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Περίληψη: 
Τα ενεργά συστήματα αναρτήσεων εφαρμόζονται σε οχήματα δρόμου με σκοπό να μειώσουν 

τις κατακόρυφες επιταχύνσεις του σασί με μεγαλύτερη αποτελεσματικότητα σε σχέση με τις 

παθητικές αναρτήσεις, διατηρώντας ταυτόχρονα ή ακόμα και αυξάνοντας την πρόσφυση των 

ελαστικών. Σε αυτή τη διπλωματική εργασία, εφαρμόζεται ένας ελεγκτής βασισμένος σε 

Μοντέλα Πρόβλεψης (Model Predictive Control – MPC) με μοντέλα ακτινικών συναρτήσεων 

βάσης (Radial Basis Function) ως λύση για το πρόβλημα του αυτόματου ελέγχου μίας ενεργής 

ανάρτησης. Η μεθοδολογία MPC επιλέχθηκε διότι μπορεί να ενσωματώσει λειτουργία 

προεπισκόπησης δρόμου καθώς και διάφορους περιορισμούς κατά τη λειτουργία του ελεγκτή, 

ενώ η τεχνολογία RBFN μπορεί να διαχειριστεί μη-γραμμικότητες του συστήματος σε 

συνδυασμό με γρήγορη διαδικασία εκπαίδευσης μέσω του αλγορίθμου συσταδοποίησης Fuzzy 

Means. Ο ελεγκτής MPC ενσωματώνει ένα γραμμικό μοντέλο της πλήρους ανάρτησης, με 

RBFN μοντέλα για τις μεταβλητές κατάστασης που παρουσιάζουν σημαντικές μη-

γραμμικότητες. Η προτεινόμενη μέθοδος συγκρίνεται με έναν ελεγκτή MPC με πλήρως 

γραμμικό μοντέλο, καθώς και μία μορφοποίηση κλασικού PID ελεγκτή. Ο στόχος της 

σύγκρισης είναι η ελαχιστοποίηση των κατακόρυφων επιταχύνσεων του σασί επί παλμικού και 

τυχαίου προφίλ δρόμου. Και στις δύο περιπτώσεις, αποδεικνύεται το προτεινόμενο σχήμα 

υπερτερεί σημαντικά έναντι της παθητικής ανάρτησης, αλλά και έναντι των άλλων μεθόδων 

για τον έλεγχο ενεργής ανάρτησης, ενώ ταυτόχρονα διατηρεί χαμηλή κατανάλωση ενέργειας 

για το ηλεκτροϋδραυλικό σύστημα. 

Λέξεις Κλειδιά: 
Αλγόριθμος Ασαφών Μέσων, Ενεργή Ανάρτηση, Έλεγχος Βασισμένος σε Μοντέλα 

Πρόβλεψης, Δίκτυα Ακτινικής Συνάρτησης Βάσης, Κατακόρυφη Δυναμική Οχήματος, 

Πλήρης Ανάρτηση. 

 

Abstract:  
Active suspension systems in road vehicles are applied in order to mitigate the road-induced 

chassis vertical accelerations more effectively than passive suspension systems, while at the 

same time retaining or even increasing their road holding capabilities. In this thesis, a Model 

Predictive Controller (MPC) with Radial Basis Function Network (RBFN) models is presented 

as a control scheme for the full car active suspension system. The MPC methodology is chosen 

because it can incorporate road preview information as well as various constraints, while the 

RBFN architecture can handle nonlinearities and can be trained relatively fast and efficiently 

through the usage of a Fuzzy Means Clustering Algorithm. The MPC controller is based on a 

Linear model of the Full Car, with RBFN models for the highly nonlinear states. It is compared 

to an MPC Controller with a fully linear model of the plant, as well as a traditional PID 

formulation. The objective of the comparison is the minimization of the vertical acceleration of 

the chassis over a pulse road and a random road. In both instances, it is shown that the proposed 

scheme significantly outperforms a passive suspension, as well as alternative controllers for 

active suspension, while at the same time maintaining a low energy expenditure for the 

electrohydraulic system. 

 

Keywords: 
Fuzzy Means Algorithm, Active Suspension, Model Predictive Control, Radial Basis Function 

Networks, Vertical Vehicle Dynamics, Full Car Model.
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Introduction 

1 Introduction 
  

1.1 Types of Suspension Systems 
A suspension system of a conventional road vehicle serves to keep the wheels in a relative 

position with the chassis while traveling. The two main design objectives are ride comfort for 

passengers, which can often be expressed as the value of the vertical acceleration of the 

vehicle’s chassis, and road holding capabilities, which can often be expressed as a load variation 

on the vehicle’s tire [1]. 

The most widely applicable type of suspension system in modern road vehicles is the passive 

suspension system, comprised of a spring and damper of fixed rates (fig. 1-1). Passive systems 

can only act when the distance between wheel and body, as well as its time derivative, are 

changed. Obviously, they do not exert forces based on the chassis vertical acceleration (ride 

comfort), neither based on tire load variation (road holding). The desirable design objectives 

can only be achieved indirectly, which is by changing the spring and damper rates of the 

suspension. This approach sometimes leads to conflicting results, since designing for road 

holding will compromise ride comfort and vice-versa. Moreover, the pursuit of these objectives 

is highly dependent on the driving conditions that the vehicle is specialized in [2], and once the 

spring and damper rates are set, they cannot be changed to adapt to different ones. 

 

 

Figure 1-1 Passive Suspension System, (source: wikipedia.org) 
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Introduction 

Semi-active suspension systems are a more advanced approach; they are comprised of 

dampers (and sometimes springs) with controller adjustable rates, such as fig.1-2. Even though 

they exhibit higher versatility than the passive suspension, they still do not allow for the direct 

pursuit of the design objectives. [3] 

 

Figure 1-2 Ohlins damper w/ Controller Adjustable Rates, (source: Ohlins Product Catalog) 

 

Active suspension systems allow for the direct pursuit of the objectives of ride comfort and 

vehicle handling [4, 5], They are usually implemented in vehicles through a hydraulic system 

that powers a hydraulic piston (fig.1-3) placed in parallel to a conventional spring and damper. 

This piston is controlled so as to exert desired forces on the wheel in the vertical direction. This 

system can achieve the objectives in varying road conditions, as well as varying suspension 

parameters (since they change throughout the life cycle of the vehicle) [6-8]. 

 

 

Figure 1-3 Mercedes-Benz C Class Active Body Control Actuators,[9] 
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Introduction 

1.2 The importance of controlling the vertical dynamics of the vehicle 
 

The term “vertical dynamics of a road vehicle” refers to the motion of the chassis and wheels 

in the z-axis (commonly up and down). It is of great importance for the quality of mobility for 

road vehicles, and can be examined through the following disciplines: 

 

Vehicle Dynamics and Ride Safety 
As mentioned before, the road holding characteristics of a vehicle can be enhanced by 

maintaining small dynamic wheel load fluctuations. These correspond to a good road-tire 

contact, among others. Moreover, the chassis relative vertical movement affects the kinematics 

of the wheel, such as the camber and toe angles, which in turn greatly influence lateral and 

longitudinal dynamics of the vehicle, with obvious results for ride safety[1, 10]. 

 

Comfort for human passengers 
The primary function of road vehicles has been to transport humans effortlessly and effectively. 

In modern road vehicles the parameter of comfort has become of growing importance, since 

cars are as much of an item of luxury as a mode of transport. The comfort of human passengers 

in regards to ride quality can be quantified through many different metrics, such as the Steffens 

comfort criteria, the HRF, or the chassis accelerations [11, 12]. 

 

Sensitive Cargo and Technology 
Controlling the vertical dynamics of the car does not concern only human passengers; sensitive 

cargo that cannot exceed certain acceleration thresholds may need to be transported. From a 

technology perspective, the example of a hydrogen fuel cell system applied in a road vehicle 

would benefit greatly from controlled vertical dynamics [13]. 
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Introduction 

1.3 Developing a control strategy for road vehicle vertical dynamics 
 

The challenge of controlling the vertical dynamics of a vehicle is that the full car plant, as well 

as the hydraulic actuators, behave in a way that is far from ideal. Notably, hydraulic and 

geometrical non-linearities, as well as the springs and dampers containing cubic terms of 

displacement and velocity are the main sources of this behavior [7];  ignoring these 

characteristics can lead to sub-par results or even system instability[4]. In this respect, nonlinear 

control strategies need to be considered so that the above requirements are addressed in order 

to achieve acceptable performance. 

Several methods to develop such strategies have been proposed, and have been a topic of 

research since 1970. [14] presented a detailed analysis of classical control methods in 

application to the active suspension problem. [2] successfully applied a backstepping control 

methodology for the control of all chassis modes of a full car active suspension, however they 

omitted the actuator dynamics by replacing them with their resultant force, thus reducing the 

nonlinearity of the plant. [7] tackles the system nonlinearities through the use of Linear 

Parameter-Varying control, where the parameters are rendered nonlinear and the states linear. 

An important practical consideration in the creation of active suspension controllers is the 

variation of the inertial parameters of the chassis - the sprung mass and the center of mass, as 

well as the moments of inertia, can change with varying degrees of loading of the vehicle 

(passengers, fuel, cargo) [6]. Thus, a focus has been placed in creating appropriate controllers: 

[15] implemented an Interval Fuzzy Controller which is able to handle nonlinearity and 

uncertainty in the system parameters, whereas [16] developed a parameter dependent control 

strategy that was able to handle the chassis inertial variation, as well as the actuator time delay.  
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Introduction 

1.4 Proposing an alternative control strategy 
 

An alternative control strategy for the active suspension problem is Model Predictive Control 

(MPC). MPC relies on the principle that if a discrete-time model of the plant that correlates 

manipulated with controlled variables exists, then the inversion of this model would provide 

the sequence of optimal control moves in regards to the setpoint of the process.  

The interest in MPC originates from the fact that preview information can be used, as well as 

the ability to accommodate for various physical constraints, such as suspension and actuator 

pressure constraints [5, 9]. In addition, multiobjective control can be pursued [17]. In their 

work, [11] compare the MPC active suspension with the more conventional approaches of 

Skyhook damping and Linear Quadratic Regulator, and they conclude in the superiority of the 

first in a quarter car application. [5] applied an MPC controller with preview to a full car plant 

in order to minimize all vehicle body accelerations under constraints of the manipulated 

variable. They also showed that dynamic wheel load fluctuations can be reduced indirectly, 

thus addressing a second design objective. 

A prerequisite for an effective MPC Controller is the creation of an appropriate model which 

can handle the nonlinearities of the plant; in this respect, computational intelligence methods 

seem to be an attractive choice due to their relevant ability. Such methods have been applied in 

the creation of full car models: Notably, [18] applied computational intelligence methods to 

address the vehicles’ parameter variation; [8] applied RBFN models for the control of the lateral 

and longitudinal dynamics of a 3 degree of freedom vehicle. In particular, Radial Basis Function 

Networks (RBFN) are considered because of their simple architecture as well as their faster 

training procedure, especially if coupled with a Fuzzy Means Algorithm [19].  

To conclude, an MPC Controller with Preview coupled with a non-linear computational 

intelligence plant model was chosen for this work. In particular, a linear model of the full car 

is created and tested in the MPC Scheme. Then, Radial Basis Function Network (RBFN) 

models are created for the highly nonlinear states, and the new full car model is applied. The 

two MPC Controllers are compared to a traditional PID one for reference. For the sake of 

comparison, only the vertical acceleration of the chassis is controlled, and the only constraints 

that are applied are on the manipulated variable. The three formulations are tested on a pulse 

test and a random road test.  
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Plant Models 

2 Plant Models 
 

In order to begin developing a control strategy, an overall system description is in order. Firstly, 

the electrohydraulic system is presented since it is applicable in both quarter car and full car 

models. Then, the quarter car model is presented and finally the full car model as an expansion 

of the former. 

2.1 Electrohydraulic System 
 

System Description 
The electrohydraulic piston – valve system is the powerhouse of the Active Suspension system. 

As shown in fig. 2-1, the main components are the oil sump, axial pump and accumulator, a 

two-stage power servovalve, a two-stage secondary bypass valve and a hydraulic piston, which 

connects the chassis (sprung mass) with the wheel (unsprung mass). 

 

Figure 2-1 Schematic of the electrohydraulic piston-valve system 

 

The operation can be outlined as follows: Hydraulic fluid is pumped from the oil sump by the 

axial pump and raised to the Supply Pressure Ps. When the power servovalve is open, high 

pressure fluid flows to either one of the actuator chambers while low pressure fluid flows from 

the other one back to the sump. Between the two actuator chambers a pressure difference is 

created; the active force of the actuator originates from this pressure difference.  
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Plant Models 

As far as the bypass valve is concerned, its function is to reduce the total energy consumed by 

the system [11]. When it actuates, it works to equalize the pressure between the high and low 

pressure chamber, thus reducing the amount of energy the axial pump has to spend in order to 

maintain the same active force. Moreover, there are is one more practical aspect that is 

addressed; the non-linearities increase with ever increasing pressure due to the nature of the 

fluid flow through the servovalve, thus making it harder to model the system [20]. In our 

application, the bypass valve acts as a pressure relief valve which actuates at a specific pressure. 

Fig. 2-2 depicts a typical operation curve graph for a valve/piston system. The x-axis is the 

actuator Pressure Difference to Supply Pressure ratio, while the y axis is the Hydraulic Load 

Flow. As shown, with increasing actuator pressure, the nonlinear behavior of the system 

increases, since we move towards either end of the operating range. It is therefore of interest, 

to keep the actuator pressure PL in the linear range. 

 

 

Figure 2-2 Operating graph of a valve/piston system. [20] 
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Plant Models 

 

System State Equations 
The force of the valve-piston system is 

p LF A P=      (2.1) 

Where AP is the piston area and PL is the pressure difference between high and low pressure 

chambers. The derivative of PL is given as: 

( )3 4LP
v bv

L
x x tm p

dP
a Q Q C x

d
xA

t
− = − − −    (2.2) 

( )
v

s v L

x dP xv v

P sign x P
Q C S x



−
=     (2.3) 

( ) L
L

2 | P |
P

bvx dB bvQ C x sign


=      (2.4) 

The first term Qxv is the hydraulic fluid flow through the power valve, while the second one 

Qxbv is the fluid flow through the bypass valve. The third term corresponds to the leakage 

through the piston seals and is proportional to the pressure difference PL, while the fourth one 

is the contribution of the relative velocity of the wheel to the chassis. 

The power valve position is controlled by the input to the servo u: 

( )
1

v vx x u


= − +                   (2.5) 
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Plant Models 

2.2 Quarter Car Model      

 
System Description
The quarter car suspension model is a useful tool in the study of the vertical dynamics of a 

vehicle [10, 21]. Essentially it represents one corner of a four wheeled vehicle. Even though it 

is simplistic, its’ results can be used for more advanced vehicle simulations [1, 10], as they 

provide qualitative information on the effect of each parameter. Additionally, some quantitative 

information can be extracted to be used directly in real life applications, such as the tuning of 

suspension damper and stiffness parameters. 

The model of the quarter-car suspension consists of the vehicle corner body mass Ms (sprung 

mass), which is connected to the wheel mass Mu (unsprung mass) through a non-linear spring 

Kc, a non-linear damper bc and a hydraulic actuator F (fig.2-3). The wheel mass is in turn 

connected to the road profile through a non-linear spring Kt which represents the tire stiffness. 

The displacements are positive as indicated. 

 

              

Figure 2-3 Schematic of the Quarter Car Model 

 

 

Table 2-1 Degrees of Freedom for the Quarter Car Model 

 

 

 

 

  

1 Sprung Mass heave Up and down movement of the Sprung mass 

2 Unsprung Mass heave Up and down movement of the unsprung mass 
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System state equations 
By assuming that all displacements are absolute and along the vertical axis, the quarter car 

active suspension may be described by the following system of states: 

1 3x x=                        (2.6) 

2 4x x=                        (2.7) 

( )3

1
ks bs p L

spr

x F F A P
m

= + −                 (2.8) 

( )4 1 2 3 4 2

1
( , ) ( , ) ( , )ks bs kt r p L

unsp

x F x x F x x F w x A P
m

= − − − +             (2.9) 

( ) ( ) ( )L 3 4, , P
v bvL L Lx v x bv tm pP P P x xa Q x Q x C A − − −= −                        (2.10) 

( )
1

v vx x u


= − +                   (2.11) 

 

Where: 

( ) ( )3 4 4 3 4 3 4 3 4 3| | b | | s( ) i, gn
s

lin sym nonlin

b s s sx x x x x x x x xF b xb= − − − + − −  (2.12) 

( ) ( )
3

2 1 2 11 2( , )
s

lin nonlin

k s sF k x x k xx xx = − + −                (2.13) 

( )2 2( , )
t rk t rF k x ww x = −                  (2.14) 

 

 

Table 2-2 States of the Quarter Car Model 

1 
1

x  Absolute displacement of sprung mass 

2 
2

x  Absolute displacement of unsprung mass 

3 
3

x  Absolute velocity of sprung mass 

4 
4

x  Absolute velocity of unsprung mass 

5 
L

P  Pressure difference in piston chambers 

6 
v

x  Displacement of Power Valve 

 

Table 2-3 Inputs to the Quarter Car Model 

1 Wroad Road input to the tire 

2 Uvalve Controller Input to the servovalve 
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2.3 Full Car Model 
 

System Description 
The vertical full car model represents the vehicle suspension as we know it; four corners, each 

having its’ own spring, damper and actuator connecting the wheel to the sprung mass. The 

sprung mass now has three degrees of freedom, which are heave, roll, and pitch. Therefore, the 

whole model has 7 degrees of freedom, three for the chassis and one for each wheel. 

 

Table 2-4 Degrees of freedom for the Full Car 

1 Chassis Heave Up and down movement of the chassis 

2 Chassis Roll Left to Right tilt of the chassis 

3 Chassis Pitch Rear to Front tilt of the chassis 

4 FL Wheel disp. Up and down movement of FL wheel 

5 FR Wheel disp. Up and down movement of FR wheel 

6 RL Wheel disp. Up and down movement of RL wheel 

7 RR Wheel disp. Up and down movement of RR wheel 

 

The full car suspension can be modeled as an expansion of the quarter car suspension which is 

described in the previous chapter. The chassis can essentially be modeled as a rectangle, with 

moments of inertia along the x and y axis and a mass of 4 Msprung. The combined forces of 

spring, damper and actuator act on each strut of the vehicle. As far as the wheel and actuator 

dynamics are concerned, equations 5, 6 and 7 remain valid, while 3 and 4 which correspond to 

the motion of the strut are altered since the quarter car sprung mass Msprung has been replaced 

by the chassis’ corner. The resulting system is depicted in fig.2-4. 

The chassis can heave vertically (zb), and also roll (θ) and pitch (φ). Each wheel can be 

displaced in the vertical direction (x1ii), while the road acts on them (wrii). 

 

 

Figure 2-4   Schematic of the Full Car Model 
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System State Equations 
For simplicity reasons, numbered notation is required for each variable. The index i ∈

{1, 2, 3, 4} corresponds to the specific strut of the full car, as {Front Left, Front Right, Rear 

Left, Rear Right}. The index j ∈ {1, 2, 3, 4, 5, 6} corresponds to the specific state derivative 

equation as described in the previous section that presented the quarter car model. For example, 

the subscript (1,5) indicates the pressure state of the Front Left strut. 

By assuming that all displacements are absolute and along the vertical axis, the full car active 

suspension may be described by the following system of states: 

Chassis State derivative equations: 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

5,1

5,2

5,3

5,4 5,1

5,5 5,2

5,6 5,

( ) 2 4 1 3
2

( ) 1 2 3 4
2

1
( ) 1 2 3 4

4

( )

( )

( )

track
strut strut strut strut

base
strut strut strut strut

strut strut strut strut

spr

b
A x F F F F

Ixx

L
B x F F F F

Iyy

C x F F F F
M

D x x

E x x

F x x

  = + − −  

  = + − −  

  = + + +  

  =

   =

   = 3

   (2.15) 

Front Left Strut State derivative equations: 

( ) ( ) ( )( )

( ) ( )

1,1 5,1 5,2 5,3

1,2 1,4

1,3 5,1 5,2 5,3

1, 1,14 1,5

1,5 1,5 1,5 1,

1,2 1,3 1,4 1

5

1,2

1,6 1,

,

(

,

)
2 2

( )

( )
2 2

w ,

, ,

1
( )

( )
v bv

track base

track base

ks bs kt p

uns

x x bv tm

p

x x x

b L
A x x x x

B x x

b L
C x x x x

D x F F F A x
m

E x x x x

x x

a Q x Q x C

 + +

 =

 = − + +

 = − − − +

 =

= −

− − − ( )

( )

1,3 1,4

1,6 1,6 1

1
( )

p x x

F x u

A

x


 −

−




=



 +

    (2.16) 
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Front Right Strut State Derivative Equations: 

( ) ( ) ( )( )

( ) ( )

2,1 5,1 5,2 5,3

2,2 2,

2,1 2,2

4

2,3 5,1 5,2 5,3

2,4 2,5

2,5 2,5

2,3 2,4 2 2,2

2,6 22, ,5 2

( )
2 2

( )

( )
2 2

1
( )

( )

, , w ,

, ,
v bv

track base

tra

x x bv t

ck base

ks bs kt p

unsp

m

b L
A x x x x

B x x

b L
C x x x x

D x F x x x x x

a Q x Q

F F A x
m

CE x xxx x

  + +

  =

  = + +

  = −

=

−

− − +

  = − ( )

( )

,5 2,3 2,4

2,6 2,6 2

1
( )

p x x

F x x u

A



 −− 

  = − +

    (2.17) 

 

 

Rear Left Strut State Derivative Equations: 

( ) ( ) ( )( )
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Rear Right Strut state derivative equations: 

( ) ( ) ( )( )

( ) ( )
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4,2 4,
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=

−
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4,6 4,6 4

1
( )

p x x

F x x u

A



 −− 

  = − +

      (2.19) 
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Table 2-5  States of the Full Car Model 

i,1 ,1i
x  Absolute displacement of i strut 

i,2 ,2i
x  Absolute displacement of i wheel 

i,3 ,3i
x  Absolute velocity of i strut 

i,4 ,4i
x  Absolute velocity of i wheel 

i,5 i,5
x  Pressure difference in i piston chambers 

i,6 i,6
x  Displacement of i power valve 

5,1 5,1
x  Angular Roll Velocity of Chassis 

5,2 5,2
x  Angular Pitch Velocity of Chassis 

5,3 5,3
x  Absolute Velocity of Chassis 

5,4 5,1
x  Roll angle of Chassis 

5,5 5,2
x  Pitch Angle of Chassis 

5,6 5,3
x  Heave Displacement of Chassis 

 

Table 2-6 Inputs of the Full Car Model 

1 
1

w   Road input to Front Left Wheel 

2 
2

w   Road input to Front Right Wheel 

3 
3

w   Road input to Rear Left Wheel 

4 
4

w   Road input to Rear Right Wheel 

5 
1

u   Valve input to Front Left Actuator 

6 
2

u   Valve input to Front Right Actuator 

7 
3

u   Valve input to Rear Left Actuator 

8 
4

u   Valve input to Rear Right Actuator 

 

Total States: 30 

Total Inputs: 8 

Total Outputs: 30 (all states) 
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3 Model Predictive Control 
 

3.1 Introduction 

Model Predictive Control (MPC) is one of the most widespread control methodologies currently 

in use in academic or industrial applications, second only to traditional PID controllers [22]. It 

relies on the principle that if a discrete-time model of the plant that correlates manipulated with 

controlled variables exist, then the inversion of this model would provide the sequence of 

optimal control moves in regards to the setpoint of the process. Therefore, an optimization 

problem can be formulated that needs to be solved in real time. 

It is obvious from the above description that the success of the MPC methodology rests upon 

the approximation capabilities of the used discrete-time model. Most applications in the 

industry make use of linear models, with the advantages being easiness of formulation and real-

time solving. For example, the Dynamic Matrix Control (DMC)2 methodology has been applied 

in industrial systems through a linear finite-step response model whose parameters can be easily 

determined. At the same time, its’ objective function is quadratic, so its minimization is rather 

trivial [22]. 

The downside is that linear models exhibit lacking performance when used to approximate 

nonlinear plants or processes. Linear models can nevertheless be used to approximate their 

near-linear regions, but these can be very narrow in some cases. Therefore, it is valid to consider 

nonlinear models that can offer better approximation capabilities throughout the whole region 

of interest, with the drawback of increased optimization complexity.  
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3.2 The MPC Framework 

 

Figure 3-1  Schematic representation of the MPC Framework [22] 

As described in the previous chapter, the idea is to yield the optimal control moves through the 

real time optimization of an objective function. These are the best sequence of values for the 

manipulated variables u, that will yield the optimum value of the objective function for given 

timesteps ahead of the current one. The number of these timesteps is called the prediction 

horizon hp, while the length of the sequence of optimal manipulated variables is called the 

control horizon hc. Fig. 3-1 depicts a schematic representation of the MPC characteristics. 

The goal of the MPC algorithm then, is to find the optimal u values for every timestep up until 

the control horizon hc, that would yield the optimization of the objective function. 

Model: 

( ) ( ) ( )( )ˆ ˆ1 , 1, ...k f k k k hp+ =      =      Y Y u                (3.1) 

Objective Function: 

( ) ( ) ( )
( )

2

, 1 ,...,
1

min ( ) ( ) ( )

hp

sp
u k u k u k hc

j

k j k j j
+ +

=

 + − +  
  Y Y                (3.2) 

Subject to 

( )min maxu u k j u +   , 1 j hc                            (3.3) 

( )min maxu u k j u   +    1 j hc                          (3.4) 
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Y(k) is the current true vector of the controlled variables, which is sampled by an appropriate 

sensor set on the vehicle. The vector Y  is the prediction of the controlled variables for j 

timesteps ahead. It is the heart of the MPC framework, since the effectiveness of the resulting 

control moves rely on the accuracy of the Y vectors produced by the discrete-time plant model. 

The Y  vector is element-by-element multiplied by the theta vector, which weights each Y  

prediction in the objective function. The theta vector serves as a tuning tool. If the objective 

function is multiobjective, then an additional weight vector is used. As far as equations (3.3, 

3.4) are concerned, they represent constraints of physical nature for the controlled variables, 

and in our case describe servovalve saturation and gradient constraint. 

The algorithm retains and applies to the plant the optimal control move u(k) for the current 

timestep. It then reruns the optimization for the next timestep which is formulated with the new 

sampled initial conditions. In this application, the previous vector of optimal control moves 

found is stored and used as a starting point for the next optimization (fig.3-2). 

 

 

Figure 3-2 Schematic of the MPC Framework 

 

Moreover, in real life applications, the MPC controller does not have infinitesimal computation 

times, meaning that there is a minimum time period between two subsequent controller moves. 

This time period is referred to as “controller sample time” and varies with the complexity of 

the model as well as the hardware specifications of the controller. In [11] they factored in for 

30ms of controller sample time. In this work, for the sake applying more complex nonlinear 

models, we have opted for a 10Hz Controller Bandwidth. In other words, this means that the 

controller is able to execute a control move every 0.1s.  
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3.3 The MPC-Preview Framework 
 

In the previous section, the “traditional” MPC Controller was introduced. However, an 

alternative formulation to it exists, which can relay upcoming road information to the controller. 

 

 

Figure 3-3 Schematic of the MPC Preview application in a road vehicle 

 

This alternative MPC formulation is called Model Predictive Control with Preview Information 

(MPC-P), and can be realized with appropriate optical sensors on the vehicle [9] which scan 

the road profile ahead (fig. 3-3). This information is then input to the prediction model of the 

controller so that more accurate state estimation can occur. This will in turn result in better 

control moves.  

In a practical application, the optical sensors have a fixed range of road length that they can 

scan, or alternatively, a time range. This time range is dependent on vehicle speed, and it is 

worth noting that it is usually smaller than the prediction horizon of the controller. As a result, 

in an MPC-P Controller evaluation, road preview information will be available only for a 

fraction of the prediction horizon time, which is called the preview horizon hprev. Beyond that, 

the road preview information vector is zero. It is noteworthy than in this work, ideal preview 

performance is assumed; this means that no preview error exists over the sampled road 

information. 
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The MPC-P Controller can be described in mathematical notation:   

Model: 

( ) ( ) ( ) ( )( )

( )
( )

ˆ ˆ1 , , 1, ...

0

prev prev

prev

k f k k k k hp

k k h
where k

k h

 

+ =      =      

     
  = 

                

Y Y u w

w
w

 (3.5) 

Objective Function: 

( ) ( ) ( )
( )

2

, 1 ,...,
1

min ( ) ( ) ( )

hp

sp
u k u k u k hc

j

k j k j j
+ +

=

 + − +  
  Y Y   (3.6) 

Subject to 

( )min max , 1u u k j u j hc +              (3.7) 

        ( )min max , 1u u k j u j hc   +                      (3.8) 

 

In the MPC-P Formulation, the prediction model accepts the road input vector w(k) along with 

the valve and state inputs, u(k) and Y(k) respectively. An important consideration regarding 

the road input vector w(k) needs to be expressed: its’ sample rate does not necessarily coincide 

with the controllers’, in fact it is usually much higher. This means that the road input vector 

contains sampled road points that are between the controllers’ timesteps k. A schematic 

representation is in order (fig. 3-4): 

 

Figure 3-4 Schematic of the preview sampling and the controller sample points 

This difficulty can be overcome by creating a prediction model that will incorporate the road 

information in between the controller timesteps, and is something that will be described in the 

following chapters.  
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3.4 Tuning the MPC Controller 
 

The MPC Controller has four items of tuning:  

• Control horizon 

• Prediction horizon 

• Theta vector 

• Objective function weights. 

 

The effect of the first two are straightforward on the Controller. Reducing the prediction horizon 

means that the Controller has less available time to guide the controlled variables to the setpoint. 

Reducing the control horizon means that the Controller has less available moves to control the 

controlled variables, therefore more aggressive actions have to be applied. The relevant 

difference between the prediction and control horizon is also of interest; it needs to be more 

than the settling time of the system, otherwise the last control move will not realize all of its 

potential effect on the controlled variables by the end of the prediction horizon.  

Thus, a method for calculating the initial values of the control and prediction horizon can be 

applied. First, the settling time of the controlled variable after a valve input is calculated, with 

a 10% margin. 

If the settling time is Δt seconds for the chassis vertical acceleration, the prediction horizon will 

be Δt / 0.1 discrete time steps, since the controller sample time is 0.1. Thus, the prediction 

horizon is 

0.1
p c

t
h h


= +               (3.9) 

The control horizon is initially chosen to be 3 – it needs to remain lower than 4 since the 

computational cost of optimizing in real time an objective function with 16 optimized variables 

(4 control moves x 4 valve inputs) is deemed too high. The optimal values of hc, theta and 

objective function weights are calculated iteratively as follows (fig. 3-5): 

 

• The iteration initializes with the creation of a linearly spaced theta vector from 0 to 1. 

The objective function weight vector initializes with values of inversely proportional 

magnitude to the corresponding weighted states - the idea is to bring all weighted states 

to the same order of magnitude in the objective function. 

• We then need to find an acceptable weight vector to begin the main iteration. A useful 

tool is to plot the values of each weighted state in the objective function throughout the 

benchmark test; This way we can establish which weighted state dominates the final 

value of the objective function in every stage of the benchmark test.  

• Once an acceptable weight vector has been found, the main iteration can begin for a 

given hc value: An interior-point optimization procedure is applied to find the optimum 

theta vector, with a variable range of (0,1). Then, the weight vector is calculated again, 

and the inner iteration restarts. When an acceptable result is reached, the hc is changed 

and the main iteration restarts. 

• In the end, the optimum tunings for each hc are compared and the best one is applied 

to the controller. 
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Figure 3-5 Schematic of the algorithm for the tuning of the MPC Controller 

The benchmark test that these parameters are evaluated on will determine the application of the 

MPC Controller; for example, if it is to be used on a road sedan or executive car (which are 

supposed to travel on roads of A quality with the occasional road bump), then the appropriate 

benchmark test is a pulse road overlaid with a random road of A quality. If, on the other hand, 

the controller is to be used on an offroad vehicle, then a random road of E quality should be 

used. [23] 

In this work, the two MPC Controllers that are created were tuned in both benchmark tests, 

which has resulted in two sets of tuning parameters for each. The basis for this approach was 

two-fold: Firstly, we would like to avoid limiting the range of the applications of the MPC 

Controller. Secondly, both sets of tuning parameters can be incorporated in one controller for 

the purpose of an all-round vehicle, such as a Sport Utility Vehicle. In such an application, the 

driver or even the Controller itself can switch between the ‘on-road’ or ‘off-road’ tuning set to 

adapt to the changing road conditions. 

Therefore, in the following chapters where the MPC implementation is analyzed in depth, two 

sets of tuning parameters are created and evaluated.  
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4 Radial Basis Function Networks 
 

4.1 Introduction 
 

In the case of the fullcar active suspension, there are many sources of nonlinearities that would 

urge us to choose a more advanced model to approximate the plant output. For example, the 

fluid flow through the servo valve and the pressure in the system are highly non-linear 

phenomena containing root and denominator terms (eq. 2.2-2.4). At the same time, the spring 

and damper rates for the suspension contain third order terms as well as non-symmetric terms 

(eq. 2.12-2.14). It is of interest then, to develop a non-linear model of the plant intended for 

usage in the MPC Framework.  

Radial Basis Function (RBF) networks are a popular Neural Network architecture with 

application in nonlinear systems, both in industry and academia. They are comprised of an input 

layer and a single hidden layer with linear attachments to the output layer of the network. As a 

result, their training algorithms are faster and more efficient than the more complicated 

multilayer perceptron (MLP) counterparts. [19] 

In RBF networks, the training aims to find the multidimensional surface that best approximates 

the training data, which is constituted as a sum of simpler surfaces exhibiting radial basis 

symmetry around centers specifically placed in the input space. Therefore, training an RBF 

network with constant widths corresponds to finding the following parameters: 

 

• Number of RBFs 

• Coordinates of RBF centers in the input space 

• Synaptic weights for the hidden layer to output layer connections 

 

 

Great focus is placed on the determination of RBF center locations in the input space. An initial 

approach [24, 25] is to place the center of each RBF on top of each datapoint, which would 

result in a very large number of hidden nodes, thus compromising computational efficiency, 

especially in large datasets such as ours. A workaround is to cluster the input data into a number 

of regions far smaller than the number of data. Then, RBFs are placed at the center of each data 

cluster.  

So, the focus shifts towards finding an appropriate clustering algorithm; one approach is k-

means [26] which requires a trial-and-error procedure. An alternative solution is the fuzzy 

means algorithm [27], which generates the RBF centers and their locations with good 

computational efficiency by segmenting the input space through fuzzy clustering. 
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4.2 RBF Neural Networks Framework 
 

As described in the previous section, RBF networks are inherently simple, containing an input 

layer and a single hidden layer connected with weighted attachments to the output layer. Fig. 

4-1 shows the typical structure of an RBF network: 

 

Figure 4-1  Typical RBF Structure with N inputs and L hidden nodes, [19] 

The input layer distributes N input variables to L nodes of the hidden layer. Each node in the 

hidden layer is comprised of a center with N dimensions, which essentially constitutes a 

nonlinear transformation mapping the input space on a new, higher dimensional space.  

After inputting the u vector, the first step in computing the output is to compute the activity μ 

for every node l. For RBF networks, it is the Euclidean norm of the difference between the kth 

input vector ( )ku and the lth node center ˆ lu   

 

( ) ( )
2

,

1

ˆ( ) ( ) ( ) 1,...,Ki ll l i

i

k k k k


=

= − = −    =u u u u u        (4.1) 

 

In the above equation, K is the number of datapoints, ( )ku  is the input vector and ˆ lu  is the 

RBF center of node l. Using the activity value, the activation function of the node can be 

computed. In this work, a thin plate spline function is used; note that the activity needs to be 

shifted +1 to the right so that the activation function can be defined even if the activity is equal 

to zero: 

 
2( ) log( 1)l l lg   = +               (4.2) 

For each datapoint, an activation function value is computed for a specific node l. The hidden 

node responses for all datapoints K are written as such: 

( )( ) ( )( ) ( )( )1 2( ) ( ) , ( ) , . . . , ( )Lk g k g k g k   =        z u u u              (4.3) 
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The final output ŷ  of the RBF network is calculated as a linear combination of the hidden node 

responses as  

ˆ(k) ( )y k= z w    (4.4) 

where w is a vector containing synaptic weights: 

 1 2,T
Lw w w=    w                (4.5) 

The training procedure of the RBF Network essentially consists of finding the node centers and 

then computing the synaptic weights via linear least squares between the real output and the 

predicted output for all training data: 

 ( )
1

T T T
−

=   w Y Z Z Z            (4.6) 
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4.3 The Fuzzy Means Algorithm 
 

The Fuzzy Means (FM) Algorithm [27] has been successfully applied to the automatic control 

of industrial processes [28] and intelligent control [29]. There exist numerous variations of the 

algorithm, however in our application the symmetric version is used. 

Consider a system with N normalized input variables ui. Fuzzy partitioning of the input space 

would correspond to the partition of the domain of each input variable ui into si number of (1-

D) triangular fuzzy sets, which are equal to δα. In mathematical notation that is: 

 , , i, , 1, . . . , N j 1, .. .,si j i ja a i =     =          =                 (4.7) 

αi,j is the center of fuzzy set Ai,j, δα is half the width, which is the same for each input direction. 

The result of the partition is a total of S fuzzy subspaces Al: 

1

i

i

S s


=

=                                            (4.8) 

Each subspace A is created by the combination of N fuzzy sets for each input direction. It is 

possible to define the fuzzy subspaces through the center vector αl containing the centers and 

the side vector δα containing the width halves. 

    1, 1 2, 2 N, 1 2, , , , , ,

1, ... ,

l l l l l

j j jNA

l S

    
 = =                 

=        

α α α α α α α α
  (4.9) 

The resulting subspaces form a grid in the N-dimensional input space, where each node of the 

grid can become an RBF center, and it is the objective of the algorithm to determine which ones 

will be finally selected. Here a tradeoff exists; a small subset of subspaces should be selected 

in order to create a computationally efficient model, but at the same time they should be able 

to describe the training datas’ space sufficiently. 

The FM Algorithm makes this selection through the use of the membership function which will 

indicate whether the subspace Al will be a selected subset. 

( )
( ) ( )1 ( ) , ( ) 1

( )
0 ,

l

l l
r rd k if d k

k
if otherwise


 −        

= 
                        

A

u u
u                          (4.10) 

In our application a symmetric fuzzy partition is applied – thus the distance equation l
rd  can 

be formed as 

( )

( )
2

,

1

( )

( )

l
i ji i

l i
r

a u k

d k
N 



=

−

=
 


u                                  (4.11) 

  

Institutional Repository - Library & Information Centre - University of Thessaly
05/02/2019 21:03:39 EET - 137.108.70.13



  

 

32 

 

Radial Basis Function Networks 

where ( )ku  is the kth input vector, ,
l
i jia  is the center of the fuzzy subspace Al , and N is the 

dimensionality of the input space. The above equation defines a surface in the input space that 

bounds the input vectors that will be included in the fuzzy subspace Al , or in other words, that 

will receive nonzero membership degree in the membership function. 

It is apparent that the resulting RBF centers depend solely on the number of fuzzy sets s, which 

is the same for all input variables. This is the basis of the easiness of tuning of the RBFN model 

through the FM Algorithm, since the optimum number of fuzzy sets can be found heuristically 

in a discrete region.   
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5 Application and Results 
 

5.1 Introduction and Design Objective 
 

In the previous chapters the mathematical and theoretical framework, as well as some of the 

practical aspects of the system in question, have been presented. As stated, the goal of this work 

is to propose a new control scheme for the Full Car vertical dynamics control problem. In this 

respect, three different controllers are assessed: 

• Traditional PID controllers 

• MPC strategy with a linear model of the plant 

• MPC strategy with an RBFN model of the plant 

 

Even though the MPC implementation allows for multiobjective control, for the sake of 

comparison with the PID strategy it was chosen that only one variable should be controlled. 

This is because PID controllers are strictly SISO, whereas MPC can be MIMO. In this work, 

the vertical acceleration has been chosen as a controlled variable, because it is a physically 

tangible metric for comfort in road vehicles.  

This chapter is structured as follows: First, the three implementations are presented, together 

with the methodologies for tuning them according to the design objective. Then, they are 

applied to two benchmark tests, one being a pulse test, and one being a random road test. 

Finally, they are compared to each other using specific metrics. 
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Application and Results 

5.2 Implementation of PID controller 
 

The implementation of the PID control strategy begins with the creation of a Simulink ™ 

quarter car model. Simulink offers a schematic programming environment where it is easy to 

realize many controllers, including a PID one. Moreover, it contains a powerful programming 

block called S-Function, which can accommodate discrete models such as ours. A Simulink 

program containing the S-function quarter car model as described in equations (2.6-2.11) is 

shown in fig. 5-1: 

 

Figure 5-1 A Simulink representation of a Passive Quarter Car Suspension 

 

The input vector to the S-Function contains two variables: The road input and the valve input. 

The S-function then calculates the state derivatives and returns them back to Simulink where 

they are integrated. The output vector contains the body displacement, suspension travel, body 

acceleration, wheel acceleration, pressure difference, and servovalve position, which are plotted 

throughout the simulation timespan.  

A Simulink program describing an active suspension quarter car is shown in fig. 5-2: 

 

Figure 5-2 A Simulink representation of an Active Quarter Car Suspension 
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Application and Results 

Here, the valve input is no longer zero, and is dictated by the feedback loop, setpoint and PID 

tuning. The setpoint of the controlled variable is of course zero, and the PID can be tuned by 

the built-in autotuner script in Simulink. This script performs plant identification based on test 

input and measured output and uses the current operating point to create a linearized plant 

model. Afterwards, it computes the P, I, D parameters. The results are: 

Table 5-1 PID tuning parameters 

 Parameter Value 

1 Proportional (P) 1.40094e-12 

2 Integral (I) 3.70705e-13 

3 Derivative (D) 9.87406e-13 

4 Filter Coefficient (N) 3.91276 

 

Whereas the PID Controller transfer function is: 

     
1

(s)
1

1
PID

N
G P I D

s
N

s

= + +

+

  (5.1) 

After creating the quarter car Simulink model and successfully tuning it, the Full Car Simulink 

Model could be implemented using the eqs. 2.15-2.20. The input vector contains eight 

variables, four valve inputs and four road inputs (one for each wheel), whereas the output vector 

contains the heave displacement, theta angle, phi angle, and heave acceleration.  

However, the PID implementation here differs since the system is no longer SISO. In order to 

overcome this difficulty, 4 PID controllers are implemented, one intended for each corner 

where they are fed back the respective measured vertical acceleration (fig.5-3). The result is 

that the system achieves the desired operation. 

 

 

Figure 5-3 A Simulink representation of an Active Full Car Suspension 
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Application and Results 

5.3 Implementation of MPC Controller with Linear Model 
 

In contrast to the PID controller, the Simulink approach had to be abolished, since the 

implementation of an MPC Controller in MATLAB requires more advanced programming tools. 

Therefore, the plant model had to be realized in MATLAB code, where now the state derivatives 

are numerically integrated using the ode45 solver. The optimization problem within the MPC 

controller is solved using the fmincon optimization function (see Appendix I). 

 

Creating the Linear Least Squares Model 
In order to create a linear model of the system, two types of datasets need to be created: One 

containing all input to the system, and one containing all output. Then, simple linear least 

squares can be performed so that we can extract the linear coefficients that correlate the input 

variables with the output of the model. Since we aim to use it in an MPC scheme, the model 

ought to be discrete-time: 

1k k k kx A x B u C w+ =  +  +    (5.2) 

Eq. (5.2) is a linearized discrete-time model of the original state equations. The next state vector 

xk+1 is calculated using the current state vector xk , valve input vector uk , and road input vector 

wk . The matrix A incorporates the contribution of the current state vector to the next state 

vector. the Matrices B and C incorporate the contribution of the valve and road model inputs 

respectively, to the next state vector. 

As mentioned in the MPC Chapter, the controller sample time has been chosen to be 100ms, so 

one discrete step of the model should correspond to a 0.1s time step. This should be reflected 

in the training data, meaning that the datapoints should be sampled with a 10Hz sampling 

frequency.  

In addition, the data should be adequate in number and in quality in order to produce a good 

model: This means that the data should describe sufficiently the system in question, which is 

achieved by utilizing enough datapoints from all the input variable region. That way, the 

resulting Xreg regression matrix will not be rank deficient [30]. Another numerical 

consideration is that the linear least squares input data should all be within the same order of 

magnitude; otherwise matrix ill-conditioning problems will occur. If this does happen, a 

common way to amend it is by scaling the problematic variables (see Appendix I). 

One important consideration is that input data should not be omitted from the matrices that will 

be used to create the input model. In other words, all the “information” that was input to the 

full car plant should be made available to the model through the regression matrices Xreg and 

Yreg. Sampling from the simulation data for the Xreg matrix with a sample time of 0.1s is going 

to yield incorrect results, because the road values that change every 0.0025s (simulations’ 

timestep) will not be included. In order to accommodate for this consideration, the discrete 

model should be changed accordingly. 

The creation of the Linear model follows the following procedure (fig. 5-4): 
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Application and Results 

 

Figure 5-4 Schematic of the algorithm for creating a Linear car model 

• Simulation Parameters: The simulation parameters of the Full Car model evaluation 

are a simulation time step of 0.0025s, a controller sample time of 0.1s, and a vehicle 

speed of 10m/s.  

 

• Creating the Input to the Full Car:  As described previously, the input variable data 

is the most important part in the creation of a model of a system. The inputs to the 

model are the u valve inputs and the w road inputs. As far as the valve inputs are 

concerned, they are uniform-randomly picked from the range of the servovalve and are 

changed every 0.1s of simulation time (or every 40 simulation timesteps), so that it 

corresponds to the actual MPC Controller operation (fig. 5-5). 

Secondly, the random road inputs are formulated as per the ISO 8606, simulating a 

road of bad condition [31]. In order to reproduce the real-life characteristics of a full 

car suspension, the road inputs differ between the left and right side (fig. 5-5). 

     

 

         Figure 5-5 Road (a) and Valve (b) inputs to the Full Car Plant 
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Moreover, the rear wheels receive the same road input as the front ones with a time 

delay that is related to the speed of the vehicle. The result is an input dataset w of size 

3.199.364 x 8 (Datapoints x Inputs). 

• Evaluation of the Full Car plant: Given the input matrix w containing the road and 

valve inputs throughout the simulation timespan, the ode45 solver calculates and 

returns the state matrix x of the plant. Note that this timespan has a timestep of 0.0025s. 

The state matrix x is of size 3.199.364x30. 

 

• Creation of the regression matrices Xreg and Yreg: Since we are interested in 

creating a model of the plant with a timestep of 0.1s, we need to formulate the 

regression matrix Xreg in such a way that no information that was used by the actual 

plants’ simulation is omitted from the regression of the linear model. In our application, 

this means that the road profile information that lies between two discrete controller 

steps (k → k+1) should be included as a model input. The resulting Xreg matrix contains 

62946 datapoints for 194 model input variables, whereas the Yreg matrix contains the 

30 real state outputs, which are shifted one datapoint up in order to create the y(k+1) = 

f(x(k)) form.  

 

A desirable addition to the Linear Least Squares model is to add a y-intercept for every 

state. This is done by appending the Xreg matrix by a column of ones. Then, the y-

intercepts are computed as parameters in the Linear Regression between the Xreg and 

Yreg matrices. 

 

• Performing the linear regression procedure: The linear regression is carried through 

using the \ MATLAB operator. It is applied iteratively for the total of 30 states of the 

model. The result of every iteration is a vector of 195 coefficients that correlate the 195 

inputs with the specific state. These are stored and used to create the coefficient 

matrices A, B and C, which contain the coefficients correlating state, valve, and road 

inputs respectively with the output states. 
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Validating the Linear Least Squares Model 
Every model that is fitted to data needs to be validated using the R2 and RMSE metrics. The 

first step to evaluating a fit is applying those metrics to the predictions of the model when the 

input data are its’ training data. The second step is to apply the metrics to predictions of the 

model when the input data are different from the ones it has been trained on. The usual approach 

to model creation is that the total data available for the creation of the model are split using a 

ratio of 70-30 into training and validation data. The results of the training and validation of the 

LLS model are presented in table (5-2), for all states. 

 

Table 5-2 The R2 and RMSE Metrics for every state of the Linear car model. The pressure states are in blue. 

 

 

All the above values have been rounded to the fourth significant digit. The x(i,5)  pressure states 

have the worst performance in terms of goodness of fit, as indicated by their R2 value. The states 

of x(i,3) and x(i,4), which correspond to strut and wheel velocity respectively, also exhibit 

average goodness of fit. These results are to be expected because the respective equations are 

nonlinear (eq. 2.15-2.18 C,D). On the other hand, the rest of the states are almost perfectly 

predicted by the LLS model, by exhibiting R2 of almost 1. 

State R
2
 Training R

2
 Validation RMSE Training RMSE Validation

1 1,0000 1,0000 0,00015 0,00015

2 1,0000 1,0000 0,00010 0,00011

3 0,9995 0,9995 0,00346 0,00359

4 0,9995 0,9995 0,00338 0,00334

5 0,9896 0,9889 0,03420 0,03639

6 1,0000 1,0000 0,00006 0,00006

7 1,0000 1,0000 0,00015 0,00016

8 1,0000 1,0000 0,00010 0,00010

9 0,9995 0,9995 0,00353 0,00361

10 0,9995 0,9995 0,00335 0,00339

11 0,9890 0,9889 0,03519 0,03500

12 1,0000 1,0000 0,00006 0,00007

13 1,0000 1,0000 0,00015 0,00015

14 1,0000 1,0000 0,00011 0,00011

15 0,9996 0,9995 0,00350 0,00361

16 0,9995 0,9995 0,00332 0,00332

17 0,9887 0,9877 0,03557 0,03637

18 1,0000 1,0000 0,00006 0,00006

19 1,0000 1,0000 0,00015 0,00015

20 1,0000 1,0000 0,00010 0,00010

21 0,9996 0,9996 0,00343 0,00349

22 0,9995 0,9995 0,00333 0,00329

23 0,9893 0,9900 0,03446 0,03302

24 1,0000 1,0000 0,00006 0,00006

25 0,9993 0,9993 0,03037 0,03094

26 0,9945 0,9946 0,02597 0,02579

27 0,9990 0,9990 0,01782 0,01753

28 1,0000 1,0000 0,00007 0,00007

29 0,9999 0,9999 0,00006 0,00007

30 1,0000 1,0000 0,00004 0,00004
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Application and Results 

 

 

 

Figures 5-6 Acceleration (a) and Pressure (b) Predictions of the Linear car model in a validation random 

road & input test 

 

As shown in fig. 5-6, in a random road and valve validation test the LLS model can predict the 

vertical acceleration perfectly, as well as the pressure states, with some minor incongruities. 

Note that the input data in this test have the same characteristics as the ones that the model has 

been trained on.  
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Application and Results 

One additional validation test is due, as the models are intended to be used in the MPC context: 

Since the MPC Controller that is being applied accepts road preview information (meaning that 

the upcoming few meters of road profile are available to the model making the predictions), the 

only input to the model from the real world is the initial condition state vector and a road vector 

containing the road profile for some of the prediction steps. It is through this information that 

the model makes the predictions, and upon this that the MPC Controller calculates the control 

moves. It can be concluded then, that the response of the model in a relevant test is of high 

importance in the MPC Scheme. 

Such a test is an initial condition test, where all valve and road inputs are zero. 

 

 

Figure 5-7 Acceleration (a) and Pressure (b) predictions of the Linear car model in an initial condition 

validation test 

 

The LLS model succeeds in predicting the state of chassis acceleration, however it is completely 

unable to predict the pressure states (fig. 5-7). This indicates that in the MPC context the 

objective function values will reflect the reality with satisfying accuracy, however the controller 

will not be able to assess the effect of the control moves, due to the significant deviation of the 

pressure states.  
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Creating the Linear Model MPC Controller 
As mentioned briefly in the previous subchapter, the linear model accepts the plant states of the 

current timestep as an initial condition vector, as well as the road preview and the control move 

matrix which contains the control moves up until the control horizon. For every discrete step 

up until the prediction horizon, the state vector is estimated. Then, the values of the controlled 

variable(s) throughout the prediction horizon are inserted in the objective function, where they 

are multiplied by the theta vector. Each variable in the objective function is also weighted. 

In our application, only the variables of heave acceleration and valve input are controlled. The 

first is of course the design objective, while the second serves as a mathematical incentive to 

the controller to minimize control input to the system and thus save energy in a real-life 

application [11, 32]. More design objectives could be added, such as roll and pitch acceleration, 

but this would compromise the comparison with the PID Controller and the Passive system. In 

mathematical form, the Linear Model MPC Controller is: 

 

Model: 

( ) ( ) ( ) ( ) ( ) ( )

( )
( )

1 2
ˆ ˆ1 ,1 ,2 ... ,R

,
,

0

, r 1, ... , 1, ... ,

R

prev prev

prev

controller
p

road

k A k B k C k C k C k

k r k h
where k r

k h

ST
R R k h

ST

 

+ =  +  +   +  + + 

      
  = 

                

=            =                 =      

Y Y u w w w

w
w   (5.3) 

Objective Function: 

( ) ( ) ( )
( ) ( )

2 2

, 1 ,...,
1 1

ˆ ˆmin ( ) ( ) ( ) ( )

hp hp

acc x valve
u k u k u k M

j j

k j j k j j 
+ +

= =

   +   + +  
    Y Y          (5.4) 

Subject to 

( )0.004 0.004 , 1k j j hc−  +       u                             (5.5) 

( )0.0015 0.0015 , 1k j j hc−   +        u                  (5.6) 

 

As mentioned briefly in the subsection that concerns the creation of the LLS Full Car model, 

there was a difficulty to overcome regarding the ability of the model to handle the road 

datapoints that were internal to its’ discrete time steps. The solution, as shown in eq. (5.3), was 

to create R Cr matrices which correlate each road datapoint w(k,r) with the states of the model. 

The R is the number of internal datapoints between two discrete time points, STcontroller is the 

sample time of the controller and STroad is the preview sample time of the road.   
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The objective function consists of the sum of squares of the Prediction-Theta multiplication for 

the two controlled variables. The objective function is subject to two constraints. The first is a 

saturation constraint and a physical requirement for the system, since the power valve bottoms 

out at 4mm displacement. The second is a gradient constraint and ensures that the absolute 

difference between two consecutive control moves will remain below 1.5mm. 

In pseudocode form: 

 

Tuning the Linear model MPC Controller 
As described in the MPC Chapter, there are four items of tuning: prediction horizon hp, control 

horizon hc, theta vector and objective function weights. These are tuned on a benchmark test of 

a pulse test for the ‘on-road’ mode, and on a random road test for the ‘off-road’ mode. 

For the ‘on-road’ mode, in order to compute the hc and hp parameters, the settling time of the 

controlled variable after a valve step input is calculated, with a 10% margin (fig.5-8). 

 

Figure 5-8 Valve step input test of the full car plant 

function MPC LinearController( theta,  weights, ABC Matrices, curren t_state_vector, road 

preview info)  

 

W_Input = road_preview_info  

U_Input  = matrix of optimal control moves  

InternalPoints = controller sample time / timestep = 40  

PredictedStates(1) = current_state_vector  

 

for i  = 1 to prediction horizon  

 for j  = 1 to 40  

  index = (i -1)*InternalPoints + j;  

  roadContribution(j) = C j*W_Input(index)  

 end 

 totalRoadContribution = sum(roadContribution)  

 PredictedStates(i+1) = A*PredictedStates(i) + B*U_input(i) + totalRoadContribution  

end 

 

sumAcceleration = SumOfSquaredValues (PredictedStates_Acceleration *.theta)  

sumInput= SumOfSquaredValues (PredictedStates _Input *.theta)  

 

ObjectiveFunctionValue = sumAcceleration * weight(1) + sumInput * weight(2)  

 

end function 
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As shown, the settling time is 1.35s for the chassis vertical acceleration. Since the controller 

sample time is 0.1s, this equals to 14 discrete steps. Thus, the prediction horizon is 

14p ch h= +               (5.7) 

The process of tuning the MPC Controller is described in fig. 3-4. The results of the tuning 

process are shown in table 5-3: 

 

Table 5-3 Tuning Parameters for the MPC Linear Controller 

‘On-Road’ mode Tuning Parameters 

 

 

 

‘Off-Road’ mode Tuning Parameters 

  

 

 

  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0,021 0,034 0,001 0,028 0,021 0,034 0,037 0,045 0,050 0,048 0,017 0,030 0,014 0,125 0,191 0,234 0,319

Theta Vector

17

3

100

30000

5Preview Length (m)

Prediction Horizon hp

Control Horizon hc

Acceleration Weight

Xvalve Weight

1 2 3 4 5

0,098 0,923 0,100 0,327 0,405

Theta Vector

5

1

10

40000

5

Acceleration Weight

Xvalve Weight

Preview Length (m)

Prediction Horizon hp

Control Horizon hc
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Applying the Linear Model MPC Controller 

 
0.05m right Pulse test: 

 

Figure 5-9 Right pulse test road input 
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Figure 5-10  Right Pulse Road Results for the MPC Linear Controller, a)Heave acc., b)Pressure, c)Susp. 

deflection, d)Heave disp., e)Chassis Theta Angle f)Chassis Phi Angle 
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Random Road Test: 
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Figure 5-11  Random Road Results for the MPC Linear Controller a)Heave acc., b)Pressure, c)Susp. deflection, 

d)Heave disp., e)Chassis Theta Angle f)Chassis Phi Angle   
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5.4 Implementation of MPC Controller with RBFN Model 
 

Before an MPC Controller based on an RBFN Model of the active full car can be implemented, 

there is a trade-off to be considered; the evaluation of an RBF Neural Network is a 

computationally intensive process, and it can compromise the ability of the MPC Controller to 

solve the optimization problem in real time. It makes sense then, to build models only for the 

highly nonlinear states of the plant, which have been proved to be the states of actuator 

pressures. These models should have few input variables. Therefore, it was elected that the 

input data only included the ones contained in the actual actuator pressure equation (see eq. 5.8 

- the variables of interest are colored in blue): 

( ) ( ) ( ),6 ,5 ,5 ,, ,35 5, ,4, ,
v bvx x i bv tmi i i ii ip ia Q Q x Cx x x x xx A x − − −= −          (5.8) 

As far as the rest of the states are concerned, they can be predicted by Linear models– in fact 

the exact same that were described in the previous chapter will be used in order to create a 

combined LLS-RBFN full car model.  From now on in this work, this model will be referred to 

as the RBFN car model for reasons of brevity. 

 

Creating the RBFN Models for the Actuator Pressure States 
The goal is to create four RBFN models, one for each actuator pressure state. In the same way 

as the creation of a linear model, two types of datasets need to be created: One containing all 

input to the system, and one containing all output. For comparisons’ sake, the same datasets are 

used for the creation of both linear and RBFN car model formulations. The input data are split 

into training and validation data in a 70-30 ratio, containing only the states that concern each 

model. 

As described in chapter 4.3, the creation of an RBFN Model corresponds to finding the 

following parameters:  

• Number of RBFs (fuzzy sets) 

• Coordinates of RBF centers in the input space 

• Synaptic weights for the hidden layer connections. 

For a given number of fuzzy sets, the latter two are straightforward: The coordinates of the RBF 

centers can be calculated after fuzzy partitioning, whereas the synaptic weights can be obtained 

as a result of linear least squares between the node output and the real output. However, 

establishing the “optimal” number of fuzzy sets of each RBFN model is a heuristic process. 

Too little fuzzy sets will fail to capture the data’s variation sufficiently, while too many will 

lead to overfitting over the training data. The idea is to plot the number of fuzzy sets versus the 

R2 number, in order to pinpoint the optimal value. 
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Fig. 5-12 explains the process to find the optimal number of fuzzy sets for the given set of data. 

The examined metrics are R2 and RMSE, which are applied both on Training data and on 

Validation data. 

 

Figure 5-12  Schematic of the algorithm for the computation of the optimum number of fuzzy sets 

 

 

     Figure 5-13  Training and Validation R2 results for the RBFN models 

As it is shown in fig. 5-13, the R2 metric is ever-increasing on a given set of training data for 

larger numbers of fuzzy sets. However, in the validation data it reaches a plateau of 

improvement, for reasons that have been mentioned in this chapter. In our application, this 

plateau occurs at 17 fuzzy sets. Therefore, this is the number of fuzzy sets that will be used for 

the creation of the models. 
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Table 5-4 R2 Comparison table for the RBFN and Linear pressure models 

 

A noteworthy consideration when comparing the R2 values of two models is that they concern 

a single discrete timestep evaluation. This is why even a small difference can have significant 

effect on the prediction of the model, since the error propagates through the following 

timesteps. This is something that can be shown through an initial condition test, which, as 

mentioned, is an important performance metric for an MPC model. For comparison purposes, 

both models as well as the full car response are depicted in fig.5-14. 

 

 

Figure 5-14 Acceleration (a) and Pressure (b)  predictions of the RBFN Car model in an initial condition 

validation test 

The RBFN car model successfully predicts the vertical acceleration as well as its’ counterpart 

does - however, there is a significant improvement on the prediction of the pressure states. The 

result is that the RBFN controller will be able to make more effective control moves than the 

LLS one.  

R
2

Pressure FL Pressure FR Pressure RL Pressure RR

RBFN Training 0,9924 0,9924 0,9927 0,9925

RBFN Validation 0,9917 0,9906 0,9913 0,9911

Linear Training 0,9896 0,9890 0,9887 0,9893

Linear Validation 0,9889 0,9889 0,9877 0,9900
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Creating the RBFN MPC Controller 
The controller can be described in mathematical form as: 
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Objective Function 

( ) ( ) ( )
( ) ( )

2 2

, 1 ,...,
1 1
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u k u k u k M

j j

k j j k j j 
+ +

= =

   +   + +  
    Y Y         (5.10) 

Subject to 

( )0.004 0.004 , 1k j j hc−  +       u           (5.11) 

( )0.0015 0.0015 , 1k j j hc−   +        u                (5.12) 

 

The difference from the Linear model is that now the predictions for the xi,5 state (the actuator 

pressure for every strut) come from the RBFN models. Note that the RBFN models accept only 

the states that they have been trained on, which are the absolute velocities of strut and wheel, 

the actuator pressure and the valve position. Of course, the same constraints as the LLS 

formulation apply here.  
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Application and Results 

 In pseudocode form: 

 

Tuning the RBFN Model MPC Controller 
Exactly the same procedure has been followed as outlined in fig. 3-4 for the tuning of the RBFN 

car model. The final tuning parameters for the RBFN MPC Controller are shown in table 5-4: 

‘On-Road’ mode Tuning Parameters 

 

 

‘Off-Road’ mode Tuning Parameters 

 

 

Table 5-5  Tuning parameters for the RBFN car model  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0,021 0,034 0,001 0,028 0,021 0,034 0,037 0,045 0,050 0,048 0,017 0,030 0,014 0,125 0,191 0,234 0,319

Theta Vector

17

3

250

30000

5

Xvalve Weight

Preview Length (m)

Prediction Horizon hp

Control Horizon hc

Acceleration Weight

1 2 3 4 5

0,110 0,939 0,360 0,425 0,885

Theta Vector

5

1

10

40000

5

Xvalve Weight

Preview Length (m)

Prediction Horizon hp

Control Horizon hc

Acceleration Weight

function MPC RBFN-LLS Controller( theta, objFunweights, ABC Matrices, RBFNcenters, synaptic 

weights, current state vector, road preview info)  

 

W_Input = road preview info 

U_Input  = matrix of optimal control moves  

InternalPoints = controller sample time / timestep = 40  

PredictedStates(1) = current_state_vector  

 

for i  = 1 to prediction horizon 

 for j  = 1 to 40  

  index = (i -1)*InternalPoints + j;  

  roadContribution(j) = C j*W_Input(index)  

 end 

 totalRoadContribution = sum(roadContribution)  

 PredictedStates(i+1) = A*PredictedStates(i) + B*U_input(i) + totalRoadContribution  

 for k = 1 to 4  

  PredictedStates_k,5_(i+1) = RBFN(PredictedStates(i),RBFNcenters,SynapticWeights)  

 end 

end 

 

sumAcceleration = SumOfSquaredValues (PredictedStates _Acceleration *.theta)  

sumInput= SumOfSquaredValues (PredictedStates_Input *.theta)  

ObjectiveFunctionValue = sumAcceleration * objFunweights (1) + sumInput * objFunweights (2)  

 

end function 

Institutional Repository - Library & Information Centre - University of Thessaly
05/02/2019 21:03:39 EET - 137.108.70.13



  

 

54 

 

Application and Results 

Applying the RBFN Model MPC Controller 
0.05m right Pulse test: 
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Application and Results 

 

 

 

Figure 5-15 Right Pulse Road Results for the MPC RBF Controller, a)Heave acc., b)Pressure, c)Susp. deflection, 

d)Heave disp., e)Chassis Theta Angle f)Chassis Phi Angle  
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Application and Results 

Random Road Test: 
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Application and Results 

 

 

 

 

 

Figure 5-16  Random Road Results for the MPC RBF Controller a)Heave acc., b)Pressure, c)Susp. deflection, 

d)Heave disp., e)Chassis Theta Angle f)Chassis Phi Angle 
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Application and Results 

A useful plot in the evaluation of the Random Road benchmark test is the FFT of the vertical 

acceleration of the Chassis (fig. 5-17). Thus, the performance of the controller in mitigating 

vibrations of different frequencies can be evaluated.  

 

 

Figure 5-17  FFT of Heave acc. over a random road 

The MPC-RBFN Controller achieves a significant reduction of the FFT value of the 

acceleration at the 2.2 Hz eigenfrequency of the chassis. It is also reduced for almost every 

frequency. 

 

 

Table 5-6  Summary table for the Pulse test 

 

 

Table 5-7  Summary table for the Random Road test 

  

Peak (m/s
2 

) 5% settling time (s) SAE RMS

Passive Full Car 2.316 2.61 464.02 0.5961

PID Controller 2.247 2.34 390.31 0.5204

LLS-MPC Controller 1.991 2.01 325.86 0.4593

RBFN-MPC Controller 1.850 1.88 278.42 0.3972

Pulse Test 

FFT Peak SAE RMS

Passive Full Car 0.5868 1090.01 0.6869

PID Controller 0.5004 942.38 0.6043

LLS-MPC Controller 0.4462 885.39 0.5755

RBFN-MPC Controller 0.3134 774.67 0.4944

Random Road Test 
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Application and Results 

5.5 Discussion 
 

Design Objective 
Considering the design objective of the reduction of the vertical acceleration of the chassis, 

from tables 5-5 and 5-6 as well as fig.5-10,11,15,16 it is apparent that the MPC-P Formulation, 

whether it is implemented with a Linear model Controller or an RBFN model Controller, is 

better than the PID Controller. The results of the two benchmark tests are discussed below: 

1. In the case of a pulse road of 0.05m the LLS Controller achieves a 30% reduction of 

the SAE value of the controlled variable. It reduces significantly its’ maximum value 

by 14% and its’ settling time by 22%.  

In comparison, the RBF Controller achieves a 40% reduction of the SAE value of the 

controlled variable. Moreover, it succeeds in reducing the maximum value by 20%, and 

secures a shorter settling time by 28%. 

 

2. In the case of a random road the MPC-P Controller outperforms the PID Controller 

in general. In particular, the LLS Controller achieves a 23% reduction of the FFT Peak 

Value of the controlled variable, whereas the RBF ones does so with a 46% reduction. 

The RMS Value over the 5s evaluation of the random road is reduced by 16% and 28% 

by the LLS and RBF Controller respectively. 

The reason that the MPC-P scheme is better than the traditional PID one in general, is because 

it can execute more effective, prediction-based control moves. On the other hand, the PID 

controller in our application acts on an approximate basis, since each actuator aims to reduce 

the respective vertical acceleration which is measured at each corner of the vehicle. Another 

consideration is that the MPC-P scheme accepts road preview information, which is a clear 

advantage over the PID one. 

As far as the LLS and RBF controllers are concerned, the superior performance of the latter is 

based on the better approximation capabilities of its respective model. This in turn is owed to 

the implementation of RBFN models for the nonlinear pressure states. As a result, the RBF 

controller can execute more effective control moves and thus achieve better performance.  
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Application and Results 

Other Considerations 
As far as the other chassis accelerations are concerned, no differences are observed between 

the different formulations. This is because they are not present in the objective function of the 

MPC Controller. They could very well be incorporated in future work, as well as other vehicle 

states such as the actuator pressures or suspension deflections. The last two could be used in 

the formulation of soft constraints for the vehicle, as it is done in [11]. 

One more metric that should be evaluated in an active suspension is its’ energy expenditure. 

The more control moves are applied (in number and in “aggressiveness”), the more power is 

required by the hydraulic pump in order to maintain the supply pressure. The required hydraulic 

power can be computed by evaluating 𝑊̇ = 𝛥𝑃 ∙ 𝑄, which is the actuator pressure multiplied 

by the hydraulic flow per second [32]. As shown in fig 5-18, the RBF Controller is much more 

energy efficient than the LLS Controller, and this can be attributed to the better actuator 

pressure estimation of the RBFN models. 

A final consideration for the MPC Controller is that an off-road application would benefit from 

smaller controller sample times, since it can react quicker to the inputs from the road. A preview 

formulation with a longer preview horizon would also improve the effectiveness of the control 

moves. 

 

Figure 5-18  Hydraulic Fluid Power over a random road test for each actuator 
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Conclusions and Future Work 

6 Conclusions and Future Work 
 

Conclusions 
In this work, a new method for the control of the full car active suspension was developed. An 

MPC Road Preview strategy was applied, and a Linear full car model with RBFN models for 

the highly non-linear actuator pressure states was used within. The results were very promising, 

achieving significant reduction of the chassis’ vertical vibrations, both in ‘on-road’ and ‘off-

road’ modes (tables 5-5, 5-6). 

This new strategy was compared with a PID controller and an MPC-P Linear controller. The 

MPC-RBFN Controller was able to outperform them, because of its’ successful prediction of 

the nonlinear states through the RBFN models. In addition, it did so with a lower energy 

expenditure (fig. 5-18). 

 

Future Work 
Future work should examine the more practical aspects of the implementation of an MPC-P 

RBFN Controller in a full car. Notably: 

• The determination of the computational requirements of the evaluation of the LLS-

RBFN car model by the on-board vehicle computer. 

• Applying a more computationally efficient MPC scheme through the integration of 

inverse neural models.[33] 

• Creating a robust Controller that can handle parameter variation in the system [18]. 

• The implementation of soft constraints in the MPC Controller such as maximum 

allowable suspension travel and actuator pressure [11].  
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List of Variables and Symbols 

7 List of Variables and Symbols 
 

  

Symbol Meaning Value Units

Ps Supply Pressure to Valve 20,683 e6 Pa

Ap Actuator Piston Area 0.0044 m
2

PL Pressure Difference in Actuator Variable Pa

Qxv Hydraulic Fluid Flow through valve Variable m
3
/s

Qxbv Hydraulic Fluid Flow through bypass valve Variable m
3
/s

Ctm Leakage constant through piston rings 15 e-12 -

α Hydraulic Coefficient 2.27e8 N/m
5

ρ Density of Hydraulic Fluid 850 kg/m
3

τ Time constant of valve 0.003 s

Cd Hydraulic Discharge Coefficient 0.7 -

Sxv Valve width 0.008 m

xv Valve displacement Variable m

xbv Bypass valve displacement Variable m

xi,1 Absolute displacement of i strut Variable m

xi,2 Absolute displacement of i wheel Variable m

xi,3 Absolute velocity of i strut Variable m/s

xi,4 Absolute velocity of i wheel Variable m/s

xi,5 Pressure Difference in i Actuator Variable Pa

xi,6 i Valve displacement Variable m

x5,1 Angular Roll Velocity of the Chassis Variable rad/s

x5,2 Angular Pitch Velocity of the Chassis Variable rad/s

x5,3 Absolute Vertical Velocity of the Chassis Variable m/s

x5,4 Roll angle of the Chassis Variable rad

x5,5 Pitch angle of the Chassis Variable rad

x5,6 Vertical Displacement of the Chassis Variable m

Fks Force of suspension spring Function N

Fbs Force of suspension damper Function N

Fkt Force of tire spring Function N

Fstrut Sum of suspension forces acting on a strut Function N

ui Input to i valve Variable m

wi Road profile of i wheel Variable m

bs
lin Linear suspension damper coefficient 12 e3 Ns/m

bs
sym Non-symmetric suspension damper coefficient 400 Ns/m

bs
nonlinear Non-Linear suspension damper coefficient 400 Ns/m

ks
lin Linear suspension spring coefficient 240 e3 N/m

ks
nonlinear Non-Linear suspension spring coefficient 235 e4 N/m

kt Tire spring coefficient 100 e4 N/m

btrack Track width (front and rear) 2 m

Lbase Wheelbase 4 m

Ixx X moment of inertia 5000 kg m
2

Iyy Y moment of inertia 8000 kg m
3

Mspr Quarter sprung mass 2800 kg

Munsp Unsprung mass 270 kg

Valve & Hydraulics

Car Model
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List of Acronyms 

8 List of Acronyms 
 

 

  

Acronym / Symbol Meaning

MPC Model Predictive Control

MPC-P Model Predictive Control with Preview Information

PID Proportional - Integral - Derivative Controller

hc Control Horizon

hp Prediction Horizon

hprev Preview Horizon

RBFN Radial Basis Function Network

FM Fuzzy Means

SISO Single input - Single output

MIMO Multiple Input - Multiple output

LLS Linear Least Squares

Xreg Matrix containing all inputs for the creation of the LLS model

Yreg Matrix containing all outputs for the creation of the LLS model

RMSE Root Mean Square Error

FFT Fast Fourier Transform

SAE Sum of Absolute Error
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9 Appendix I: Solvers & other Numerical Considerations 
 

ODE45 Solver 
The solver that was used for the simulation is the ODE45 MATLAB solver, which is based on 

an algorithm of Dormand and Prince. It applies six steps and provides fourth and fifth order 

formulas. For more details on the algorithm see [34]. The settings that are applied are: 

 

Table 9-1 ODE45 Settings 

 

 

Fmincon Optimization Function 
The optimization solver that was used in the context of the MPC Optimization was fmincon, 

which contains a list of algorithms to choose from. In this work an interior-point method is used 

which can handle constrained nonlinear optimization. The problems that the solver is applied 

to are (5-3,6), which is constrained linear quadratic, and (5-9,12) which is constrained nonlinear 

quadratic.  

The following settings were applied while keeping in mind that the optimization of the above 

problems should be computationally effective and within practical limits. 

 

Table 9-2  fmincon settings 

 

 

 

Linear Least Squares ‘ \ ’ operator 
The linear Least Squares computation was performed using the \ operator on the regression 

matrices Xreg and Yreg. The condition number of the Xreg matrix was aimed to be kept within 

reasonable levels. In this respect, the scaling of the variables was due, because large order 

differences between variables can lead to numerical problems in inversion [30]. The difference 

was because of the units of the pressure states, which were in Pa; this lead to an order difference 

of O(1e6) in the Xreg matrix. The Pressure states were scaled up to MPa, thus eliminating the 

order difference and reducing the condition number of the matrix from e22 to e14. 

 

  

Relative Tolerance 1 e-8

Absolute Tolerance 1 e-10

Maximum Step 0.005

Maximum Evaluations 100

Function Tolerance 1 e-5

X Tolerance 3 e-5

Minimum Change in variables 5 e-4
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