk by the investigated classification model. Thus, the diagonal entries Ckk repre-
sent consistently labelled examples, whereas the off-diagonal elements represent examples which
are labelled differently by the two models. While the confusion matrix provides a detailed error
statistic, different classification models are commonly compared by summarising this statistic by
a suitable index. The most frequently used index is the accuracy

Acc =
trace(C)

N
(4.43)

measuring the total fraction of consistently labelled examples for a fixed test set of N examples.
Nevertheless, accuracy is an inappropriate measure if the a-priori probabilities P (ωk) of the differ-
ent classes differ significantly. Suppose 95% of the examples in Γ belong to ω1, a classifier which
attributes each presented example as a member of ω1 yields a high accuracy of 0.95 although
the classifier did not capture any information from the training data. In this situation, a better
performance measure is the balanced accuracy

AccBal =
1

nΩ

nΩ∑
k=1

Ckk

Nωk

(4.44)

with Nωk
being the number of examples xi ∈ Γ which are members of class ωk. The bal-

anced accuracy measures the average class-specific accuracy. Alternatively, the chance-corrected
concordance of two classification models can be measured using the κ-coefficient [Fleiss, 1982]

κ =
N
∑nΩ

k=1 Ckk −
∑nΩ

k=1 Ck·C·k
N2 −

∑nΩ
k=1 Ck·C·k

(4.45)

with Ck·,C·k being the sum of entries in the k-th row or in the k-th column.

Another argument against employing accuracy as a performance measure is that different types
of classification errors Ckl, k 6= l are recorded as being equally important. In particular in medical
applications, certain types of misclassification cause different costs. For instance, attributing a
diseased patient as healthy might by a fatal error, while a healthy patients attributed as diseased
can be regarded as being a less serious error since this error can be corrected by future tests. In
order to take into account the different costs as caused by different types of misclassification, the
nΩ × nΩ cost matrix or loss matrix L with Lkl ≥ 0 assigns a certain loss to each kind of error.
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The costs of a certain classification model are calculated by

Cost =
nΩ∑

k,l=1

CklLkl. (4.46)

4.5.2 Receiver Operating Characteristics

Receiver operating characteristics (ROC) analysis [Swets and Pickett, 1982] is a technique for
visualising and analysing the behaviour of decision making systems and has been the object of
investigations in a large number of manuscripts examining different aspects of ROC analysis (see
e.g. [Zou, 2002]). Whereas ROC analysis is a well established technique in medical decision
making [Hanley, 1989,Obuchowski, 2003], it has recently been used with greater frequency for
comparing artificial learning algorithms [Bradley, 1997,Flach, 2003,Provost and Fawcett, 2001].

The standard ROC analysis only considers binary problems. In order to be conform with the
ROC literature, the classes are called positive ω+ and negative ω− indicating presence or absence
of a certain attribute. Assuming that the examples of a data set Γ are classified by a binary
classification model, which assigns a continuous score fθ(xi) to each example xi ∈ Γ. The score
reflects the confidence that the example belongs to ω+. For a comparison of the outcome with
a reference model or ground truth by means of a confusion matrix C, a threshold tf has to be
applied to the scores attributing the example xi as an example of the positive class if fθ(xi) > tf
and, otherwise, as an example of the negative class. The 2× 2 confusion matrix summarising the
error statistics consists of the diagonal elements2:

True-Positives (TP) : Number of positive examples which are attributed consistently by both
models,

True-Negatives (TN) : Number of negative examples which are attributed consistently by both
models.

The off-diagonal elements reflect inconsistently labelled examples are called:

False-Positives (FP) : Number of true negative examples which are attributed as positive by
the classification model,

False-Negatives (FN) : Number of true positive examples which are attributed as negatives by
the classification model.

Based on these four quantities, further indices can be utilised for comparing different classifi-
cation models:

Sensitivity (SE) or True-Positive-Rate (TPR) : Ratio of the number of positive examples
consistently labelled by the classification model and the total number of positives

SE =
TP

TP+FN
,

2To conform with the literature, one model is considered as classification model which is to be assessed, while the
second model is considered as ground truth reflecting the true class label of an example.
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Figure 4.9: ROC curves for different classification models. The performance of a model randomly attributing
the examples as positive or negative is visualised by the black diagonal line. For each curve the operating
points of six different values of tf are plotted. Left: The curves illustrate the superior performance
of Model 1. The plot indicates an increased SE of Model 1 for the entire range of SP. Therefore,
Model-1 is a dominating model [Provost et al., 1998] which is at least as good as all other regarded
models. Right: The ROC curve for Model 1 shows a superior SE for (1− SP) < 0.18, whereas Model
2 outperforms Model-1 in terms of SE for (1− SP) ≥ 0.18.

Specificity (SP) : Ratio of the number of negative examples consistently labelled by the classi-
fication model and the total number of negatives

SP =
TN

TN+FP
.

False-Positive-Rate (FPR) : Ratio of the number of false positives and the total number of
negatives

FPR =
FP

FP+TN
= 1− TN

TN+FP
= 1− SP.

Positive-Predictive-Value (PPV) : Ratio of the number of positive examples consistently la-
belled by the classification model and the total number of examples classified as positive

PPV =
TP

TP+FP
.

.

ROC Curves

The SE and SP for a certain tf only provide limited information about the classification model
because both quantities depend on the choice of tf . Increasing tf typically raises the SE, but
simultaneously lowers the SP. Thus, tf controls the trade-off between SE and SP and different
values of tf define different operating points (SE,SP)tf in the ROC space R = [0; 1]2. The ROC
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space is commonly visualised by a two-dimensional plot with SE on the y-axis and (1-SP) on the
x-axis. Less formally, an operating point suggests a superior performance compared to a second
one if it is located closer to the upper right corner of R, i.e. (1-SP,SE)=(1,1).

If all possible operating points for a data set Γ as evaluated by a classification model are plotted
and connected by a line, the tradeoff-characteristics of a model can be displayed by the empirical
ROC curve in R running from (1 − SP,SE) = (0, 0) to (1 − SP,SE) = (1, 1). The ROC curve
of a classification model randomly attributing examples as positive or negative is a straight line
from (1−SP,SE) = (0, 0) to (1−SP,SE) = (1, 1). Each ROC curve above this diagonal reflects
a certain discriminatory power for the corresponding mode.

Figure 4.9 illustrates the ROC curves for two pairs of classification models. The course of
the ROC curves provides detailed information about the SE/SP trade-off characteristics of each
classification model which is in particular important if there is no dominating model [Provost
et al., 1998] such as Model-1 in Fig. 4.9, left. However, different models can be superior for
different regions of R (Fig. 4.9,right).

An appealing property of the ROC curve is that it provides an assessment which is insensitive
to unbalanced or changing class distributions [Provost et al., 1998], because each of the measure
SE and SP considers either the positive (TP,FN) or negative examples (TN,FP). Thus, the ROC
curve does not change for data sets Γ with varying ratios of the number of positive and negative
examples [Fawcett, 2003], which is common in real-world applications.

Averaging ROC Curves

It is common practice to assess the performance of a classification model by means of a repeated
application to pairs of training and test sets in order to estimate the average performance. Such
pairs of training and test sets can either be different random partitions of the entire data or the
more systematically splitting of the training data in a cross-validation process. Nevertheless, each
of the np pairs of training and test sets leads to a single ROC curve and all np curves have either
to be simultaneously considered or suitably combined for the assessment of the model. There are
basically two techniques for combining ROC curves: Pooling and averaging. Using pooling [Swets
and Pickett, 1982], the examples of all np test sets together with the corresponding outcome of
the classification model are merged into one large set and a single ROC curve is calculated for
this set. In averaging [Fawcett, 2003,Provost et al., 1998], an averaged ROC curve is calculated
by sampling the np ROC curves at a certain number of (1-SP) points (vertical averaging) or at a
certain number of thresholds tf (threshold averaging). The averaging technique has the advantage
that the variance of sampled values can be considered and easily displayed as a confidence band
around the averaged ROC curve.

Selection of Optimal Thresholds

For practical applications, the classification model and a reasonable operating point, i.e. a specific
value of threshold tf , has to be chosen under consideration of the demands of the application.
Such a requirement can e.g. be a fixed value or range of SE that has to be met by the model.
If the costs cFP and cFN for a FP or FN example can be quantified, the optimal classifier can be
chosen by plotting the iso-performance lines [Provost and Fawcett, 1997] in R. The slope of the
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Figure 4.10: Left: The area under to ROC curve Az (red) as a measure summarising the course of the
curve. Right: Depending on practical considerations, the area under the ROC curve in a certain part
of the ROC space, e.g. the range 1-SP=[0;0.15] (gray area) in the figure, provides a more meaningful
assessment of two models.

line is calculated by

s(cFP, cFN) =
P (ω+)cFP

P (ω−)cFN
(4.47)

with P (ω+) and P (ω) being the a-priori probability of the classes ω+ and ω−, respectively.
Each classifier with an operating point lying on this line causes the same costs under the given
circumstances. The optimal operating point for a certain model is given by that operating point
which is closest to that point where the iso-performance line is tangent to the model’s ROC curve.
In the case of unknown or changing costs, Provost and Fawcett, 2001 propose the application of
the ROC Convex Hull technique which combines all classification models which are dominant in
limited regions of R. For each operating point, this hybrid classification model will perform at
least as good as any of the individual models considered.

The Area-Under-the-ROC-Curve Index

ROC curves are two-dimensional depictions of classification models. In order to summarise each of
these curves by a single index, the area-under-the-ROC-curve (Az) index is frequently calculated
(see Fig. 4.10, left) [Swets and Pickett, 1982,Hanley and McNeil, 1982,Bradley, 1997]. The value
of Az for a certain curve can be estimated by either a parametric or a nonparametric model. In
the former case, a bivariate normal distribution is fitted to the outcome fθ(xi),xi ∈ Γ, which
implicitly assumes that the class-specific outcomes follow a normal distribution. In the latter case,
Az is calculated by the trapezoidal rule and is equivalent to the outcome of the Wilcoxon-Mann-
Whitney statistic [Hanley and McNeil, 1982] and closely related to the Gini index [Breimann
et al., 1998]. The parametric approach tends to underestimate the true area, but this bias is
commonly negligible for a continuous model output fθ(x). Hanley and McNeil, 1982 also derived
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the formula

ε(Az) =

√
Az(1−Az) + (mω+ − 1)(Q1 −A2

z) + (mω− − 1)(Q2 −A2
z)

mω+mω−
(4.48)

for the standard error ε(Az) with Q1 = Az/(2−Az) and Q1 = 2A2
z/(1 + Az).

Several interpretations exist for the Az value such as the average SP for all possible values
of SE [Metz, 1986] or the probability that a randomly selected positive example x+ leads to
an outcome fθ(x+) which is larger than the outcome fθ(x−) for a randomly selected negative
example x− [Hanley and McNeil, 1982].

The Partial-Area-Under-the-ROC-Curve Index

In a case where practical considerations like limited range of admissible SP induces constraints on
the location of a suitable operating point, the Az indices can provide misleadingly assessments
of two models if the corresponding curves cross. Both ROC curves in Fig. 4.10 (right) yield
a comparable Az value which suggest a similar performance of both models. Nevertheless, if
operating points in the range of e.g. 0 ≤ (1 − SP) ≤ 0.15 are practically relevant, Model 1 is
preferable. In order to obtain are more meaningful index which considers such practical constraints,
McClish, 1989 and Jiang et al., 1996 suggest to determine the partial-area-under-the-ROC-curve
(Ax) with x denoting a particular limitation. Such limitations can either be a certain range of
SE (e.g. A(SE≥0.9)) or a certain range of SP (e.g. A(0≤(1−SP)≤0.15)). Furthermore, Jiang et al.,
1996 propose the standardised partial area index 0 ≤ Ax ≤ 1 which is the partial area normalised
by the largest possible area value.

Comparing Az Indices of Different Models

When comparing two models M1 and M2 by means of the corresponding indices AM1
z and AM2

z

the question arises, whether the difference AM1
z −AM2

z is statistically significant. If the Az value
for M1 and M2 is calculated using two disjoint test sets, the critical ratio is

z =
AM1

z −AM2
z

ε(AM1
z −AM2

z )
(4.49)

with ε(AM1
z − AM2

z ) as the estimated standard error for the difference between the two areas
[Hanley and McNeil, 1983] as calculated by

ε(AM1
z −AM2

z ) =
√

ε(AM1
z )2 + ε(AM1

z )2. (4.50)

The quantity z is then compared to tables of normal distribution to test for significance. Neverthe-
less, if AM1

z and AM2
z are calculated on the same test set, both values are likely to be correlated.

Hanley and McNeil, 1983 considers this correlation by incorporating the term 2rε(AM1
z )ε(AM1

z )
in (4.50)

ε(AM1
z −AM2

z ) =
√

ε(AM1
z )2 + ε(AM1

z )2 − 2rε(AM1
z )ε(AM1

z ) (4.51)
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with a tabulated quantity r depending on the average area (AM1
z + AM2

z )/2 and the average of
the class-specific correlation coefficient (rω+ + rω−)/2. An alternative approach for comparing
two or more correlated ROC curves adopts the theory on generalised U-statistics for covariance
matrix estimation [DeLong et al., 1988].
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5 Lesion Detection

According to Heywang-Köbrunner and Beck, 1995, localisation of tissue suspected of being af-
fected by pathophysiological disorders is the first step in DCE-MRI based breast cancer diagnosis.
Temporal kinetic signals exhibiting suspicious signal characteristics may be signs of benign or
malignant disorders of the underlying tissue and require for a more detailed examination by either
manually assessing the courses of the corresponding kinetic signals or by applying more sophisti-
cated techniques for analysis.

A standard procedure for localising suspicious masses used in clinical practice is the examina-
tion of DCE-MRI sequences by means of one or several subtraction images, each displaying the
temporal gradient of intensity values between the precontrast image and one of the postcontrast
images. Tissue regions exhibiting signal enhancements appear in subtraction images as clusters
of voxels with high intensity values. Nevertheless, examination of the data by means of a single
subtraction image can be suboptimal due to the heterogeneity of cancerous tissue. In particu-
lar carcinoma typically consist of a conglomerate of benign and malignant tissue. Whereas in
malignant tissue the concentration of contrast agent (CA) molecules rapidly increases to a peak
in the very early postcontrast period and decreases afterwards, benign tissue commonly exhibits
continuously increasing signals which reach the peak of CA concentration in the late postcontrast
period. Hence, voxels of malignant tissue are likely to be displayed with high intensity in subtrac-
tion images based on the very early postcontrast images, while subtraction images based on the
late postcontrast images are likely to be more suitable for the detection of benign tissue. Next to
subtraction images displaying the temporal gradient caused by the uptake of CA concentration
between a pre- and a postcontrast image, the temporal gradient caused by the wash-out of CA
molecules in malignant tissue can be displayed by means of subtraction images using one late and
one early postcontrast image. In consequence, the observer has to correlate the content of several
images by switching between or by side-by-side display of subtraction images based on different
postcontrast images. In either case, a large number of images has to be examined for each case,
since it is still common practice to display the three-dimensional image data as a sequence of
two-dimensional image slices.

Subtraction images provide the observer access to the DCE-MRI data, which weights the spatial
dimensions of the data higher than the temporal dimension. A single subtraction image retains
the entire spatial information of the DCE-MRI data as given by the coordinates of voxels but only
considers a fragment of the temporal content. In contrast, the data-driven approach to DCE-MRI
data analysis as proposed in this chapter temporarily ignores the spatial information of the data
and focuses on the evaluation of the temporal aspects. Supervised classification algorithms are
applied to distinguish voxels of normal and voxels of suspicious tissue solely by means of the
associated temporal kinetic signals. Instead of defining explicit models of the temporal kinetic
signals as measured for the two tissue types, implicit models are derived from the DCE-MRI data
itself. During an adaptation process, an artificial neural network (ANN) correlates the signal
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information of a small number of training cases with an expert label, marking the position of
those voxels, which gave rise to the radiologist’s diagnosis. As described below, such a label is
not optimal for the purpose of training an ANN but reflects the typical amount of class information
which can be acquired during a common diagnosis process which is geared to the medical problem
of cancer diagnosis and not to the demands of an ANN application.

The remainder of this chapter is structured as follows. In section 5.1 the setup for lesion
detection with ANNs is described including data preprocessing, sampling of training data and
feature computation. Detection results for two different groups of cases are presented in section
5.2 and discussed in the final section. The objectives of this chapter are

• to describe a data-driven approach to lesion detection based on supervised artificial neural
networks, which avoids the requirement of an explicit definition of mathematical models for
the temporal kinetic signals of normal and suspicious tissue,

• to evaluate whether and how well implicit models can be trained by correlating signal
information given by a small number of DCE-MRI sequences with additional diagnostic
information acquired from a clinical diagnosis process,

• to describe how the trained ANN can be utilised to generate a single image considering
the entire temporal information of the DCE-MRI data and which displays lesions with
high contrast to normal tissue reducing the requirements of time-consuming and subjective
manual optimisations of the data presentation.

5.1 Detection of Lesions with ANNs

Localisation and delineation of the extent of lesions are regarded as a binary classification problem
in which voxels representing normal tissue have to be distinguished from voxels of malignant or
benign tissue. A sketch of the lesion detection setup is given in figure 5.1. Fundamental ideas
and details of the setup are discussed in the following.

Data Distribution of DCE-MRI Feature Vectors

A DCE-MRI sequence is interpreted as a set of temporal kinetic signals {sp} on which a spatial
order is induced by the coordinates {p} of the associated voxels. If this spatial order is ignored,
the temporal kinetic signals of one or several DCE-MRI sequences form a distribution of points
in a signal space S. Each point in S represents the temporal course of the signal intensity of one
voxel. Since the signal space only considers the temporal information of the DCE-MRI data, similar
temporal kinetic signals are likely to be close to each other in the signal space, irrespective of the
spatial location of the corresponding voxels in the three-dimensional image volume. Therewith,
temporal kinetic signals of different tissue types exhibiting tissue-specific signal characteristics
are likely to be concentrated in certain subregions of the signal space. The approach proposed
in the following aims to identify such class-specific subregions of the signal space by analysing
the data distribution of signals of normal and suspicious tissue using supervised artificial neural
networks. In order to obtain a representation of the data which is even more suitable for the
evaluation by supervised classification algorithms, the data are mapped by a transformation T to
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Figure 5.1: Overview of the setup for detecting suspicious lesions using adaptive classification algorithms.
If the spatial order given by the voxel coordinates is ignored, the temporal kinetic signals of several
training cases can be considered as a data distribution in a signal space S. Using the expert label
and a binary breast mask generated during a preprocessing step, signals of the training cases can be
labelled as examples for either normal or suspicious breast tissue. These training examples are mapped
from S to a data space X , in which each example is described by a vector of suitable features x ∈ X .
Using the training data, an adaptive classification algorithm is trained to distinguish examples from
the two different tissue classes. Subsequently, the resulting discrimination function can be applied
for a voxel-by-voxel evaluation of DCE-MRI sequences of unseen cases. To this end, a feature vector
xp ∈ X is calculated for each temporal kinetic signal sp ∈ S and is evaluated by the trained predictor.
The computed confidence value y(xp) is assigned to the voxel at the corresponding position p in a
new three-dimensional confidence volume, which displays lesion tissue by voxels with high intensities.

a new data space X . Two different groups of transformations are investigated. The first group
are voxel-based transformations which map each temporal kinetic signal sp to a feature vector
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xp:

T : S → X , s 7→ x. (5.1)

This group of transformations also includes the identity function which allows to consider the signal
space S as a variant of a data space X . The second group are region-based transformations

T : SnW → X , W 7→ x, (5.2)

which map each wx×wy×wz neighbourhood or window Wp consisting of nW voxels with centre
at p to a feature vector xp representing the variation of the region’s texture over time. Both
groups of transformations will be described in more detail in a later section.

Supervised Analysis of Feature Vectors

Instead of explicitly defining mathematical models for the feature vectors of different tissue classes
using e.g. medical a-priori knowledge, which is difficult for feature vectors obtained from a trans-
formation other than the identity function, implicit models are derived from the data itself. The
feature vectors computed from the data of a small number of training cases are labelled according
to the segmentation of the lesions by a radiologist and are subsequently utilised for the adaptation
of a supervised classification algorithm. The classification algorithm is trained to distinguish the
feature vectors of the two tissue classes and provides a discrimination function

C : X → [0; 1], x 7→ y(x),

which maps each pattern xp to a single scalar value y(xp) indicating the confidence that the
evaluated pattern was caused by suspicious tissue. Three different classifiers are investigated. The
support vector machine with linear kernel (SVM-L) and the linear discriminant analysis (LDA)
provide linear discrimination functions which divide the data space by a hyperplane into two half-
spaces. The support vector machine with Gaussian kernel (SVM-G) distinguishes examples of the
two classes by a more complex non-linear discrimination function.

Acquisition of Labelled Data

The label attributing each feature vector as a normal or suspicious example is obtained from a
manual lesion segmentation acquired during a standard diagnosis process. A radiologist designated
those subregions of the DCE-MRI data representing tissue masses which give rise to his final
diagnosis. Even though such a label reflects a typical clinical proceeding which aims for an
optimal diagnosis for each individual patient, it is suboptimal for the purpose of a data-driven
evaluation of the DCE-MRI data for two reasons:

1. The label is incomplete because only those voxels are marked which directly give rise to
the final diagnosis. For instance, if the DCE-MRI sequence of a patient exhibits a malig-
nant disorder, the region designated by the radiologist commonly includes only those voxels
displaying the carcinoma. In this case, voxels of additional benign disorders such as fibro-
cystic changes commonly remain unmarked since they have only minor impact on the final
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diagnosis and the following treatment. Because of the lack of a label for the entire image
volume, such unmarked disorders have to be considered as normal tissue in the data-driven
analysis.

2. The label only provides an uncertain assessment of the informational content of the temporal
kinetic signals. For diagnosing breast cancer, radiologists commonly correlate information
obtained from different sources such as different imaging modalities (DCE-MRI, X-ray mam-
mography, ultrasound) or physical examinination (palpation). Furthermore, morphological
properties of larger conglomerates of voxels displaying a suspicious disorder are considered in
addition to the temporal information provided by the kinetic signals. For instance the spatial
heterogeneity of the signal enhancement or properties of the lesion margin are features of
larger regions of tissue depicted by a conglomerate voxels and provide valuable information
for deciding whether a tissue mass has to be considered for the diagnosis. Thus, the label
assigned to a voxel does not necessarily reflect the outcome which would have been obtained
if solely the temporal kinetic signals of the individual voxels had been assessed sequentially
and independently from each other.

Nevertheless, the given label represents an amount of information which can be acquired during
an evaluation process which is primarily geared to the demands of medical diagnosis. Even the
creation of such incomplete labels for ten cases took about one working day of a radiologist and a
computer scientist, who evaluated the corresponding subtraction images with a clinical standard
software.

Evaluation of Unseen Cases

After adaptation of a classifier with the labelled data, unseen DCE-MRI sequences can be evalu-
ated. The image data of an unseen case is mapped to the same data space as the training data.
Subsequently, the trained classifier evaluates each feature vector xp and returns a confidence
value y(xp) ∈ [0; 1], indicating the probability that xp was caused by suspicious tissue. Due to
the well-defined range of the confidence values, each y(xp) can be interpreted as a gray level
and is assigned to the voxel at the spatial position p in a new three-dimensional image, referred
to as confidence volume. This volume enables the radiologist to localise lesions and to delineate
their extent by examination of a single image, because tissue masses exhibiting suspicious kinetic
signals are displayed as clusters of bright voxels.

In the remainder of this section, the preprocessing of the image data, the selection of training
data and the calculation of feature vectors are described in more detail. The following section will
then describe the application of the setup to two groups of cases. The first group, referred to as
Munich group, consists of DCE-MRI sequences of six benign and six malignant cases recorded at
the City Centre Hospital of the University of Munich. The second group, referred to as MARIBS
group, consists of five malignant and three benign cases who are participants of the MARIBS
breast cancer screening study.
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Figure 5.2: Left: Axial slice of a precontrast image volume recorded at the City Centre Hospital of the
University of Munich. Gray values have been scaled to enhance the display of the thorax region. Right:
Final breast mask (red) for the axial slice shown in the left image.

5.1.1 Preprocessing of Image Data

Depending on the protocol utilised for the acquisition of DCE-MRI sequences, the recorded images
display different field-of-views, i.e. different subregions of the body. Most setups for MRI based
examination of the breast allow for simultaneous imaging of both breasts. Thereby, the cuboid
shaped field-of-view typically encloses a significant fraction of background such as non-body
regions (air) or regions of the body which are outside the scope of investigation. Before applying
the adaptive lesion detector, this background is separated from breast tissue to limit the random
sampling of normal tissue signals used for adaptation of the classifiers to the region of the breast
and to accelerate the evaluation of unseen cases.

Preprocessing of Munich Images

The DCE-MRI setup for breast examination employed at the City Centre Hospital of the University
of Munich assumes patients to be placed in a prone position with the chest resting on the dedicated
surface coil. The image volumes display 32 to 34 parallel axial slices with a mutual distance of
4mm recorded using a multi-slice protocol. Each slice displays a section of the breast and the
entire thorax with a field-of-view 350mm×350mm and a matrix size of 256×256 regular shaped
pixels. Therewith, each voxel of the image represents a 1.37mm × 1.37mm × 4.0mm tissue
volume.

Figure 5.2 (left) shows an example for an axial slice of a precontrast image of one case from
the Munich group. Good signal-to-noise ratios are obtained for the tissue adjacent to the surface
coil surrounding the breasts. The homogeneity and magnitude of the magnetic field decreases
with the distance to the surface coil causing tissue deeper in the body to be displayed with signal
intensities which are lower than those of the tissue at the body surface next to the coil. As
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Figure 5.3: Intensity histogram of the median filtered precontrast image of case M6 (left) and B6 (right).
Both histograms show a clear peak at low intensity values predominately caused by the large fraction
of background. The black line illustrates the thresholds computed using the algorithm proposed by
Otsu, 1979.

a consequence, the precontrast image displays the breast tissue with higher intensities than the
tissue of the thorax. In particular the heart, which appears with high intensities in the postcontrast
images due to the presence of large amounts of contrast agent molecules and blood in the heart
cavities, is displayed by voxels of the same low intensity as the surrounding organs.

For separating the breast region from background, a binary mask for the breast is calculated
using an adaptive threshold algorithm. First, the precontrast image is filtered using a 3×3×3
median filter. Afterwards, the adaptive threshold algorithm proposed by Otsu, 1979 is applied to
the histogram of the filtered precontrast image (Fig. 5.3). The algorithm calculates a threshold
value dividing the histogram into two classes in such a way that the ratio of inter- and intra-
class variance is maximised. The major fraction of voxels corresponding to breast tissue expose
intensities above the computed threshold. Binarisation of the filtered precontrast image using the
determined threshold yields a binary mask covering the entire breast. Small gaps may appear in
the centre of each breast where the fibro-glandular discs are located, which are typically displayed
with low gray values. These gaps are closed by the application of a 5×5×5 morphological closing
operator, i.e. a successive application of a morphological dilatation and erosion operator, to
the binary breast mask. Figure 5.2 (right) visualises an axial slice of a precontrast image with
the corresponding breast mask, which generously covers the breast tissue. The final binary mask,
referred to as breast mask, determined for case m is formally described by the set PBreast

m containing
all positions p of kinetic patterns xp which are to be considered during the application of the
learning algorithm.
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Figure 5.4: Image slices in coronal orientation of the precontrast images (left) and the corresponding breast
masks (right) of two cases of the MARIBS group.

Preprocessing of MARIBS Images

Image volumes acquired from participants of the MARIBS screening study consist of 256×128×64
voxels. The voxels have a square shape of 1.33mm× 1.33mm in the coronal plane and an extent
of 2.5mm in the perpendicular direction. In contrast to the Munich images, the field-of-view is
limited to both breast and displays only a small fraction of the thorax. Thus, the aim of the
preprocessing step is to separate the breast from the background which, for this pool, mainly
consists of voxels displaying air.

Similar to the preprocessing of the Munich images, a binary breast mask is calculated based
on the application of the adaptive threshold algorithm proposed by Otsu, 1979. To this end, the
three-dimensional image volumes of each sequence are filtered using a three-dimensional median
filter of size 3×3×3. Subsequently, a single scalar value is determined for each voxel by adding
the temporal intensity gradients between two subsequent time points to the intensity value in the
precontrast image:

s(xp) = xp1 +
nt∑
i=2

|xpi − xpi−1|.

From the bimodal shaped histogram of the new image, a threshold is automatically determined
using the adaptive threshold algorithm. Application of a 5×5×5 morphological closing operator
to the binarised image closes small gaps in the regions of the glandular discs which are displayed
larger than in the Munich images due to a higher spatial resolution of the images. The final breast
mask completely covers the regions of the breast and, for several cases, small parts of the heart
(Fig.5.4).
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5.1.2 Training Data Selection

For the adaptation of the binary classification algorithm, a training set ΓTrain = {(x,y)i}, i =
1, . . . , N is selected consisting of tuples of an input vector xi, which is a point in an nin-dimensional
data-space X , and a class label yi. The class label attributes the example as a member of the
class of normal tissue signals or as a member of the class of suspicious, i.e. malignant or benign,
tissue signals. Examples for the latter class are sampled using the manual lesion segmentation of
the radiologist. The outcome of the segmentation is a set PLesion

m containing the positions p of
voxels displaying the diagnosed disorder of case m. Consequently, the set ΓSuspicious of training
examples for the class of suspicious signals contains all patterns which are located at positions
designated by the radiologist:

ΓSuspicious = {(x, y)p|p ∈ PLesion
m }, m = 1, . . . ,M. (5.3)

Examples representing kinetic signals caused by normal tissue are randomly sampled from positions
inside the breast mask, excluding the voxels marked as lesion:

ΓNormal = {(x, y)p|p 6∈ PLesion
m ∧ p ∈ PBreast

m }, m = 1, . . . ,M. (5.4)

The number of normal tissue signals commonly exceeds the number of suspicious tissue signals by
far. To limit computational expenses and to avoid a decrease in classification performance caused
by unbalanced training sets, only a subset of ΓNormal is used for training. The exact composition
of the training set varies for the different classification algorithms and is described in more detail
in section 5.1.4.

5.1.3 Feature Description

The input patterns xp ∈ X consist of features describing the state of the local tissue. For the given
task, two groups of features are investigated. The first group consists of features xp computed
solely from the temporal kinetic signal sp as measured for a voxel p. The second group consists
of features derived from a small neighbourhood surrounding the centre voxel p and describe the
temporal variation of textural characteristics of the voxel’s neighbourhood.

Voxel-Based Temporal Kinetic Features

Voxel-based temporal kinetic features xp solely utilise information as derived from the measured
temporal kinetic signal sp describing the course of the local CA concentration in the voxel element
at position p. The different types of voxel-based temporal kinetic features stem from the two
assumptions that signals of suspicious tissue predominantly differ from signals of normal tissue
because of their temporal dynamics, i.e. the qualitative signal course, or their signal amplitudes
at different points of time reflecting the amount of change. For the task of suspicious lesion
detection, the following types of feature vectors are investigated:

• The raw -feature xp = sp ∈ X = IRnt describing the temporal course of the intensity value
of the voxel p.
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• The preratio-feature

xp = (sp2/sp1, . . . , spnt/sp1) ∈ X = IRnt−1 (5.5)

reflecting the ratio of the intensity values as measured in the postcontrast images and
the intensity value as measured in the precontrast images. This feature vector qualitatively
describes the temporal dynamic of the signal and provides no information about the amount
of signal enhancement at different points of time. An increase of the signal intensity from
10 to 20 is considered to be equal to a signal uptake from 100 to 200. A disadvantage of
this feature is the fact that its computation may imply a division by a small number which
is susceptible to statistical variations or variations caused by artifacts. Furthermore, the
appropriateness of this normalisation for lesion detection has been challenged in literature.
Wismüller et al., 2002 point out that the initial identification of lesions primarily depends on
the high amplitude of CA uptake, whereas the dynamics of the signal predominantly provide
information about subclasses of lesion tissue. Nevertheless, this signal normalisation was
already employed for evaluating DCE-MRI signals using a multi-layer perceptron [Lucht
et al., 2002,Lucht et al., 2001].

• The prenorm-feature

xp = (sp2 − sp1, . . . , spnt − sp1) ∈ X = IRnt−1 (5.6)

describing the amount of signal enhancement between the signal value in the precontrast
image and in one of the postcontrast images. Also the amount of signal enhancement as
a basis for a quantitative signal assessment, in particular for the purpose of distinguishing
benign and malignant signals, has been questioned due to its vulnerability to local variations
of the coil reception and inter-subject variations [Heywang-Köbrunner and Beck, 1995]. On
the other hand, these features provide the same information as visualised by the subtraction
images computed from the precontrast and the nt − 1 postcontrast images.

• The allratio-feature

xp =
( sj

sk

)
∈ X = IR

(nt−1)nt
2 (5.7)

with j, k = 1, . . . , nt and k < j. This feature reflects the ratios of intensity values at two
different points in time j and k. Therewith, the allratio-feature can be regarded as an
extension of the preratio-feature which may lead to a description of the signal course which
is more suitable for evaluation by an ANN.
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Region-Based Temporal Texture Features

Textural features descriptors are widely used in the field of computer vision and medical image
analysis [Castellano et al., 2004]. The texture of a region or window is a periodically repeating
spatial pattern of gray value variations. By means of textural features, larger regions showing
certain periodical patterns can be considered as homogenous. Textural features have been used
for many medical problems such as texture-based image segmentation or lesion detection in
image data obtained from modalities such as X-ray, ultrasound or MRI [Bankman, 2000]. In the
domain of MR imaging, textural features have been used for instance for tissue classification in
MR images of brains [Herlidou-Meme et al., 2003,Kmer et al., 1995], classification of lesions in
high-resolution DCE-MRI images of breasts [Gibbs and Turnball, 2003] or for detecting simulated
microcalcifications in DCE-MRI images [James et al., 2001]. The basic assumption behind textural
approaches for tissue classification is that the varying structure of different tissue types is reflected
in its visual appearance and exhibits tissue-specific texture patterns. If this assumption holds, the
texture of e.g. rectangular windows can be assessed using dedicated mathematical techniques.
The resulting vector of textural features is then assigned to the pixel at the centre of the window
and provides a description of the pixel’s neighbourhood. By moving the window over the entire
image, a feature vector is calculated for each pixel. Thereby, windows displaying the same tissue
are likely to yield similar feature vectors.

Due to the central role of textures in computer vision, a wide range of methods for the mathe-
matical description of features has been proposed such as wavelet [Daubechies, 1991,Aldroubi and
Unser, 1996] and Gabor filters (e.g. [Grigorescu et al., 2002,Fogel and Sagi, 1989]), model-based
techniques using e.g. Markov-random-fields or statistical approaches describing the first and sec-
ond order statistics of gray values (e.g. [Haralick et al., 1973]). One of the most frequently used
textural description, which has also been applied for the analysis of MRI data [James et al., 2001],
are Haralick’s features derived from the co-occurrence matrix describing second order statistics
of gray level values [Haralick et al., 1973]. Originally introduced to describe two-dimensional
images, they have recently been extended for processing temporal sequences of three-dimensional
images [Woods et al., 2004]. Nevertheless, it is not uncommon to handle three-dimensional MR
images as a set of two-dimensional images, particular if voxels expose an anisotropic shape, i.e.
an asymmetrical extent along the three spatial axis.

For a reliable assessment of the texture of a region, the windows for which texture features
are computed have to be of a reasonable size. They have to be sufficiently large to display the
periodicity of the pattern. On the other hand, large windows are more likely to show more than
one texture. In this case, the computed feature vector relates to more than one texture type and
tends to be less discriminative. In particular for detecting arbitrary shaped tissue structures such
as lesion masses, the size of the rectangular window should not significantly exceed the extent of
lesions.

For the task of lesion detection as presented in this chapter, the textural feature description xp

relates to a 5× 5 two-dimensional image window Wp with centre pixel p. The three-dimensional
image data is processed as a sequence of two-dimensional images whose orientation are chosen in
such manner that displayed pixels expose a symmetrical shape (Munich group: Axial orientation,
MARIBS group: Coronal orientation). Textural feature descriptors are calculated using Law’s filter
masks describing the texture energy [Laws, 1979]. Based on the five one-dimensional convolution
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masks level, edge, spot, wave and ripple

L5 = (+1,+4,+6,+4,+1) (Level),
E5 = (−1,−2,+0,+2,+1) (Edge),
S5 = (−1,+0,+2,+0,−1) (Spot),

W5 = (−1,+2,+0,−2,+1) (Wave),
R5 = (+1,−4,+6,−4,+1) (Ripple),

25 two-dimensional convolution masks are determined by calculating the outer-product of
all permutations of the one-dimensional masks b1,b2 ∈ {L5,E5,S5,W5,R5}. 14 directional-
invariant Law’s texture energy measures for the window W are calculated by

vb1b2 =
gb1b2 + gb2b1

gL5L5
,

where

gb1b2 =
5∑
m

5∑
n

(|(b1bT
2 ) ·W|)m,n, b1,b2 ∈ {L5,E5,S5,W5,R5}.

The fifteenth feature vL5L5, which reflects the centre-weighted local average, is typically only
used for normalisation of the other feature components and is subsequently discarded. In order to
consider the temporal dimension of the DCE-MRI images, the textural features are calculated for
two subtraction images. The first subtraction image is calculated by subtracting the precontrast
image from the first postcontrast image. The second subtraction image is calculated using the
last postcontrast image. Thus, the textural information about the content of the window W is
represented by a vector v ∈ IRnLaws of nLaws = 28 features.

To avoid the phenomenon known as curse of dimensionality, which was already mentioned in
chapter 4, the dimensionality of the textural feature vectors is reduced by principal component
analysis (PCA) [Bishop, 1995] of the training data. First, each textural feature is normalised
to zero mean and unit variance. Subsequently, the eigenvectors ξl, l = 1, . . . , nLaws and the
corresponding eigenvalues λl of the covariance matrix

C =
N∑

i=1

vivT
i

are calculated. By sorting the eigenvectors in the order of descending eigenvalues, one can create
an ordered orthogonal basis with the first eigenvector reflecting the direction of largest variance of
the data. The ratio λl/

∑nLaws
k=1 λk specifies the fraction of data variance retained by projecting onto

the l-th eigenvector. Assuming that the variance of the smaller eigenvalues mainly represents noise,
the eigenvectors corresponding to the nin largest eigenvalues are selected retaining approximately
90% of the variance of the textural data. The nin eigenvectors are combined to the transformation
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matrix A ∈ IRnin×nLaws defining a linear mapping from the textural feature space IRnLaws to the
data space X , which has nin = 18 dimensions in the case of the MARIBS data and nin = 19
dimensions in the case of the Munich data. The final feature vectors xp, which are subsequently
evaluated by the supervised classification algorithm, are computed by

xp = Avp.

The reader is referred to chapter 8 for more details about PCA.

5.1.4 Adaptation of Predictors

Support Vector Machine

The SVM algorithm is applied in combination with two different kernel functions. In combination
with a linear kernel, adaptation of the SVM leads to a discrimination function dividing the data
space X by a hyperplane into two half-spaces. Since the linear kernel has no additional kernel-
specific hyperparameters, the only hyperparameter that needs to be selected by the user is the
regularisation parameter C controlling the trade-off between maximisation of the margin and
minimisation of the training error. In the case of the Gaussian kernel, the examples of the
two classes are distinguished by a non-linear discrimination function. Next to the regularisation
parameter C, the kernel bandwidth σ has to be selected. The values of these hyperparameters
are chosen by a grid search in the one- or two-dimensional hyperparameter space, respectively
(see chapter 4.2.3). To this end, the data set Γ = ΓSuspicious ∪ΓNormal sampled from the training
cases is divided into two disjoint subsets

ΓTrain = ΓSuspicious
Train ∪ ΓNormal

Train

and

ΓTest = ΓSuspicious
Test ∪ ΓNormal

Test .

The set of suspicious training examples ΓSuspicious
Train contains 50%, but not more than 4000 ex-

amples, of ΓSuspicious. The remaining examples are used to build the test set ΓSuspicious
Test =

ΓSuspicious/ΓSuspicious
Train . These sets are then combined with normal examples randomly selected

from ΓNormal. The number of normal examples is chosen such that the final training set ΓTrain

is balanced, i.e. it contains an equal number of normal and suspicious examples, whereas ΓTest

contains ten times as much normal as suspicious examples, but no more than 20000 suspicious
examples. The size of ΓTest and ΓTrain is bounded in order to limit the computational expenses
of the grid-search. Each feature of the training examples is normalised to zero mean and unit
variance by a z-scoring operation. This operation is also applied to ΓTest, respectively.

During grid-search, the performance of the SVM for the hyperparameter values as shown in
table 5.1 is assessed by ROC analysis (see chapter 4.5.2). The score values of the examples in
ΓTest, i.e. the distances of the examples to the hyperplane in the kernel-induced feature space F ,
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are utilised to calculate a ROC curve which is subsequently summarised by the area-under-the-
ROC-curve (Az) value. The DCE-MRI sequence of the unseen case is then evaluated using the
SVM trained with the hyperparameters yielding the highest Az value on the test set.

Visualisation of SVM Outcome
To facilitate visualisation of the resulting confidence volume, the output fθ(x) of the trained
SVM is transformed by a sigmoid-function to the a-posteriori probability P (Suspicious|x) ∈ [0; 1]
using the method of [Platt, 2000] (see chapter 4.2.5). Through this, the outcome of the classifier
can be displayed as a gray value image by multiplying the a-posteriori probability P (Suspicious|x)
computed for the voxels of a DCE-MRI sequence with a constant factor of 255. The parameters
of the sigmoid function, which are fitted in a calibration process to the scores fθ(x) ∈ ΓTrain

computed by five-fold cross validation, are estimated using the algorithm proposed by Lin et al.,
2003. Since the sigmoid function is fitted to a balanced data set, the returned a-posteriori
probability is based on the assumption of equal a-priori probabilities for both tissue classes. Even
though the true a-priori probabilities are unknown, one can assume that the a-priori probability
for suspicious signals is lower than for normal signals. In order to consider unequal priors and to
use similar a-priori probabilities as for the LDA based evaluation of the image data, the a-priori
probabilities Pt(Normal) and Pt(Suspicious) (t indicates estimates based on the training set) are
adjusted to P (Normal) = 0.9 and P (Suspicious) = 0.1 using the Bayes formula:

p(x|ωk) =
P (ωk|x)P (x)

P (ωk)
. (5.8)

Since the within-class densities pt(x|ωk) estimated from the training set do not change during
the correction step, one can equate the estimated density and the corrected density:

pt(x|ωk) = p(x|ωk). (5.9)

Substitution of the Bayes formula (5.8) leads to

Pt(ωk|x)Pt(x)
Pt(ωk)

=
P (ωk|x)P (x)

P (ωk)
,

which finally leads to the formula for the corrected a-posteriori probability of class ωk:

P (ωk|x) =
P (ωk)
Pt(ωk)Pt(ωk|x)∑nΩ

j=1
P (ωj)
Pt(ωj)

Pt(ωj |x)

Note that the postprocessing of the SVM output by the monotonic sigmoid function as well as
the correction of the assumed a-priori probabilities does not change the ranking of the evaluated
examples ordered according to the postprocessed confidence value. Thus, both postprocessing
steps do not influence ROC analysis which only considers the ranking of examples. The main
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Table 5.1: Range of values for the regularisation parameter C and kernel parameter σ which is scanned for
selecting the optimal SVM hyperparameters.

Kernel Type Regularisation Kernel

Linear Kernel C = 10i0.2, i = 1, . . . , 10 none

Gaussian Kernel C = 10i0.2, i = 1, . . . , 10 σ = 0.5, . . . , 5, 10 steps

purpose of postprocessing is to enhance the initial visual contrast between voxels which are
rated as suspicious with moderate to high confidence. Applying the sigmoid function maps the
unbounded range of score value to a fixed range of confidence values. These confidence values can
then directly be mapped to gray values. The correction of the a-priori probabilities improves the
mapping for voxels with moderate and high confidence values. After correction, low confidence
values are mapped to a smaller range of gray values, whereas moderate to high confidence values
are displayed by an increased number of nuances of gray values. Even though the same effect can
be obtained by manually tuning the mapping as it is routinely performed by most radiologists,
the outcome depends on the radiologist’s expertise and is a potential source of inter- and intra-
observer variance. Therefore, already the initial display of the confidence volume should enable
the observer to distinguish lesion tissue from normal tissue as good as possible.

Linear Discriminant Analysis

LDA, like the SVM-L, divides the data space by a hyperplane into two half-spaces. In contrast
to the SVM, no hyperparameter has to be selected which makes the training process for the
LDA computationally inexpensive. The linear discrimination function is determined by assum-
ing normally distributed classes with equal covariances. The parameters, i.e. the class-specific
means µNormal, µSuspicious, the common covariance matrix Σ of the pooled data for the class-
conditional densities p(xp|Suspicious) and p(xp|Normal) and the a-priori probabilities P (Normal)
and P (Suspicious), are estimated on a training set ΓTrain. This set consists of all suspicious
signals of training cases and ten times as much randomly selected normal signals. Evaluation of
an unseen DCE-MRI assigns the a-posteriori probability

P (Suspicious|xp) =
p(xp|Suspicious)P (Suspicious)

p(xp|Suspicious)P (Suspicious) + p(xp|Normal)P (Normal)

to the corresponding voxels in the confidence volume, which therefore can directly be visualised
as a three-dimensional gray value image.

5.2 Results

In order to assess the performance of the different combinations of classification algorithms and
feature types, the cases of the Munich group and the cases of the MARIBS group are evaluated
following a leave-one-case-out scheme. For a pool of M cases, each setup, i.e. a combination
of classifier and feature type, is trained with data sampled from M − 1 cases and tested on the
remaining unseen case. This process is repeated five times for all permutations of test and training
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Figure 5.5: Area-under-ROC curve (Az) values (left) and partial-area-under-ROC-curve above a sensitivity
of 0.9 (Az(SE>0.9)) values (right) for subtraction images based on the postcontrast images as measured
at five different points of time. Each plot represents the means and the corresponding 95% confidence
intervals calculated for the subgroup of benign cases (blue), the subgroup of malignant cases (red) and
the entire Munich group.

cases leading to M × 5 confidence volumes for each combination of classifier and feature type.
For each confidence volume, the area-under-ROC-curve (Az) and partial-area-under-ROC-curve
above a sensitivity of 0.9 (Az(SE>0.9)) are calculated (see chapter 4.5.2). The performance of the
different setups is then compared by means of the average Az and Az(SE>0.9) values.

5.2.1 Results for the Munich Group

The Munich group consists of six cases with histologically proven benign lesions and six cases
with histologically proven malignant lesions. The lesion size varies from 25 to 743 voxels with
an average size of 208. Details about the image acquisition and the outcome of the histological
examination are described in chapter 3.

Subtraction Images

Figure 5.5 visualises the means and the corresponding 95% confidence intervals for the Az and
Az(SE>0.9) values of the subtraction images based on the precontrast image and on one of the
five postcontrast images of the Munich cases. Considering all twelve cases simultaneously, the
subtraction images based on the third postcontrast image yields the best performance (Az =
0.986± 0.0192, Az(SE>0.9) = 0.932± 0.0868). The same subtraction image yields also the best
results for the subgroup of benign cases (Az = 0.994± 0.0037, Az(SE>0.9) = 0.971± 0.0195). In
contrast to the initial assumption that a subtraction image based on one of the early postcontrast
images is most suitable for the detection of the enhancing malignant tissue, the highest mean value
is yielded for the subtraction image based on the fourth postcontrast image (Az = 0.980±0.0228,

80



RawPreratioPrenormAllratios

Feature

1,00

1,00

0,99

0,99

0,98

0,98

0,97

0,97

0,96

0,96

0,95

95
%

 C
I A

z

RawPreratioPrenormAllratios

Feature

0,98

0,97

0,96

0,95

0,94

0,93

0,92

0,91

0,90

0,89

0,88

0,87

0,86

95
%

 C
I A

z(
S

E
>0

.9
)

LDA
SVM-L
SVM-G

Classifier

Figure 5.6: Area-under-ROC curve (Az) values (left) and partial area-under-ROC-curve above a sensitivity
of 0.9 (Az(SE>0.9)) values (right) for different voxel-based temporal kinetic features combined with
the SVM-G (blue), SVM-L (red) and LDA (green). The mean values and the corresponding 95%
confidence intervals are calculated by averaging the 60 values obtained from the 5 repetitions of the
leave-one-case-out setup.

Az(SE>0.9) = 0.897 ± 0.1268). While the values of both indices are only slightly different to
those of the subtraction images based on the second or third postcontrast images, they are
superior to the mean value of the subtraction image based on the first postcontrast image (Az =
0.923 ± 0.1001, Az(SE>0.9) = 0.6995 ± 0.2826). In summary, the similar mean values measured
for the subtraction images based on the later postcontrast images indicate that all these images
provide information about the localisation and extent of suspicious masses. These images should
therefore be considered by the radiologist for an accurate and comprehensive evaluation of the
DCE-MRI data.

Voxel-Based Temporal Kinetic Features

Figure 5.6 represents the means and 95% confidence intervals of Az (left) and Az(SE>0.9) (right)
for different combinations of voxel-based temporal kinetic features and classification algorithms.
For all four types of features, the SVM-L outperforms the LDA. Employing a Gaussian kernel,
which extends the class of discrimination functions to non-linear functions, does not lead to
significant improvements of the detection performance. An Az of 0.989± 0.0129 and Az(SE>0.9)

of 0.957 ± 0.0459 indicates that the SVM-L evaluating the unprocessed temporal kinetic signal
(raw -feature) is most suitable for the assessment of temporal kinetic signals. In particular, the
Az(SE>0.9) indicates an increased sensitivity in comparison with the best subtraction image.

Axial slices of the subtraction images based on the precontrast and third postcontrast image
for two benign cases B1 and B4 and two malignant cases M4 and M6 can be observed in the
left image column of figure 5.7. The intensity values of voxels marked by the breast mask,
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Figure 5.7: Left column: Axial slices of the subtraction images of two benign cases B1 and B4 and two
malignant cases M4 and M6 of the Munich group. Each image visualises an axial slice of the three-
dimensional subtraction image based on the third postcontrast image, whose voxel values are scaled
to the range [0; 255] for the purpose of visualisation. Only voxels marked by the breast mask, whose
contour is indicated by the red line. The green line depicts the contour of the lesion segmentation.
Right column: The same axial slices as visualised in the left column, but with voxel intensities
reflecting the confidence values returned by the SVM-L evaluating the raw -feature description.

whose contour is indicated by the red line, are scaled to the range of [0; 255] for the purpose
of visualisation. In each image, a green line marks the contour of the lesion as segmented by
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the radiologist. All four lesions appear as clusters of voxels with intensity values higher than
those of voxels of the surrounding tissue. The bifocal lesion of case M6 consists of two regions.
The left region predominantly exhibits temporal kinetic signals with benign signal characteristics,
whereas the right region is likely to be malignant according to the temporal kinetic signals. In the
subtraction image, voxels of the malignant subregion can clearly be distinguished from voxels of
the surrounding normal tissue. The benign region exhibits only a slight signal enhancement and
is therefore displayed by voxels with lower intensities. Next to the lesion, major blood vessels are
also displayed by bright voxels. The subtraction image for case M4 also exposes several diffusely
enhancing tissue regions in the left breast, whereas the lesion, according to the expert label, is
located in the right breast.

The right column of figure 5.7 depicts the same slices as the left column, but voxel intensities
reflect the confidence value returned by the SVM-L evaluating the unprocessed temporal kinetic
signal (raw -feature). For the purpose of visualisation, each confidence value is multiplied by a
constant value of 255. All four lesions are displayed as clusters of bright voxels. The extents of
the clusters match the contours of the corresponding expert labels. In contrast to the subtraction
image, both parts of the bifocal lesion of case M6 can clearly be distinguished from normal tissue,
which is displayed in dark colours in all four images. Beside designated lesions, additional regions
are spuriously highlighted as suspicious in all four images. In the confidence image computed for
case B1, spuriously highlighted voxels in the breast can roughly be grouped in horizontal lines.
Since these lines are perpendicular to the direction of respiration and cardiac motions, they are
likely to be caused by the corresponding motion artifacts in the image data. The extents of the
tissue regions in the left breast of case M4, which are displayed as diffusely enhancing regions in
the subtraction image, are more clearly defined in the SVM-L based visualisation. Even though
the regions were not marked by the radiologist, examination of the corresponding temporal kinetic
signals shows that the underlying tissue exhibits a considerable signal enhancement within the first
two postcontrast images. The characteristics of the temporal kinetic signals of these spuriously
highlighted subregions will be investigated in more detail in the following chapter. Since the
temporal courses of the corresponding signals exhibit characteristics of benign and malignant
tissue as well, the highlighting of the voxels by the classifier seems to be reasonable from the
point of view of an assessment which solely considers the temporal kinetic signals associated with
individual voxels.

Analysis of the Discrimination Function

For the SVM-L evaluating the raw -feature, additional knowledge about the learned model of tissue
signals can be derived from the weight vector

w =
N∑

i=1

yiαixi

describing the parametrisation of the discrimination function. Since each feature component
of the training data is normalised to zero mean and unit variance, the absolute value of the
corresponding component of the weight vector describes the impact of the feature component on
the outcome of the discrimination function. For the raw -feature, components of the feature vector
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Figure 5.8: Weight vector w determined by the SVM-L for the evaluation of the raw -feature. The absolute
value of the component wk, k = 1, . . . , nin of the weight vector reflects the impact of the feature xk

on the classification outcome.

Table 5.2: Mean values and standard deviations for the ROC measures Az and Az(SE>0.9) for the evaluation
of the Munich group images based on region-based textural features.

Az Az(SE>0.8)

SVM-G 0.8993± 0.0830 0.6636± 0.2159
SVM-L 0.9060± 0.0779 0.6802± 0.2246
LDA 0.9113± 0.0741 0.6901± 0.2190

correspond to the intensity of a voxel as measured in the pre- and postcontrast images. Therefore,
the corresponding components of the weight vectors illustrate the value of the different images
for the discrimination of normal and suspicious tissue. According to the weight vector displayed
in figure 5.8, the outcome of the classification function predominantly depends on the intensity
value in the precontrast and in the third postcontrast image. This finding is congruent with the
observation that the highest discriminative power is achieved by evaluating the subtraction image
displaying difference between the precontrast and the third postcontrast image.

Region-Based Temporal Texture Features

Table 5.2 depicts the Az and Az(SE>0.9) values and the corresponding standard deviations yielded
by the three classifiers evaluating the Law’s features computed for the 5 × 5 neighbourhood of
each voxel. The best results Az = 0.9113±0.0741 and Az(SE>0.9) = 0.6901±0.2190 are obtained
using the LDA, but, when taken into account the high standard deviation, both indices are similar
to those of the SVM-L and SVM-G. In comparison with the voxel-based temporal kinetic features
(Az = 0.989±0.0129, Az(SE>0.9) = 0.957±0.0459), the ROC analysis clearly indicates an inferior
performance for the setup based on the evaluation of textural features.
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5.2.2 Results for the MARIBS Pool

The MARIBS group consists of three cases with benign lesions and five cases with malignant
lesions. The DCE-MRI sequences differ from those of the Munich group in two aspects:

1. The lesions of the MARIBS cases are significantly larger than those of the Munich pool.
The size of the lesions ranges from 175 voxels to 4307 voxels. In total, the eight cases
contain 12022 voxels designated by the radiologist as lesion voxels. Hence, the application
of the SVM algorithm not only requires to under-sample the class of normal signals but
also the class of suspicious signals. Due to the leave-one-case-out evaluation setup, which
requires to repeat the grid search for optimal hyperparameters for each validation case, the
SVM algorithm has to be executed 130 times for each combination of validation case and
feature type. Even if sophisticated algorithms are applied for SVM training, the number of
suspicious examples considered during the training of the SVM has to be limited to 4000,
which is about 25% of the available number of suspicious examples. In contrast to the
SVM, the LDA can be adapted using the entire set of suspicious examples.

2. According to the diagnosis-form-sheet, several malignant cases exhibit a large number of
secondary regions of benign disorders. Since the radiologist only segmented the primary
disorder, such secondary regions have to be considered as normal tissue during training and
evaluation and may cause a considerable overlap between the data distributions of both
tissue classes.

For the following ROC analysis of the subtraction images and confidence volumes, the case
B013A will be excluded. The Az values of the subtraction images of case B013A are ranging
between 0.3776 to 0.5924 and, therewith, are exceptional low in contrast to the indices of the
remaining cases. Therefore, B013A is regarded as an outlier and will be discussed separately from
the group of the remaining cases. Note that B013A is nonetheless part of the leave-one-case-out
scheme and, therewith, provides data for adapting the classifiers.

Subtraction Images

Figure 5.9 illustrates the means Az and Az(SE>0.9) and the corresponding 95% confidence intervals
for the subtraction images based on the postcontrast images measured at five different points of
time. According to the mean Az value, the subtraction image based on the last postcontrast image
yields the highest Az value of 0.9389± 0.0250 and Az(SE>0.9) = 0.6002± 0.1604. Nevertheless,
these results are comparable to those of the subtraction images based on the third postcontrast
image (Az = 9.9346 ± 0.0267 and Az(SE>0.9) = 0.5819 ± 0.1337) or on the fourth postcontrast
image (Az = 0.9367± 0.0274 and Az(SE>0.9) = 0.5929± 0.17.01).

Voxel-Based Kinetic Features

Figure 5.10 illustrates the mean Az and Az(SE>0.9) and the corresponding 95% confidence intervals
as yielded by the different combinations of classification algorithms and voxel-based temporal
kinetic features. For the preratio-feature and allratio-feature, the SVM-G outperforms both linear
classification algorithms. The best performance is achieved by employing the SVM-G for the
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Figure 5.9: Mean values and corresponding confidence intervals for the area-under-ROC-curve (Az) (left)
and partial-area-under-ROC-curve above a sensitivity of 0.9 (Az(SE>0.9)) (right) for the subtraction
images of the cases of the MARIBS group excluding case B013A. The mean values are separately
calculated for the subtraction images based on the postcontrast images measured at five different
points of time. Further on, the group-specific mean values for the group of malignant cases (red), of
benign cases (blue) and of all cases (black) are determined.
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Figure 5.10: Mean values with 95% confidence intervals of the ROC measures Az (left) and Az(SE>0.9)

(right) for different combinations of classification algorithms and voxel-based temporal kinetic features
applied for detecting suspicious signals in image volumes of the MARIBS group.

evaluation of the unprocessed temporal kinetic signal (raw -feature) leading to an Az = 0.94203±
0.0178 and Az(SE>0.9) = 0.6539 ± 0.1017. Therewith, the machine learning based evaluation of
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B006A: Subtraction Image B015A: Subtraction Image

B015A: SVM−L

B015A: SVM−GB006A: SVM−G

B006A: SVM−L

Figure 5.11: Subtraction images and different confidence volumes for the two benign cases B006A (left
column, disorders; fibrocystic changes, sclerosing lymphocytic lobulitis) and B015A (right column,
disorders: fibroadenoma, fibrocystic changes, apocrine metaplasia) of the MARIBS group. Each column
depicts the same coronal slice extracted from the subtraction image based on the third postcontrast
image, from the confidence volume based on the SVM-L and from the confidence volume based on the
SVM-G (lower left). The latter two were computed by evaluating the unprocessed temporal kinetic
signal (raw -feature). Voxel values of the subtraction images are scaled to the range [0; 255]. Confidence
values returned by the SVM are mapped to gray values by multiplication with 255. The contour of
the expert label of the lesion is depicted by the green line. The red line illustrates the contour of the
breast mask.

the DCE-MRI data leads to an improvement of the detection performance compared to the best
subtraction image.

Figure 5.11 shows coronal slices of the subtraction images and confidence volumes for the
two benign cases B006A (left column of images) and B015A (right column of images). The
confidence volumes were computed by evaluating the raw -feature using the SVM-G or the SVM-
L. The contours of the lesion and the breast mask are reflected by a green and red line, respectively.
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M094A: Subtraction ImageM007A: Subtraction Image

M007A: SVM−G

M007A: SVM−L

M094A:SVM−G

M094A:SVM−L

Figure 5.12: Subtraction images and different confidence volumes for the two malignant cases M007A (Left
column, primary disorder: Non-invasive ductal carcinoma, low grade; invasive tubular carcinoma grade
I; secondary disorders: Fibrocystic change, periductal mastitis, sclerosing adenosis, other) and M094A
(Right column, primary disorder: Non-invasive ductal, invasive ductal, grade III) of the MARIBS
pool. Each column depicts the same slice extracted from the subtraction image based on the third
postcontrast image, from the confidence volume based on the SVM-L and from the confidence volume
based on the SVM-G. All confidence volumes are based on the evaluation of the unprocessed temporal
kinetic signal (raw -feature). Voxel values of the subtraction images are scaled to the range [0; 255].
Confidence values returned by the SVM are mapped to gray values by multiplication with 255. The
contour of the expert label of the lesion is depicted by the green line. The red line illustrates the
contour of the breast mask.

The subtraction image of case B006A displays the lesion as a weakly enhancing region. Slightly
enhancing regions are also spread over the entire breast. The strongest signal enhancement
can be observed for small circular regions near the skin and is caused by larger blood vessels
perpendicularly oriented to the image slice. The SVM-L based confidence image displays the
lesion as a cluster of bright voxels. Spuriously highlighted regions are predominately represented
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with voxels of lower intensity. The visual contrast between voxels of the lesion and voxels of
the spuriously highlighted regions decreases significantly in the SVM-G based confidence image.
Similar characteristics of the presentation of lesions can be observed for the confidence volumes
computed for case B015A.

Figure 5.12 presents coronal slices of the subtraction image and confidence volumes for the two
malignant cases M007A and M015A. In the subtraction images, the lesions can be observed as
conglomerates of voxels with moderate to high intensities. The regions for which the confidence
images suggest suspicious tissue does not fill the entire contour of the lesion segmentation, but
matches the region exposing a strong signal enhancement in the corresponding subtraction images.
The evaluation of the image data of case M094A using the SVM-L leads to a confidence image,
in which the lesion is displayed with high contrast to fat tissue. However, the glandular tissue
surrounding the lesion exposes similar intensity values suggesting an extent of the disorder which
is larger than the one described by the expert label. The confidence image based on the SVM-G
provides a display of the lesion, in which the lesion is also silhouetted against glandular tissue.

Figure 5.13 illustrates the influence of the correction of a-priori probabilities on the initial
visualisation of the confidence volumes. The top row shows a coronal slice of the two confidence
volumes for case M094A and M007A based on the application of the SVM with uncorrected
a-priori probabilities. The bottom row shows the same slices after the correction step. The
assumption that suspicious examples are observed with the same a-priori probability as normal
signals causes large areas of tissue exhibiting unclear temporal kinetic signals to be displayed with
the similar intensity values as the lesion. After the correction step, voxels reflecting confidence
values ranging from low to medium are visualised with lower intensities than before, whereas lesion
voxels with high confidence values still expose high intensity values.

The performance of the machine learning based setup can further be increased by a prepro-
cessing of the image data using a filter. Application of a mean filter of size 3 × 3 × 1 to the
coronal slices of the DCE-MRI data volumes increases the performance of the SVM-G evaluating
the raw -feature to Az = 0.9657 ± 0.0206 and Az(SE>0.9) = 08076 ± 0.0852. In particular the
Az(SE>0.9) value indicates an increased sensitivity. Figure 5.14 depicts the same coronal slices of
the confidence volumes of case M007A (left) and M094A (right) as figure 5.12. The voxel in-
tensities reflect the confidence values returned by the SVM-G evaluating temporal kinetic signals
(raw -feature) of the filtered image volume. Now, the contour of the lesion in case M007A is
nearly filled with bright voxels, whereas filtering predominantly leads to a reduction of spuriously
highlighted regions in the confidence image of case M094A. Nevertheless, application of a filter
or feature descriptions of larger image patches is always critical, if small lesion are to be detected.
In this case, the temporal kinetic signals or features of normal tissue voxels are confounded with
those of lesion voxels leading to an indistinct signal or feature vector.

The two images in the top row of figure 5.15 depict the same coronal slice of the subtraction
image of case B013A based on the third postcontrast image. In the left image, voxel intensities
are scaled to the range of [0; 255] by suitable scaling and shifting factors. The right image presents
the same slice but the values of the subtraction image are mapped to gray values by a manually
tuned transfer function. While no signs of a suspicious signal enhancement can be observed in
the former image, the latter indicates slightly and diffusely enhancing tissue in the lesion contour.
The ROC analysis of the entire subtraction image returns an Az of 0.5924. The two images in the
bottom row show the same coronal slice extracted from the confidence volume computed by the
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M094A: SVM−G (Uncorrected)

M094A: SVM−G (Corrected) M007A: SVM−L (Corrected)

M007A: SVM−L (Uncorrected)

Figure 5.13: Coronal slices of two confidence volumes based on the SVM with and without corrected a-priori
probabilities.

 M007A: Mean Filter + SVM−G  M094A: Mean Filter + SVM−G

Figure 5.14: Coronal slices of the confidence volumes for the cases M007A and M094A of the MARIBS group
based on the SVM-G evaluating the raw -feature. The training data and the test data is preprocessed
by the application of a 3× 3× 1 mean filter.

SVM-G evaluating the allratio-feature (left) and from the confidence volume based on the SVM-L
evaluating the raw -feature. The mapping of the confidence values returned by the SVM to the
gray values was also manually tuned to enhance the display of the benign lesion. The SVM-L
based evaluation achieves an Az of 0.5912, whereas the SVM-G evaluating the allratios-feature
achieves a value of 0.7978. Other coronal slices of all three image volumes display large regions of
non-lesion tissue with bright voxels suggesting additional regions of suspicious tissue. The extent
of the lesion tissue can not be recognised in terms of the signal enhancement of individual lesion
voxels, but by considering the enhancement pattern and the form of a larger conglomerate of
voxels displayed with heterogeneous intensity values.
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B013A: Subtraction Image B013A: Tuned Subtraction Image

B013A: Tuned Confidence Volume (SVM−L)B013A: Tuned Confidence Volume (SVM−G)

Figure 5.15: Top row: Coronal slice of the subtraction image for case B013A based on the third postcontrast
image. In the left image, the voxel values of the confidence volume are scaled to the range of [0; 255].
In the right image, the mapping of voxel values to gray values is manually tuned in order the enhance
the display of the lesion depicted by the green contour. Bottom row: Confidence image showing the
same coronal slice as the subtraction image above. The left confidence image is based on the SVM-G
evaluating the allratio-feature description of the temporal kinetic signal. The right image shows the
same slice extracted from the confidence volume based on the SVM-L evaluating the unprocessed
temporal kinetic signal. In both cases, the mapping of confidence values to gray values is manually
tuned.

Region-Based Temporal Texture Features

Table 5.3 contains ROC indices Az and Az(SE>0.9) for the evaluation of the MARIBS group based
on region-based temporal texture features. The highest values are obtained by the two linear
classification algorithms SVM-L (Az = 0.9207 ± 0.0357, Az(SE>0.9)0.5949 ± 0.1350) and LDA
(Az = 0.9255 ± 0.0306, Az = 0.5931 ± 0.1578). Similar to the Munich group, the performance
of the detection setup based on texture features is inferior to the best setup based on voxel-based
temporal kinetic features.

The reason for the inferior performance of the textural feature description can be exemplified
on the basis of the two coronal slices of the confidence volumes B015A and M094A presented
in figure 5.16. The intensity values reflect the outcome of the SVM-L evaluating Law’s texture
features. Voxels in the border region of the lesion are classified as suspicious with high confidence,
whereas the evaluation of voxels of the lesion core leads to an assessment which suggests normal
tissue. Since the textural features are calculated for subtraction images based on the first and last
postcontrast images, the 5×5 windows of voxels in the border region are likely to display an edge
between the region of normal tissue displayed with low intensities and the region of lesion tissue

91



Table 5.3: Mean values and standard deviations of Az and Az(SE>0.9) for the evaluation of the MARIBS
group based on region-based textural features.

Az Az(SE>0.9)

SVM-G 0.8735± 0.0536 0.4464± 0.2176
SVM-L 0.9207± 0.0357 0.5949± 0.1350
LDA 0.9255± 0.0306 0.5931± 0.1578

M094A: SVM−L + Texture FeaturesB015A: SVM−L + Texture Features

Figure 5.16: Coronal slices of the confidence volume for case B015A and M094A based on the evaluation
of region-based temporal texture features using a SVM-L.

displayed with high intensities and therewith exhibit certain textural features. In contrast to this,
the strongest distinguishing feature between the content of a window placed on the lesion core
and a window placed on normal tissue is the average intensity level. In consideration of the fact
that each Law’s feature is normalised by the vL5L5 feature describing the average centre-weighted
intensity level of the window content, both windows are likely to exhibit similar feature vectors
and, therewith, do not allow to distinguish the underlying tissue by means of texture.

5.3 Discussion

The ROC analysis and the images displayed in the previous section have demonstrated how
valuable machine learning techniques can be for the detection of tissue masses exhibiting suspicious
temporal kinetic signals. The analysis of the subtraction images has shown that in particular
subtraction images based on one of the later postcontrast images provide information for detecting
suspicious tissue masses. Thus, in addition to the original image data depicting the anatomical
structure of the entire breast, these subtraction images should be considered for an accurate and
comprehensive evaluation of the DCE-MRI data.

All three classification algorithms are able to derive implicit models for the discrimination of
temporal kinetic signals of normal and suspicious tissue, although the training cases are only
partially labelled and no explicit a-priori knowledge about the signals of the tissue classes is
used. For the regarded cases of the Munich group, ROC analysis indicates that the SVM with
Linear Kernel provides sufficient discriminatory power to distinguish temporal kinetic signals of
the different tissue classes. Regarding the examined feature transformations, the unprocessed
temporal kinetic signal (raw -feature) is most suitable, although significance of the difference to
the remaining feature could not be proven.

92



From the viewpoint of data visualisation, the confidence volumes obtained from the machine
learning based approaches provide visualisations of the DCE-MRI data, which reflect an assessment
of tissue based on the evaluation of the entire temporal signal information. The confidence
volumes display tissue masses exhibiting suspicious temporal kinetic signals with high contrast to
the surrounding normal tissue. According to the manual lesion segmentation of the radiologist, the
highlighted tissue regions match the lesion masses to a high degree. Beside the improvement of
the detection performance, the main value of the machine learning based approach arises from the
facilitation of the manual data exploration process. The confidence volumes allow for localising
lesion masses on the basis of examination of a single image volume per case which, for the Munich
group of cases, does not require any further tuning of the data display.

For the MARIBS group, the SVM-G evaluating the raw -feature achieved the best results ac-
cording to the ROC analysis. Considering the visualisations of the confidence volumes, the SVM-L
provides a superior display of lesion masses for the benign cases, whereas the SVM-G displays
more clearly the lesions of the malignant cases, in particular of case M094A. However, due to the
low number of benign lesions in the MARIBS group it is questionable, whether this observation
holds in general.

The textural description of small image patches has shown to be inappropriate for the detection
of lesions. In particular for the cases of the Munich group, Law’s texture features offered only
inferior discriminative power in comparison with the voxel-based temporal kinetic features. An
important disadvantage of textural features is that they always relate to larger image patches
and are therewith inappropriate for precisely delineating the extent of small lesions. Lesions can
exhibit fine structures such as spiculated extensions consisting of only a few voxels which are
clearly smaller than the window for which textural features are computed. Therefore, the textural
features are likely to refer to a mixture of normal and suspicious tissue. In contrast to the region-
based temporal texture features, the voxel-by-voxel evaluation of the temporal kinetic signals allow
for assessing the tissue characteristics with the spatial resolution of the image data, but is on the
other hand more vulnerable to motion artifacts.

For a further discussion of the results, it has to be considered that the utilised lesion label is
not a label reflecting the expert’s assessment of the signal characteristics of individual temporal
kinetic signals. The expert label marks those regions of tissue which after interpretation of the
region’s morphology, its temporal pattern of enhancement and its depiction by other imaging
modalities give rise to the expert’s final diagnosis. This assessment of tissue regions is likely to
be different from the assessment of the temporal kinetic signals of the individual lesion voxels.
In particular for the cases of the MARIBS group, several unlabelled subregions are indicated in
the ANN based visualisation to be suspicious with moderate or high probability. Even though
such regions are not rated as important for the final diagnosis, examination of the corresponding
temporal kinetic signals reveals that the signals exhibit temporal kinetic signals which are indicative
for pathological disorders. Furthermore, the contours of the lesion masses as segmented by the
radiologist exceed the tissue masses displayed as suspicious for several cases of the MARIBS
group. The temporal kinetic signals of such voxels which were marked as lesion voxels by the
radiologist but designated as normal in the confidence volume frequently expose unsuspicious
signal characteristics. Thus, from the viewpoint of evaluation of single kinetic patterns, the
assessment of the ANN is reasonable. For the cases of the Munich group, the manual lesion
segmentations widely conforms with the extent of tissue masses for which the ANN suggests
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pathological disorders. This may point to the fact that labelling of such data is subjective and
depends on the radiologist’s expertise. The concordance between the contours of tissue masses
displayed as suspicious by the ANN and the contours of the manual lesion segmentation may
points to the radiologist’s preference to segment lesions in the first instance by means of their
temporal dynamic. In contrast to this, the comparison of the confidence volumes and manual
lesion segmentations for the MARIBS group suggests that the radiologist also considered features
such as the tissue morphology, which are not reflected by individual temporal kinetic signals.
Thus, to obtain a more reliable assessment of the ANN performance, the label depicting the
ground truth should be derived from more than one radiologist by e.g. computing the intersection
of a repeated lesion segmentation by different radiologists.

In summary, the voxel-by-voxel evaluation of the DCE-MRI data using ANNs can not serve
as a tool for fully automatic detection of lesions and can not entirely reproduce the radiologist’s
diagnosis. Nevertheless, the presented setup can serve as a tool that evaluates the entire temporal
dimension of the multidimensional DCE-MRI data for computing visualisations, which enable the
radiologist to localise and to delineate the extent of tissue regions which are suspected to exhibit
a pathological disorder according to the corresponding temporal kinetic signals. In particular the
confidence volumes computed for the cases of the Munich group display the lesions with high
contrast to surrounding tissue, and the extent of the lesions can be recognised without further
manipulation of the image display. The decision whether such tissue masses expose disorders with
consequences for the final diagnosis demands for evaluating additional features which relate to
the entire tissue mass such as the lesion’s morphology or the distribution of benign and malignant
signals inside the lesion.
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6 Tissue Characterisation with Artificial Neural
Networks

In the previous section, it was demonstrated how artificial neural networks and machine learning
techniques can be applied to ease the localisation of temporal kinetic signals which are likely to
be caused by benign or malignant tissue. The lesions of the considered cases were displayed as
clusters of voxels with high intensity indicating suspicious characteristics of the associated signals.

In this chapter, the machine learning based analysis of DCE-MRI data will be extended towards
the discrimination of temporal kinetic signals caused by malignant, benign and normal tissue.
The trained predictor will provide a pixel-mapping which maps each temporal kinetic signal to a
pseudo-colour reflecting characteristics of the course of the evaluated signal. The outcome will be
a three-dimensional colour image of the breast which not only enables the radiologist to localise
suspicious tissue masses but also to examine the distribution of benign and malignant signals in
the lesion itself. Therewith, the technique provides the radiologist with valuable information for
analysing and assessing lesions.

6.1 Motivation

In practice, the visual assessment of lesions by means of DCE-MR images is based on two com-
plementary groups of features. Morphological features describe spatial properties of entire le-
sions. Spatial heterogeneity of enhancement of a lesion, irregularity of the lesion’s contour or
the characteristics of the lesion’s margin are indicators for certain types of benign or malignant
disorders [Heywang-Köbrunner and Beck, 1995]. For the examination of such growth patterns,
single high-resolution contrast-enhanced MR images are most suitable. Temporal kinetic features
describe the temporal behaviour of a tissue region after application of the contrast agent. Char-
acteristics of the temporal course of a signal such as early or delayed enhancement, amount of
enhancement or presence of a wash-out have demonstrated to be valuable features for discrim-
inating malignant and benign tissue compartments. Due to the heterogeneity of lesion tissue,
the assessment of tissue by means of its temporal behaviour demands for careful measurement of
temporal kinetic signals. Analysis of the average signal of whole tumour ROIs, i.e. ROIs enclosing
all voxels of lesions, have been commented by many authors to be inappropriate, in particular for
evaluating malignant lesions where heterogenous areas of enhancement are diagnostically impor-
tant [Collins and Padhani, 2004]. On the other hand, examination of kinetic signals of individual
voxels is commonly too time-consuming since lesion masses frequently consist of several dozens
to several hundreds of voxels. Furthermore, the assessment of a time curve associated with a
single voxel has still to be correlated with the assessment of the time curves of the neighbour-
ing voxels because isolated temporal kinetic patterns exhibiting a suspicious signal course may
be found in any breast tissue due to the presence of larger vessels in the corresponding volume
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element [Heywang-Köbrunner and Beck, 1995]. In consequence, temporal kinetic features are
commonly analysed by means of average temporal signals of one or several ROIs which have been
manually placed inside the lesion. Heywang-Köbrunner and Beck, 1995 stress that for an exact
assessment of a lesion an attempt needs to be made to include exactly the areas of a lesion with
the highest amount and speed of enhancement, whereas areas with lower amount and speed of
enhancement must be excluded. Thus, the placement of ROIs strongly depends on the expertise
of the radiologist and has been reported to be afflicted with a noticeable inter- and intra-observer
variance [Orel and Schnall, 2001].

In order to facilitate the analysis of lesions and to attenuate the variability of the outcome,
Collins and Padhani, 2004 demand that ’analysis and presentation of imaging data needs to take
into account the heterogeneity of tumour vascular characteristics’. A simple subtraction image
reflects only a fraction of the temporal information of DCE-MRI data and the information is still
fragmented and distributed over several images if all subtraction images based on the different
postcontrast images are considered. Several authors propose the application of semiautomated
methods such as pharmacokinetic models. Pixel-mapping techniques such as pharmacokinetic
models expose several advantages such as appreciation of heterogeneity of enhancement and
removal for the need to selectively place user-defined ROIs [Collins and Padhani, 2004], both
reducing the risk of missing important information and the risk of creating ROIs containing dif-
ferent tissue types. However, pharmacokinetic models require considerable a-priori knowledge
about the underlying physiological process and require DCE-MRI sequences consisting of a large
number of postcontrast images to obtain reliable estimates for the model parameters. An alter-
native technique is calculating parameter images visualising estimates of e.g. the speed of signal
enhancements by a suitable colouring of voxels. Nevertheless, a single parameter image only
exploits a fraction of the information provided by the DCE-MRI data.

In this chapter, an adaptive pixel-mapping technique is proposed which is based on the ap-
plication of artificial learning algorithms. This approach regards the temporal kinetic signals of
several cases as a distribution of points in a signal space. The basic assumption of this approach
is that, even though the tissue-specific distributions of normal, benign and malignant signals may
considerably overlap, subregions exist in the signal space in which temporal kinetic signals of
one tissue class prevail. In order to identify such regions, the algorithm analyses the distribu-
tion of the temporal kinetic signals of a small number of ’training cases’. The signals of these
cases are attributed by a label either as normal, benign or malignant. This signal label is derived
from a manual segmentation of the lesions and their subsequent histological examination. This
combination of manual lesion segmentations with the outcome of the histological examination
only provides an uncertain label for the temporal kinetic signals of individual lesion voxels, the
outcome of the histological examination relates to the entire lesion mass. But in particular car-
cinoma consists of heterogeneous tissue such that the single label derived from the histological
examination is not necessarily conform with the voxel label which would have been yielded by
analysing the temporal kinetic signal associated with each individual lesion voxel. Nevertheless,
the acquisition of both label components is frequently a part of the standard clinical diagnosis
process. By training the ANN with the labelled data, the signal time courses are correlated with
the given labels, and signal features that allow for distinguishing temporal kinetic signals caused
by the three different tissue classes are autonomously derived from the data. Thus, implicit signal
models are build by the ANN, and neither explicit knowledge about the underlying physiological
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process nor the definition of an explicit mathematical model of this process or of the signals and
their distinguishing features is necessary.

After the adaptation, the trained predictor can be applied to evaluate unlabelled temporal kinetic
signals of unseen cases. The outcome of the predictor is a three-dimensional vector indicating the
confidence that the evaluated signal was caused by one of the three tissue classes, respectively.
This vector is used (i) for a classification of the signal as malignant, benign or normal and (ii) as
a pseudo-colour reflecting the characteristics of the temporal kinetic signals. This pseudo-colour
is determined by interpreting the vector as a RGB triplet which reflects the assessment of a signal
such as clearly malignant or border case between benign and malignant by colour shadings. If
the predictor is applied to all voxels of a DCE-MRI sequence, the outcome is a single RGB colour
image, referred to as scoring volume. Alternatively, the application of the pixel-mapping can be
limited to automatically selected subregions which are likely to contain tissue disorders. By means
of the pseudo-colouring of entire image volumes or by visualisation of conventional DCE-MR
images augmented by a pseudo-colouring of selected subregions, the radiologist is able to locate
suspicious masses and to analyse the distribution of malignant and benign tissue inside potential
lesions by visual examination of a single RGB image.

In summary, the proposed adaptive pixel-mapping technique extends the approach of parameter
images in the way that it

• takes the entire temporal information of the kinetic signal into account,

• automatically derives features which are relevant for distinguishing signals of the three tissue
classes and, therewith, needs no pre-defined features derived from explicit signal models for
the assessment of temporal kinetic signals,

• provides a classification and characterisation of the temporal kinetic signals with respect to
the considered tissue classes and not only a visualisation of quantitative measurements of
pre-defined features,

• allows for visualisation of the outcome as a single colour image.

To demonstrate that the presented data-driven pixel-mapping technique provides a reasonable
assessment of temporal kinetic signals, the outcome, i.e. the classification of individual voxels
as malignant, benign or normal and the visual presentation of entire lesions, is compared with
the outcome of the model-based three-time-points (3TP) technique. Although 3TP does not
necessarily reflect the biological truth and can thus only provide an imperfect ground truth, it
is a clinical standard technique for analysing DCE-MRI data in e.g. prostate and breast cancer
diagnosis. The comparison with 3TP will illustrate that the machine learning based pixel-mapping
provides an outcome which, despite the uncertain labelled training data, is widely concordant with
the outcome of the model-based 3TP technique without demanding for a-priori knowledge or any
model assumptions about the signal or the underlying biological process.

6.2 Data-Driven Pixel-Mapping Based on Supervised Learning

In the following, the different elements that constitute the data-driven adaptive pixel-mapping
method will be described. Furthermore, detailed information about the training process, i.e.
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about the acquisition of labelled training data and about adapting certain supervised learning
algorithms, will be provided.

6.2.1 Setup for a Data-Driven Pixel-Mapping
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Figure 6.1: Illustration of the data-driven pixel-mapping based on machine learning algorithms. If the
spatial order of the temporal kinetic signals is ignored, the signals s ∈ S of several training cases form
a data distribution in the signal space S. The transformation T maps each signal sp to a feature
vector xp providing a description of sp which is suitable for discriminating the underlying tissue type.
To this end, patterns xp are evaluated by a supervised classification algorithm. The outcome of the
classifier is a three-dimensional vector yp which determines the RGB colour of the voxel p in the new
three-dimensional scoring volume.

In order to visualise the DCE-MRI data as a single three-dimensional image augmented with
information about the temporal course of kinetic signals, each signal s ∈ S is evaluated by a
pixel-mapping function

M : S → RGB, s 7→ c(s) (6.1)

based on supervised classification algorithms (see Fig. 6.1). The temporal kinetic signal sp associ-
ated with the voxel p is mapped to a pseudo-colour c(sp) (short cp) which reflects the probability
that sp was caused by malignant, benign or normal tissue. To this end, a transformation T maps
each sp ∈ S to a feature vector x(sp) (short xp), which is a point in a data space X . A supervised
classification algorithm is trained with a set of labelled data to distinguish between examples xp

of the nΩ = 3 tissue classes Ω = {Malignant,Normal,Benign}. The classification algorithm is
chosen such that the outcome of the discrimination function

C : X → [0; 1]nΩ , x 7→ y(x) (6.2)
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is a nΩ-dimensional vector y(xp) (short: yp) with components ypk ∈ [0; 1], k = 1, . . . , nΩ.
Hence, yp can be directly mapped to the components of a RGB triple leading to the final pseudo-
colour cp. Voxels classified with high confidence as malignant, normal or benign are coloured
intense red, green and blue, respectively. Voxels with signal characteristics which do not allow
a distinct assessment are displayed with corresponding colour shadings. Thus, suspicious masses
are typically depicted as clusters of red, purple and blue voxels.

6.2.2 Preprocessing of Image Data

All images are preprocessed as already described in chapter 5. A binary mask, referred to as breast
mask, is calculated for each image sequence using an adaptive threshold algorithm [Otsu, 1979].
The threshold is determined from the histogram of the precontrast image which was filtered using
a three-dimensional median filter of size 3×3×3. Application of a 5×5×5 morphological closing
operator to the outcome of the thresholding operation assures that the binary mask covers the
image region of breast tissue without gaps. The breast mask of case m is formally described by
the set PBreast

m of spatial coordinates p of voxels marked as breast tissue.

6.2.3 Preparing Training Data

For adapting the supervised classification algorithm, a set of training examples Γ = {(x,y)i}, i =
1, . . . , N consisting of pairs of input patterns xi ∈ IRnt and class labels yi is needed. The class
label yi encodes the membership of the corresponding input pattern xi to one of the nΩ classes
using a 1-of-nΩ scheme, i.e. yi = (1, 0, 0), yi = (0, 1, 0) and yi = (0, 0, 1) for examples of the
malignant, normal and benign class, respectively. Samples ΓMalignant, ΓBenign and ΓNormal for the
three tissue classes have to be selected from labelled DCE-MRI data volumes for constructing a
representative set

Γ = ΓNormal ∪ ΓBenign ∪ ΓMalignant (6.3)

subsequently used for adapting the classification algorithms.

Labelling of Image Data

The label yp attributes each input pattern xp either as a malignant, normal or benign example and
is derived from two information sources which were acquired during a standard clinical DCE-MRI
evaluation process. The spatial information about the location of lesion voxels is provided by a
manual lesion segmentation. Voxels of lesions were manually marked by an experienced radiologist
with a cursor on a screening device. To this end, the DCE-MRI data was presented as subtraction
images visualising the temporal intensity gradient computed from one of the postcontrast and
the precontrast image. Strong enhancing structures such as lesions or blood vessels appear with
high intensity for a suitable selection of the postcontrast image. Furthermore, the radiologist
correlated the DCE-MRI data with X-ray mammography images. Lesion voxels were then marked
by either selecting individual voxels or by adjusting the vertex of a polygon enclosing a larger
subset of voxels. The lesion segmentation of case m is formally described by the set PLesion

m of
spatial coordinates of designated lesion voxels.
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Figure 6.2: For the ANN adaptation, information from different sources is derived. The DCE-MRI se-
quences of a group of cases provide information about the signal domain. Spatial information about
the corresponding lesions is derived from a manual lesion segmentation. A classification of the seg-
mented lesions as malignant or benign is obtained from the laboratory report of the histopathological
examination.

Even though the manual lesion segmentations yield information about the location of suspicious
signals, no information about the distribution of benign and malignant signals inside the lesions
is provided. Since lesion tissue is typically heterogeneous, a reliable classification of the temporal
kinetic signals associated with individual lesion voxels requires a manual voxel-by-voxel evaluation
by an experienced radiologist. Nevertheless, a voxel-by-voxel evaluation of a large number of
lesions is impracticable under the prevailing circumstances of clinical diagnosis. An alternative
source of information, albeit suboptimal for the purpose of preparing a set of labelled training
signals, is the outcome of the histological examination of the lesion. The microscopic analysis
of tissue samples extracted from a core-needle biopsy analyses the lesion tissue at the level of
individual cells and allows for reliable classifications of type and grade of lesions. If the outcome
of the histological examination is utilised as a label for temporal kinetic signals of lesion voxels,
two aspects need to be considered:

• It is commonly not known which subsets of voxels exactly correspond to the tissue samples
extracted for the histological examination. Thus, the histological report provides only a
classification of the entire lesion without any further information about the exact location of
malignant and benign signals inside the lesion. It has to be assumed that the distribution of
benign and malignant training examples considerably overlap, if all signals of heterogeneous
lesions are labelled according to the outcome of the corresponding histological examination.

• The histological examination evaluates tissue at a cellular level using features reflecting the
type and configuration of individual cells. Consequently, the histological diagnosis does
not necessarily reflect the diagnosis which a radiologist would have derived solely from the
examination of the DCE-MRI data.
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The advantage of signal labelling based on histological reports is the fact that histological
examinations are often routinely performed for cases exhibiting suspicious lesions. Therewith,
the DCE-MRI sequence and the corresponding histological reports are frequently available for a
number of cases which is sufficient for adapting data-driven learning algorithms.

Training Data Selection

Despite the mentioned shortcomings of a signal label based on the histological examination,
labelled examples for adapting the supervised learning algorithms are sampled by utilising the
breast masks, the manual lesion segmentations and the outcomes of the corresponding histological
examinations. Examples for temporal kinetic signals caused by malignant tissue are selected from
the DCE-MRI data of the cases Mm,m = 1, . . . , nM exhibiting lesions which were histologically
classified as malignant:

ΓMalignant = {(x,y)p|p ∈ PLesion
m ,m ∈ {M1, . . . ,MnM },y = (1, 0, 0)}.

Examples representing signals caused by benign tissue are, respectively, selected from the cases
Bm,m = 1, . . . , nB exhibiting lesions classified as benign:

ΓBenign = {(x,y)p|p ∈ PLesion
m ,m ∈ {B1, . . . , BnB},y = (0, 0, 1)}.

The set

ΓNormal =
{

(x,y)p|p ∈ PBreast
m ∧ p 6∈ PLesion

m ,m ∈ {M1, . . . ,MnM , B1, . . . , BnB},y = (0, 1, 0)
}

of examples of normal tissue signals is selected from all positions marked by the breast mask,
excluding the lesion segmentation. Subsequently, the three sets ΓMalignant,ΓBenign and ΓNormal

are divided into two subsets which are used for adapting the learning algorithm and for selecting
the algorithm’s hyperparameters. The size of each subset is chosen under consideration of the
computational expenses of the adaptation and hyperparameter selection steps and is described in
more detail in section 6.2.4 and 6.2.5.

Feature Description

Examination of temporal kinetic patterns s as measured for small ROIs is a common method for
characterising lesion masses. However, the categorisation of such signal time courses based on
visual examination is insufficiently standardised [Szabo et al., 2003] and, therewith, is subjective
and depends on the radiologist’s expertise. Although none of the different interpretation strate-
gies used in literature has evolved into a generally adopted approach, some basic features for
quantitative evaluation of temporal kinetic signals are widely used. Szabo et al., 2003 examined
the value of different morphologic and kinetic features for the formulation of a systematic scoring
scheme for lesion characterisation. Among others, the following temporal kinetic features were
examined:

• The percentage enhancement reflecting the increase of signal value in the n-th postcontrast
image relative to the value in the precontrast image:

En(s) =
sn − spre

spre
· 100 (6.4)
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• The initial slope reflecting the slope of the signal uptake between the precontrast value and
the signal peak:

Slope(s) =
Epeak(s)
Tpeak(s)

(6.5)

with the maximum percentage enhancement Epeak(s) and the time-to-peak Tpeak(s).

• The washout ratio reflecting the downslope from the signal’s peak to it’s value in the n-th
postcontrast image (n > peak):

Wpeak−n(s) =
speak − sn

speak
· 100 (6.6)

Additional quantitative features of temporal kinetic signals have been examined by Abdolmaleki
et al., 2001. The mentioned features can be computed for signals which relate to a single voxel
as well as for averaged signals of ROIs. In the latter case, the spatial variance of the different
features in the ROI can also be considered as it is done in the CAD system proposed by Chen
et al., 2004. In general, the definition of features and the selection of reasonable thresholds for
the discrimination of benign and malignant signals often depends on parameters of the DCE-MRI
protocol such as the spatial and temporal resolution.

To emphasise the fundamental idea of a data-driven approach to tissue characterisation and to
avoid explicitly defined quantitative features, two types of signal transformations

T : S → X , s 7→ x (6.7)

for the computation of a feature description x of the measured signal s are investigated. The
first feature description, referred to as the raw -feature, consists of the unprocessed signal values.
The second feature, referred to as the allratio-feature, describes the temporal course of signal
intensity as the ratios of intensity values at two different points in time:

x =
( sj

sk

)
(6.8)

with j, k = 1, . . . , nt and k < j. Both features have already been employed in chapter 5 for the
detection of suspicious tissue masses.

6.2.4 Adaptation of Multiclass Support Vector Machines

Support vector machines (SVM) have been applied to various classification tasks and have become
the state-of-the-art algorithm due to their superior classification performance. Thereby, multiclass
tasks have to be decomposed into a sequence of binary classification tasks, since SVMs were
originally only designed for problems of the latter type. Since the given task requires discriminating
temporal kinetic signals of three different classes, it is decomposed into a sequence of binary
subtasks following a one-vs-all scheme (see chapter 4.2.3). The k-th subtask, k = 1, . . . , nΩ, is
solved by a binary SVM which, after adaptation, returns a margin value mk(x) = fθk

(x) for each
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Table 6.1: Ranges of values for the regularisation parameter C and kernel parameter σ which are scanned
for choosing a suitable MSVM hyperparameters.

Kernel Type Regularisation Parameter Kernel Parameter

Linear Kernel C ∈ {10
2i
10 }, i = 1, . . . , 10 none

Gaussian Kernel C ∈ {10
2i
10 }, i = 1, . . . , 10 σ = 0.4, 0.8, . . . , 4

evaluated example. Since each tissue class is regarded by one of the binary subtasks as the target
class to be distinguished from the union of the remaining classes, the outcome of the multiclass
SVM (MSVM) is a nΩ-dimensional vector m(x) of margin values. The class label assigned by the
SVM to the evaluated example is indicated by the index of the vector component with the largest
value. In order to map the margin vector m(x) to the final output vector y(x) with components
yk(x) ∈ [0; 1], the output of the MSVM is postprocessed by a softmax function

yk(x) =
exp(akmk(x) + bk)∑nΩ
i exp(aimi(x) + bi)

(6.9)

with parameters ak, bk, k = 1, . . . , nΩ which have to be adapted during training of the MSVM
(cf. 4.2.5).

Adaptation of the MSVM algorithm requires the manual selection of the hyperparameter C
controlling the regularisation of the learning process and of the hyperparameters of the kernel
function. Suitable hyperparameters are separately selected for both types of signal transformation
and kernel function by a grid search in the corresponding parameter spaces. To this end, the
performance of the MSVM trained with examples from the training set ΓTrain is evaluated on a
test set ΓTest for different combinations of hyperparameter values. The training set ΓTrain consists
of 50% of the set ΓMalignant of malignant examples, 50% of the set ΓBenign of benign examples
and an equal number of normal signals randomly selected from ΓNormal. All three sets ΓMalignant,
ΓBenign and ΓNormal only contain data sampled from the training cases. The remaining examples
of ΓMalignant and ΓBenign and a tenfold number of normal signals are used for testing. Each input
component of the examples in ΓTrain and ΓTest is normalised to zero mean and unit variance. The
MSVM is employed with the linear kernel (MSVM-L) and the nonlinear Gaussian kernel (MSVM-
G) leading to a one-dimensional and two-dimensional hyperparameter space, respectively. During
the grid search in the hyperparameter space, the MSVM performance is assessed for the parameter
combinations as outlined in table 6.1.

Training of the MSVM for a certain choice of kernel function and hyperparameters consists of
the following steps:

1. A three-fold cross validation on the training set in order to obtain an unbiased margin vector
m(xi) for each of the N examples (x,y)i ∈ ΓTrain.

2. Training of the MSVM with the entire training set.

3. Adaptation of the softmax function (6.9) using the margin vectors computed in step 1. The
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parameters are adapted by minimising the cross-entropy error

E = −
N∑

i=1

nΩ∑
k=1

yik log(yk(xi)) (6.10)

for the ΓTrain using the Polak-Ribière variant of the conjugate gradient method [Press et al.,
1986].

The performance of the trained predictor is subsequently estimated on the test set ΓTest by
measuring the balanced accuracy, i.e. the mean accuracy of the three classes. Those hyperpa-
rameters yielding the highest performance value are assumed to be the optimum for the regarded
type of feature and the corresponding predictor is employed for the evaluation of unseen cases.

6.2.5 Adaptation of Local Sigmoid Maps

Like the local linear map, the local sigmoid map can rapidly be trained even for huge data set due
to the iterative nature of the algorithm. Therefore, the entire set of examples Γ sampled from the
training cases is utilised for the training process. Since normal examples outnumber malignant
and benign examples by far, the input patterns for the adaptation are selected from ΓNormal,
ΓMalignant and ΓBenign with a predefined probability of P (Normal) = 0.8, P (Malignant) = 0.1 and
P (Benign) = 0.1.

The parametrisation of the time-dependent learning rates and the neighbourhood function have
demonstrated to be uncritical and are set to a fixed setting throughout the experiment. For the
vector quantisation step, the neural gas algorithm is employed with a learning rate αt linearly
decreasing from α0 = 0.5 to αNt = 10−4. The initial value of the width of the neighbourhood
function σ0 = np

2 is chosen according to the number of prototypes np and linearly decreases to
the final value of σNt = 10−2. The prototypes are initialised with randomly selected examples
from the training data.

The learning rate εt of the local experts decreases linearly from an initial value of ε0 = 0.25
to εNt = 10−4. The weights β of the local experts are initialised with random values following a
normal distribution N (µ, σ) with µ = 0 and σ = 1.

Number of Prototypes

The complexity of the discrimination function of the LSM is controlled by two hyperparameters.
The number of prototypes np defines the number of subregions the data space is divided into and,
therewith, how many local experts implementing linear discriminations functions constitute the
piecewise linear discrimination function of the entire LSM architecture. The second hyperparam-
eter is the smoothing parameter φ controlling smoothness of the discrimination function at the
conjunction of two neighbouring local experts, i.e. linear pieces of the discrimination function.

The optimal choice of the two hyperparameters is separately selected for each feature type by
a grid-search. To this end, a disjoint test set ΓTest is isolated from the training data ΓTrain = Γ
containing 50% of the malignant and benign signals and ten times as much examples of normal
signals. For each parameter tuple (np, φ) with np ∈ {1, 2, . . . , 15} and φ = {0, 0.05, 0.1, . . . , 1.0},
the performance of the LSM is estimated by measuring the balanced accuracy on the test set.
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Figure 6.3: Isocontour plot of the balanced accuracy for different parameterisations of the number of
prototypes np (x-axis) and the smoothing parameter φ (y-axis). The left plot depicts the balanced
accuracy values for the LSM evaluating the raw -features. The right plot reflects the balanced accuracy
computed with the LSM evaluating the allratio-features.

Figure 6.3 depicts two isocontour plots of the balanced accuracy for different values of (np, φ).
For the raw -features, high accuracy values are obtained within the range of np = {3, 4, . . . , 6}
and φ = [0; 1]. The performance clearly decreases for large numbers of prototypes. According
to the test error, the most suitable parameterisation is np = 4 and φ = 0.4. In the case of the
allratio-features, accuracy increases with the number of prototypes and the lowest error is yielded
for np = 13 and φ = 0.4.

6.2.6 Evaluation

The evaluation of the setup is based on the evaluation of the DCE-MRI sequences as recorded
for cases of the Munich group, which consists of a balanced number of cases with histologically
proven malignant and benign lesions. The outcomes of the LSM and MSVM based pixel-mapping
are evaluated following a leave-one-case-out scheme. Each algorithm is solely adapted only with
training data sampled from eleven of twelve cases. The remaining case is used to evaluate how well
the method performs on a new unseen case. This evaluation scheme is repeated twelve times,
each time using a different case for validation. In order to attenuate the influence of random
initialisation and random selection of training data, the entire scheme is repeated five times. The
five scoring volumes obtained from the repetitions of the experiment for each validation case are
subsequently averaged yielding a single scoring volume for each validation case.

6.3 Results

All images and quantitative performance measures presented in this section refer to the averaged
scoring volumes. The section is subdivided into two parts. The first part addresses the visualisation
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of entire scoring volumes and the display of conventional DCE-MR images augmented by a pseudo-
colouring of automatically selected subregions which are likely to represent suspicious tissues.

The second part is focused on the visualisation and the assessment of lesion masses. The out-
comes of the LSM and MSVM based pixel-mappings are compared with the results obtained from
the 3TP technique by means of images of pseudo-coloured lesion masses. Furthermore, to quan-
tify the concordance between the data-driven approaches and the model-based 3TP technique, a
voxel label is determined using 3TP. This label attributes each voxel of the lesion either as be-
nign, malignant or suspicious with indistinct signal characteristics and serves as gold standard for
a quantitative evaluation. Although 3TP is an imperfect gold standard which does not necessarily
reflect the biological truth, a comparison with this clinically applied standard technique allows for
assessment of the reasonability of the ANN outcome.

6.3.1 Visualisation of Entire Image Volumes

Pseudo-Colouring of Entire DCE-MR Images

Figure 6.4 depicts axial slices of the scoring volume of the two benign cases B1 and B2 and the
two malignant cases M4 and M6. The kinetic signals sp of voxels marked by the breast mask were
evaluated with the LSM using the raw -features. The outcome yp reflecting the confidence that
the signal belongs to the class of malignant (yp1), normal (yp2) and benign (yp3) was mapped to
the red, green and blue component of the pseudo-colour cp, respectively. All four lesions are easy
to locate in terms of their size and pseudo-colours assigned to the lesion voxels. The lesion masses
of B1 and B2, which are both attributed as benign according to the histological examination, are
displayed by voxels with shadings of blue to purple indicating high confidence values for the benign
and slightly increased values for the malignant component of the LSM output. The malignant
lesion of case M4 exposes a ring of intense red and purple voxels surrounding a green core which
may consist of necrotic tissue with low vascularity. The average signal of the whole-tumour ROI
exhibits a delayed uptake and weak washout between the fourth and fifth postcontrast image
suggesting a benign disorder of the tissue. In this situation, the pseudo-colours provide valuable
architectural information about the lesion mass and allow for localising subregions which are
malignant at high probability. The lesion of case M6 is a bifocal lesion consisting of a benign
(intense blue) and a malignant (intense red) compartment. The visualisations of the lesions of
all twelve cases will be investigated in more detail at the end of this section. The major part of
the breasts is homogenously depicted with intense green voxels indicating breast tissue which is
healthy at high probability.

Selective Augmentation of Conventional DCE-MR Images

An alternative visualisation of the data can be obtained by superimposing pseudo-colours only
onto those voxels whose signals are rated as suspicious with a probability above a certain threshold.
The depiction of the entire DCE-MRI volume with pseudo-colours facilitates the localisation and
examination of suspicious masses due to the high visual contrast between the lesion voxels depicted
with shadings of blue and red and the surrounding normal tissue homogenously coloured green.
In contrast, a limited augmentation of conventional DCE-MR images with pseudo-colours enables
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B1 B2

M4 M6

Figure 6.4: Subregion of an axial slice of the LSM based scoring volume for the benign cases B1 and B2
(top row) and the malignant cases M4 and M6 (bottom row). The locations of lesions are designated
by white arrows. In all four images, the major part of the breast consisting of normal tissues such as fat
or glands is depicted intense green. The benign lesions are presented as intense blue or purple masses,
whereas the carcinoma of the malignant cases are predominately displayed with intense red and purple
voxels. Next to the lesion masses, the pseudo-colouring suggests additional benign masses for case B2
(right breast, below the lesion) and M4 (left breast, centre).

the observer to interpret the spatial distribution of the pseudo-colours in regions of suspicious
tissue in the context of the structure of the surrounding tissue.

For an automatic selection of regions which are to be presented in pseudo-colours, the le-
sion detection setup as proposed in the previous chapter can be applied. The voxel value
in the confidence volume computed for the patient under investigation reflects the probability
P (Suspicious|xp) = P (¬Normal|xp) that the associated temporal kinetic signal was caused by
suspicious tissue. A comparable confidence value can be obtained from the outcome y of the
LSM and MSVM, respectively. The second component yp2 = P (Normal|xp) reflects the proba-
bility that the temporal kinetic signal associated with voxel p is caused by normal tissue. Hence,
a probability value P (¬Normal|x) = 1 − P (Normal|xp) = 1 − yp2 above a certain threshold
indicates suspicious temporal kinetic signals.

Examples for selectively augmented conventional DCE-MR images can be observed in figure 6.5.
The figure depicts the same axial slices as figure 6.4, but pseudo-colours are only superimposed
onto voxels p with P (¬Normal|xp) > 0.5. Thereby, tissue regions with an increased probability
of being malignant or benign are presented in pseudo-colours, whereas regions depicting glands,
fat or muscle tissue exposing unsuspicious kinetic signals are displayed with the gray values of
the precontrast image. Through this, suspicious regions are augmented by information about the
temporal data component which therefore be correlated with the anatomical structures of the
surrounding tissue.

In order to evaluate whether P (¬Normal|xp) = 1−yp2 is a reasonable criterion for the selection
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B1 B2

Figure 6.5: Subregion of an axial slice of the LSM based scoring volume for the benign cases B1 and
B2 (top row) and malignant cases M4 and M6 (bottom row). The figure depicts the same slices as
figure 6.4, but the pseudo-colouring is only superimposed onto voxels with an increased probability of
suspicious signal characteristics according to P (¬Normalxp) > 0.5. The remaining voxels reflect the
intensity value of the precontrast image.

Table 6.2: Az (first and second column)and Az(SE>0.9) (third and fourth column) for the different combi-
nations of classification algorithms and feature types.

Raw Allratios Raw Allratios

LSM 0.9912 0.9825 0.9667 0.9112

MSVM-L 0.9905 0.9865 0.9658 0.9689

MSVM-G 0.9899 0.9880 0.9535 0.9499

of suspicious subregions, a ROC analysis is performed. Similar to the ROC analysis in the previous
chapter, the indices area-under-the-ROC-curve (Az) and partial-area-under-the-ROC-curve above
a sensitivity of 0.9 (Az(SE>0.9)) are calculated. The ROC curve for each combination of classifier
(LSM/MSVM-L/MSVM-G) and feature (raw/allratio) is calculated by pooling of the validation
data [Swets and Pickett, 1982]: The data of the twelve average scoring volumes are merged
(pooled) and a single ROC curve is computed using the manual lesion segmentation as ground
truth. Subsequently, the indices Az and Az(SE>0.9) are determined for each ROC curve. The
results are listed in table 6.2. Classifiers trained with the raw -features outperform classifiers
trained with allratio-features. Only in the case of the MSVM-L, a slightly higher Az(SE>0.9) is
yielded for the allratio-features.

Spuriously Highlighted Tissue Regions

For the cases B2 and M4, the visualisation points to additional regions of suspicious tissue which
were not marked by the radiologist during the manual segmentation of the lesion. For instance in
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Figure 6.6: Pseudo-colouring superimposed onto a subregion of the precontrast image of the left breast
of case M4. The image exhibits several regions of tissue for which the pseudo-colouring indicates
suspicious signal characteristics (P (¬Normal|xp) > 0.5), but which are false positives according to the
expert label. Though, exemplary examination of the kinetic signals of such false positive voxels as can
be observed on the plots affirms that the kinetic signals exhibit characteristics which are indicative for
benign and malignant tissue.

figure 6.6, the pseudo-colouring superimposed onto the precontrast image of the left breast of case
M4 highlights several regions by pseudo-colours indicating malignant or benign tissue. According
to the expert label, the lesion of case M4 is located in the right breast. Hence pseudo-coloured
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regions in the left breast have to be treated as spuriously highlighted tissue masses. Though,
examination of the temporal kinetic signals of such spuriously highlighted regions reveals that,
from the viewpoint of assessment of temporal kinetic signals of single voxels, the outcome of the
pixel-mapping appears reasonable. The four plots in figure 6.6 visualise temporal kinetic patterns
as measured inside clusters of spuriously highlighted voxels. Additionally, a pie chart illustrates
the distribution of the ’probability mass’ onto the three RGB components of the pseudo-colour.
The pseudo-colour itself is reflected by a filled circle to the right of the pie chart. Plot (a)
exposes a kinetic signal with an uptake in the early postcontrast period followed by a steady
wash-out and, therewith, exposes a typical course of a malignant kinetic signal. Correspondingly,
the LSM classifies the signal as malignant with a probability which is twice the probability of a
benign classification. Since the region is located inside the thorax, it can be easily distinguished
from potential lesion masses. The signal shown in plot (b) is classified with high confidence as
malignant. The signal exhibits a delayed but strong uptake followed by a weak wash-out in the
very late postcontrast period. A signal which steadily increases over the entire period of time can
be observed in plot (c). The signal is classified by the LSM as being benign leading to an intense
blue pseudo-colour. The last plot depicts a steadily increasing signal with a fast uptake during
the first 220sec, followed by a period of slower signal enhancement. The assessment by the LSM
indicates that the signal is more likely to be caused by benign tissue than by malignant tissue.

6.3.2 Visualisation of Lesion Masses

Analysing the Relations between Pseudo-Colours and Temporal Kinetic Signals

In order to analyse the data-driven pixel-mapping function, the pseudo-colours assigned to lesion
voxels and the corresponding temporal kinetic signals have to be examined simultaneously. Only
a simultaneous presentation of both types of information allows for detailed examination of the
relationship between the pseudo-colour and the temporal kinetic signal. Since this procedure is
impracticable for all lesion voxels, the relation is exemplarily analysed by means of a single lesion
and a small number of temporal kinetic signals.

Figure 6.7 depicts a subregion of the precontrast image recorded for case M1. Lesion voxels
as marked by the radiologist are coloured with pseudo-colours obtained from the data-driven
pixel-mapping based on the LSM (raw -features). The plot presents temporal kinetic signals as
measured at three different positions inside the ductal carcinoma. The lesion mass can be divided
into three subregions. The upper right part of the lesion is coloured with shadings of blue to
purple characterising the underlying tissue as benign. Signal (a) was measured at the position
of an intense blue voxel. The signal exposes typical properties of a benign signal with a slow,
sustained enhancement during the major part of the considered space of time followed by a late
wash-out. The middle part of the lesion is coloured with shadings of red indicating a malignant
type of tissue. The temporal kinetic signal (b) as measured at the position of an intense red voxel
exhibits a signal course which is characteristic for tissue affected by malignant disorders. The
lower part of the lesion exhibits a spiculated margin with two extensions. These extensions are
characterised by the pseudo-colouring as normal tissue. The signal (c) as measured for one of
such green coloured voxels reveals that the kinetic pattern exhibits indistinct signal characteristics.
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Figure 6.7: Visualisation of the lesion of case M1 based on LSM (raw -features). Additionally, three kinetic
signals corresponding to voxels which are characterised as benign (a), malignant (b) and normal (c)
are depicted.

3TP as a Model-Based Reference Technique

In order to analyse the presentation of the remaining lesions, pseudo-colourings of the lesions based
on the different classification algorithms are compared to those obtained from the 3TP technique.
Since the pseudo-colours red and blue derived from the data-driven pixel-mapping techniques and
3TP expose a comparable semantic meaning, the comparison of the lesion visualisations allow for
appreciation, whether the data-driven approach provides a reasonable assessment of the signals
in terms of congruence with a standard model-based diagnosis technique. The green colour has
different meanings in the two types of pseudo-colouring techniques. In case of 3TP, intense green
indicates a strong signal uptake between the precontrast and the first postcontrast image followed
by indistinct wash-out characteristics. The corresponding signals are likely to be suspicious due to
the strong uptake, but cannot be attributed as malignant or benign by means of the signal course
in the late postcontrast period. In contrast to 3TP, the data-driven pixel-mapping approach
displays such signals with shadings of purple, indicating a comparable probability of a benign and
malignant signal. Intense green pseudo-colours indicates tissue which is very likely to be healthy.

Visualisation and Classification of Lesion Masses

In figure 6.8 and figure 6.9, the pseudo-colouring and classification of temporal kinetic signals
associated with voxels of the six benign lesions B1-B6 can be observed. Each block of images
separated by a gray line refers to image slices of one lesion. The left 3 × 3 matrix of images
depicts three different image slices with pseudo-colours computed from the continuous output
of the LSM evaluating the raw -features (top row), the MSVM-L evaluating the raw -features
(middle row) and the 3TP technique (bottom row). Pseudo-colours are only superimposed onto
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voxels which belong to the lesion mass according to the manual lesion segmentation. The right
3× 3 matrix of images presents the same three image slice as the left matrix, but the colours of
lesion voxels illustrate the classification of the corresponding signals as malignant (red), normal
(green) or benign (blue). In the 3TP based classification images, the colour reflects the signal
characteristics in postcontrast period. The presence of significant wash-out is reflected by red.
Green indicates an indistinct course of the signal in the late postcontrast period. The presence of
a further increasing signal is reflected by blue. The same information can be observed for the six
malignant cases M1-M6 in figure 6.10 and figure 6.11.

The lesion of case B1 is a fibroadenoma. The LSM and MSVM based pseudo-colourings indicate
benign tissue in the lesion centre (second slice) surrounded by tissue classified as malignant but
coloured with shadings of purple in the pseudo-colouring indicating an increased value for the
benign component (first and third slice). This tissue characterisation concurs with the 3TP based
visualisation. Regions coloured purple by the LSM and MSVM are depicted with intense green
by 3TP indicating a strong signal uptake followed by indistinct wash-out characteristics. Tissue
in the centre of the lesion is also characterised as benign.

The lesion of case B2 is histologically classified as a fibrous mastopathy. All three pixel-mapping
methods lead to a visualisation, in which the lesion is depicted as a large mass of predominantly
blue voxels indicating benign tissue. The small number of voxels coloured green by 3TP are
characterised as normal by green (third slice, lower lesion margin), as benign by blue (third slice,
right part of lesion) or as suspicious by purple pseudo-colours (first slice, lesion centre/second
slice, left part of lesion).

The disorder marked by the radiologist in the images of case B3 is a scar for which 3TP indicates
benign signals in the upper part of the lesion and indistinct or malignant signals in the lower part.
The LSM characterises the kinetic signals of the lower part as malignant or suspicious (red to
purple), whereas the MSVM displays voxels coloured green by 3TP with blue voxels.

The 3TP based pseudo-colouring of lesion B4 exposes mainly suspicious signals with indistinct
wash-out characteristics (green). The corresponding voxels are coloured red with a weak blue
component by the LSM and MSVM. Voxels presented blue in the 3TP based images are similarly
characterised by both data-driven techniques.

Lesion B5 is a granuloma with signs of inflammation. The major part of benign voxels is similar
characterised by all three pseudo-colouring techniques. A different assessment can be observed in
the upper part of the lesion coloured green by 3TP. The LSM characterises this part with higher
confidence as malignant than the MSVM.

Lesion B6 is a chronic mastitis. The 3TP based visualisation indicates malignant tissue in the
lower part of the lesion. The same part is characterised as being normal (green) by the LSM and
as malignant (red) by the MSVM. Voxels in the centre of the lesion, which are coloured green by
3TP, are coloured purple by the LSM and red by the MSVM.

The 3TP based colour images of the ducal carcinoma of case M1 expose a malignant centre sur-
rounded by suspicious signals (green). The visualisation based on the data-driven pixel-mappings
suggest a similar configuration of tissue sections. Differences between the LSM and MSVM based
pseudo-colourings can be observed at the extension in the left part of the lesion (second image).
This extension is coloured with green pseudo-colours by the LSM but with purple by the MSVM.
The different assessment can also be observed in the corresponding classification images.

The major part of the scirrhous carcinoma of case M2 is consistently characterised as malignant

112



MSVM−L

LSM

3TP

LSM

MSVM−L

3TP

MSVM−L

LSM

3TP

LSM

MSVM−L

3TP

MSVM−L

LSM

3TP

LSM

MSVM−L

3TP

B1 (Visualisation) B1 (Classification)

B2 (Classification)B2 (Visualisation)

B3 (Visualisation) B3 (Classification)

Figure 6.8: Visualisations of benign lesions based on the LSM, MSVM-L and 3TP trained with raw -features.
Each block of images (separated by a gray line) refers to the image data depicting the lesion of the
benign cases B1, B2 and B3, respectively. The left 3× 3 matrix of images depicts slices with pseudo-
colours computed from the continuous output of the LSM evaluating the raw -features (top row), the
MSVM-L evaluating the raw -features (middle row) and the 3TP technique (bottom row). The right
3 × 3 matrix of images illustrates the classification of each signal as malignant (red), normal (green)
or benign (blue). Pseudo-colours and classification results are only superimposed onto voxels which
belong to the lesion masses according to the manual lesion segmentations.
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Figure 6.9: Same configuration of lesion visualisations obtained from the LSM, MSVM-L and 3TP as
presented in figure 6.8 but for the three benign cases B4, B5 and B6.
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Figure 6.10: Visualisations of malignant lesions based on the LSM, MSVM-L and 3TP trained with raw -
features. Each block of images (separated by a gray line) refers to image data depicting the lesion of
the malignant cases M1, M2 and M3, respectively. The left 3× 3 matrix of images depicts slices with
pseudo-colours computed from the continuous output of the LSM evaluating the raw -features (top
row), the MSVM-L evaluating the raw -features (middle row) and the 3TP technique (bottom row).
The right 3× 3 matrix of images illustrates the classification of each signal as malignant (red), normal
(green) or benign (blue). Pseudo-colours and classification results are only superimposed onto voxels
which belong to the lesion masses according to the manual lesion segmentations.
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Figure 6.11: Same configuration of lesion visualisations obtained from the LSM, MSVM-L and 3TP as
presented in figure 6.10 but for the three malignant cases M4, M5 and M6.
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Figure 6.12: Cost matrix depicting costs associated with the different mismatches between the 3TP based
classification and the outcome of the data-driven classification algorithm.

by both data-driven methods. Differences can be observed for a small number of voxels in the
second slice characterised as normal (green) by the LSM but as malignant (red) by the MSVM.
3TP points to a comparable assessment of the lesion signals, even though several signals only
exhibit indistinct wash-out characteristics.

The lesion of case M3 is a ductal carcinoma in situ. Both data-driven pixel-mappings suggest
similar characteristics as for the preceding lesions. The upper part of the lesion, which is coloured
red and green by 3TP, is coloured red to purple by the LSM and MSVM indicating a comparable
characterisation of the tissue.

Lesion M4 is a multilocullar recurrent ductal carcinoma. According to the 3TP pseudo-
colouring, the lesion consists of circular arranged clusters of voxels with malignant signal charac-
teristics. The right part and the centre of the lesion exhibit only indistinct signal characteristics.
The malignant part of the lesion is identically characterised by the LSM and MSVM, as well.
Voxels coloured green by 3TP are coloured blue to some extent with a weak red component by
both data-driven methods.

Lesion M5 is ductal papillomatosis. Both data-driven pixel-mapping techniques are in concor-
dance with the 3TP based assessment of the lesion tissue.

The bifocal ductal carcinoma of case M6 can be divided into two parts. The right part of
the lesion is characterised by 3TP as malignant with a small number of green voxels suggesting
an indistinct wash-out. This part of the lesion is classified with high confidence as malignant
by both data-driven techniques indicated by intense red voxels. 3TP indicates benign signal
characteristics for the tissue of the left part of the lesion. Whereas the MSVM conforms with the
3TP assessment of the left part, the LSM based pseudo-colouring also suggests a small number
of malignant signals.

Quantifying the Congruency Between 3TP and ANN Based Approaches

For a quantitative assessment of the data-driven evaluation of lesion masses, the classification
of lesion voxels is compared to the outcome of the 3TP technique. Since it is impracticable
to determine the true biological state of the tissue that caused the signal for each measured
temporal kinetic signal, the quantification of the conformance with 3TP, as a clinically applied
technique, enables to appraise whether the ANN based classification concurs at least with an
accepted standard technique for DCE-MRI data analysis.

For deriving a label for lesion voxels from the outcome of 3TP, it is important to note that
for the considered cases nearly all voxels marked by the radiologist exhibit a significant signal
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Figure 6.13: Box plot illustrating the misclassification costs caused by the different combinations of clas-
sification algorithms and feature sets. For each combination, the median, interquartile range, outliers
and extreme values are presented.

enhancement during the regarded space of time. Thus, each voxel is likely to relate to tissue
affected by pathological disorders. Therefore, class labels are solely assigned according to the
colour hue of corresponding 3TP pseudo-colours. Voxels coloured red by 3TP indicate a significant
wash-out and are likely to refer to malignant tissue. Blue voxels suggest continuously increasing
concentrations of contrast agent and are likely to refer to benign tissue. Nevertheless, 3TP
considers an additional class of signals with indistinct wash-out characteristics. Since the data-
driven pixel-mappings provide no counterpart for this class, a customised cost matrix must be
used for evaluating the confusion matrix determined for each lesion.

Since each lesion voxel exhibits a certain amount of signal enhancement, they should be classi-
fied by the ANN at least as suspicious, i.e. malignant or benign. Therefore, a ’normal’ classification
by the ANN is charged with 2, irrespective of the 3TP outcome for the corresponding signal. The
costs are the highest in the entire cost matrix since loosing a malignant or benign part of a lesion
is worse than classifying a malignant signal as benign or vice versa. The latter two types of
mismatch cause costs of 1. Voxels classified as malignant or benign by the LSM or MSVM cause
no costs if 3TP indicates the same class or indistinct signal characteristics (green). Table 6.12
summarises the costs associated with each type of mismatch between the outcomes of 3TP and
one of the classifications algorithms.

In order to compare a certain combination of classification algorithm and feature type with
the 3TP technique, a confusion matrix is calculated for each lesion. Subsequently, the costs for
each lesion are determined by summing up entries of the confusion matrix multiplied with the
corresponding entries of the cost matrix. The box plot in figure 6.13 illustrates costs as caused by
the different combinations of classification algorithms and feature types. For each combination,
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the median, interquartile ranges, outliers and extreme values are depicted. The best results are
yielded by employing the MSVM-L for the evaluation of temporal kinetic signals reflected either
by the raw -features or by the allratio-features.

6.4 Discussion

The visualisations presented in the preceding section underline the demand for visualisations of
DCE-MRI data that take into account the heterogeneity of lesion tissue. The data-driven pixel-
mapping based on supervised classification algorithms as well as the 3TP based visualisation
display the lesions as heterogeneous masses of tissue exhibiting malignant, benign and normal
kinetic signals. The explanatory power of the average temporal kinetic signal is obviously limited
and a careful examination of the different tissue compartments by the radiologist is necessary. For
this purpose, the data-driven pixel-mapping provides a visualisation of the lesion masses which
facilitates the identification of tissue compartments with homogeneous signal characteristics.

The plausibility of the pseudo-colours as derived from the adaptive pixel-mapping functions
was exemplarily analysed by simultaneous examination of pseudo-colours of lesion voxels and the
corresponding kinetic signals (Fig. 6.7). The kinetic signal with malignant enhancement pattern
was correctly depicted by an intense red voxel. The signal exposing a sustained enhancement
typical for benign tissue was correctly indicated by a blue voxel. A green coloured voxel denoted a
signal with an indistinct course of CA concentration. Even though the analysis of kinetic signals
and the associated pseudo-colours as measured for the lesion of case M1 only exemplarily illustrates
the relations between kinetic signals and the assigned pseudo-colours, the comparison of the ANN
based visualisations with those obtained from 3TP reveals that both techniques widely concur in
the assessment of lesion tissue. Lesion compartments which are likely to be benign or malignant
are localised at similar positions. This concordance was further underlined by the evaluation of the
confusion matrices reflecting the consensus between the classification of signals by 3TP and one
of the ANN based pixel-mapping setups. This evaluation indicates a high concordance between
both techniques, in particular if the MSVM-L is employed for evaluating unprocessed temporal
kinetic signals (raw -features). Differences between the colouring of lesions can be observed in
the presentation of those compartments which are coloured green by 3TP indicating indistinct
wash-out characteristics of the corresponding signals. Such signals are predominantly coloured
with shadings of purple due to similar probability values for a benign and malignant classification.
A small number of such signals is also mapped to shadings of green indicating a signal time course
which is more likely to be caused by normal tissue.

The 3TP based pseudo-colouring and the pseudo-colouring derived from the data-driven tech-
nique also differ in the visual contrast between pseudo-colours reflecting different signal charac-
teristics. 3TP exclusively encolours voxels with the three primary colours red, green and blue.
In particular the pseudo-colours of lesion voxels can easily be distinguished for most cases due
to the substantial enhancement of the underlying tissue leading to medium to intense colours.
In contrast to 3TP, the data-driven approach exploits a large spectrum of colours, and temporal
kinetic signals with indistinct characteristics are reflected by mixtures of red, green and blue.
Thus, it may be more difficult for the radiologist to perceive differences between certain pseudo-
colours in the ANN based visualisations than in those computed with 3TP. Nevertheless, it will be
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demonstrated in the following chapter that in case of the ANN based pixel-mapping, the smoothly
varying characteristics of the signal time courses are consistently reflected by smoothly varying
pseudo-colours, whereas the 3TP based pseudo-colouring exhibits discontinuities in the presen-
tation of signal characteristics. For the discussion of the visual presentation of lesions, it also
important to bear in mind the different type of information that is reflected by the pseudo-colours
obtained from the two different techniques. Pseudo-colours derived from 3TP visually reflect the
value of two explicitly defined signal features, whereas the ANN based pseudo-colours already
reflect an assessment of the signals with respect to the three tissue classes.

Another factor affecting the visual contrast between pseudo-colours derived from 3TP is the
normalisation of colour intensities. The intensity values of all 3TP pseudo-colours computed for
the image data of one case depend on the signal exhibiting the strongest uptake, since the intensity
of the pseudo-colour associated with this signal is by definition set to 255. Due to the fact that
the strongest signal uptake is repeatedly determined for each DCE-MRI sequence and typically
varies from case to case, the intensity of a pseudo-colour associated by 3TP with a certain signal
may vary if the same signal is measured in different image volumes. Additionally, the 3TP pseudo-
colouring of an entire ROI or image volume can be disturbed if the signal exhibiting the strongest
uptake is afflicted by noise. In contrast to this, the pseudo-colour of a voxel derived from the
ANN solely depends on the evaluation of the signal associated with this voxel and, therewith, is
not afflicted by the noise disturbing temporal kinetic signals of neighbouring voxels.

According to the misclassification costs caused by employing different combinations of classi-
fiers and features for the classification of temporal kinetic signals of lesion voxels, the MSVM-L
evaluating the raw -features yields the best performance for the characterisation of lesion tissue
if the 3TP based classification is assumed to reflect the true state of tissue. The examined vi-
sualisations of lesion masses based on the LSM and MSVM-L evince only few differences in the
assessment of temporal kinetic signals. Furthermore, the comparison with 3TP indicates that
both learning algorithms are able to derive implicit models of the three signal classes from a small
number of cases without requiring any model assumptions about the underlying biological process.
Despite the suboptimal labelling of the training data, the outcome of the adaptive pixel-mapping
widely conforms with that of the model-based 3TP technique. A less uncertain label of training
examples could be obtained by using e.g. a pharmacokinetical model to manually select and label
temporal kinetic signals of small ROIs as described in [Lucht et al., 2002, Lucht et al., 2001].
However, in that case, the adaptive pixel-mapping would just reproduce the outcome of a second
model-based technique for evaluating temporal kinetic signals. By utilising the outcome of the
histological examination for the labelling of the training data, the classification algorithm derives
a pixel-mapping function for evaluation of temporal kinetic signals from a technique, which itself
does not consider the DCE-MRI signal for the assessment of tissue.
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7 Adaptive Colour Scales for Comparison of
Pixel-Mapping Techniques

In the previous chapter, two different approaches for visualisation of DCE-MRI data using pixel-
mapping techniques were compared. The first pixel-mapping technique applies different types of
artificial learning algorithms to compute pseudo-colours reflecting the characteristics of the courses
of temporal kinetic signals. The second technique, the three-time-points (3TP) method, applies
an explicitly defined mathematical model of the temporal kinetic signal to determine the intensity
and hue of pseudo-colours. Semantically meaningful pseudo-colours can also be computed by
mapping tissue parameters estimated with a pharmacokinetical model or quantitative features of
temporal kinetic signals to the red, green and blue component of RGB colours. Even though
all the visualisations based on the different pixel-mapping techniques are utilised for the purpose
of lesion analysis, the semantic meaning of the pseudo-colours varies for different pixel-mapping
methods and has to be considered for the interpretation of pseudo-colour images.

In general, a pixel-mapping can be formally defined as a function

M : S → C : s 7→ c(s)

that maps a high-dimensional multivariate signal s from a signal space S to a pseudo-colour c(s),
which is a point in some colour space C. Such pixel-mapping techniques are not only applied in
DCE-MRI data analysis, but also in many other fields in which multivariate image data have to
be evaluated by human observers. Further examples are hyperspectral image data in the domain
of medical imaging and remote-sensing or multiparameter images in the field of multiparameter
microscopy. The pseudo-colours enable the observer to interpret multivariate signals in the context
of their spatial appearance in the image. However, to be able to derive new information from a
pseudo-colour image, it is essential that the observer has a deeper understanding for the relation
between the multivariate signal and the pseudo-colour and, therewith, for the semantic meaning
of pseudo-colours. Hence, before visualising any image data using a pixel-mapping function,
the function itself has to be explained to the user by e.g. a suitable visualisation of M . Such
visualisations are also useful for other purposes such as:

• Visual comparison of different pixel-mapping techniques e.g. for the purpose of developing
new techniques or for training users interested in different pixel-mapping techniques for a
specific data domain.

• Calibration of pixel-mapping techniques with one or several hyperparameters which control
the mapping from the signal space S to the space of pseudo-colours C and which have to
be manually adjusted by the user.
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Figure 7.1: Illustration of a pixel-mapping function by means of an exemplary pseudo-colour image. The
prevalent approach for introducing pixel-mapping functions is to present exemplary pseudo-colour im-
ages of small image patches displaying e.g. a lesion mass. Such images depict some of the pseudo-
colours that can be obtained from a certain pixel-mapping function but expose no information about
the underlying multivariate signals.

In this chapter, a method is proposed which allows for examination of pixel-mapping functions
in terms of a simultaneous visualisation of multivariate signals and associated pseudo-colours.
This visualisation, which is referred to as adaptive colour scale (ACS), is based on the application
of an unsupervised artificial neural network called self-organising map (SOM), which has several
appealing properties for this task. The ACS can not only be used in the domain multitemporal
DCE-MRI data, but also in any other domain in which high-dimensional, multivariate signals are
displayed as pseudo-colours.

7.1 Visualising Pixel-Mapping Functions

Visualising pixel-mapping functions is a non-trivial task due to the complex information that has
to be presented. The visualisation has to depict the distribution of multivariate signals as well
as the distribution of pseudo-colours in the corresponding spaces. Apparently, this is a problem
of simultaneous dimension reduction of two different spaces, since in particular the signal space
is frequently of much higher dimensionality than common two-dimensional display media. An
aggravating factor is that it is essential to retain the relation between the elements of both
spaces. For computing colour-scales reflecting the range of pseudo-colours that can be derived
from a certain pixel-mapping function, one can utilise the fact that multivariate image data have
a spatial topology and a signal topology. The former is given by the spatial coordinates of pixels
or voxels associated with the multivariate signals, whereas the latter arises from the multivariate
signal itself.

7.1.1 Colour-Scales Based on Spatial Topology

By far the most common way to illustrate a pixel-mapping function is to display pseudo-colours in
the spatial topology given by the coordinates of the pixels or voxels associated with the evaluated
signals. Pseudo-colours are computed for the multivariate signals and mapped back to the corre-
sponding geometrical or anatomical sites in the image (Fig. 7.1). For instance for the data-driven
pixel-mapping presented in the previous chapter, the relations between temporal kinetic signal
and associated pseudo-colours were illustrated by means of a small number of exemplary images.
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Figure 6.8, 6.9, 6.10 and 6.11 are examples for such visualisations. These images depict only
those pseudo-colours which were computed for the temporal kinetic signals of the pixels in the
displayed image patches, but neither do they provide any information about the course of the
underlying temporal kinetic signals, which actually is more important for the given purpose than
the spatial location of the signals, nor do they always display the entire range of pseudo-colours
that can be derived from a certain pixel-mapping. Even the additional visualisation of a few signal
courses as done in figure 6.7 provides only limited information about the relation between signal
and pseudo-colour, because only a very small part of the variability of the signal as well as of the
possible range of pseudo-colours is exposed.

7.1.2 Colour-Scales Based on Signal Topology

An alternative approach for visualising pixel-mapping functions is to compute colour-scales based
on the signal topology. Pseudo-colours are not mapped to the geometrical sites of the evaluated
signals in the image, but to their sites in the signal space. Thus, colour-scales based on the signal
topology demand low-dimensional representations of the signal space, which are appropriate for
the purpose of visualisation on a two-dimensional display.

The calibration map of 3TP (see chapter 3.5.2) can be regarded as a two-dimensional colour-
scale based on the signal topology. However, the signal space and, therewith, the relation between
signal and pseudo-colour is only implicitly represented by ascribing the temporal kinetic signals of
DCE-MRI to two physiologically meaningful parameters of a pharmacokinetic model. By varying
the two parameters of the pharmacokinetic model in reasonable ranges, artificial temporal kinetic
signals are generated simulating a distribution of DCE-MRI signals. The artificial signal generated
for a certain tuple of parameters is evaluated using 3TP, and the computed pseudo-colour is
then depicted at the corresponding position in the two-dimensional space of model parameters.
The disadvantages of this model-based approach to computation of colour-scales are that firstly,
temporal kinetic signals are not displayed in their original form and, secondly, it is only applicable
if signals can be described by a mathematical model, which, furthermore, is parameterised by only
two input parameters.

The approach of ACSs presented in the following overcomes the mentioned shortcomings by
employing the SOM algorithm for dimension reduction of the signal space. Thereby, both short-
comings of the model-based approach are circumvented: The concept of SOMs is based on
learning of prototypes, which itself can be interpreted and displayed in the same way as the orig-
inal multivariate signal. Additionally, the prototypes are learned from the data themselves and,
therewith, do not depend on any predefined assumptions about the signal.

7.2 Adaptive Colour Scales

The fundamental concept of the ACS is the data-driven computation of a low-dimensional repre-
sentation of the distribution of signals in the high-dimensional signal space. The low-dimensional
form of the signal space is given by a set of example signals or prototypes Θ = {wj}, wj ∈
S, j = 1, . . . , np which are arranged in a two-dimensional lattice. Each prototype is a point in the
considered signal space and can be displayed, like the signals, as a line or bar plot. Additionally,
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prototypes can be evaluated and associated with pseudo-colours in the same way as the recorded
temporal kinetic signals.

In order to be able to analyse properties of multivariate signals by means of a low-dimensional
representation, the structured set of prototypes should suffice the following requirements:

• The set of prototypes has to represent the vast majority of signal variability. It is important
to note that not the entire signal space needs to be represented, but only that part filled with
signals of the considered data domain. Signals of data domains such as DCE-MRI typically
expose several characteristic courses from which the major part of the data exhibits only
minor deviations. In this case, the data forms a manifold in the signal space and only this
manifold has to be reflected by the structured set of prototypes.

• The set of prototypes has to represent the variability of signals with a certain resolution.
This resolution mainly depends on the number of prototypes. The number of prototypes
should suffice to represent the main types of signals such as distinct benign, malignant and
normal signals in the domain of DCE-MRI data, but also those nuances of signal courses
that can be observed for tissue with a less distinct assessment.

• The similarities between prototypes should be reflected by their arrangement in the lattice
structure. Prototypes that are close to each other in the signal space should also be close to
each other in the lattice structure. This property facilitates navigating in the visualisation
of the low dimensional form of the signal space, since signal characteristics vary smoothly
between neighbouring prototypes.

7.2.1 Low-Dimensional Forms of Signal Spaces Based on Self-Organising Maps

The low-dimensional representations of signal spaces are computed by applying the SOM algorithm
[Ritter et al., 1992, Kohonen, 1995], an unsupervised artificial neural network which forms a
topographic map of the input data. Signals which are nearby in the signal space are likely to be
located nearby on this topographic map.

The two-dimensional SOM considered in this chapter consists of a lattice of np neurons. The
j-th neuron of the lattice is formally described by a weight vector wj ∈ S. Furthermore, each
neuron is parameterised with respect to an integer coordinate pair lj ∈ Q1 × Q2 with Q1 =
{1, . . . , q1},Q2 = {1, . . . , q2} and np = q1q2. The weight vectors can be interpreted as prototypes
of signals located in certain subregions of the signal space and represent signal courses which are
characteristical for the corresponding subsets of signals.

7.2.2 Self-Organising Maps

In order to determine the set of prototypes forming the topographic map of a given data domain,
the SOM is trained with a set of unlabelled training examples ΓTrain = {si}, i = 1, . . . N . The
prototypes are first initialised with examples randomly selected from ΓTrain. In the online version
of the algorithm, prototypes are adapted according to a random sequence of examples. For the
example s(t) ∈ ΓTrain selected at iteration step t, the j-th prototype is updated according to

∆wj(t) = λ(t)h(l∗, lj , σ(t))
[
s(t)−wj(t)

]

124



W (t)

W (t)
*

*
∆

W (t)j∆

X

Signal Space

(t)

Wj

Figure 7.2: During training of the SOM, the lattice structure (reflected by gray lines) of prototypes (black
discs) unfolds in the signals space according to the sequence of presented training examples. For each
training example x(t) ∈ ΓTrain (circle), the best matching prototype w∗(t) is moved by ∆w∗(t) towards
the stimuli pattern. Due to the neighbourhood function, prototypes wj which are topologically close
to w∗(t) according to the lattice structure are also slightly moved towards x(t).

with a learning rate 1.0 ≥ λ(t) > 0 that decreases with the number of iterations. The neigh-
bourhood function h(l∗, lj , σ(t)) leads to stronger adaptations of those prototypes wj with lattice
coordinates lj close to the lattice coordinate l∗ of the best matching prototype w∗(t) (Fig. 7.2).
The best matching prototype is determined by

w∗(t) = argmin
wj∈Θ

‖wj − s(t)‖

with a suitable metric ‖wj − s(t)‖ such as the Euclidean distance.

Neighbourhood Function

The neighbourhood function h(l∗, lj , σ(t)) takes an important role in the formation of the topo-
graphical map of the signal space. The most frequently applied neighbourhood function is the
neighbourhood kernel

h(l∗, lj , σ(t)) = exp

(
−‖l∗ − lj‖2

2σ(t)2

)
with the parameter σ(t) controlling the width of the neighbourhood. The width is chosen such
that the best-matching prototype w∗(t) as well as the prototypes in a larger neighbourhood of
w∗(t) are initially noticeable adapted. In the course of the training, σ(t) is decreased leading to
a decreasing weight for the adaptation of the neighbouring prototypes. For the case of σ → 0,
the update step is limited to the best matching prototype w∗(t) and the SOM algorithm becomes
an online version of the kmeans algorithm. The utilisation of a neighbourhood function which
initially encloses a considerable part of the prototypes and then contracts in the course of the
training results in a relaxation or smoothing effect on the prototype vectors. By activating the
best-matching prototype w∗(t) and the prototypes in its neighbourhood, i.e. those prototypes
that are in the SOM lattice topologically close to w∗(t), the selected prototypes learn from the
same input pattern s(t) leading to a global ordering of prototypes.
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Magnification Factor

In order to obtain a low-dimensional form of S that allows for examination of the varying character-
istics of signals, the signal distribution has to be represented by a sufficient number of prototypes.
Furthermore, if signals located in certain subregions of the signal space are of particular interest,
such subregions have to be exposed on the topographic map by an increased number of proto-
types. This magnified view on certain subregions enables the user to examine variations of the
corresponding signals at a higher level of detail.

In vector quantisation with the squared error function, it has been shown that the density of

prototypes is proportional to [p(s)]
nin

nin+2 with nin being the dimension of the signal space and p(s)
being the probability density function of the training data [Kohonen, 1995]. The inverse of this
is called magnification factor. Even though a connection between the density of prototypes of a
SOM and p(s) has not been derived for the general case, Ritter, 1991a derived a similar power-law
for the case of a SOM with a one-dimensional lattice structure. Due to this observation and the
close relation to the kmeans algorithm, it can be assumed that the density of SOM prototypes
roughly follows the density of the training data [Vesanto and Alhoniemi, 2000].

The conclusion that the density of prototypes roughly follows the probability density of the
training data has a significant consequence for the design of the training set used for adapting
the SOM. In many data domains, but most notably in domains of medical diagnosis, it can be
observed that the number of normal signals nNormal exceeds the number of abnormal signals
nAbnormal describing the phenomenon under investigation by far:

nNormal � nAbnormal.

In consequence, the prototypes of a SOM adapted with a data set reflecting the true p(s) of the
multivariate signals will predominately expose the characteristics of normal signals, whereas the
phenomenon under investigation is likely to be represented by only a few prototypes. Hence, the
frequency of occurrence of different signal types does not reflect their importance for the given
application and need to be adjusted.

In order to increase the number of prototypes representing signals caused by the phenomenon
under investigation, the probability density in the corresponding subregions of the signal space has
to be increased. This can be done by e.g. replicating the corresponding signals in the training set
or by reducing the number of signals that do not represent the phenomenon under investigation.
Both modifications increase the statistical frequency of occurrence of the underrepresented signals
in the sequence of randomly selected training examples. Therewith, prototypes are more often
shifted towards the corresponding subregions of the signal space during adaptation of the SOM.

7.2.3 Visualising Adaptive Colour Scales

After adapting the SOM with a set of training signals, the lattice of prototypes forms the basis of
the adaptive colour scales. Each prototype wj is displayed as a chart e.g. as a line or bar plot. The
background of the chart is coloured with the pseudo-colour c(wj) computed by evaluating wj

with one of the investigated pixel-mapping techniques. The np resulting charts are then arranged
according to the lattice structure of the prototypes leading to a q1×q2 matrix of diagrams, referred
to as adaptive colour scale (Fig. 7.3).
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Figure 7.3: The lattice of prototypes w, unfolded in the signal space S after training, is visualised as a lattice
of diagrams. Furthermore, each diagram is coloured with the background colour c(wj) determined by
evaluating the corresponding prototype wj with one of the investigated pixel-mapping techniques.

7.3 Case Study: Comparison of Pixel-Mapping Techniques for DCE-MRI

In the following, an exemplary case study is presented in which ACSs are applied for comparing
the data-driven pixel-mapping technique proposed in the previous chapter with the model-based
3TP pixel-mapping. To this end, a topographical map of the DCE-MRI signal space is computed
by training the SOM with data of the Munich group of cases. Subsequently, the same SOM is
successively coloured with the two pixel-mapping functions leading to the corresponding ACSs.

7.3.1 Computing a Low-Dimensional Form of the DCE-MRI Signal Space

In the domain of DCE-MRI, signals caused by pathological disorders are of particular interest but
constitute only a minor part of the DCE-MRI data. In order to enhance the density of prototypes
in the corresponding subregions of S, the statistical frequency of occurrence of suspicious signals
in the training set needs to be increased. To this end, the manual lesion segmentations are utilised
for a selective sampling of training examples. All signals associated with lesion voxels according
to the expert label of the six benign and six malignant cases of the Munich cohort are selected
as examples for signals exposed by tissue affected by pathological disorders. The resulting set
ΓMalignant ∪ΓBenign is replicated ten-times and forms the suspicious signal fraction of the training
set ΓTrain. Since temporal kinetic signals of normal tissue are less important in the given data
domain, normal signals are added to the replicated suspicious signals with a ratio of 1 : 4.

The training set ΓTrain is then used for training a SOM consisting of a q1 × q2 lattice of
neurons with q1 = q2 = 12. The number of neurons is chosen according to the results of
preliminary experiments investigating rectangular SOMs of different size and is a trade-off between
the resolution signal variations are displayed at and the space required for visualisation of the
lattice structure. The SOM is adapted using the previously described online algorithm with
tmax = 100 · |ΓTrain| iterations. The learning rate decreases linearly from an initial value of
α(0) = 1.0 to the final value of α(tmax) = 0.1. The parameter σ(t) controlling the width of the
neighbourhood decreases linearly from an initial value of σ(0) = 0.75 · q1 to the final value of
σ(tmax) = 1.0.
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Figure 7.4: Visualisation of the 12× 12 SOM trained with DCE-MRI signals. The SOM lattice is visualised
as a lattice of line plots, each showing the signal course of the corresponding prototype.

7.3.2 Results

The SOM trained with the DCE-MRI data sampled from the six benign and six malignant cases
of the Munich group can be observed in figure 7.4. Each chart of the SOM lattice illustrates
the signal course of a single prototype. All three major types of temporal kinetic signals are
reproduced on the SOM. In row K and L, temporal kinetic signals exhibiting nearly constant
courses at different levels of intensity are depicted. Since the signals exhibit only weak signal
enhancements, they are likely to be caused by different types of normal tissue. In region G-J,
6-12, temporal kinetic signals exhibiting an early signal uptake followed by a wash-out can be
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Figure 7.5: Adaptive colour scale visualising the data-driven pixel-mapping based on the MSVM with linear
kernel evaluating the raw -features. The line plot at position x, y depicts the signal course of the
prototype with lattice coordinate x, y and the corresponding pseudo-colour computed by evaluating
the prototype with the data-driven pixel-mapping.

observed. Therewith, they are likely to be caused by malignant tissue. The strength of the signal
uptake increases for increasing column indices. Prototypes in the region A-D, 4-12 reflect signal-
time courses which are typical for benign tissue. The signals exhibit delayed signal uptakes of
medium strength and signal plateaus or ongoing uptakes in the late postcontrast period.

In order to analyse the relations between the temporal kinetic signals and pseudo-colours and
to compare the ANN based pixel-mapping with 3TP, the SOM presented in figure 7.4 is coloured
using the two different pixel-mapping techniques. Figure 7.5 shows the ACS for the support vector
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Figure 7.6: Adaptive colour scale of the DCE-MRI data coloured using the 3TP pixel-mapping. The line
plot at position x, y depicts the signal course of the prototype with lattice coordinate x, y and the
pseudo-colour computed with 3TP for the corresponding prototype.

machine with a linear kernel (MSVM-L) evaluating the raw -features (see chapter 6 for details).
The ACS for the 3TP technique as it is used in the previous chapter is depicted in figure 7.6.
The strength of the signal uptake and the presence of a wash-out or ongoing uptake in the late
postcontrast period is evaluated by means of the precontrast and the second and fifth postcontrast
image. If the signal intensity varies between the two postcontrast images more than 10%, the
wash-out or continuing signal uptake is rated by 3TP as significant and displayed as red and blue,
respectively. The colour intensity is scaled such that the SOM prototype exhibiting the strongest
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signal uptake is displayed with an intensity of 255.

Regarding the ACS computed for the MSVM-L, temporal kinetic signals exhibiting an early
uptake and a wash-out of arbitrary strength are indicated to be malignant by intense red (F-J/3-
12). The more the strength of the signal uptake decreases and the more the time point of the
signal peak shifts to the later postcontrast period, the more the pseudo-colour becomes purple
indicating an assessment of the signal as suspicious with no clear characteristics of a benign or
malignant signal (D/3-8, E/6-10). Continuously increasing signals, which are likely to be exposed
by benign tissue, are displayed intense blue (upper right part of the SOM lattice).

The ACS displayed in figure 7.6 indicates that, in general, 3TP provides an assessment of
prototypes similar to that of the MSVM-L. Nevertheless, only a subset of those prototypes coloured
intense red by the MSVM-L is also displayed with intense red by 3TP. The major part of signals
classified by the MSVM-L with high probability as malignant is depicted intense green by 3TP. The
ACSs also document the concordance between both pixel-mapping techniques in the appraisement
of signals which are likely to be caused by benign tissue. These signals are located by both
techniques at similar positions on the ACS, i.e. in similar regions of S. Since the strength of the
signal uptake between the precontrast and the early postcontrast is typically much smaller for
benign signals than for malignant signals, the major part of benign signals is depicted by 3TP
with blue of medium intensity. Therewith, such signals are displayed with low visual contrast to
signals coloured with shadings of dark green due to their less distinct wash-out characteristics.

The discontinuity in the 3TP based visual presentation of varying signal characteristics, which
was already addressed in the previous chapter, becomes obvious in the ACS of 3TP. For certain
regions of the signal space, i.e. for certain prototypes of the SOM lattice, subtle variations of
the signal characteristics cause strong changes in their colour representations. Therewith, these
subtle changes may also cause strong variations in the visual perception of lesions by radiologists.
They may even affect the 3TP based classification of pixel clusters potentially depicting tissue
disorders, since these are often classified as benign or malignant on the basis of the fractions of
voxels displayed with red and blue pseudo-colours as described in [Kelcz et al., 2001]. In contrast
to 3TP, the ANN based pixel-mapping colours e.g. the passage from the subregion of the signal
space exposing malignant signals to the subregion of benign signals more smoothly by mixtures
of red, green and blue.

7.4 Discussion

A deeper understanding for the relationships between multivariate signals and pseudo-colours is
a prerequisite for analysing multivariate image data by means of pseudo-colour images. The ACS
introduced in this chapter has been demonstrated to be a helpful tool for systematic examination
of such relations. The visualisation of pixel-mapping functions by means of ACSs enables the
observer to visually analyse the mapping of signals to pseudo-colours and, therewith, to derive
knowledge about the semantic meaning of pseudo-colours in terms of signal characteristics.

Basis of the ACS is a low-dimensional representation of the signal space consisting of a lattice
of prototypes. These prototypes are automatically derived from training data using the SOM
algorithm. An advantage of the data-driven computation of low-dimensional forms of signal
spaces is that those parts of the signal spaces that are occupied by signals are automatically
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determined from the training data and predominately represented on the SOMs. A precondition
for computing adequate ACSs is that the training data represent the major part of the spectrum of
signals. In the case that the statistical frequency of occurrence of signals of certain classes in the
training data does not reflect their importance for the given application, it is necessary to design
a suitable training set by using side information such as lesion segmentations and histological
reports as demonstrated in the previous section for the domain of DCE-MRI data.

In the presented case study comparing the data-driven pixel-mapping function based on ANNs
with the model-based 3TP method, all three major groups of signals of the DCE-MRI domain are
reflected by the SOM prototypes. Furthermore, the two-dimensional SOM also depicts less dis-
tinct signal courses combining the distinguishing features of DCE-MRI signals such as strength of
signal uptake, time-point of signal peak or strength of wash-out with different nuances. The visual
comparison of the two colour scales illustrates that the prototypes characterised by 3TP as malig-
nant form a subset of the prototypes depicted as malignant by the ANN based pseudo-colouring.
The ACS of the data-driven pixel-mapping further reveals that the ANN based approach also
indicates malignancy for signal courses with less distinct wash-out characteristics. Furthermore,
the ACSs underline the concordance between both pixel-mapping techniques in the assessment
and display of signals which are benign at high probability. The two techniques mainly differ
in the depiction of temporal kinetic signals with indistinct signal characteristics. These signals
are coloured green by 3TP if they exhibit indistinct wash-out characteristics. The same signals
are mapped to mixtures of red and blue by the ANN if they exhibit a mixture of malignant and
benign signal characteristics and to mixtures of red and green if they exhibit features of normal
and malignant signals. Signals coloured intense green by 3TP, indicating a highly suspicious signal
uptake but unclear wash-out, are predominately displayed with red pseudo-colours in the ANN
based visualisations.

In summary, the visualisations of the two pixel-mapping functions by ACSs exposes the semantic
meaning of the different pseudo-colours in terms of signal characteristics, whereas the exemplary
presentation of pseudo-colour images of lesions as done in the previous chapter illustrates how
certain disorders are depicted by the different pixel-mapping functions in practice. Hence, both
types of visualisations provide complementary information to users of such analysis techniques.
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8 Image Fusion for DCE-MRI Data

Acquisition of multivariate image data, i.e. image data in which each pixel or voxel is asso-
ciated with a vector of signal values, plays an increasing role in modern medical diagnostic.
For instance, multispectral MRI, aggregating several three-dimensional MR images with differ-
ent T1/T2-weightings, has been demonstrated to provide valuable information for e.g. diagnosing
brain diseases [Holden et al., 1995,Vaidyanathan et al., 1995,Valdes-Cristerna et al., 2004]. Multi-
temporal images obtained from DCE-MRI allow for detecting and assessing pathological disorders
of tissue in the breast, liver and prostate [Collins and Padhani, 2004]. In either case, the key
information is fragmented and distributed over the entire set of images. Therefore, all images
of a sequence or stack have to be analysed simultaneously rather than subsequently in order to
utilise such imaging modalities to their full capacity.

Multivariate images can also be found in other fields of application. For instance in remote
sensing, acquisition and analysis of multivariate images recorded with remote sensor systems such
as satellites have been an area of research for several decades (see e.g. [Richards, 1993]). While
the multivariate nature of most remote sensor images arises from the acquisition of multispectral
data, several applications consider multitemporal image sequences for e.g. detecting temporal
changes in a landscape or local events such as bush fires [Richards and Milne, 1983]. Therewith,
remote sensing data bears resemblances to DCE-MRI data and the concept of image fusion,
which has successfully been applied in various remote sensing applications, may also be helpful
for the examination of DCE-MR images. While in the field of medical imaging the term image
fusion refers to fusion of information acquired from different imaging modalities, the remote
sensing community adopts a more general definition. According to Pohl and van Genderen, 1994,
image fusion ’is the combination of two or more different images to form a new image by using
a certain algorithm’, which also includes the combination of mutlispectral, multiparameter and
multitemporal images recorded within a single imaging modality.

In DCE-MRI, a single image of a sequence provides at most morphological information about
lesions and surrounding tissue, but the temporal intensity gradients, which are more important for
detecting lesions, only become accessible if information from two or more images of a sequence
is correlated. This observation is also the fundamental motivation for the application of fusion
methods to DCE-MRI data: A suitable combination of images from a single DCE-MRI sequence
may make evident signals which are not discernable in the individual images or alternatively
may display the data by a reduced number of images while preserving the essential information.
An important aspect is the objective of the fusion process, i.e. the question which part of the
information is to be accentuated by the new images. For the field of DCE-MR image analysis,
the objectives can be abstracted as:

• Compression: A compact visualisation of the entire DCE-MRI sequence by a single image
enabling the radiologist to examine the anatomical structure of the entire breast.
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• Detection: A visualisation of the image data accentuating spatial locations of suspicious
tissue masses.

• Characterisation: A visualisation of the image data which enables the radiologist to dif-
ferentiate benign and malignant compartments of lesions.

From the viewpoint of pattern recognition, fusion of DCE-MRI sequences is closely related to
dimensionality reduction: Ignoring the spatial order of signal vectors induced by the associated
voxels, the image data can be regarded as an unstructured set of patterns which constitute a
distribution in a data or signal space. By applying dimensionality reduction techniques, the data
are mapped to a new low-dimensional representation space, in which the images of the signals
account for most of the structure of the original data. These low-dimensional representations
of the signals can then be rearranged according to the spatial order of voxels resulting in a
reduced number of images. Various artificial neural networks for dimensionality reduction have
been employed for fusing image data. Villmann et al., 2003 employed the self-organising map
algorithm [Kohonen, 1995, Kohonen, 1997, Ritter, 1991b] to fuse remote sensing data. The
same algorithm was applied by Manduca, 1994 for visualising multispectral image data in a
medical domain. Principal component analysis (PCA) [Jolliffe, 1986] was utilised by Richards
and Milne, 1983 for fusing temporal sequences of remote sensing images for the purpose of bush
fire detection. Another method which has been applied for the exploration of multispectral image
data is the projection pursuit algorithm [Friedman and Tukey, 1974,Huber, 1985,Nason, 1995].
This algorithm is closely related to PCA but maximises the non-Gaussianity of the projected data,
which is assumed to indicate interesting structures in the data, instead of the data’s variance
like in PCA as described in more detail in a latter section. A similar criterion is maximised in
independent component analysis [Hyvärinen and Oja, 2000, Hyvärinen et al., 2001] which was
recently applied for fusing DCE-MRI data [Yoo et al., 2002]. Transformation of DCE-MRI into a
new set of images has also been investigated by Meyer-Bäse et al., 2004 who employed a modified
ICA, the so-called topographic ICA.

In the following, two techniques for dimensionality reduction, PCA and the so called kernel
principal component analysis (KPCA), are briefly described. The latter is a nonlinear extension
of the standard PCA, which executes the PCA algorithm in some feature space induced by a
nonlinear kernel function. Afterwards, both algorithms are employed for fusing DCE-MRI image
sequences. The outcome of the fusion process is discussed with respect to the mentioned objectives
compression, detection and characterisation. In contrast to the approaches for DCE-MRI data
analysis as described in the previous chapters, application of PCA and KPCA can be regarded as
purely data-driven approaches, since both techniques do not rely on additional label data. This
can in particular be useful if a-priori knowledge about the data and the phenomenon to investigate
is limited. Nevertheless, a setup in which label information is utilised to tune the KPCA based
processing of image data is also investigated in this chapter.
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8.1 Principal Component Analysis and Kernel Principal Component
Analysis

PCA as well as KPCA can be regarded as orthogonal transformations of a basis system. Both
algorithms determine a set of basis vectors, referred to as principal axes, which span a new
representation space. The new coordinates of data examples, referred to as principal components,
are obtained by projecting the data onto the principal axes. The difference between the two
methods is that PCA is an orthogonal transformation of the basis of space X in which the original
data is embedded1, whereas KPCA performs an orthogonal transformation in some feature space
F which is nonlinearly related to the original data space X .

A convenient property of both techniques is that already a low number of principal components
is often sufficient to capture the major part of structure in the data. This is due to the fact
that the intrinsic dimensionality of data, i.e. the minimum number of free parameters of the data
generating process [Fukunaga, 1990], is often lower than the dimensionality of the original signal or
data space [Bishop, 1995]. Thus, the objective of PCA and KPCA is to reduce the dimensionality
of the data while retaining most of the original variability in the data. Accordingly, the first
principal axis lies in the direction of the highest variance and projecting data onto this axis retains
the highest possible amount of variability. The principal components computed by projecting data
onto each succeeding principal axes account for as much of the remaining variability as possible.
It can be proven that PCA provides a sequence of best linear approximations of the data which
optimally compress the signal insofar as the least-squared reconstruction error is minimised [Hastie
et al., 2001]. Furthermore, principal component values computed by projecting data onto different
principal axes are uncorrelated and, therefore, are likely to expose different aspects of information.

8.1.1 Principal Component Analysis

Assuming data are given by a set Γ = {xi}, 0 ≤ i ≤ N of examples x ∈ X which are points in a
nt-dimensional data space X . PCA performs a transformation into a new coordinate system as
determined by the nt eigenvectors ξj ∈ X , ‖ξj‖ = 1, j = 1, . . . , nt of the covariance matrix

C =
1
N

N∑
i=1

(xi − µx)(xi − µx)T

with sample mean

µx =
1
N

N∑
i=1

xi.

The eigenvectors, which correspond to the principal axes, are computed by solving the eigenvalue
equation

λξ = Cξ (8.1)

1In this chapter, PCA as well as KPCA are applied to unprocessed temporal kinetic signals. Thus, the signal space
S and the data space X coincide. To conform with the notation of the previous chapters, examples which are
designated to be processed by one of learning algorithms will be denoted as x ∈ X .
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for eigenvalues λ ≥ 0 and ξ ∈ X \ {0} or by applying a suitable artificial neural network [Sanger,
1989,Oja, 1992, Fiori and Piazza, 1999]. By sorting the eigenvectors in the order of descending
eigenvalues, an ordered basis of orthogonal and uncorrelated basis vectors can be created. The
first eigenvector ξ1, i.e. the eigenvector with the largest eigenvalue, lies the direction in which
the data exhibit the highest variance. The following eigenvectors are orthogonal to the preceding
eigenvectors and in the direction of the highest variance in the orthogonal subspaces, respectively.
Therefore, the mapping from the data space to the new representation space spanned by the first
nrep ≤ nt eigenvectors or principal axes retains more variance than any other nrep orthogonal
vectors [Bishop, 1995]. The new coordinates x̃ are computed by

x̃ = Ax

with A being a nrep × nt matrix containing nrep selected eigenvectors as rows. The components
x̃j , j = 1, . . . , nrep are referred to as the principal components of x.

8.1.2 Kernel Principal Component Analysis

Kernel principal component analysis [Schölkopf et al., 1998, Schölkopf et al., 1999b, Schölkopf
and Smola, 2002] is a nonlinear extension of the PCA algorithm. Similar to other kernel-based
methods, data are embedded in a feature space F nonlinearly related to the data space X by a
nonlinear function

Φ : X → F , x 7→ Φ(x).

For the time being, it is assumed that the mapped data are centred in F . After embedding the
data in the feature space, the linear PCA algorithm is executed in F . To this end, the eigenvectors
ξ of the covariance matrix

C =
1
N

N∑
i=1

Φ(xi)Φ(xi)T (8.2)

have to be computed by solving the eigenvalue equation

λξ = Cξ (8.3)

with ξ ∈ F \ {0} and λ ≥ 0. Substitution of (8.2) into (8.3), resulting in

λξ =
1
N

N∑
i=1

Φ(xi)Φ(xi)T ξ =
1
N

N∑
i=1

〈Φ(xi), ξ〉Φ(xi),

indicates that solutions ξ with λ 6= 0 lie within the span of Φ(x1), . . . ,Φ(xN ). Thus, the dual
form of a solution ξ is defined as

ξ =
N∑

i=1

αiΦ(xi) (8.4)

and we may alternatively consider the set of equations

λ〈Φ(xj), ξ〉 = 〈Φ(xj), Cξ〉, j = 1, . . . , N. (8.5)
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By combining (8.4) and (8.5) to

λ
N∑

i=1

αi〈Φ(xj),Φ(xi)〉 =
1
N

N∑
i=1

αi

〈
Φ(xj),

N∑
k=1

Φ(xk)〈Φ(xk),Φ(xi)〉
〉
, ∀j = 1, . . . , N,

the eigenvalue equation becomes

NλKα = K2α

with the N ×N matrix K with entries

Kij = 〈Φ(xi),Φ(xj)〉, i, j = 1, . . . , N. (8.6)

This form of the eigenvalue equation allows to compute the mapping to the feature space implicity
by substituting a suitable kernel function K(xi,xj) fulfilling Mercer’s theorem [Schölkopf et al.,
1999a] for the inner products 〈Φ(xi),Φ(xj)〉 in (8.6) (cf. chapter 4.2.2). In this case, K is also
referred to as kernel matrix.

In practice, the N eigenvectors of K are determined by solving

Nλα = Kα (8.7)

for λ > 0. α denotes the parameters of the dual form of the eigenvectors (8.4). The parameter
vectors α1, . . . ,αN of the eigenvectors ξ1, . . . , ξN can be sorted in descending order according
to their eigenvalues λ1, . . . , λN and provide a basis of orthogonal and uncorrelated basis vectors.

Centring Data in the Feature Space

So far, the data were assumed to have zero mean in F . While it is difficult to centre the data
in F explicitly, a corresponding transformation of the data set Γ can be achieved by calculating
the centred kernel matrix [Schölkopf and Smola, 2002]. The centred kernel matrix is obtained by
modifying the entries of the original kernel matrix according to

K̃ij = (K − 1NK −K1N + 1NK1N )ij , i, j = 1, . . . , N (8.8)

with the matrix 1N with entries (1N )ij := 1
N . Subsequently, the centred kernel matrix K̃ is

substituted for the kernel matrix K in equation (8.7).

Computing Principal Components

Comparable with the linear PCA, the j-th principal component x̃j is the inner product between
an example x and the j-th eigenvector. In contrast to the linear PCA, the inner product is not
computed in the data space but in the feature space

x̃j = 〈Φ(x), ξj〉. (8.9)

By substituting the dual form of the eigenvectors given by equation (8.4), the principal components
can be expressed as weighted linear combinations of kernel functions

x̃j =
1√
λj

N∑
i=1

αjiK(xi,x). (8.10)
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Figure 8.1: Illustration of PCA and KPCA applied to data in two dimensions. The eigenvector ξ1 determined
by PCA lies in the direction of the highest data variance in X . For PCA, projections onto ξ1 (as depicted
by the dashed iso-contour lines and the colour of the data points) vary linearly in the direction of the
eigenvector. If ξ1 is computed by KPCA with a nonlinear kernel function, constant projections onto
ξ1 describe linear contour lines in the feature space F but nonlinear ones in X due to the nonlinear
relation between F and X .

The coefficient 1√
λj

normalises αj such that the eigenvector ξj has unit length in F :

〈ξj , ξj〉 = 1, j = 1, . . . , N

Choosing a Kernel Function and Its Parameters

An essential component of KPCA and other kernel-based algorithms is the transformation Φ which
maps examples from the data space X to the feature space F . This transformation is typically
implicitly defined by the choice and parametrisation of the kernel function K(xi,xj). In fact,
the transformation Φ, which is implicitly computed by the chosen kernel function, even needs
not to be known explicitly as long as the kernel function fulfils Mercer’s theorem and, therewith,
computes the inner product in some suitable feature space. If the Gaussian kernel

K(xi,xj) = exp
(
−‖xi − xj‖2

2σ2

)
,

is employed (as in this work), the user is required to set the kernel bandwidth σ to a reasonable
value. Typically, the most suitable value varies for different applications. Since there is no general
guideline for adjusting the kernel bandwidth in KPCA, different values are commonly tested by
e.g. manually evaluating the outcome of KPCA.

8.1.3 Connection Between PCA and KPCA

According to the previous description, KPCA corresponds to executing a standard linear PCA in
some feature space F induced by a kernel function. While the principal components computed
with PCA are weighted linear combinations of the components of the original signal, the prin-
cipal components obtained from KPCA are weighted linear combination of variables which are
nonlinearly related to the signal components. These variables can e.g. be high-order correlations
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between signal components as in the case of the polynomial kernel of degree d (see [Cristianini
and Shawe-Taylor, 2000] for details):

K(xi,xj) = 〈xi,xj〉d.

Due to the nonlinear relation between F and X , the constant projections onto an eigenvector
in F describe nonlinear isocontour lines in X (Fig. 8.1). Furthermore, standard PCA can be
regarded as a special case of KPCA if a polynomial kernel of degree d = 1 is used. In this case,
the feature space F and the data space X coincide and the kernel function computes the inner
product 〈xi,xj〉 in X .

8.2 Fusion of DCE-MR Image Sequences

The application of PCA and KPCA for fusing DCE-MR image sequences is investigated by means
of data from six patients which take part in the MARIBS breast cancer screening study (see
chapter 3.2.1). All six cases have been diagnosed to exhibit benign or malignant tissue masses.
This tissue masses were also manually segmented by a radiologist, who marked voxels associated
with suspicious temporal kinetic signals with a cursor on a screening device.

For fusing DCE-MRI data, two different setups are investigated. The first setup considers the
computation of case-specific representation spaces. Principal axes are recomputed each time a
new DCE-MRI sequence is to be evaluated. To this end, PCA is applied to the DCE-MRI sequence
to be fused subsequently. Thus, the principal axes and hence the semantic meaning of the fused
images may vary for different cases due to variations in the individual signal distributions caused
by varying fractions of normal, benign and malignant signals or even by the lack of any signal of
pathologically affected tissue.

The second setup considers the computation of a single domain-specific representation space.
Principal axes are computed once by analysing a data set representative for the given data domain.
For the domain of DCE-MRI, principal axes are determined for data sampled from several training
cases known to exhibit different types of breast lesions. Furthermore, the fusion process is tuned
by utilising additional information given by the lesion segmentations. The information about
which tissue masses are to be accentuated in the fused images of the training cases is used to
build a representative data set and to optimise the bandwidth of the Gaussian kernel of KPCA.
The principal axes determined from data of the training cases are then kept fixed and span
the domain-specific representation space, in which data of new unseen DCE-MRI sequences are
mapped thereafter.

8.2.1 Preprocessing

Each image sequence is preprocessed as described in detail in chapter 5. A binary mask, referred to
as breast mask, is computed for each sequence. The mask is utilised to separate background voxels,
which predominantly display air, from breast tissue voxels. The following fusion process is then
limited to signals of breast tissue. Furthermore, signal values of each image sequence are scaled
to the range [0; 1]. In order to avoid artefacts caused by single outlier values, the minimum and
maximum intensity values of each sequence are computed after filtering each three-dimensional
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image volume of the sequence with a 3 × 3 × 3 median filter. The determined minimum and
maximum values are then utilised for scaling the intensity values of the unfiltered image sequence.
Signal values of the unfiltered images exceeding the maximum or falling below the minimum
intensity of the filtered image sequence are truncated.

8.2.2 Setup I - Case-Specific Representation Spaces

In the first setup, PCA is performed on a data set Γ sampled from the current patient under
investigation. This data set contains all signals marked by the breast mask (approximately 5 · 105

to 7 ·105 signals per case). The computed principal axes are then employed for mapping the same
data into the new case-specific representation space.

From a theoretical point of view, it is also possible to employ KPCA in this setup. In practice,
the memory requirements for storing the N × N kernel matrix K scale with the number of
examples in Γ quadratically and computing the eigenvectors of K, which is of O(N3) complexity,
becomes intractable for large data sets. While the size of Γ can be reduced by randomly selecting
a subset of reasonable size, the occurrence of a large number of lesion signals in such a set is
unlikely owing to the imbalance between the number of signals of healthy tissue and the number
of signals of lesion tissue.

A second aspect which makes the application of KPCA in this setup unpracticable is that the
outcome of KPCA strongly depends on the type and parameterisation of the kernel. In this
chapter, only the Gaussian kernel parameterised by the bandwidth parameter σ is considered for
fusing DCE-MRI data. Testing different values of σ for each new case is not a viable option due
to the expenditure of time for the repeated computation of principal axes and components and
for the visual evaluation of the fusion outcome.

8.2.3 Setup II - Domain-Specific Representation Spaces

In the second setup, PCA and KPCA are applied to a data set Γ sampled from a group of cases
which are known to exhibit pathological tissue disorders and which have been evaluated by a
radiologist who marked the corresponding tissue masses. Afterwards, the computed principal axes
are employed for fusing image sequences of cases which have not been exposed to the PCA/KPCA
algorithm before, i.e. which were not in the group of training cases.

While PCA is applied to the entire data of the training cases, KPCA is adapted and tuned
using a set Γ of reduced size. For this purpose, the lesion segmentations are utilised in two
ways: First, a data set ΓTrain is built containing a balanced number of suspicious (malignant or
benign) and normal signals. The latter are randomly selected from regions marked by the breast
masks excluding lesion voxels. Therewith, it is assured that ΓTrain always contains a considerable
number of all signal types and that KPCA of ΓTrain remains computational manageable. Second,
the knowledge about which signals are to be accentuated in the fused images of the training cases
to suffice the objectives detection and characterisation is utilised for tuning the bandwidth of the
Gaussian kernel.
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Figure 8.2: Sketch of the setup for evaluating the adequacy of a certain kernel bandwidth parameter σ
for fusing DCE-MRI data. The suspicious and normal signals sampled from a group of evaluated
training cases are utilised to build two sets ΓTrain and ΓFisher of temporal kinetic signals. Both data sets
contain a balanced number of normal and suspicious signals. Principal axes are computed by analysing
ΓTrain by KPCA with Gaussian kernel parameterised by the kernel bandwidth σ. Subsequently, the
j-th principal axis ξj is utilised for projecting examples xi ∈ ΓFisher into a one-dimensional space. The
resulting principal components are subdivided according to the class label forming two class-specific
distributions. The overlap between these two distributions is quantified by the Fisher’s score describing
the ratio of the between-class scatter and the within-class scatter. This setup is repeatedly executed
for different values of σ. Those principal axes yielding the highest Fisher’s score are then employed for
fusing DCE-MRI sequences of unseen cases.

Selection of the Kernel Bandwidth

The bandwidth σ of the Gaussian kernel is selected by scanning the range [0.05, . . . , 2.0] using
a step size of 0.05. The proceeding for evaluation of adequacy of a certain value of σ for fusing
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DCE-MRI sequences is illustrated in figure 8.2. By means of a subset ΓFisher separated from ΓTrain

before computing the principal axes, the distributions of principal component values of normal
and suspicious signals are evaluated for different values of σ and different principal axes. If the
overlap between the two distributions is small, it is likely that voxels of the two tissue types are
displayed with high visual contrast, i.e. different gray levels, in the fused images. The overlap
between the two distributions is quantified by measuring the Fisher’s score [Bishop, 1995]

Fjσ =
(µ+

jσ − µ−jσ)2

υ+
jσ + υ−jσ

with µ+
jσ, υ+

jσ as the mean and variance of the principal components computed for suspicious signals
in ΓFisher using the j-th principal axis returned by KPCA with a Gaussian kernel of bandwidth σ
and µ−jσ, υ+

jσ as the equivalent for the normal tissue signals in ΓFisher. The overlap between the
distributions is small, i.e. the Fisher’s score is high, if the distance between mean values is large
and, at the same time, the within-class scatter as measured as υ+ and υ+ is small. Therewith,
the Fisher’s score is closely related to the Rayleigh coefficient maximised by the Fisher’s linear
discriminant (chapter 4.3).

Beside optimisation of the kernel bandwidth, the sign of the j-th principal axis is automatically
adjusted such that µ−j < µ+

j leading to fusion images in which lesion signals are more likely to be
presented with higher intensity values than signals of normal tissue.

8.2.4 Displaying Fused Images

For each algorithm and each DCE-MR image sequence, the principal components based on the
first three principal axes are computed and subsequently displayed as gray value images. For the
purpose of visualisation, the principal component values of each image volume are scaled to the
range [0; 255]. The gray value images computed by projecting the data onto the k-th principal
axis of the standard PCA are referred to as PCAk. Fusion images based on KPCA are referred to
as KPCAk with k denoting the principal axis onto which the data were projected. Furthermore,
the three fusion images are mapped to the red, green and blue channel of the RGB composite
image PCARGB and KPCARGB, respectively.

The visualisation of single fusion images can further be enhanced by mapping the range of
principal component values to a suitable colour scale. Depending on the colour scale, a change
of colour stimuli by the same amount may induce different changes in perception. Thus, it
is advisable to employ perceptually uniform colour scales [Levkowitz and Herman, 1992, Pizer,
1981, DICOM14, 2004] for a standardised data presentation. A visualisation of a fusion image
using a perceptually optimised and device-independent colour scale is shown in figure 8.3. The
reader is referred to Saalbach et al., 2004 for further details about the utilised sRGB based colour
scale. In order to facilitate the comparison of fusion images derived from the setups described
above, only gray value images are presented in the remainder.

8.3 Results

In the following, fusion images based on case- and domain-specific representation spaces computed
by PCA and KPCA are presented. The suitability of fusion images for the purpose of lesion
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Figure 8.3: Visualisation of a fusion image using a perceptually optimised colour scale. The colour reflects
the projection of x onto the second principal axis ξ2 computed by PCA. The lesion is located in the
crossing point of the three planes parallel to the three spatial axis.

detection is quantitatively evaluated by ROC analysis. To assure that despite of the low number
of cases the experimental setup reflects circumstances of a practical application, fusion of DCE-
MRI sequences based on a single domain-specific representation space is evaluated following the
leave-one-case-out scheme which was already used in the previous chapters. Principal axes are
computed using data of five cases and subsequently employed for fusing the image sequence of
the sixth unseen case. This scheme is repeated for all permutations of the six cases. The results
are exemplified on the basis of the image sequences from two cases, but similar findings can be
observed for the remaining cases.

8.3.1 Setup I - Case-Specific Representation Spaces

Figure 8.4 exemplarily presents the fusion images PCA1, . . . ,PCA6 computed for a single coronal
slices of case M005A (left column) and M009A (right column). The principal component values of
each image were scaled to the range of [0; 255] for visualisation purposes. The green lines depict
the contours of the two malignant lesions. The charts in figure 8.5 illustrate the corresponding
eigenvalues. For both cases, more than 95% of the total data variance is retained by the first
principal axis. The eigenvalues λ4, . . . λ7 indicate that ξ4, . . . , ξ7 reflect a negligible amount of
variance (less than 2%). Thus, the projections into the subspaces spanned by ξ1, . . . , ξ3 already
retain the major part of the total data variance of the DCE-MRI sequences. This finding can
also be observed in the fusion images themselves. For both cases, the structure of the entire
breast, mainly consisting of blood vessels, fat and glandular tissue, is reflected by PCA1. The
lesion masses are not accentuated in PCA1 but can clearly be distinguished from normal tissue
in PCA2 and PCA3. Fusion images based on the remaining principal axes provide only minor
information about location and structure of the lesion mass and about the anatomical structure
of the entire breast as well. PCA4 and PCA5 of case M005A are likely to represent long range
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Figure 8.4: Fusion images PCA1, . . . ,PCA6 computed in setup I for cases M005A (left column) and M009A
(right column). The green lines reflect the contour of the manual lesion segmentations.
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Figure 8.5: Plot of the PCA eigenvalues λ1, . . . , λ7 computed in setup I for cases M005A (left) and M009A
(right). For both cases, the major part of the data variance is captured by the first three principal axes.
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Figure 8.6: Magnified display of a subregion of PCA3 of case M009A (left). The two arrows point to the
locations of the two temporal kinetic signals presented in the right chart. Signal B as measured for a
voxel of the lesion’s core exhibits benign signal characteristics, whereas voxels of the surrounding ring
displayed with lower intensity values expose malignant signal characteristics (Signal A).

intensity variations as caused by inhomogeneities in the magnetic field.

In PCA2 of both cases, the lesion masses are displayed with high intensity values but do not fill
the entire contour of the corresponding lesion segmentation. Nevertheless, the temporal kinetic
signals associated with lesion voxels displayed with low intensity exhibit only unsuspicious signal
courses, i.e. they expose no indications for pathological disorders of the underlying tissue in terms
of temporal kinetic signals. This finding indicates that for segmenting lesion masses radiologists
do in fact not only consider information about temporal kinetic signals but also morphological
properties of larger tissue regions which are not reflected by the signals of individual voxels as
evaluated by PCA.

Focusing on the visualisation of the lesion of case M009A, the fusion image PCA3 allows to
subdivide the tissue mass that is displayed homogenously with high intensity values in PCA2. A
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Figure 8.7: Principal axes ξ1, . . . , ξ3 (left) and ξ4, . . . , ξ6 (right) computed in setup I for case M009A.
Axes ξ1, . . . , ξ3 expose signal characteristics which are typical for normal, malignant and benign tissue,
respectively.

magnified view of this mass is depicted in figure 8.6. The image exposes a ring pattern of low
intensity values surrounding the lesion core displayed with high intensities. The chart to the right
of the image illustrates the signal courses as measured at the two positions marked by arrows. The
sustained increase of CA concentration as exposed by signal B indicates benign tissue within the
lesion’s core. The signal measured for a voxel of the ring pattern (Signal A) indicates malignant
tissue due to a fast uptake of CA concentration followed by a distinct wash-out.

Figure 8.7 depicts the coefficient of the principal axes ξ1, . . . , ξ6 computed for case M009A.
Since PCA only determines the direction of eigenvectors, their signs have been manually adjusted
such that lesion tissue is presented with high intensities in the corresponding fusion images. The
first principal axis refers to a nearly constant signal. Thus, the major fraction of the data variance
can be ascribed to temporal kinetic signals of normal tissue which constitute the major part of the
image data and typically expose courses that vary only slightly at different levels of intensity. The
conspicuous display of the lesion mass in PCA2 can be ascribed to the malignant characteristics
of signal course reflected by ξ2. The signal course of ξ3 possesses sustained signal enhancements
in the postcontrast images and accounts for the accentuation of benign signals in PCA3. The
remaining principal axes cannot be related to clear semantic meanings, which is also reflected by
the corresponding fusion images predominately depicting noise.

Figure 8.8 depicts the fusion images PCA1, PCA2 and PCA3 of the remaining cases M007A,
B015A, M094A and M104A. In general, the same image characteristics can be observed as for
case M005A and M009A.
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Figure 8.8: Fusion images PCA1, . . . ,PCA3 computed in setup I for case M007A (left column, first three
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147



M005A M009A

2

1

3

RGB

PCA

PCA

PCA

PCAPCA

PCA

PCA

PCA 1

2

3

RGB

Figure 8.9: Fusion images PCA1, . . . ,PCA3 and PCARGB computed in setup II for case M005A and M009A.
The composite image PCARGB combines PCA1, . . . ,PCA3 by mapping the three fusion images to the
red, green and blue component, respectively.

8.3.2 Setup II - Domain-Specific Representation Spaces Based on PCA

Examples for fusion images PCA1, . . . ,PCA3 based on the domain-specific representation space
determined by PCA of the given group cases excluding the subsequently fused case (M005A or
M009A) are presented in figure 8.9. The presented examples are also representative for the remain-
ing cases. Similar to the fusion images presented in figure 8.4, PCA1 allows for inspection of the
breast’s anatomical structure, while PCA2 depicts the lesion masses with high contrast to healthy
tissue. PCA3 of case M009A likewise allows to distinguish the small benign tissue compartment
of the lesion from the remaining lesion tissue exhibiting malignant signal characteristics.
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Figure 8.10: Fisher’s score and fusion image KPCA1 for different bandwidth values. The Fisher’s score
is determined for the principal components computed for a subset of the training data using the first
three principal axes obtained from KPCA. The four images show the outcome of a fusion process, in
which the first principal axis determined by KPCA with four different bandwidth values A, B, C and
D is applied to fuse the image sequence of an unseen case (M005A). The highest visual contrast, i.e.
the largest difference between intensity levels of lesion and non-lesion voxels, is obtained for bandwidth
value B which also yields the highest Fisher’s score.

8.3.3 Setup II - Domain-Specific Representation Spaces Based on KPCA

In figure 8.10, the Fisher’s score is plotted as a function of the kernel bandwidth σ. The Fisher’s
score was evaluated for principal component values computed for examples in ΓFisher using the
principal axes ξ1, . . . , ξ3 derived from KPCA of the data from the training cases excluding M005A.
The images below the plot depict the fusion image KPCA1 of the excluded case M005A computed

149



2

1

3

RGB

KPCA

KPCA

KPCA

KPCA

2

1

3

RGB

KPCA

KPCA

KPCA

KPCA

M005A M009A

Figure 8.11: Fusion images KPCA1, . . . ,KPCA3 and KPCARGB computed for cases M005A (left column)
and M009A (right column). All three principal axes are computed using the same kernel bandwidth.
The bandwidth value is chosen according to the maximum of the Fisher’s score curve computed for
the first principal axis.

with different bandwidth values. The curve of the Fisher’s score for ξ1 reaches a maximum for
σ ∈ [0.2; 0.3], while the curve of ξ2 has its minimum at this point. According to the Fisher’s
score, normal and suspicious signals are best separated by ξ3 for a kernel bandwidth σ ∈ [0.5; 0.6].

The four fusion images of the excluded case M005A displayed below the plot illustrate that the
Fisher’s score is a reasonable criterium for tuning the presentation of lesion masses. The fusion
image KPCA1 computed with the bandwidth value yielding the maximum Fisher’s score (σ = 0.2,
Bandwidth B) depicts the lesion mass and the surrounding normal tissue with high visual contrast,
i.e. with significantly different intensity levels. This visual contrast decreases for increasing values
of σ (Bandwidths C,D), which is also reflected by the decreasing Fisher’s score.

The kernel bandwidth σ used for computing the principal axes ξ2 and ξ3 can either be se-
lected dependently or independently from the kernel bandwidth used for computing ξ1. In figure
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Figure 8.12: Fusion images KPCA1, . . . ,KPCA3 and KPCARGB computed for cases M005A (left column)
and M009A (right column). All three principal axes are computed using a different kernel bandwidth.
The bandwidth value is chosen according to the maximum of the Fisher’s score individually computed
for each principal axis on a subset of the training data.

8.11, the principal axes ξ1, . . . , ξ3, i.e. the fusion images KPCA1, . . . ,KPCA3 and KPCARGB, are
determined using the same kernel bandwidth for all three axes. Thus, all three principal axes
are computed within the same kernel-induced feature space, leading to uncorrelated principal
component values. The value of σ was chosen according to the maximum of the course of the
Fisher’s score computed for ξ1. Hence, the lesions are conspicuously displayed in KPCA1. Since
the maximum of the Fisher’s score course computed for ξ1 does not necessarily coincide with
the maximum determined for ξ2 and ξ3, the corresponding fusion images KPCA2 and KPCA3

may provide a less conspicuous visualisation of the lesions. As illustrated in figure 8.10 for case
M005A, the optimal value for the bandwidth of ξ1 may even coincide with the minimum of the
Fisher’s score for ξ2 and with a low Fisher’s score for ξ3, leading to a less prominent depiction of
the lesion mass in the fusion images KPCA2, KPCA3 and KPCARGB as depicted in figure 8.11.
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Table 8.1: Az for fusion images PCA1, PCA2 and PCA3 based on case-specific representation spaces
spanned by the first three principal axes of PCA.

Case ID PCA

M005A 0.547/0.935/0.759
M007A 0.653/0.902/0.684
M009A 0.781/0.904/0.829
B015A 0.702/0.945/0.781
M094A 0.820/0.980/0.625
M104A 0.810/0.860/0.856

In this case, ξ1 lies in the direction which is most sensitive to the characteristic signal courses of
suspicious tissue, whereas the orthogonality constraint causes the following principal axes to be
less sensitive to lesion signals. Therewith, the lesions are predominantly encoloured with shadings
of red in the composite images KPCARGB.

In order to enhance the display of lesion masses in the fusion images KPCA2 and KPCA3, the
corresponding bandwidth values can be chosen independently for all three principal axes. In the
case that all three principal axes are computed for different values of σ, they relate to different
feature spaces F . Therewith, they are not orthogonal to each other and the intensity values of the
different fusion images may be correlated and reflect redundant information. Figure 8.12 presents
the same coronal slices as figure 8.11 but fused by projecting the corresponding temporal kinetic
signals onto individually tuned principal axes. Each principal axis was computed by KPCA with
the kernel bandwidth value for which the corresponding Fisher’s score curve reaches its maximum.
In all three fusion images KPCA1, . . . ,KPCA3, lesions are displayed as bright masses with medium
to high visual contrast to normal tissue. The fusion images KPCA2 and KPCA3 of case M005A
exhibit similar image characteristics and represent redundant information. In KPCA2 of M009A,
the lesion mass as well as glandular tissue can be identified, whereas KPCA1 depicts the lesion
and fat tissue. Due to the image characteristics of KPCA1, . . . ,KPCA3, the two lesion masses
are encoloured intense white in the corresponding composite image KPCARGB. Furthermore,
structures such as blood vessels or glandular tissue are depicted more clearly than in the colour
images computed by KPCA with a single bandwidth value (Fig. 8.11).

8.3.4 ROC Analysis

In order to analyse to what extent fusion of DCE-MRI sequences can serve as a tool for detecting
lesion masses, the fusion images based on the first three principal axes derived from PCA and
KPCA are evaluated by measuring the area-under-the-ROC-curve (Az). Table 8.1 contains the Az
for the fusion images PCA1, . . . ,PCA3 based on data projections into case-specific representation
spaces determined by PCA (setup I).

The Az values for fusion images based on domain-specific representation spaces (setup II)
are listed in table 8.2. The first column of table 8.2 lists the results for linear PCA. The second
column contains the outcome for KPCA with a single bandwidth value σ selected according to the
maximum of the Fisher’s score computed for principal components based on the first principal axis.
Results for KPCA using an individual bandwidth value for each principal axis can be observed
in the fourth column. For comparison, the average Az values yielded by the supervised SVM
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Table 8.2: Az for fusion images based on the domain-specific representation space spanned by the first
three principal axes computed by PCA (second column), KPCA with a single bandwidth value (third
column) and KPCA with three bandwidth values individually optimised for each principal axis. The
fourth column reflects the mean Az as computed in chapter 5 (SVM with Gaussian kernel, raw -feature,
filtered image data).

Case ID PCA KPCA (single σ) KPCA SVM-G

M005A 0.541/0.938/0.519 0.765/0.616/0.770 0.765/0.809/0.517 0.974

M007A 0.642/0.909/0.499 0.754/0.437/0.728 0.754/0.730/0.826 0.978

M009A 0.753/0.924/0.514 0.827/0.443/0.643 0.827/0.737/0.385 0.977

B015A 0.684/0.937/0.933 0.810/0.605/0.576 0.810/0.926/0.704 0.938

M094A 0.808/0.980/0.559 0.927/0.434/0.675 0.927/0.858/0.671 0.980

M104A 0.749/0.907/0.554 0.719/0.744/0.814 0.719/0.744/0.836 0.935

algorithm with Gaussian kernel evaluating the temporal kinetic signals of mean filtered image
sequences (see chapter 5) are listed in the last column.

According to the presented ROC indices, fusion images computed by projecting the image data
into a domain-specific representation space based on PCA are most suitable for detecting lesions,
although being inferior to the confidence volumes returned by the setup based on supervised
classification algorithms2.

8.4 Discussion

The results presented in this chapter exemplify the value of image fusion for the analysis of
DCE-MRI data. By PCA and KPCA of the temporal kinetic signals, the number of images of a
DCE-MRI sequence can be reduced to two or three images without losing essential information.
Lesions can be discovered by means of examination of the fusion images based on the first and
second principal axis. For one case, analysis of the fusion images based on the following principal
axes allows for distinguishing lesion compartments with different signal characteristics. The ROC
analysis of the considered cases indicates that in particular the fusion image PCA2 computed by
projecting data into a domain-specific representation space (setup II) determined by linear PCA
yields high Az values. Similar Az values can be measured for the fusion image PCA2, if the
projection is determined by PCA of the DCE-MRI sequence which is to be fused subsequently
(setup I). Although KPCA allows to capture nonlinear correlations between signal components
and is therefore more powerful than PCA, ROC analysis indicates an inferior performance for the
corresponding fusion images from the viewpoint of lesion detection.

From the viewpoint of data visualisation, the following characteristics can be observed for
fusion images based on case-specific representation spaces (setup I): The fusion image PCA1

based on the principal axis with the largest eigenvalue displays the temporal average of the signal
components. The corresponding principal axis exposes a nearly constant or weakly enhancing
signal which is typical for normal tissues such as fat, glandular and connectivity tissues. Except of
fat, such tissue types are displayed with low intensities in the precontrast image of T1-weighted

2Note that the training data of the supervised classifier included two more cases, in particular case B013A whose
lesion is difficult to recognise by means of its temporal kinetic signals.
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sequences [Heywang-Köbrunner and Beck, 1995]. Thus, the major part of the total variance
of DCE-MRI data is caused by signals of non-enhancing tissue types displayed with different
intensities in the original image sequence. The second and third principal axes are likely to
account for variance caused by signals of tissue affected by pathological disorders. Regions of
tissue exposing suspicious temporal kinetic signals are accentuated in the corresponding fusion
images. In general, fusion images based on the remaining principal axes provide negligible amounts
of information to the observer.

Fusion images based on a domain-specific representation space spanned by the principal axes
obtained from PCA exhibit similar characteristics to those computed in setup I. Fusion images
based on the first principal axis display the entire breast without accentuating lesions. These
are conspicuously depicted in fusion images based on the second and, for some cases, in the
fusion images based third principal axis. The corresponding composite images PCARGB allow for
localising lesion masses, but the visual contrast between the different types of normal tissues is
low compared to the colour images based on KPCA. In particular the fusion images KPCARGB

based on individually tuned principal axes display lesions and different types of normal tissue with
high visual contrast. Even though the gray value images KPCA1, . . . ,KPCA3 mapped to the
red, green and blue component of these composite images yield only medium Az values in the
ROC analysis, suggesting that they are less suitable for the purpose of lesion detection, lesions
are silhouetted against surrounding tissue and can easily be discerned in the three gray value
images as well as in the composite image KPCARGB. Furthermore, glandular tissue is depicted in
KPCARGB with superior visual contrast to fat tissue than in the composite images based on linear
PCA. Thus, composite images based on KPCA with individually tuned principal axes provide the
most comprehensive visualisations of DCE-MRI sequences.

A disadvantage of case-specific representation spaces is that the image characteristics of the
fusion images may vary for different cases. Since PCA is recomputed for each new case, the
information reflected by fusion images based on the first principal axes may change with the size
and type of lesions or if cases exhibit no lesion at all. Furthermore, the computation of principal
axes using the data of unseen, subsequently fused DCE-MRI sequences is sensitive to motion
artefacts. Even spatially restricted motion artefacts may affect a number of temporal kinetic
signals which quickly exceed the number of signals caused by pathologically affected tissue. In
this case, the principal axes corresponding to the leading eigenvalues are more likely to account
for variance caused by the motion artefact than for variance caused by pathological disorders.

An aspect which has to be considered for practical applications is the computational expense
of both methods. Solving the eigenvalue problem is of O(n3

t ) complexity for PCA and of O(N3)
complexity for KPCA, with nt being the dimensionality of the data space and N being the number
of training examples. In practice, only a few of the N possible principal axes of KPCA are needed.
Therefore, the computational expense can greatly be reduced by solving the eigenvalue problem
using an iterative algorithms which allows to determine subsets of eigenvectors. The memory
complexity is about of O(n2

t ) for PCA and O(N2) for KPCA if the algorithm used for computing
the eigenvectors requires the entire covariance or kernel matrix to be stored in memory. The
computational complexity of a single principal component scales linearly with the number of
training examples for KPCA and linearly with the data dimension for PCA. Thus, the size N of
the training set ΓTrain significantly influences the computational expenses for computing principal
axes but also, and more important for practical applications, for fusing DCE-MRI sequences by
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KPCA. Computing the fusion images based on the first three principal axes takes approximately
one minute per case for PCA but 25min per case for KPCA (Pentium IV, 1.8GHz, 2GB RAM,
N = 1000).

In summary, both setups allow for representing DCE-MRI sequences by a reduced number of
images which, nevertheless, visually emphasise tissue structures that are relevant for breast cancer
diagnosis. According to the ROC analysis, mapping of temporal kinetic signals into a domain-
specific representation space spanned by PCA leads to fusion images which are particular suitable
for detecting lesions. The RGB composite images obtained from image fusion based on a domain-
specific representation space determined by KPCA allow for examination of the structure of the
entire breast and enable radiologists to distinguish healthy and pathologically affected tissue as
well as different types of normal tissue by means of a single colour image. Therewith, fusion
images computed by PCA or KPCA of the temporal kinetic signals suffice the two objectives
lesion detection and compact visualisation of entire image volumes. To some extent, the fusion
images also expose further information about the internal structure of lesions and therewith suffice
the third objective characterisation of lesion tissue.
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9 Conclusion

The aim of this thesis was to investigate the utility of data-driven analysis of dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI) data recorded for the purpose of breast cancer
diagnosis. In classical image processing, the spatial order of signal values receives much attention.
Since a single pixel or voxel of an univariate image provides only little information, the local
informational content is frequently evaluated by means of features reflecting the spatial signal
characteristics of small image windows as quantified by e.g. first and second order statistics of
gray values. Thus, a true voxel-by-voxel evaluation of such images is often not possible, since
the corresponding feature vectors do not solely relate to single voxels but to small image patches
depicting their neighbourhoods. In the end, this causes a certain spatial imprecision of the
outcome obtained from evaluations of such feature vectors. In contrast, voxels of multivariate
images like DCE-MRI images possess much more information, and the temporal kinetic signals
on their own as measured by DCE-MRI have demonstrated to provide sufficient information for
discerning different types of tissue. Therewith, true voxel-by-voxel processing of such image data
becomes possible.

The new methods as proposed within this work are predominantly focused on evaluating the
temporal component of DCE-MRI data as given by temporal kinetic signals of individual voxels,
enabling physicians to analyse tissue disorders with the same spatial resolution as the image data
themselves. To this end, image sequences are regarded as data distributions in a signal space,
which are subject of analysis by supervised and unsupervised artificial neural networks and machine
learning algorithms. The proposed analysis modules have in common that they are model-free
and data-driven; physicians are neither required to predefine concrete attributes in which signals
of different tissue classes vary nor to design an explicit mathematical model of the physiological
process underlying the signal. Instead, ANNs were applied to derive such distinguishing signal
characteristics autonomously from the data themselves by correlating statistical features of the
image data with supplemental information. Such supplemental information can be the outcome
of a manual image evaluation, e.g. lesion labels as used in chapter 5 for whose generation a
radiologist adopted his primary medical expertise, or information obtained from other routinely
applied diagnosis techniques such as the outcome of histological examinations of tissue samples as
described in chapter 6. Even without any side information, hidden regularities in the signal data
were revealed by applying unsupervised ANNs. Therewith, data-driven approaches as presented
throughout this work are advantageous whenever a-priori knowledge about signal characteristics is
limited or the physiological process underlying the signal is too complex to be adequately modelled.

Each module introduced in this work supports radiologists at certain steps of DCE-MRI analy-
sis. Thereby, each module suffices one or several of the three main areas of applications
of computer aided diagnosis (CAD) systems in DCE-MRI as outlined in chapter 3.4: Confi-
dence volumes computed with state-of-the-art supervised machine learning algorithms, correlating
expert labels of lesion masses with DCE-MRI data as described in chapter 5, allow to localise
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lesions and to delineate their extent by means of visual examination of a single three-dimensional
image per case. The subsequent detailed characterisation of lesion masses is supported by
augmenting conventional DCE-MRI data visualisations with pseudo-colours as described in chap-
ter 6. For this purpose, supervised ANNs were employed to correlate signal features with class
information derived from manual lesion segmentations and histological examinations of tissue
samples. The pseudo-colours obtained from this pixel-mapping function reflect the probabilities
that the evaluated signals were caused by normal, malignant or benign tissue and allow to visu-
alise temporal characteristics of signals and their spatial distribution by means of single colour
images. A pseudo-colour image of the entire field-of-view or a selective colouring of subregions
suspected to display tissue disorders exposes the distributions of the different signal classes in the
heterogenous lesion tissue. Thus, lesion compartments with homogenous signal characteristics
can be designated in order to measure average signals of ROIs more reliably. Furthermore, the
visualisation of the distribution of benign and malignant signals itself provides valuable informa-
tion for the evaluation of morphological criteria which are, beside the temporal characteristics,
essential for classifying lesions. Image fusion methods as presented in chapter 8 allow to compute
compact visualisations of entire image volumes. The individual images of a DCE-MRI se-
quence were combined to new images by solely evaluating statistical properties of the DCE-MRI
data. Thereby, the number of images that are to be analysed by radiologists was reduced, and
phenomenons such as tissue disorders, which are inherent in the image data but not evident in
conventional images, were accentuated.

The outcome of each module was carefully evaluated by ROC analysis, which is the current
standard in biomedical engineering, but also by a detailed discussion of its visual presentation.
The qualitative evaluation of the visualisations has shown to be of particular importance for two
reasons. Firstly, ROC analysis regards the outcome from a pure statistical viewpoint by only
evaluating the rank order of confidence values assigned to individual voxels. But the influence
on the diagnosis of spuriously highlighted voxels or false positives also strongly depends on their
spatial arrangements. Isolated false positives scattered over the entire image volume or clusters
of such voxels located in regions of the heart cavity, which are frequently caused by the high
concentration of contrast agent in the blood, can be regarded to be less misleading to the observer
than clusters of false positives located in the breast. The latter have to be regarded as potential
lesions whereas the former can be identified as falsely highlighted by the virtue of their spatial
locations in the thorax. Secondly, in particular in biomedical domains, it is often difficult or even
impossible to acquire definite reference labels which perfectly reflect the biological truth. For
instance, the lesion label as utilised in this work does not primarily reflect the classification of
individual signals but the radiologist’s subjective assessment of the entire lesion for which he also
considers morphological criteria or the lesion’s appearance in images obtained from complementary
imaging modalities. Thus, this label does not exactly provide the information that is needed for
a ROC analysis of confidence values, reflecting the assessment of individual temporal kinetic
signals. Furthermore, the lesion assessment strongly depends on the radiologist’s expertise and
is often affected by inter- and intra-observer variance. In this situation, the qualitative and
quantitative comparison with established clinical DCE-MRI analysis techniques such as subtraction
images or the 3TP method has shown to be helpful for illustrating and analysing how the data-
driven approaches perform in comparison to other standard techniques solely evaluating signals
of individual voxels.
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9.1 Subsequent Steps in Data-Driven Analysis of DCE-MRI Data

The modules presented in this thesis support radiologists throughout the analysis of DCE-MRI
data. The modules purify the information needed for the different working steps and give a visual
feedback that enables physicians to localise lesion masses or to visually analyse their architecture.
However, the final classification of lesion masses still requires the radiologist’s expertise.

The next step in data-driven diagnosis of breast cancer by means of DCE-MRI is the automatic
classification of entire lesion masses. For this purpose, it will be essential to regard lesions as a
whole, i.e. to correlate the temporal and spatial appearance of the entire conglomerate of lesion
voxels. In particular, quantification of the morphology of lesions remains an open question but
has been stated by many physicians to be a key component for a reliable classification of breast
cancer lesions. A first approach would be to regard lesion masses as unstructured sets of temporal
kinetic signals. Each lesion would form an individual distribution in the signal space, and the
similarity of entire lesions could be compared using suitable metrics such as the Earth Mover’s
distance [Rubner et al., 2000]. Since morphology, i.e the spatial arrangements of signals, plays a
crucial role in classification of lesions, this approach should then be extended in such a way that
the spatial order of the temporal kinetic signals is considered. Presently, the processing of such
structured data also gains much attention from the machine learning community. Kernel-based
methods offer several appealing properties which make them particularly suitable for processing
structured input data, and several kernel functions for sets of vectors or data structured as e.g.
trees have been proposed. Yet, a prerequisite for data-driven analysis of entire lesion will be the
availability of image data for a large number of cases.

Another interesting extension arises from the fact that during clinical diagnosis processes, tis-
sue, in particular lesion tissue, is commonly investigated from a variety of viewpoints. Diagnosis
techniques such as DCE-MRI, X-ray, histopathological examination or gene-profiling provide a
broad range of complementary information exposing macroscopic, microscopic or even subcellular
tissue features. An important question is, therefore, how such heterogenous types of informa-
tion can be processed in a unifying approach. Unlike model-based approaches, artificial neural
networks are able to evaluate feature vectors containing heterogenous types of features. Thus,
the data-driven approaches as presented in this thesis can easily be extended to processing input
patterns consisting of features derived from DCE-MRI sequences and e.g. features reflecting tis-
sue parameters recorded by hyperspectral MRI, given that both types of image data have been
coregistered. The challenge will be to align image data of different dimensionalities and resolu-
tions and, most notably, to align image data with nonimage data. Artificial neural networks and

machine learning algorithms have been shown to be promising tools for processing of multivariate
data. In particular in medical research, explorative approaches such as data-driven techniques are
particularly suitable for data analysis. During exploration of unknown diseases and development
of new techniques for treatment, complex data will be acquired from heterogeneous sources but
exact knowledge about how certain disorders are reflected by the different types of data will often
be limited at that stage. In this situation, data-driven techniques will be adjuvant tools to validate
hypotheses derived from empirical observations or even to reveal unknown relationships between
different data components which are inherent in the data but not apparent to the physicians.
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Furthermore, they will allow to incorporate existing knowledge into the analysis process in order
to improve their efficiency. Thus, data-driven analysis of medical data based on artificial neural
networks and machine learning should always be accompanied by a dialog between computer sci-
entists and physicians in order to find an appropriate preprocessing of data, to design reasonable
setups of algorithms, to discuss the outcome regarding its plausibility and, finally, to derive new
medical knowledge.
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Contrast-enhanced MRI of the breast. Springer.

[Holden et al., 1995] Holden, M., Steen, E., and Lundervold, A. (1995). Segmentation and visu-
alization of brain lesions in multispectral magnetic resonance images. Computerised Medical
Imaging and Graphics, 19(2):171–83.

[Hornak, 2004] Hornak, J. P. (2004). The basics of MRI. Online
http://www. cis. rit. edu/htbooks/mri/index. html.

[Hsu and Lin, 2002] Hsu, C. and Lin, C. (2002). A comparison of methods for multi-class support
vector machines. IEEE Transactions on Neural Networks, 13:415–425.

[Huber, 1985] Huber, P. J. (1985). Projection pursuit. Annals of Statistics, 13(2):435–475.

[Hyvärinen et al., 2001] Hyvärinen, A., Karhunen, J., and Oja, E. (2001). Independent compo-
nent analysis. Wiley.

[Hyvärinen and Oja, 2000] Hyvärinen, A. and Oja, E. (2000). Independant component analysis:
Algorithms and applications. Neural Networks, 13(411-430).

[Jacobs et al., 2003] Jacobs, M. A., Barker, P. B., Bluemke, D. A., Maranto, C., Arnold, C.,
Herskovites, E. H., and Bhujwalla, Z. (2003). Benign and malignant breast lesions: Diagnosis
with multiparametric MR imaging. Radiology, 229:225–232.

[Jacobs et al., 1991] Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991).
Adaptive mixtures of local experts. Neural Computation, 3:79–97.

[James et al., 2001] James, D., Clymer, B. D., and Schmalbrock, P. (2001). Texture detection
of simulated microcalcifications susceptibility effects in magnetic resonance imaging of breast.
Journal of Magnetic Resonance Imaging, 13:876–881.

[Jiang et al., 1996] Jiang, Y., Metz, C. E., and Nishikawa, R. M. (1996). A receiver operating
characteristic partial area index for highly sensitive diagnostic tests. Radiology, 201(3):745–750.

[Jolliffe, 1986] Jolliffe, I. T. (1986). Principal component analysis. Springer.

164



[Keerthi, 2002] Keerthi, S. S. (2002). Efficient tuning of SVM hyperparameters using ra-
dius/margin bound and iterative algorithms. IEEE Transactions on Neural Networks, 13:1225–
1229.

[Kelcz et al., 2001] Kelcz, F., Furman-Haran, E., Grobgeld, D., and Degani, H. (2001). Clini-
cal testing of high-spatial-resolution parametric contrast-enhanced MR imaging of the breast.
American Journal of Radiology, 179.

[Kmer et al., 1995] Kmer, K., Ring, P., Thomson, C., and Henriksen, O. (1995). Texture analysis
in quantitative MR imaging. Acta Radiologica, 36.

[Kohonen, 1995] Kohonen, T. (1995). Self-organising maps. Springer.

[Kohonen, 1997] Kohonen, T. (1997). Self-organizing maps. Springer.

[Kuhl et al., 1999] Kuhl, C. K., Mielcareck, P., Klaschik, S., Leutner, C., Wardelmann, E.,
Gieseke, J., and Schild, H. H. (1999). Dynamic breast MR imaging: Are signal intensity
time course data useful for differential diagnosis of enhancing lesions? Radiology, 211(101).

[Lauterbur, 1973] Lauterbur, P. C. (1973). Image formation by induced local interactions: Ex-
amples employing nuclear magnetic resonance. Nature, 242:190–191.

[Laws, 1979] Laws, K. I. (1979). Texture energy measures. In DARPA Image Understanding
Workshop 1979.

[Leach, 2001] Leach, M. O. (2001). Application of magnetic resonance imaging to angiogenesis
in breast cancer. Breast Cancer Research, 3:22–27.

[Leong et al., 1999] Leong, F. J. W.-M., Graham, A. K., Gahm, T., and McGee, J. O. (1999).
Telepathology: Clinical utility and methodology. Recent Advances in Histopathology, 18.

[Leslie et al., 2002] Leslie, C., Eskin, E., and Noble, W. S. (2002). The spectrum kernel: A string
kernel for SVM protein prediction. In Proceedings of the Pacific Symposium on Biocomputing
2002.

[Levkowitz and Herman, 1992] Levkowitz, H. and Herman, G. T. (1992). Color scales for image
data. IEEE Computer Graphics & Applications, 12(1):72–80.

[Lin et al., 2003] Lin, H., Lin, C., and Weng, R. (2003). A note on Platt’s probabilistic outputs
for support vector machines.

[Lucht et al., 2002] Lucht, R., Delorme, S., and Brix, G. (2002). Neural network-based segmen-
tation of dynamic MR mammographic images. Magnetic Resonance Imaging, 20:147–154.

[Lucht et al., 2001] Lucht, R., Knopp, M. V., and Brix, G. (2001). Classification of signal-time
curves from dynamic MR mammography by neural networks. Magnetic Resonance Imaging,
19:51–57.

165



[Manduca, 1994] Manduca, A. (1994). Multi-spectral medical image visualization with self-
organizing maps. In Proceedings ICIP-94 (Cat. No. 94CH35708), volume 1, pages 633–7,
Los Alamitos, CA, USA. IEEE Comput. Soc. Press.

[Martinetz et al., 1993] Martinetz, T. M., Berkovich, S. G., and Schulten, K. J. (1993). ’Neural-
Gas’ network for vector quantization and its application to time-series prediction. IEEE Trans-
actions on Neural Networks, 4:558–569.

[McClish, 1989] McClish, D. K. (1989). Analyzing a portion of the ROC curve. Medical Decision
Making, 9(3):190–195.

[Meinicke et al., 2004] Meinicke, P., Tech, M., Morgenstern, B., and Merkl, R. (2004). Oligo
kernel for datamining on biological sequences: A case study on prokaryotic translation initiation
sites. BMC Bioinformatics, 5.

[Metz, 1986] Metz, C. E. (1986). ROC methodology in radiolgic imaging. Investigative Radiology,
21:720–733.
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