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Abstract

Worldwide phenomena called algae bloom has been recently a serious matter for inland

water bodies. Temporal and spatial variability of the bloom makes it difficult to use in-situ

monitoring of the lakes. This study aimed to evaluate the potential of Sentinel-3 Ocean and

Land Colour Instrument (OLCI) and Sentinel-2 Multispectral Instrument (MSI) data for

monitoring algal blooms in Lake Erie. Chlorophyll-a (Chl-a) related products were tested

using NOAA-Great Lakes Chl-a monitoring data over summer 2016 and 2017. Thematic

water processor, fluorescence line height/maximum chlorophyll index (MCI) and S2 MCI,

plug-in SNAP were assessed for their ability to estimate Chl-a concentration. We processed

both Top of the Atmosphere (TOA) reflectance and radiance data.

Results show that while FLH algorithms are limited to lakes with Chl-a < 8 mg m−3,

MCI has the potential to be used effectively to monitor Chl-a concentration over Eutrophic

lakes. Sentinel-3 MCI is suggested for Chl-a > 20 mg m−3 and Sentinel-2 MCI for Chl-

a > 8 mg m−3. The different Chl-a range limitation for the MCI products can be due

to the different location of the maximum peak bands, 705 and 709 for MSI and OLCI

sensors respectively. TOA radiances showed a significantly better correlation with in situ

data compared to TOA reflectances which may be related to the poor pixel identification

during the process of pixel flagging affected by the complexity of Case-2 water. Our finding

suggests that Sentinel-2 MCI achieves better performance for Chl-a retrieval (R2 = 0.90).

However, the FLH algorithms outperformed showing negative reflectance due to the shift

of reflectance peak to longer wavelengths along with increasing Chl-a values. Although

the algorithms show moderate performance for estimating Chl-a concentration, this study
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demonstrated that the new satellite sensors, OLCI and MSI, can play a significant role in

the monitoring of algae blooms for lake Erie.

iv



Acknowledgements

First, I would like to thank my supervisor, Professor Claude Duguay, for his financial

support and advice throughout this project. I would also like to express my thanks to

Professor Jonathan Li who initially gave me the opportunity to start my studies here at

the University of Waterloo. Thank you to Professor Richard Kelly who has helped me

to develop critical thinking skill in research, mainly through class 603. Thank you to the

University Writing and Communication Centre, especially Jane Russwurm for offering all

helpful feedbacks during writing this research. I also acknowledge Dr. Kiana and Dr.

Homa for their valuable time to be part of my committee members. Finally, I would like

to thank all my friends, officemates, and the MAD team, especially Mike Lancker, for their

support over the years of doing this research.

v



Dedication

This thesis is dedicated to:

The people who show love to the earth and who work hard to make the world a better

and safer place to live.

To my husband, Mahyar, my parents, and sibling for all their patients and motivation.

To all my teachers and people who have taught me many valuable things that have

made my life more beautiful and happier.

To many women all over the world who do not have the opportunity to freely learn and

do what they love.

vi



Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements v

List of Tables ix

List of Figures xi

List of Abbreviations xiii

1 Introduction 1

1.1 General introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Need for monitoring phytoplankton Chl-a . . . . . . . . . . . . . . . . . . . 2

1.3 Rational for use of remote sensing for phytoplankton Chl-a monitoring . . 6

1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background 10

2.1 Bio-optical modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

vii



2.2 Bio-optical modeling of phytoplankton Chl-a . . . . . . . . . . . . . . . . 15

2.2.1 Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Fluorescence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.4 Chl-a retrieval algorithms . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Past and current satellite instruments used for monitoring phytoplankton
Chl-a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Sentinel-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2 Sentinel-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 In situ methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Evaluation of Sentinel-2 and Sentinel-3 Chlorophyll-a Products in the
Western Basin of Lake Erie 38

3.1 Study area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 In-situ data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Remote sensing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Baseline algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.1 Image processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.2 Model assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.3 Calibration and validation . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.4 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.1 In-situ data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.2 Model Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

References 68

viii



List of Tables

2.1 Strengths and weaknesses of bio-optical models . . . . . . . . . . . . . . . 11

2.2 Formulation of different types of bio-optical models . . . . . . . . . . . . . 13

2.3 Some of the most current scattering based Chl-a retrieval models. . . . . . 26

2.4 Different band compositions used for CZCS, MODIS, MERIS, and SeaWiFS. 28

2.5 List of satellite instruments used for phytoplankton Chl-a with their specific
characteristics [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 List of Sentinel-2 MCI product types available for users. . . . . . . . . . . 33

2.7 Radiometric quantities for satellite system and product development and
validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8 Optical properties for algorithms and IOP-based algorithm development and
validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.9 In situ biogeochemical and bio-Optical properties of water measurements
for bio-optical algorithm development and validation. . . . . . . . . . . . . 36

2.10 Ancillary data and metadata required to support analysis and quality control
of other in situ data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Lake Erie characteristics [2, 3]. . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Date of acquisition imagery and water sample acquisition of Sentinel-3A and
Sentinel-2A used in this study. . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Sentinel-3 (OLCI) bands specification [4]. . . . . . . . . . . . . . . . . . . 43

3.4 Sentinel-2 spectral band characteristics. . . . . . . . . . . . . . . . . . . . 44

3.5 The signal and baseline bands used in the OLCI Chl-a retrieval products. . 47

ix



3.6 The error metrics for the model assessments. . . . . . . . . . . . . . . . . 55

3.7 Descriptive statistic of Chl-a measurements match up with Sentinel-3 satel-
lite overpass acquisition times for western Lake Erie over summer 2017. . . 56

3.8 Descriptive statistic of Chl-a measurements match up with Sentinel-2 satel-
lite overpass acquisition times for western Lake Erie over summer 2016 and
2017. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.9 Equations and performance of Chl-a model for Sentinel-3A. . . . . . . . . . 57

3.10 Equations and performance of Log Chl-a model for Sentinel-3A. . . . . . . 60

3.11 Equations and performance of Log Chl-a (10 - 120 mg m-3) model for
Sentinel-3A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.12 Performance of the calibration and validation algorithms. . . . . . . . . . . 64

x



List of Figures

1.1 Illustrations of key inland water phytoplankton [5]. . . . . . . . . . . . . . 3

1.2 Simplified taxonomy of the phytoplankton [6]. . . . . . . . . . . . . . . . . 4

2.1 The conceptual process involved in solving: a)the forward radiative transfer
problem, b)the remote-sensing inverse radiative transfer problem [7]. . . . . 14

2.2 Comprehensive overview of all recent band arithmetic Chl-a retrieval appli-
cations (source: figure 1.1 Odermatt et al. [8]). . . . . . . . . . . . . . . . . 27

2.3 A schematic overview of OLCI data processing levels . . . . . . . . . . . . 32

3.1 The study area, western Lake Erie. Left: Algal blooms in the lake acquired
by Sentinel-2 on Oct. 2, 2017. Right: Sentinel-3 on Sep. 26, 2017. . . . . . 39

3.2 Western Lake Erie weekly and real-time monitoring stations. . . . . . . . . 40

3.3 (a) Fluorescence height over baseline, (b) Overlapping of fluorescence and
elastic radiance peaks in NIR for two [Chl] values [9]. . . . . . . . . . . . . 45

3.4 Diagram of Radiances Into Reflectances Conversion processes [10]. . . . . . 46

3.5 Processing flowchart of Sentinel-3A OLCI and Sentinel-2A MCI images to
retrieve Chl-a indices related to in-situ Chl-a Concentration . . . . . . . . . 48

3.6 Flowchart of the separate dataset and generation database from Sentinel-2A
(right figure) and Sentinel-3A OLCI algorithms retrieval values (left figure)
and match up in-situ Chl-a concentration using Quartile method for model
assessment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Monte Carlo calibration and validation scheme. . . . . . . . . . . . . . . . 51

3.8 12 out of 1000 calibration samples for MERISMCI algorithm. . . . . . . . 52

xi



3.9 Histograms of the R2 distribution for MERISMCI and S2MCI algorithms. . 53

3.10 Plot of the slope vs intercept. . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.11 12 out of 1000 calibration samples for S2MCI (Sentinel-2) algorithm. . . . 54

3.12 Time series of measured Chl-a obtained from NOAA-GLERL (May to Oc-
tober 2017). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.13 Correlation between FLH and MCI indices and in situ Chl-a using Sentinel-3
bands in TOA radiance and TOA reflectance. . . . . . . . . . . . . . . . . 58

3.14 Correlation between FLH and MCI indices and Log Chl-a using Sentinel-3
bands in TOA radiance and TOA reflectance. . . . . . . . . . . . . . . . . 59

3.15 Correlation between FLH and MCI indices and Log Chl-a (10 - 120 mg m-3)
using Sentinel-3 bands in TOA radiance and TOA reflectance. . . . . . . . 62

3.16 Correlation between S2MCI and in-situ Chl-a. . . . . . . . . . . . . . . . 64

3.17 Estimated Chl-a vs in situ Chl-a, calibration and validation dataset. . . . 65

xii



List of Abbreviations

CDOM Colored Dissolve Organic Matters
OAC Optically Active Constituents
RTE Radiative Transfer Equation
NAP Nan-Algae Particle
IOP Inherent Optical Properties
AOP Apparent Optical Properties
TSS Total Suspended Sediments
NIR Near-Infrared
OLCI Ocean and Land Color Instrument
MERIS Medium Resolution Imaging Spectrometer
ESA European Space Agency
FLH Fluorescence Line Height
MCI Maximum Chlorophyll Index
SNR Signal to Noise Ratio
PSI Photosystems 1
PSII Photosystems 2
LHC Light Harvesting Complexes
SICF Sun-Induced Fluorescence,
CI Cyanobacteria Index
MPH Maximum Peak-Height
NDCI Normalized Difference Chlorophyll Index
ARPH Adaptive Reflectance Peak Height Model
CZCS Coastal Zone Color Scanner
NRT Near-Real-Time
NTC Non-Time Critical
TOA top Of the Atmosphere
MSI Multi-Spectral Instrument
SIOP Specific Inherent Optical Properties

xiii



Chapter 1

Introduction

1.1 General introduction

Lakes offer essential ecological, environmental, hydrology and socioeconomic services. These

habitats provide food supply, water supply, and have enormous biodiversity in addition

to carrying out climate, hydrological, and biogeochemical regulation and pollution con-

trol. Environmental changes such as climate, land cover, and development pressure, in

particular deforestation, lost vegetation cover, increased in nutrient runoff, urbanization,

and watershed modification rapidly degraded water quality. These changes and pressures

cause eutrophication (the excessive richness of nutrients in the water, which the water sys-

tem cannot tolerate), increased turbidity, deterioration of water clarity, and loss of aquatic

benthos. Moreover, they make a risk for human and animal health. Therefore, the manage-

ment and monitoring of lakes should be a priority of environmental resource management

which needs a low cost and effective program. To be successful in this plan, in addition

to regularly ground-based monitoring methods, a cost-efficient, high spatial and temporal

coverage method is a demand, and remotely sensed satellite images are a powerful tool for

this.
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1.2 Need for monitoring phytoplankton Chl-a

Half of the oxygen that sustains life on earth is produced by a floating plantlike organ-

ism on the surface of the ocean and inland waters, named phytoplankton. They are the

most primary producer of the food web in the aquatic systems due to their ability to pho-

tosynthesise, a process of making organic compounds using dissolved carbon dioxide and

sunlight energy. Therefore, phytoplankton are the agent of primary production in the lakes

while sustaining the food cycle in the water. Because of this, phytoplankton are interesting

to researchers to assess biogeochemical cycles. However, in inland waters, monitoring and

research programs on phytoplankton are less focused on the biogeochemical application; in

fact, they are more concerned with controlling interventions. Having said that, the pres-

sure of human impact, mainly eutrophication and climate change, has a severe influence

on phytoplankton’s natural balance and can cause a phenomenon named bloom. Bloom

is an increase in population and reproducing of the phytoplankton species in an excessive

growth. Blooms can effect water quality and cause loss of aquatic biodiversity. One type

of phytoplankton, cyanobacteria, may produce a deadly toxin which is a risk to human and

animal health. In general two main classes of phytoplankton are algae and cyanobacteria.

Diatoms, dinoflagellates, green algae, cyanobacteria, and coccolithophores are the most

common types of all kinds of groups [6] (Fig. 1.1).

Algae are essential aquatic photosynthesis organisms. These are carbon fixing, oxy-

genating, and simple eukaryotic, single-celled or multiple cellular plants floating on the

surface layer of water with a lack of stem, root, leaves or vascular system seen more in

eutrophic rich-nutrient waters. Algae are difficult to classify. The various species are very

different from each other. They can be grouped by their color (e.g., yellow, green, and

red, brown). They are different not only based on color, but also in cellular structure and

chosen environment to live. This complexity brings their taxonomy under debate. There

are thousands of species of microalgae (algae) drifting within the water systems every place

of the world. Figure 1.2 shows a simplified classification of this phytoplankton [6].

Algae bloom can be a significant natural phenomena in fresh waters, as a boosting

factor of primary productivity. This natural occurrence may take place seasonally (e.g.,

2



Cyanobacteria Diatom Dianoflagellate Green algae Coccolithophore

DiatomBlue-green algae Green algae Euglenoids

Figure 1.1: Illustrations of key inland water phytoplankton [5].

summer) due to water body characteristics and environmental conditions. The bloom

commonly happens with the presence of a high level of nutrients, particularly some of the

phosphates, collectively with a sunny, warm, and less windy situation or natural causes,

for example a rainstorm. Although algae bloom is an important natural occurrence, in

some cases, severe bloom can have critical issues for the aquatic ecosystem. For instance,

when phosphates enter a water body in high-level amounts, they contribute to accelerating

the growth of living biomass. The algae usually survive one week or, in favorable water

conditions up to an entire summer, resulting in a massive concentration of dead organic

matter which begins to decay. The decomposition needs a significant amount of dissolved

oxygen and leads to severe hypoxia which threatens for fish and the aquatic animals during

the summer [6].

Blue-green algae, commonly known as cyanobacteria, are bacteria (despite their ability

to do photosynthesis) seen in fresh and saline waters. The name blue-green comes from

the bluish color pigment, phycocyanin. The main light harvesting pigments in cyanobac-

teria are Phycobilipigments (phycoerythrin, phycoerythrocyanin, phycocyanin and allo-

phycocyanin). Some of the cyanobacteria species produce a type of toxin, Cyanotoxins,

accommodated in their cells. Cyanotoxins are on the Contaminant Candidate List (CCL).

The most common cyanotoxins are Microcystins, cylindrospermopsin, anatoxins and sax-
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Simplified Taxonomy of the Phytoplankton
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Figure 1.2: Simplified taxonomy of the phytoplankton [6].
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itoxins [11]. As the most common cyanotoxins, Microcystins are generated by Anabaena,

Fischerella, Gloeotrichia, Nodularia, Nostoc, Oscillatoria, Microcystis, and Planktothrix

which can harm the liver, nervous system, or bioaccumulate in common aquatic species

such as fish, mussels, and zooplankton [12]. Cyanotoxins can tolerate both cold and warm,

even boiling water conditions. The World Health Organization (WHO) established pro-

visional value water-quality guidelinees of 1.5 mg/L per liter for drinking water [13] and

concentrations of less than 10 g/L threshold for recreational waters [14].

Chl-a pigment is present in all algae species and cyanobacteria as a primary light har-

vesting pigment responsible for capturing sunlight for photosynthesis along with accessory

pigments such as Chl-b (650), Chl-c(630), carotenoids, phycobilins. Chl-a absorbs light

highly in blue (∼440nm) and red (∼670nm). In algae, which is a eukaryotes phytoplank-

ton, Chl-a produces in chloroplast structure, a place where photosynthesis process happens.

Chloroplast contains membranes, named thylakoid, and Chl-a are embedded in this mem-

brane. In cyanobacteria, which is a prokaryotes cell, Chl-a produces in chromatoplasm

with the lack of thylakoid. Chl-a is a vital indicator of water quality as it is seen in all

phytoplankton groups and is the fundamental measurement and estimating phytoplankton

biomass and primary productivity for monitoring of lakes.

In sum, specific examples of damages happening by harmful algal blooms to humans

and aquatic life have been very well documented by researchers, showing the necessity for

prediction, early warning, and quantification of these algal blooms. Innovative technologies

and methods are varying and changing for water quality monitoring. Advanced measure-

ment technologies which assess and monitor aquatic ecosystems include modeling, portable

and ground remote sensing, and satellite sensors. Knowing the trends of phytoplankton

distribution and frequency and times of a bloom is one of the critical factors to protecting

water resources [11].
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1.3 Rational for use of remote sensing for phytoplank-

ton Chl-a monitoring

The idea of using remote sensing for water monitoring emerged in 1960. The aim was to

study ocean color with the assumption of the possibility to estimate Chl-a as a proxy of

phytoplankton and sea surface temperature (SST) via a remote sensing technique [15,16].

Based on this perception, researchers started to estimate optically active constituents

(OAC), such as Colored Dissolved Matters (CDOM), suspended particles, and phytoplank-

ton remotely [17]. Subsequently the concept of ocean optics and the theory of Radiative

Transfer Equation (RTE) were developed and became the basis of bio-optical modeling.

Nevertheless, the application of these theories and techniques have only been used less

than 30 years for inland waters, which are different compared to oceans.

Morel and Prieur [18] suggested two different classes of water: case I and case II base

on the ratios of 443 and 550 nm (higher than 1.0 assumed case I and less than 1.0 case II).

A newer assumption by [19] was that case I water optical properties are mainly controlled

by phytoplankton where case II water is dominated by other water constituents such as

CDOM and Nan-Algae Particle (NAP). However, the main criticism of this assumption

is that inland water can be dominated by phytoplankton that can be assumed case I.

Nevertheless, this classification is useful to having a view of two water types.

The current launch of new satellites and improvements in processer tools have signifi-

cantly improved and enhanced real-time observing and the fast detection of algae blooms

with improved spatial and spectral resolutions offered by the sensors and enhanced under-

standing of the biophysical properties of waters. Once a photon of light meets a water

medium there is an interaction: the water can absorb the light and change it to heat

energy, which is called the absorption coefficient or absorbance, or it partially changes

the light direction, which is called scattering. The absorption and scattering properties of

water are the foundation for the use of Optical Remote Sensing system (ORS) to use in

measurement of water constituents. These can be expressed in terms of Inherent Optical

Properties (IOPs) and Apparent Optical Properties (AOPs).
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IOPs are those characteristics of the water that are independent of angular radiance

distribution of the light field, and instead, rely on the water medium. Three basic IOPs

related to optical remote sensing sensor are absorption coefficient, volume scattering func-

tion, and beam attenuation coefficient. In general, optical properties are all wavelength

dependent. The beam attenuation coefficient c(λ), which is the total light lost from a beam

penetrating into a water surface, is the sum of scattering b(λ), from suspended matters

and molecular water, and absorption a(λ) of light, by suspended and dissolved matters

and water itself. So, the relation of beam attenuation coefficient and other IOPs is:

c(λ) = a(λ) + b(λ) (1.1)

AOPs depend on the IOPs and also the angular radiance distribution of the incident

light in the water medium. Basic AOP components relative to ORS are irradiance re-

flectance values and various diffuse attenuation coefficients. The Radiative Transfer Equa-

tion makes a connection between the IOPs and the AOPs [20]. Thus, it is the basis for

relating remote sensing reflectance (Rrs) to concentrations of OAC of water which cause

scattering or absorption of light energy. The basic equation RTE is:

Rrs = G(λ)
bb(λ)

a(λ) + bb(λ)
(1.2)

a(λ) = aw + a∗ph(λ)Cchl−a + aCDOM(λ) + a∗NAP (λ)CNAP (1.3)

bb(λ) = 0.5bw(λ) + b∗b,ph(λ)Cchl−a + b∗b,NAP (λ)CNAP (1.4)

where G(λ) is a geometrical scaling factor, a(λ) is total water absorption, Cchl−a is the

concentration of Chl-a, CNAP is the concentration of NAP, aw and aCDOM(λ) are the ab-

sorption of water and CDOM, a∗ph(λ) and a∗NAP (λ) are the specific absorption coefficient of

phytoplankton and non-algal particles, respectively. Also, bb(λ) is the total backscattering

coefficient, which similarly is composed of scattering terms for water itself, phytoplankton,

and NAP [21,22].
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The above two equations are based on the influence of the key water components

including, NAP, pure water, CDM, and phytoplankton. Initially, most of the bio-optical

models for the extracting of water constituents are based on these equations [23]. Given

that water is often optically complex water, a function of any of the three main OAC

may overlay another. Therefore, water types have more requests for instruments with

high spatial and spectral resolution, radiometric sensitivity, high accurate atmospheric

correction, and water constituents retrieval algorithms [24].

1.4 Motivation

In Chl-a studies, remote sensing systems offer a wide regional coverage and high tem-

poral resolution, which are essential for long period monitoring. Problems have arisen

for the case II waters where Total Suspended Sediments (TSS) and CDOM have higher

concentration and their absorptions and scattering do not always have correlation with

phytoplankton, and all components existing in these waters will influence the water optical

properties. Therefore, the overlying absorptions by DOM and NAP in the blue part affect

the blue-to-green based methods, resulting in unsuitability for measuring Chl-a concentra-

tion. This prompted, Chl-a retrieval algorithms to emphasise the spectral bands in the red

and near-infrared (NIR) spectral regions which have become common for retrieving Chl-a.

These Chl-a retrieval algorithms are parameterized to fit sensor channels. Accordingly,

they can frequently be used for estimating Chl-a concentration over the case II waters.

One of the optical satellites most used for these studies is the Medium Resolution Imag-

ing Spectrometer (MERIS). MERIS had spectral bands situated specifically to measure

Chl-a. However, in 2012, this sensor stopped remote transferring data to the Ground.

Ocean and Land Color Instrument (OLCI), continuing for MERIS, and Sentinel-2 MSI are

current instruments with potential to conduct Chl-a studies. New satellite products have

to be tested with ground data. Thus, the main motivation of this research was to exam-

ine two current Chl-a retrieval products, Fluorescence Line Height (FLH) and Maximum

Chlorophyll Index (MCI) using Sentinel-3 and Sentinel-2.
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1.5 Objectives

The European Space Agency has developed free open-source toolboxes for Sentinel-3 and

Sentinel-2. Add-in thematic water processing, there are the processors for OLCI and MSI

provide the possible routine enhanced interpretation of water-leaving signals over case II

waters. Two Chl-a related products, the FLH and MCI, to the sentinel toolbox used to

compute the Chl-a fluorescence and scattering peaks by measuring the height of peaks

above a specific baseline. The two main objectives of this thesis were to test the suitability

of these two products for estimating Chl-a concentration with the new sensors in optically

complex water; and to test the value of Sentinel-3 and Sentinel-2 images with in situ

measurements and assess the suitability of these sensors to monitor lakes susceptible to

intense algal and harmful algae blooms.

1.6 Thesis structure

Following this general introduction which explains the necessity of measuring phytoplank-

ton Chl-a, the logic of using satellite images, and the research motivation and objectives of

this thesis, Chapter 2 overviews bio-optical modelling for inland water evaluation and then

details on bio-optical modelling of phytoplankton Chl-a. Retrieval algorithms and past

and current remote sensing sensors used for monitoring phytoplankton are examined. In

situ data for satellite system and algorithm development and validation are also presented.

Chapter 3 includes the study area, data set, methodology, results, discussion, conclusion,

and recommendations of this thesis.
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Chapter 2

Background

2.1 Bio-optical modeling

In 1975, after the launch of the Earth Resources Technology Satellites 1 (ERTS-1), Gorden

et al. [25] obtained the first bio-optical model using Monte Carlo simulation of the RTE

to build a correlation between AOPs and IOPs. Subsequently, many bio-optical models

have been developed for the aquatic system and can be defined in two ways. First, these

models can be defined based on the aim of describing the biogeochemical state of the water

system. This occurs developing a relationship between radiometric measurements and

water constituents to drive information about physical, biological, geochemical processes

in the aquatic systems in various ways which mostly using statistical approached [26]. The

second way is based on using RTE to drive quantification of IOPs of OAC of water [27], then

drive the OAC concentration through analytical approach, for instance, a ratio between

their absorption coefficient and specific absorption coefficient or backscattering coefficient

to specific backscattering coefficient.

Based on their formulations and their combination with multi-observational platforms

such as in situ, airborne, and space bore, bio-optical models can be classified in five

groups [28]: empirical, semi-empirical, semi-analytical, quasi-analytical, and analytical.

Table 2.1 displays a description of strength and weakness of these approaches.
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Table 2.1: Strengths and weaknesses of bio-optical models

Strengths Weakness Ref.

E
m

p
ir

ic
al

- Not consider physical [29]
- Computational simplicity properties , IOP and AOP
- Easy to develop - Site and time base for certain

parameters
- Necessity of in situ data

S
em

i-
E

m
p
ir

ic
al - Inverse solution [15]

- Physical-empirical base - Still need Recalibration for
- Easy implication different site

- Need in situ data
- Less physical base

S
em

i-
Q

u
as

i-
A

n
al

y
ti

ca
l - More physical base - Need SIOPs [30]

- Limited assumptions - High accurate atmospheric
required correction [25]

- More site transferable - Substantial field work, computing
and large training set [16]

A
n
al

y
ti

ca
l

- Knowledge on physical [31]
- Physical base and more properties of water and

robust boundary condition
- has a unique solution - Rigorous set of equations
- site transferable - Computer time spend on the

numerical calculations
- High accurate atmospheric correction
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Empirical and semi-empirical methods are based on the statistical relationships between

radiometric data and field measurements. The main difference between these two categories

is the assumption made during their development. The empirical approaches try to develop

the best correlation between in situ measurements and remote sensing data focusing only

on statistical estimation; they do not consider any physical or principal optical properties of

water, such as IOPs or AOPs. Empirical methods use statistical techniques such as ANN,

stepwise regression and many iteration techniques to provide a best fit between radiometric

data and field measurements. On the other hand, semi-empirical methods consider physical

properties of constituents such as IOPs and their spectral features, for example absorption

coefficient or backscattering coefficients. For instance, a common assumption considered

in semi-empirical models for Chl-a estimation is to use the Red-NIR band because of the

low combination of water and Chl-a absorption, which causes the scattering to be more

noticeable in the reflectance signal. The output of semi-empirical methods still needs

recalibration using statistical estimators.

Semi-analytical and quasi-analytical methods, in comparison, are based on the inver-

sion of RTE to make a connection between AOP and IOP following several analytical and

empirical procedures. The model inputs AOPs (e.g. water leaving reflectance Rrs(λ)) to

compute IOPs. The IOPs estimated from the semi-analytical and quasi-analytical meth-

ods are verified with the IOPs of in situ water constituents estimated through analytical

methods; for instance, inversion of the ratio of aph(λ) to specific absorption coefficient of

phytoplankton a∗ph(λ) is used in case of Chl-a estimation [16,25].

Chl − a =
aph(λ)

a∗ph(λ)
(2.1)

The main difference between semi- and qausi-analytical methods is the steps applied to

compute IOPs. For example, in the case of semi-analytical, a(λ) is derived from the sum

of absorption of all OAC, aph(λ), aNAP (λ), and aCDOM(λ). However, in the case of quasi-

analytical other OAC absorption is not required, as a(λ) first derives from Rrs directly

and then the other OAC absorption coefficients are calculated from the decomposition of

computed a(λ) [32].
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Table 2.2: Formulation of different types of bio-optical models

Method Equation Ref.

Empirical log(SD) = a(TM1/TM3) + b.TM1 + c [34]

Semi-Empirical [Rrs(665)−1 −Rrs(708)−1]Rrs(753) [35]

Semi-Analytical apc(620) =
[([

R(709)
R(620)

]
[aw(709) + bb]

)
− bb − aw(620)

]
δ−1 [36]

− [εachl(665)]

Quasi-Analytical atw(λ) =
Rrs(709)bb(λ)[aw(709) + bb(709)]

Rrs(λ)bb(709)
− bb(λ)− aw(λ) [32]

Analytical Inversion of a Rrs model [31]

Analytical models are a forward or direct problem of RTE and based on physical char-

acteristics of biological materials that first analyze, and then predict the optical properties

of constituents. These type of bio-optical models are based on the fundamental theories

of optics which apply to a single matter using several equations [33]. For instance, at the

level of a single phytoplankton cell, the extension of IOPs of a cell to a population of cells

is a direct problem from a conceptual and numerical perspective. It can start with using

fundamental information about physical properties of the cell (pigmentation, cell size, in-

tercellular and chemical structure, specific absorption of substances, index of refraction) to

drive the IOPs that parametrize the fundamental information. Then, the computed bulk

of IOPs and the physical properties of the boundaries (such as the illumination conditions

at the surface, properties of bottom reflectance) are used to solve RTE through a compli-

cated math equation to find the radiance distribution. Finally, radiance distribution can

be computed for the bulk of AOPs of interest.
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Radiance Transfer Equation

Boundary 

Conditions

Apparent Optical Properties (AOPs)

Radiance distribution

Reflectance

Remote-sensing reflectance 

Inherent Optical Properties (IOPs)
Absorption (a), Scattering (b),

Volume scattering function (VSF)

Water Composition
Optically active constituents, 

Dissolved substances,

Particle index of reflection

Inverse Model

Apparent Optical Properties (AOPs)

Incomplete light measurement, 

(Rrs at selected wavelengths) 

Inherent Optical Properties (IOPs)

Constraints 
Atmospheric 

Correction

a) Forward model

b) Inverse model

Figure 2.1: The conceptual process involved in solving: a)the forward radiative transfer
problem, b)the remote-sensing inverse radiative transfer problem [7].
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2.2 Bio-optical modeling of phytoplankton Chl-a

The light interacting with algae or cyanobacteria can be changed through scattering, flu-

orescence, and absorption. Bio-optical modeling describes these interactions and obtains

information about optical properties of the phytoplankton and biological characteristics

(such as size, cellular structure, pigmentation) which govern these changes. Given that

phytoplankton is a microscopic, single cellular organism drifting on the surface water, it

cannot be observed by human eyes or sensors. And in fact, a bulk effect of more than

hundreds of cells are what human or remote sensors observe. Therefore, the interaction of

bulk cells with light might be described by the theory of single particle scattering, which

is a framework to understand the microscopic level of light interaction with a single cell

and present the fundamental theories needed for Chl-a bio-optical modelling.

Phytoplankton cells are considerably variable in size, from less than 1 µm to larger

than 10mm. The cells are not only vary by 6 orders of magnitude in size but can be

seen in the form of unicells to a cluster of cells, filaments or colonies. The structure of

cells can be different between each phytoplankton species and show different behaviors.

For instance, in diatoms silica cell morphology or in cyanobacteria gas vacuoles. Despite

diversity in size, form, structure, and behavior that influence the specific optical properties

of the phytoplankton, all phytoplankton species contain a green pigment Chl-a. Chl-a is an

essential indicator for estimating phytoplankton biomass and lake productivity using Chl-a

bio-optical models. These models estimate Chl-a through three pathways: phytoplankton

absorption, fluorescence, backscattering.

2.2.1 Absorption

The spectral absorption coefficient of phytoplankton aph(λ) is a combination of Chl-a and

other accessory pigments which vary in shape and magnitude. The maximum absorp-

tion of Chl-a is seen in blue (440 nm) and red (675 nm) spectral wavelengths. aph(λ)

is related to Chl-a absorption in these two spectral regions in the broad range of 0.01

to 10000 mg m−3 [37]. Phytoplankton absorption and its dependence on the Chl-a con-
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centration, symbolized as Chl-a specific (i.e., per unit of Chl-a concentration) absorption

coefficient, (a∗ph(λ)), is essential for bio-optical remote sensing models to retrieve Chl-a

concentration. However, phytoplankton absorption normalized to Chl-a (a∗ph(λ)) displays

variability controlled by a pigment packaging effect and to a less degree, cellular pigment

composition [37]. Pigment packaging is predicted by theory [38] and depends on cell size

and the concentration of intercellular pigments. Variation in pigment composition and

packaging result from population changes or amount of light received by the population,

nutrient concentration, and other environmental factors. Therefore, in some cases, an in-

verse relation between Chl-a and a∗ph(λ) is observed when the larger cells dominate the

phytoplankton population at high levels of Chl-a concentrations [38]. In addition, this

relationship may also be affected by high community of small-cell cyanobacteria due to

their different intercellular structure as a prokaryotic cell.

A further reason that measuring phytoplankton absorption by passive sensors is chal-

lenging relates to the low signal to noise ratio of Chl-a absorption bands (440, 670 nm) [39].

In vitro, the pigment is first extracted from the sample through organic solvents; then the

absorption and backscattering of a controlled light beam measured by a lab spectropho-

tometer. However, in remote sensing, measuring the wavelength incident with the pigment

has a very small signal to receive to the sensor, particularly in a high Chl-a concentration.

Consequently, the low signal causes a high error for measuring absorption especially in

blue bands. The blue band is limited to measuring the absorption of Chl-a in low con-

centration, less than 1.5 mg m−3 [40]. Although the reflectance of 665nm is insensitive

to increasing Chl-a concentration, many algorithms have been developed based on Chl-a

absorption focusing on the blue bands.

One of the simplest algorithms is the empirical algorithm related to the ratio of blue/green

bands (normalized to increase the SNR). This ratio is based on the assumption of the

increasing absorption in the blue bands (near 440 nm) with the increase in the Chl-a con-

centration (take into account the theoretical threshold of unpackaged Chl-a absorption

is 0.027 m2mg−1 [41]). For instance, many blue/green ratio algorithms (e.g., SeaWiFS,

MODIS, MERIS, OLCI products) have shown an effective result for the ocean and some

clear lake waters. The MERIS (OC4Me) product [42], which is not purely empirical, re-
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mains the most effective empirical approach and has been used globally for ocean color.

In case ll waters that have absorption of other constituents, the blue reflectance is

affected by other components such as CDOM, suspended organic and inorganic particu-

lates. For instance, humic acid, as a principal component of humic substances used as

a soil supplement mostly in agriculture, strongly affects the aph(λ) at around 440 nm.

The absorption of tripton, suspended inorganic matter, is the same as CDOM in the blue

band [43]. Because of this extra absorption, simple empirical correlation of the ratio and

Chl-a is unsuccessful. Several IOP inversions (inversion of bio-optical physical models)

attempt to retrieve the other absorption coefficient of water constituents from Rrs [44],

or through alternative nonlinear optimization approaches, such as ANN to indirectly es-

timate Chl-a [45]. However, the retrieval of Chl-a from the IOP inversion (based on the

above discussion) has uncertainty when Chl-a concentration is derived from aph through

the ratio of aph to a∗ph. The nonlinear optimization approaches that estimate Chl-a through

local parametrization might have the advantage of using the entire spectrum, but do not

consider IOPs or physical knowledge of the water system. These methods while using

synthetic training of datasets, try to estimate Chl-a through statistical and mathematical

procedures [8].

From the sensor design perspective, absorption-based methods required a very high SNR

in the selected bands and also precise channels for the atmospheric correction. Aerosol ab-

sorption and scattering highly influence the blue region of the spectrum. These will be

more complicated when the NIR spectra cannot be assumed dark pixel due to particulate

backscattering radiances for atmospheric correction approaches. Although these require-

ments are configured in the ocean sensors, such as MODIS, MERIS, OLCI, etc., the spatial

resolution of these instruments limits their performance since the full resolution band has

not the same SNR of the reduced resolution. Atmospheric correction algorithms have im-

proved the Chl-a retrieval methods consequently using the absorption approach (Chl-a less

than 0.1mgm−3) and combined absorption with the other pathway approaches (Chl-a less

than 10mg m−3) for the ocean and clear waters [46].
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2.2.2 Fluorescence

When a phytoplankton pigment absorbs a photon of incident light, the molecule is ele-

vated from its ground state to its singlet excited state. The excited molecule returns to the

ground state in three possible ways. It can be passed to photochemical reaction centers

(photosystems 1 (PSI) and 2 (PSII)) and use in the photosynthesis processes. And, the bal-

ance of the energy is emitted as a photon (fluorescence), named photochemical quenching,

or in the presence of excess light is emitted as heat (non-photochemical quenching). Both

NPQ and fluorescence are photoprotective mechanisms which reduce the excess energy [47].

In algae a series of pigment-protein complexes from light-harvesting complexes (LHC)

embedded on the thylakoid membrane transfer the absorbed light to the PSII and PSI to

be used in photoprotective mechanisms. In the low light states, they absorb light and move

the excitation energy to the photosystem reaction center; in the high light condition, by

dissipating the energy as heat they perform a role as a photoprotection reaction to decrease

the excited state lifetime of the pigments.

The variety in chloroplast pigmentation of phytoplankton is very large. The pigments of

photosynthetic microalgae comprise 10 different Chlorophyll (such as Chl-c, Chl-a, Chl-b,

and divinyl a and b), less than 30 major carotenoids (such as carotenes and xanthophylls),

and three main groups of phycobilins (such as allophycocyanins, phycocyanins, and phy-

coerythrins [48]. In a microalgae chloroplast organelle, these pigments are bonded to

proteins forming various pigment-protein complexes that have variable taxonomy. These

diverse pigment-protein complexes cause different photobiological responses (processes that

involve the interaction with light). They subsequently impact the photophysiological char-

acteristics of the species, for example, light harvesting, photoprotection, photoacclimati-

sation, and photoadaptation [49]. In fact, the variability in pigment-protein of LHCs is

responsible for the variability of the absorption coefficient and fluorescence spectral shape

in a different type of phytoplankton species [50].

Phytoplankton also displays substantial intraspecific variation. For instance, the same

species might have different pigment content that is mostly due to photoacclimation, ad-

justments in the photosynthetic pigment content in response to a light condition to max-
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imize growth rate in a different light environment (e.g., irradiance, spectral composition,

and day length) [51]. Or, more light-harvesting pigments will be seen in cells which grow in

a low light condition than high light. The studies have shown that intraspecific variation

is also seen due to photoacclimation plasticity (adapted to high irradiance) which affects

bio-optical spectral characteristics among species. The difference between these two photo-

physiological characteristics is that photoacclimation does not change the genetic structure

of the species, however photoacclimation plasticity does [52].

A case study is the large raphidophyte Gonyostomum semen, a nuisance freshwater

microalgae which has expanded to several new habitats and currently dominates the algae

population in many lakes worldwide. The bloom causes allergic reactions due to mucus

threads and trichocysts in people swimming in the lakes and also clogs filters for water

treatment [53]. Past evidence showed that this expansion and high competitiveness of

G. semen with other algae happened for several reasons: first, environmental variables,

mainly temperature and the length of the growing season, watercolor (e.g., ongoing brown-

ification of waters), and lake morphometry [54]. Second, manipulation of food cycles (e.g.,

biomanipulation of algal blooms through selective removal of zooplanktivorous fish [55,56]).

Third, multiple variables that make a favorable condition for the phytoplankton (e.g., in-

creased concentrations of DOC, low PH, high Phosphors [57]), and also its distinct ability

to migrate through water column [58]. The new studies [59], however, are showing that

changes in the photophysiology of G. semen (e.g., Pigment composition, photoadaptation

to turbid waters, photoacclimation reactions to light climate) are the keys to its ecological

success compared to other phytoplankton species and strains of Raphidophyceae. This

raphidophyte species was previously able to photosynthesize in a very low light condition

because of having enhanced light harvesting system, however, with lack of enough pho-

toprotective capabilities since they were able to migrate in water layers in high intensity.

Then, through time living in diverse habitats and light conditions, G. semen saw significant

alterations in pigment ratios within the strains due to genetic adaptation to the different

situations. For instance, in addition to the pigments already known for the raphidophytes

species, studies identified a new pigment, named Alloxanthin, that has not seen in raphi-

dophyte species before. This finally indicates an enhancement in photoprotective functions
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in the species. As result, the regulation of pigment content and the variability in Pigment

composition have changed the bio-optical signature of G.Semen strain [50].

With regard to pigment composition, PSII and PSI are stable and insensitive to pho-

toacclimation; therefore, as previously discussed, most of the variability is due to pigment-

protein complexes from LHCs (which transfer absorbed light to the reaction center com-

plexes in PSII and PSI). In an algae cell, PSII and PSI are two of the components of

photosynthesis. Both contain LHCs and the bulk of the pigments that located in. Chl-a,

as well as the Chl-a, bind to different protein complexes, and have different absorption

and fluorescence features. In vivo, it is shown that Chl-a fluorescence emission in the red

region is a function of excited wavelengths associated with the different wavelengths of

light absorbed by PSII. Chl-a fluorescence in PSll is near 685 nm and at the longer bands

(730-740 nm),whereas in PSl, all light is emitted at wavelength longer than 700 nm.

In eukaryotic phytoplankton, PSll contains more than 80% of the Chl-a pigments. Thus,

the LHCs pass a high amount of absorbed light to this section, subsequently constituting

95% of the PSll fluorescence emission . Since Johnsen et al. [60] found that fluorescence

excitation at the red region emission is related to the fluorescence of Chl-a in the PSll only,

studies have focused more on Chl-a fluorescence measurement around 685 nm. However,

in prokaryote phytoplankton, cyanobacteria, Chl-a pigments (up to 70%) are contained

in PSl which fluoresces light at wavelengths longer than 700 nm. This difference mainly

related to different levels of pigment composition among phytoplankton groups which is

highest between prokaryotes and algae [61]. In cyanobacteria, phycobilipigments are the

primary light-harvesting complexes that pass the excitation light to either PSI or PSII,

and they consist of pigments such as phycoerythrin, phycoerythrocyanin, phycocyanin,

and allophycocyanins. State transition ( physiological mechanism that regulates absorbed

light between PSll and PSl) in the cyanobacteria photosystem flows the excitation light to

the PSl; consequently, fluorescence emission reduces from PSll. Thus, in cyanobacteria the

intensity of fluorescence signals is very low, around 685 nm compared to in algae [61].

Photochemical quenching is an active process, and fluorescence signals emitted from

phytoplankton cells are observed by the sensor. Chl-a estimation using fluorescence ap-

proaches is based on the assumption that Chl-a concentration is proportional to received
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signals. This assumption is valid for algae cells since 80% of the Chl-a is in the PSll.

However, it is not accurate in the case of cyanobacteria [62] (as discussed above). Wynne

et al. [63] noted that in water dominated-cyanobacteria, a significant trough is seen near

685 nm. Therefore, going forward our discussion will be limited to the algal fluorescence,

with respect to other methods required for cyanobacteria detection (e.g., considering PSl

emission [61]).

In vivo, Chl-a fluorescence is measured by devices that detect the effective quantum

yield from PSll near the 680 nm wavelength under a precise illuminated beam. Factors

such as light intensity, intercellular absorption, and fluorescence emitted from the PSll,

are assumed to be constant [64] [45]. Thus, the method gives a rough estimation of Chl-

a . However, in vitro, Chl-a measurements are more precise and the assumptions are

mostly accurate because Chl-a is dissolved in an organic solvent at a given temperature.

In the real environment (nature) when the phytoplankton absorbs sunlight energy, Chl-a

fluorescence (named sun-induced fluorescence, SICF) is highly variable and depends on

the physiological status of the cells, the presence of other phytoplankton species, and the

spectral distribution of irradiances.

Fluorescence Line Height Algorithm (FLH)

Given that the Chl-a is proportional to the SICF emission, many studies started to

examine its validity to measure Chl-a concentration in coastal waters. Results showed

a good correlation between Chl-a and SICF (e.g., [65–67]). These researches led to the

configuration of a few bands on the ocean satellite sensors (such as MODIS, MERIS, GOCI,

and OLCI). These bands are positioned slightly differently in each sensor, but they are all

located in the red-edge region, one close to the fluorescence peak and two bands outside

of the fluorescence peak which aim to extract fluorescence radiance through a fluorescence

light height (FLH) algorithm [68]. The FLH algorithm estimates the extra reflectance in

the fluorescence peak band above a baseline. This baseline connects two reflectance bands

positioned outside of the fluorescence peak. This algorithm is identified as [69].

FLH = L2 − [L3 +
(L1 − L3)(λ3 − λ2)

λ3 − λ1
] (2.2)
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where L1, L2, and L3 are radiances at wavelengths λ1, λ2 and λ2, respectively.

The FLH algorithm is more accurate when used for case I and oligotrophic waters.

This is because the atmospheric correction works better for ocean waters, and also the

elastic scattering signals are low above the baseline curve. Recently, in inland waters,

with the improvement of atmospheric algorithms, turbidity is the main source of reducing

the sensitivity of the FLH algorithm. The reflectance peak around 700 nm influences the

fluorescence peak around the 685 nm retrieval. This reflectance peak is related to increased

water absorption, decreased Chl-a absorption, increased particulate backscattering in this

spectrum region [70]. Despite CDOM absorptions (∼440 nm, < 1 m−1) having low effect on

FLH signals, suspended sediments (5 gm−3) result in significant error due to the particulate

scattering. Moreover, FLH application in high phytoplankton biomass (> 20mgm−3 [68])

is hindered by a peak reflectance overlapping the fluorescence reflectance. This peak shifts

to the longer wavelengths with increasing Chl-a concentration (e.g., to 705 nm at 100

mgm−3). Therefore, the FLH algorithm is more applicable for oligo to mesotrophic waters

less than 20 mg m−3 [71].

Accurate result from the FLH algorithm will require high radiometric sensitivity (SNR),

a precisely located narrow bandwidth, and bands related to atmospheric correction.These

criteria to some extent are configured to the ocean sensors such as MODIS, MERIS,

OLCI [72]. In addition, fluorescence light detection and ranging (LiDAR) has shown a

potential for Chl-a measurements in case ll [73]. Despite the sensitivity of FLH to the

atmospheric effects, the FLH algorithm effectively normalizes atmospheric signal effects,

in addition to selecting FLH bands having proxy of less than 100 nm [62]. Therefore, FLH

methods prove not to rely on aerosol correction (atmospheric corrections take account

Rayleigh scattering and absorption) in waters with small NIR reflectance [74].

2.2.3 Scattering

Phytoplankton or particulate backscattering (bb,ph) is the third approach to indirectly es-

timating Chl-a concentration, in addition to the two direct approaches of absorption and

fluorescence. Measurement of optical backscattering of phytoplankton may require of use
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Mie scattering theory as phytoplankton cells assume a spherical homogeneous sphere [75].

However, this assumption has been repeatedly criticized [76] due to its simplicity and in-

adequate reproducing the backscattering of phytoplankton cells [77]. Light scattering by

phytoplankton requires more sophisticated models (e.g; two or three layer models) which

consider the complex cellular structure of phytoplankton such as external ( e.g. cell wall)

and internal (e.g. chloroplast)cell structures [78].

The spectral variability of scattering properties is very large between and within the

phytoplankton species. This is basically due to the difference of particle cell shape and

size (particle cell distribution), morphology, and internal structure (real refractive index)

in different phytoplankton cells. Laboratory measurements of scattering properties of phy-

toplankton species appear strongly peaked in forward direction and weakly (less than 1 %

) scattering in backward directions. Since observed reflectance is proportional to forward

scattering, backscattering of phytoplankton is the interest to be used in the Chl-a mea-

surements [79].

Studies have shown that the morphological and structural features of the phytoplankton

cell have the most significant role on their light-scattering properties [5]. For instance, al-

gae have more complex internal structures (e.g chloroplast, chromosome, bacillariophyceae)

compared to cyanobacteria that have less internal structure. In contrast, the honeycomb-

like structure gas vacuoles of cyanobacteria remarkably influence the behaviour of scattering

and increase its magnitude and spectral features [80]. In addition, the gas filled vacuoles

help cyanobacteria to float very near the water surface, which causes to increasing bright-

ness and reflectance signals [62]. This specific structure of cyanobacteria can be used as the

main indicator for distinguishing from algae [81]. There are also species surrounded by sili-

cate mantels such as silica cell walls in diatoms which strongly influence the backscattering

coefficient.

On the other hand, studies show that scattering does not depend on the cell size, and

in some case studies show an inverse relationship between backscattering coefficient and

cell size [82]. nevertheless, some evidence has shown a positive relationship of cell size and

backscattering in dinoflagellate; however, some researchers have argued that low reflectance

in dinoflagellate bloom might be due to the algaes ability to regulate in the water column,
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and high backscattering values might be from other species present such as cyanobacteria

or detached structures [83].

Normalizing backscattering of phytoplankton to the Chla-specific backscattering coef-

ficient (b∗b,ph(λ)) use to determine the mass concentration of Chl-a (derived from phyto-

plankton cells). For instance, bb(λ) = c b∗b,ph(λ) (unit m2 mg−1) which range from 0.02

related to the low scattering algae cells to 12× 10−3m2mg−1 related to the dinoflagellates

and cyanobacteria (Trichodesmium) due to their specific cellular structure (as previously

discussed) [25].

Observations of phytoplankton cultures show that different phytoplankton groups and

community structure have different particulate size distribution, cellular morphology and

composition which together lead to a highly species-specific relationship between Chl-

a and bb,ph relationships [83]. In fact, these relationships are based on the particulate

characteristics of cells without any interaction directly with the cell pigments. Furthermore,

coenobium (colony of algal cells) also influence the Chl-a and bb,ph relationships. In another

words, with increase in density of the cells backscattering of the cellular material increases

as well as the Chl-a concentration.

Quibell [84] indicates that remote sensing of algae in case II waters is based on increased

scattering by the phytoplankton cells, not increased absorption by Chl-a. Subsequently,

many studies have examined approaches based on algal backscattering [85]. The results

admit that this bio-optical relationship, bb,ph vs. Chl-a relationship, is significant and best

described, particularly in distinct regimes and types. Phytoplankton backscattering signals

can be noticeable in inland waters with Chl-a larger than 10 mg m−3, which contribute

distinct peaks around 560 and 700 nm [70, 71]. However, the scattering from red-edge

is preferred over the peak near 560 nm. This is due to the CDOM and other accessory

pigments influences on the shorter wavelengths.

Chl-a concentration has a strong correlation with the height and position of the red

reflectance peak. This peak shifts to longer wavelengths as Chl-a concentration increases.

The peak reflectance in the red-edge results from increased water absorption in the longer

bands ( > 700 nm), the influence of Chl-a absorption and fluorescence bands at 665 nm and
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680-690 nm, respectively [68]. In addition, recent studies show that absorption and fluores-

cence also contribute to the the shift of the peak position to the longer wavelengths [68], and

also the results displays a specific relationship associated by species types. For instance,

cyanobacteria has a depression in the reflectance at 680 nm [62,63].

The ratio of reflectance around 700 nm to 670 nm, drives the simplest red-edge scattering-

based algorithms used effectively to determine Chl-a in high biomass waters. Furthermore,

a strong correlation (R2 > 80)is shown between the ratio and Chl-a [68]. More pronounced

ratio forms are the three-band algorithm proposed by Gitelson et al. [35] or four-band

algorithm by Le et al. [86], with an added band near 700 nm. The additional band is

included to improve the three-band algorithms and reduce the effect of scattering of sus-

pended matter in the NIR region. The Normalized Difference Chlorophyll Index (NDCI)

has proveded better results compared to two- and three-band NIR models for most of the

sensors such as MERIS, MODIS, WorldView-2, and OLCI Sentinel-3 [87]. Modified FLH

algorithms are the peak height models, such as the reflectance line height (RLH) [88] or

scattered line height algorithms [71] which are better suited to highly turbid waters showing

R2 > 0.85 [89].

The most current used red-peak scattering-based algorithms for waters with high Chl-a

concentrations are the MCI, which use the RLH model and the 709 nm band [90], the

Maximum Peak Height (MPH) [62], which is developed to determine trophic status and

indication of potentially harmful phytoplankton blooms (peak between 680 and 750 nm

bands), and the Adaptive Reflectance Peak Height model (ARPH) for HICO [91] which

is derived using bands centered at 690, 696, 702 and 708 nm. These algorithms can also

drive using RTE, utilizing Chl-a specific absorption and backscattering coefficients [68,92].

An algorithm developed for MERIS, the Cyanobacteria Index (CI), proposed by Wynne

et al. [95] is based on the replaced fluorescence peak with a distinct trough at 681 nm. The

CI is an FLH algorithm that is used which measures the depth of the absorption trough at

681 nm using 709 and 665 nm bands to connect the baseline curve. The positive values of

the CI are considered an indication of presence cyanobacteria. However, this assumption

may not be valid, since the lack of signal might be related to high scattering and absorption
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Table 2.3: Some of the most current scattering based Chl-a retrieval models.

Equation λ1 λ2 λ3 Ref.

Chl − a ∝ Rrs(λ2)

Rrs(λ1)
665 708 [93]

Chl − a = [R(λ1)
−1 −R(λ2)

−1]R(λ3) 670 710 750 [35]

Chl − a ∝ Rrs(708)−Rrs(665)

Rrs(708) +Rrs(665)
665 708 [87]

MPH∗ = Rmax − [R1 +
(R3 −R1)(λmax − λ1)

λ3 − λ1
] 665 885 [62]

RLH∗∗ = L2 − L1 −
(L3 − L1)(λ2 − λ1)

λ3 − λ1
670 700 850 [88]

MCI = L2 − k∗∗∗[L1 +
(L3 − L1)(λ2 − λ1)

λ3 − λ1
] 680 708 753 [94]

*Rmax = max(R681, R709, R753)
** Li is radiance in band i=1,2,3, *** k = 1.005

effects.

Like the FLH model, the red-edge peak scattering-based algorithms have the advan-

tage of insensitivity to atmospheric effects, spectral proximity, and ability to detect high

reflectance signals from high-biomass waters. Different correlation methods (such as linear,

polynomial, power law, quadratic, etc.) are applied to make a relationship between Chl-a

and these models.

26



Figure 2.2: Comprehensive overview of all recent band arithmetic Chl-a retrieval applica-
tions (source: figure 1.1 Odermatt et al. [8]).

2.2.4 Chl-a retrieval algorithms

Odermatt et al. [8] provided a comprehensive overview of all recent band arithmetic Chl-a

retrieval applications using optical satellites such as SeaWiFS, MODIS, MERIS, Landsat,

and HICO to compare various methods and corresponding sensors for Chl-a retrival meth-

ods. Figure 2.2 presents a summary of 2006-2011 published papers using the semi-empirical

and empirical methods for Chl-a estimation in different concentration ranges. Addition-

ally, Blondeau-Patissier [96] discuss and compare different algorithms types used for the

detection, mapping, and analysis of phytoplankton blooms from various sensors. Table 2.4

displays some different forms of spectral bands used by algorithms from the blue-green

and red-NIR spectral region using ocean sensors such as The Coastal Zone Color Scanner

(CZCS), MODIS, MERIS, and SeaWiFS.
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Table 2.4: Different band compositions used for CZCS, MODIS, MERIS, and SeaWiFS.

Product Sensor Bands(nm) Ref.

Band ratio
OC3C CZCS 443,520,550 [19]
OC3M MODIS 443,448, 547 [97]
OC4 SeaWiFS 443,490,510,555 [98]

Derivative

FLH MODIS-Terra 667,678,746 [99]
FLH MERIS 665, 681, 708.75 [100]
MCI MERIS 681, 708.75, 753 [100]
FAI MODIS 667, 859, 1240 or1640 [101]

Spectral CIA MODIS-Aqua 443, 555 , 670 [102]
band CIA SeaWiFS 443,555,670 [103]
difference NDCI MERIS 708,665 [87]

2.3 Past and current satellite instruments used for

monitoring phytoplankton Chl-a

Most of the satellite sensors used in water remote sensing operate on sun-synchronous

low orbit satellite platforms. These satellites acquire data with a spatial resolution of a

few meters to more than 1 km and temporal resolution of 1 to 15 days. In the 1970s,

passive satellites were first launched to display land and surface water. For example,

the Thematic Mapper (TM) (advanced, multispectral scanning, Earth resources sensor)

used to retrieve maps of Chl-a [104], and the results showed that in ideal conditions

the TM could be used with limited accuracy. The long-term archive Landsat series over

40 years have been helping to study long-term trends in inland waters. For instance,

Landsat ETM+ was used over 10,000 Minnesota lakes to drive a map of Chl-a and other
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water constitutes [105, 106]. Later improvement of spectral and radiometric sensitivity of

sensors, such as NASA Advanced Land Imager (ALI) and hyperspectral Hyperion sensor,

improved the retrieval of Chl-a [107,108]. Launched in 1978, the CZCS was the first sensor

with a spatial, spectral and radiometric resolution suited for observations over the ocean

waters. Many studies used CZCS for dynamic phytoplankton blooms in marine waters,

but the unsuitable spatial resolution of the sensor, 825 meters, limited its applicability to

large-scale optically complex waters, particularly those with high phytoplankton biomass,

such as Lake Michigan [109].

Ocean color sensors followed the CZCS with Sea-Viewing Wide Field-of-view Sensor

(SeaWiFS). The SeaWiFS ocean color products for monitoring Chl-a concentration as-

sessed Lake Erie [110]. In 1986, SPOT-1 (Satellite Pour l’Observation de la Terre), en-

hanced with a relatively high spatial resolution, 10-20 m, followed to SPOT-4 to provide

HRVIR (High-Resolution Visible and Infrared) in an improved version with the same 26-

day temporal resolution launched by France. In 1999, IKONOS with a spatial coverage of

1 m and temporal resolution of 1-3 days was initiated by a private sector. NASA launched

MODIS with a improved spatial resolution of 250-300 m for ocean studies, and have used

in numerous large-lake studies of Chl-a; that proved the potential of ocean sensors for

large-scaled inland waters, despite their relatively coarse spatial coverage, and improved

real-time monitoring applications [111].

MERIS provides an enhanced spatial resolution and additional key bands which have

improved remote sensing of phytoplankton bloom monitoring systems [62,112]. MERIS is

a push broom system designed to deliver data while the sky is clear or moderately cloudy.

This sensor’s characteristics are a field of view of 68.5 around nadir with an 1150 km swath

width, 300 m spatial resolution, spectral resolution of 15 bands across the range of 390 nm

to 1040 nm (VIS-NIR), and bandwidth between 2.5 and 30 nm [4]. Table 2.5 displays the

satellite sensors recently used in phytoplankton studies.
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Table 2.5: List of satellite instruments used for phytoplankton Chl-a with their specific
characteristics [1].

Satellite Period of Spatial No. Radio- Temporal Swath Limitation
sensor operation (m) bands metric (days) (km)

Landsat 5 1984-2012 30/120 7 8 bits 16 180
Landsat 7 1999-present 30/60 7 8 bits 16 180 Spect., Temp.
Landsat 8 2013-present 30/100 10 12 bits 16 180 Spect., Temp.
Spot-5 2002-present 10/20 4 8 bits 2-3 60 Spectral, cost
Spot-6 2012-present 6 4 12 bits 2 60 Spectral, cost
Spot-7 2014-present 6 4 12 bits 2 60 Spectral, cost
RapidEye 2008-present 5 5 12 bits 1 77 Spectral, cost
IKONOS 1999-present 3.2 4 11 bits 3.5 11.3 Spectral, cost
QuickBird 2001-present 2.44 4 11 bits 3 16.5 Spectral, cost
GeoEye-1 2008-present 1.65 4 11 bits 4-5 15.2 Spectral, cost
WorldView-2 2009-present 1.85 8 11 bits 1.1 16.4 Cost, swath
WorldView-3 2014-present 1.24/3.7 28 11 bits 4.5 6 Cost
CZCS 1978-1986 825 6 8 bits Varies 1,566 Spatial, Spect.
SeaWiFS 1997-2010 1,100 8 10 bits 1 2,801 Spatial, Spect.
MODIS–Terra 1999-present 250–1000 36 12 bits 1 2,330 Spatial, Spect.
MODIS–Aqua 2002-present 250–1000 36 12 bits 1 2,330 Spatial, Spect.
HICO 2009-present 90 87 12 bits Varies 42*192 Experimental
Hyperion 2000-present 30 220 12 bits Varies 7.5*100 Experimental
MERIS 2002-2012 300 15 12 bits 3 1,200 Spatial
Sentinel-2 2015-present 12–60 13 12 bits 5 290 Spectral
Sentinel-3 2016-present 300 21 12 bits 2.8 1,269 Spatial

2.3.1 Sentinel-3

Sentinel-3 satellite is a European earth observation mission consisting of two satellites:

Sentinel-3A launched on 16 February 2016 and Sentinel-3B on 25 April 2018. It is primarily

for sea surface topography, temperature, and color application with high accuracy when

used in ocean forecasting systems, and environmental and climate monitoring. The mission

is continuing the ERS, Envisat and SPOT satellites. Sentinel-3 is a multi-instrument

carrying four payloads: Ocean and Land Color Instrument (OLCI), Sea and Land Surface

Temperature Radiometer (SLSTR), SAR Altimeter (SRAL), and Microwave Radiometer

30



(MWR) which is designed for seven-years operational time. The OLCI data include Near-

Real-Time (NRT), delivered less than 3 hours after data acquisition, and Non-Time Critical

(NTC). The NRT data use the ECMWF meteo forecast data; and NTC products use the

ECMWF analysis data, therefore, at Level 1, the difference between the OLCI NRT and

NTC data is in the ancillary meteo data.

The OLCI main characteristics are 1270 km swath-width, push broom spectrometer

(with five cameras that reduce sun-glint contamination tilting cameras in the westerly di-

rection), 300m spatial resolution, and 21 bands (0.4-1.02 µm) (Table 2.5). The two in-orbit

Sentinal-3 satellites have a revisit of less than two days over daylight (sun-synchronous) in

full resolution (FR). Figure 2.3 displays three different OLCI products associated with the

three processing level: level-0 product generated from level-0 processing which includes

unpacking (extract raw data in instrument source packet (ISP)) for quality check, and

appending annotation. In this level, the raw input data are checked for synchronization

frame, duplicate numbering or invalid packets, etc. and then sorted in time. Next, several

quality flags are generated and associated with metadata. These quality flags provide info

regarding the nominal, contingency, and degraded processing, and satellite maneuver.

The level-1 product generated from level-1 processing includes TOA radiance which is

calibrated radiometrically and characterized spectrally. these are georeferenced, quality-

controlled, primarily pixel classified (land, water, cloud masks), and annotated with satel-

lite position through three types of processor (earth observation mode, radiometric mode,and

spectral calibration mode). The data are produced in FR (300 m) and Reduced Resolution

RR (1.2 km) for the whole earth.

Level-2 products generated from level-2 processing aim to drive geophysical quantities

for ocean, land and atmosphere application. The first process is involved with the common

pre-processing, including conversion of data from TOA radiances to reflectance, cloud

masking, corrections for gaseous absorption (i.e., H2O, O3)and smile effect (variation of

the detected wavelength across the field of view), Pixel classification (glint reflectance, land

and water), and retrieval of the total column water vapor. Then, based on the nature of

the corrected pixel, the products are involved with two primary processes, ocean and land

processing. Finally, the output provides expected geophysical products corresponding to
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Figure 2.3: A schematic overview of OLCI data processing levels
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Table 2.6: List of Sentinel-2 MCI product types available for users.

Product Level Description

Level-1B
- Radiometrically and geometrically corrected
- TOA radiance in sensor

Level-1C

- TOA reflectance
- Resampled with a constant Ground Sampling Distance (10, 20 and 60 m)
- Include: Land/Water, Cloud Masks and ECMWF (total column of ozone,

total column of water vapour and mean sea level pressure).

Level-2A

- Bottom Of Atmosphere (BOA) reflectance
- Include: Aerosol Optical Thickness (AOT), Water Vapour (WV),

Scene Classification Map (SCM), Quality Indicators
for cloud and snow probabilities at 60 m spatial resolution

the surface type. (ESA website and sentinel-3 handbook).

2.3.2 Sentinel-2

Sentinel-2 is an ESA, high-resolution multispectral imaging, polar-orbiting satellite mis-

sion which provides SPOT and LANDSAT image types data designed for seven years

lifetime. The full Sentinel-2 mission includes twin satellites in the same orbit, Sentinel-

2A, launched on 23 June 2015 and Sentinel-2B on 7 March 2017. Sentinel-2 carries a

push-broom Multi-Spectral Instrument (MSI) payload with the aim of land cover change

detection, agricultural applications, coastal zone, inland water and Glacier monitoring.

The sensor characteristics are a swath-width of 290 km Field Of View (FOV), Multi-

spectral data with 13 bands (443-2190 nm) from VNIR to SWIR (Table 3.4), spatial

resolution at 10 (four visible and near-infrared bands), 20 (six red-edge and shortwave

infrared bands) and 60 m (three atmospheric correction bands), 5 days revisit, 12-bit

radiometric resolution, sun-synchronous orbit at a mean altitude of 786 km. From five

Sentinel-2 product types, Level-0, Level-1A products are not available, and Level-1B, Level-

1C, and Level-2A products are available for users and listed in Table 2.6.
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2.4 In situ methods

A primary requirement for satellite algorithms and validation is adequate set of radiometric,

optical and chemical field measurements, so called match up in situ data. For instance,

field data conducted in time and location of satellite overpass; in addition with a standard

set of measurement protocols and guidelines to be accepted for the algorithm development

and validation. These variables are classified as the radiometric measurements, IOPs,

biogeochemical and bio-optical measurements, and ancillary data and metadata (which

are necessary for support, analysis and quality control of other quantities) [113].

Table 2.7: Radiometric quantities for satellite system and product development and vali-
dation.

Radiometric Quantities Required
Highly Specialized

Derived
Desired Measurement

Downwelled Irradiance X
Upwelled Radiance X
Upwelled Irradiance X
Radiance Distribution in water X
Water Surface Radiance in air X
Incident Irradiance in air X
Normal Solar Irradiance X
Sky Radiance X
Diffuse Sky Irradiance X
Direct Sun Irradiance X
Water-Leaving Radiance X
Remote Sensing Reflectance X
Attenuation Coefficient X
BRDF* X
Aerosol Optical Depth X
Aerosol Phase Function X
Absorbing Aerosol Height Profiles** X

* Ocean Bidirectional Reflectance Distribution Function
**LIDAR Profilometer)

Table 2.7 displays a list of in situ radiometric quantities for the satellite ocean color sys-
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Table 2.8: Optical properties for algorithms and IOP-based algorithm development and
validation.

Inherent Optical Properties Required
Highly Specialized

Derived
Desired Measurement

Beam Attenuation Coefficient X
Absorption Coefficient X
Backscattering Coefficient X
Scattering Coefficient X
Volume Scattering Function X
Particle Absorption Coefficient X X
Dissolved Material Absorption Coefficient X
Non-Pigmented Particle Absorption Coef. X
Phytoplankton Absorption Coefficient X

tem and algorithm validation. Some quantities can also be derived from non-radiometric

parameters (e.g., IOPs). For instance, Rrs can be derived from the ratio of Lw(λ)/Es(λ), or

indirectly from the IOPs ratio bb(λ)/a(λ). Radiometric profiles such as upwelling radiance,

Lu(λ, z), downwelling irradiance, Ed(λ, z), measurements of surface irradiance, Es(λ, 0
+)

usually collected near-simultaneously either on the deck of the vessel or nearby buoy (e.g.

surface incident spectral irradiance in air, Ed(0
+, λ)) are the fundamental quantities re-

quired for measuring normalized water-leaving radiances (LWN), or Rrs. When available,

other radiometric measurements listed in the Table 2.7 are related quantities for algorithms

development programs.

To develop and validate semi-analytical algorithms, it is required to obtain optical

quantities such as absorption a(z, λ), beam attenuation c(z, λ), and backscattering bb(z, λ)

coefficients. In situ, or laboratory spectrophotometer or fluorimeters use to measure the

filtered water sampled in different depth to drive the IOPS. Table 2.8 shows a list of IOPs

required for algorithms and semi-analytical IOP based approaches. Pigments Concentra-

tion by High-Performance Liquid Chromatography [mg m−3 or µg L−1] and fluorometric

methods and fluorometric-determined concentrations are used to measure the phytoplank-

ton pigment Chl-a and the effects of other accessory pigments and water constitutes on

water-leaving radiances. HPLC methods are more accurate than the fluorometric deter-

35



Table 2.9: In situ biogeochemical and bio-Optical properties of water measurements for
bio-optical algorithm development and validation.

Biogeochemical and Bio-Optical Quantities Required
Highly Specialized

Derived
Desired Measurement

Pigment Composition (HPLC method) X
Chl-a Conc. (Fluorometric method) X
Phycobiliprotein Concentrations X
Coccolith Concentrations X
Total Suspended Particulate Material (SPM) X
Fluorescence Intensity, in situ profile X
Coloured dissolved organic material X

minations which often have a systematic error. However, fluorometric methods are simple

and less costly which allow having a large number of samples at a region to be studied. Ta-

ble 2.9 shows a list of bio-optical measurements required for bio-optical model assessment.

Ancillary data and metadata including environmental variables, geographical, and time

information about each sampling station are necessary to add with the field data. Meta-

data such as longitude, latitude, date, and time, in addition to ancillary data including

environmental conditions that effect the Lake state such as wind speed and direction, cloud

cover, surface condition. Other ancillary measurements, for example, temperature, salinity,

Secchi depth, depth profiles may require during each field measurements.
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Table 2.10: Ancillary data and metadata required to support analysis and quality control
of other in situ data.

Ancillary Data and Metadata Required
Highly Specialized

Derived
Desired Measurement

Latitude and Longitude X
Date and Time (UTC) X
Wave Height X
Whitecap Conditions X
Wind Speed and Direction X
Surface Barometric Pressure X
Cloud Cover X
Cloud Type X
Secchi Depth X
Water Depth X
Conductivity and Temperature over Depth X
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Chapter 3

Evaluation of Sentinel-2 and

Sentinel-3 Chlorophyll-a Products in

the Western Basin of Lake Erie

3.1 Study area

Lake Erie is delimited to the north by Ontario, Michigan to the west, New York to the east,

and Ohio and Pennsylvania to the south. It covers a surface area of 25,744 km (Table 3.1).

Lake Erie is the warmest, shallowest and most biologically productive of the five Laurentian

Great Lakes. It is the fourth largest in surface area yet smallest in water volume making

it vulnerable to water level fluctuations [114,115]. This study focuses on the western basin

of Lake Erie (Fig. 3.1).

Water depth and nutrient load are the two main factors that impact Chl-a concentration

and lead to continuous blooms of green and blue-green algae in this Lake [116]. The

western basin is the shallowest section of all the Great Lakes, with an average depth of

7.4m, receiving the majority of loaded nutrients, mainly nitrogen and phosphorus [116].

Three main rivers, the Maumee, Raisin and Detroit Rivers, feed Lake Erie. Although, the

Detroit River is the primary inlet, contributing up to 90 % of the inflow into the lake,
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Figure 3.1: The study area, western Lake Erie. Left: Algal blooms in the lake acquired by
Sentinel-2 on Oct. 2, 2017. Right: Sentinel-3 on Sep. 26, 2017.

Table 3.1: Lake Erie characteristics [2, 3].

Indication Description

Group Great Lakes
Location 42.011o N, 81.015o W
Max. depth 64 m
Max. length 388 km
Max. width 92 km
Mean elevation 174 m above sea level
Average depth 20 m
Basin countries Canada , United States
Trophic status Mesotrophic in the 1980s and early 1990s

Eutrophic and hypereutrophic starting from the 2000s
Lake type Glacial
Primary inlet Detroit River
Outflows Welland Canal, Niagara River
Surface area 25,874 km2

Basin sections West basin, Central basin, East basin, 7.4, 18.3, and, 24 m
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Figure 3.2: Western Lake Erie weekly and real-time monitoring stations.

the Maumee River loads nearly half of the nutrients into the basin [3]. This is because

the Maumee River dominated by agricultural land area. Compared to the Detroit River

(joining Lakes Huron and Erie) which is surrounded by industrial/urban, residential, and

partially wood/grassland cover.

The annual nutrient loads occur in the spring, with the leading productivity in the sum-

mer. Since the mid-1990s, many studies have shown that summer blooms have increased

in biomass and are contaminated by toxic cyanobacterium, Microcystis aeruginosa [117].

From 2002 to 2015, average yearly peak bloom magnitude in the western basin was 912

km2 as the most massive blooms occurred in 2011 and 2015 [7, 118].
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3.2 In-situ data

Since 2008, NOAA - Great Lakes Environmental Research Laboratory has conducted a

comprehensive weekly water sampling program from May to October at the eight specific

stations in surface and bottom depth (surface approximately 0.75 m, and 1 m off bottom

of lake) in the western basin of Lake Erie (Fig. 3.2); with the aim of measuring phytoplank-

ton biomass and its toxicity. The data are collecting on Chl-a concentration, nutrients,

phycocyanin, dissolved microcystin, particulate microcystin, secchi depth, and water tem-

perature sampled from a CTD (conductivity, temperature, and depth) profiler [119].

In addition to weekly monitoring, real time monitoring continuously are measuring

parameters such as air temperature, water temperature, barometric pressure, wind speed,

wind direction, turbidity, Chl-a, phycocyanin, Dissolved Oxygen (DO), pH, depth, and

nitrogen (NO3) every 15 minutes at 4 fixed moorings (Fig. 3.2).

Environmental Sample Processor (ESP) which is used to tracking the toxicity of blue-

green algae also collects water samples to track microcystin, the common cyanobacteria

toxin in this area providing NOAA’s twice-weekly Lake Erie HAB Bulletin and the Ex-

perimental HAB Tracker nowcast and five-day forecast to make available information for

water managers with the bloom location, severity and toxicity [119].

We used the weekly Chl-a data measurements from May-October 2017 match with

Sentinel-3A, and 2016 and 2017 for Sentinel-2A overpass. The data were selected to match

(±3 days window) the image acquisition date. Table 3.2 shows the image acquisition dates

corresponding with filed sampling dates for both Sentinel-2A and Sentinel-3A satellites.

3.3 Remote sensing data

Sentinel-3A OLCI Level-1 NRT FR 2017 images were downloaded from Sentinel-3 Pre-

Operations Data Hub (https://scihub.copernicus.eu/s3). Level-1 products provide TOA

radiances in the VIS-NIR bands (Table 3.3). Twelves Cloud free images were available

match up with the in situ data (Table 3.2). Sentinel-2 Level-1C images were downloaded
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Table 3.2: Date of acquisition imagery and water sample acquisition of Sentinel-3A and
Sentinel-2A used in this study.

Sentinel-3A Sentinel-2A
Filed date Image date Field date Image date
5/8/2017 5/7/2017 6/26/2017 6/24/2017
5/30/2017 5/30/2017 7/11/2017 7/9/2017
6/12/2017 6/11/2017 7/30/2017 7/29/2017
6/26/2017 6/26/2017 10/2/2017 10/2/2017
7/17/2017 7/16/2017 7/18/2016 7/20/2016
7/31/2017 7/30/2017 8/7/2016 8/9/2016
8/7/2017 8/7/2017 8/29/2016 8/29/2016
8/14/2017 8/14/2017
8/28/2017 8/26/2017
9/25/2017 9/26/2017
10/10/2017 10/8/2017
10/16/2017 10/16/2017

from Sentinels Scientific Data Hub. Cloud free images were available on 24 June, 9 and 29

July, 2 October (2017), 18 July, 9 and 29 August (2016) (Table 3.2). Level-1C products

are provided in TOA atmosphere reflectance in cartographic geometry with all parameters

to transform them into radiance and the granules (called tiles, 100×100 km2 ortho-images

in UTM/WGS84 projection). These data are acquired in 13 spectral bands (Table 3.4).

3.4 Baseline algorithm

We used Baseline algorithm which exploit the height of the fluorescence and maximum

scattering peak of Chl-a above a baseline, which passes through two other spectral bands

outside of the peak. The general equation of a baseline algorithm is the line hight (Eq. 3.1):

Line Height = L2 − L1 − (L3 − L1)
(λ2 − λ1)
(λ3 − λ1)

(3.1)

Where the indices 1 and 3 indicate the baseline bands and index 2 the peak or signal
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Table 3.3: Sentinel-3 (OLCI) bands specification [4].

Band No. λ center Bandwidth Function

Oa1 400 15 Aerosol correction, water constituent retrieval
Oa2 412.5 10 Yellow substance and detrital pigments
Oa3 442.5 10 Chl absorption max., biogeochemistry
Oa4 490 10 High Chl, other pigments
Oa5 510 10 Chl, sediment, turbidity, red tide
Oa6 560 10 Chl reference
Oa7 620 10 Sediment loading, Phycocyanin
Oa8 665 10 Chl, sediment, yellow substance, vegetation
Oa9 673.75 7.5 For improved fluorescence retrieval
Oa10 681.25 7.5 Chl fluorescence peak
Oa11 708.25 10 Chl fluorescence baseline
Oa12 753.75 7.5 O2 absorption, clouds, vegetation
Oa13 761.25 2.5 O2 absorption band/aerosol corr.
Oa14 764.375 3.75 Atmospheric correction
Oa15 767.5 2.5 O2A for cloud top pressure, fluorescence
Oa16 778.75 15 Atmos. corr. ,aerosol corr.
Oa17 865 20 Atmos. corr. ,aerosol corr., clouds
Oa18 885 10 Water vapour absorption ref. band
Oa19 900 10 Water vapour absorption, vegetation
Oa20 940 20 Atmos./ aerosol corr.
Oa21 1020 40 Atmos./aerosol corr.
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Table 3.4: Sentinel-2 spectral band characteristics.

Sentinel-2 Central Bandwidth Spatial
Bands Wavelength (nm) (nm) Resolution

B1- Coastal aerosol 443 20 60
B2- Blue 490 65 10
B3- Green 560 35 10
B4- Red 665 30 10
B5- Vegetation Red Edge 705 15 20
B6- Vegetation Red Edge 740 15 20
B7- Vegetation Red Edge 783 20 20
B8- NIR 842 115 10
B8a- Vegetation Red Edge 865 20 20
B9- Water Vapour 945 20 60
B10- SWIR Cirrus 1380 20 60
B11- SWIR 1610 90 20
B12- SWIR 2190 180 20

band. This algorithm used by Gower, 2003, [100] and was characterized for MERIS tool-

box. However, the algorithm applied in the FLH/MCI processor in Sentinel Application

Platform (SNAP) contains an additional factor to correct the influence of thin clouds using

K=1.005 (Eq. 3.2).

Line Height = L2 −K ∗ [L1 + (L3 − L1)
(λ2 − λ1)
(λ3 − λ1)

] (3.2)

Figure 3.3 (a) displays fluorescence height over a baseline, where the phytoplankton

Chl-a fluorescence at 680.5 nm and its height above a baseline through the measurements

at around 664nm and 750 nm is calculated [9] And, figure 3.3 (b) displays overlapping of

fluorescence and elastic radiance peaks in NIR for two [Chl] values [100].
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Figure 3.3: (a) Fluorescence height over baseline, (b) Overlapping of fluorescence and
elastic radiance peaks in NIR for two [Chl] values [9].

3.5 Methodology

3.5.1 Image processing

Sentinel-3A

Sentinel-3 Toolbox (S3TBX) version 6.0.0 in the Sentinel Application Platform (SNAP) on

Windows 10 (64 bit) was used to process the images. Images were subset to a geographic

region bounded by the latitude and longitude to limit the lake of interest. The conver-

sion from TOA radiance (LTOA) to TOA reflectance (RTOA) was done in SNAP Data

Processors to be further analyzed.

The conversion from TOA radiance (LTOA) to TOA reflectances (RTOA) done through

SNAP Data Processors - Radiance-to-Reflectance Processor. This conversion aims to ex-

tract the pixel Level-1B data and convert the included radiance into reflectance through

three main steps. First, Pre-processing for geometry and meteorological parameters (etc.,

pressure, wind) at each pixel. Second, pixel identification: starts with reading of the IN-

VALID flag, if it is set to TRUE, no further processing of the current pixel is performed,

and the next pixel is examined. Otherwise, processing of the current pixel is pursued.

And third, Pixel extraction and reflectance conversion. Figure 3.4 displays the diagram of

Radiances into Reflectances Conversion.
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Figure 3.4: Diagram of Radiances Into Reflectances Conversion processes [10].

Thematic water processing using FLH/MCI Processor was performed to extract MER-

ISFLH and MERISMCI signals. The FLH/MCI processor can be invoked in the Sentinel

Toolbox from tool menu by selecting Processing Thematic Water Processing, FLH/MCI

Processor. We defined a new red-edge peak height band combination, by the Proces-

sor and named it S3FLH. We were able to develop this new algorithm because, in the

FLH/MCI processor the baseline bands and the signal band are freely configurable. Two

different signal bands, 709nm and 681nm, with different baseline bands (665, 673, 753

nm) were configured to calculate MERISFLH, MERISMCI, and S3FLH. Table 3.5 shows

the different band combination selected for each product. Level-1 MCI/FLH products are

calculated from the TOA radiance which has the units of mWm−2nm−1sr−1 whereas the

L2 MCI/FLH products are derived from water-leaving reflectance which is dimensionless.

Cloud-free pixel values corresponding to the location of each sampling station were

extracted from each thematic product to be evaluated with the ground data. To extract

the MCI and FLH indices from the images at locations specified in a point feature class,
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Table 3.5: The signal and baseline bands used in the OLCI Chl-a retrieval products.

Product
Sentinel-3 bands (nm)

665 673 681 709 753

MERISFLH λ1 λ2 λ3
S3FLH λ1 λ2 λ3
MERISMCI λ1 λ2 λ3

we used the Extract Multi Values to Points tool with Arc GIS. Each pixel which covered

the geographic location of the station value extracted for each input raster, and a new

field containing the cell values for each input raster added to the input point feature class.

Then an attribute table exported to Microsoft Excel to establish a relationship between the

radiometric indices and in-situ Chl-a content, and assessment of created models. Figure 3.5

displays an overview of the methodology applied in this research.

Sentinel-2A

Sentinel-2 Toolbox (S2TBX) version 6.0.0 in Sentinel Application Platform (SNAP) on

Windows 10 (64 bit) was used to process the images. Sentinel-2 is delivered with three

spatial resolution options. The spatial resolution of Sentinel-2 is dependent on the par-

ticular spectral band. Level1C Sentinel-2 data includes the RBG-NIR as 10m bands and

SWIR as 20m bands. As SNAP feature is not supported for a multi-size product we needed

to upscale the RGB-NIR bands to 20m and resample them with the rest of the 20m bands.

Spatial subset of data created by given pixel positions using subset operator. Sentinel-2

MCI Processor was used to calculate the MCI, which calculates the MCI by exploiting the

height of a measurement over a specific baseline. We configured the suited band combina-

tion on Sentinel-2 MSI images (a signal band at 705nm above the baseline passing through

665 nm and 740nm bands) to exploit the height of a maximum Chl-a peak.

Pixel values were extracted from each sampling location to correlate with in situ Chl-a

measurements. To extract the indices from raster images to a table, we used Arc GIS

spatial analysis tools by extracting the values of each pixel which covered the geographical
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Figure 3.5: Processing flowchart of Sentinel-3A OLCI and Sentinel-2A MCI images to
retrieve Chl-a indices related to in-situ Chl-a Concentration .
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location of the station value, and then registering the values in an attribute table of a

predefined point layer. Finally, a CSV-file format exported as an output to establish a

model between the extracted indices and Chl-a contents.

3.5.2 Model assessment

Dataset Generation

The retrieval values from three products, MERISMCI, MERISFLH, S3FLH and the match

up in situ data were combined as a dataset to be used for the algorithms calibration.

Figure 3.6 displays the flowchart of the steps of separating dataset using Quartile method

for calibration and testing the constructed models for Sentinel-3 and Sentinel-2 data.

Figure 3.6: Flowchart of the separate dataset and generation database from Sentinel-2A
(right figure) and Sentinel-3A OLCI algorithms retrieval values (left figure) and match up
in-situ Chl-a concentration using Quartile method for model assessment.
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For Sentinel-3A, Chl-a values above 300 mgm−3 (4 samples) removed from the data set

due to the uncertainty of the data quality and their effects on model performance. Some

of the optical sensors showed signal saturation over high phytoplankton biomass [120,121],

possibly eliminating extremely high biomass from analyses. Moreover, the Chl-a and MCI

indices correlation is documented to move to saturation at Chl 300 µgL−1 [120]. Since

the Chl-a data (74 samples) are not symmetrically distributed, we separated the Chl-a

sample above 40 mgm−3 (6 samples), and consider them as extreme data. This decision

reflects that the large portion of the Chl-a values are below 40mgm−3. We then divided

the remaining data into four quartiles. We selected two data from the extreme data, and

five data from each of the four quartiles randomly. As a result we end up with 52 samples

for calibration, and 22 samples for testing the constructed model [122].

The indices values from S2MCI product and the match up in situ data were combined

as a dataset to be used for the algorithm calibration (Figure 3.6). The dataset split in 5

samples for extreme data (Chl-a sample above 40 mgm−3), 8 samples for four quartiles (32

samples). We selected two samples from the extreme dataset and two samples from each

quartile randomly iterating 100 times. The dataset divided into 27 sample for calibration

and 10 sample for validation.

3.5.3 Calibration and validation

Sentinel-3A

Monte Carlo Simulation in MATLAB was used to calibrate the models (Figure 3.7). Monte

Carlo simulation is a technique used to study how a model responds to randomly generated

inputs. In this process, 30 samples randomly selected from the dataset of 52 are used to

build the equations with a linear regression between Chl-a and the product retrieval values

iterating 1000 times. The results are recorded for 1000 equation and the R2, slope, and

intercept associated with each.

Then an R2 histogram created from all the recorded R2 to identify equations with the

most frequent range of this coefficient. We plot the coefficients (slope, intercept) of the
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Figure 3.7: Monte Carlo calibration and validation scheme.

identified equations to obtain a confidence region (Figure 3.10). The calibrated model was

selected with the best R2 in the confidence region based on mean and standard deviation.

Then we validated the equation with 22 test data.

Sentinel-2A

The same calibration and validation process was carried out for the S2MCI indices and

match up in situ dataset generated (Figure 3.6). In this process, 15 samples randomly

selected from the dataset of 27 are used to build the equations with a linear regression

between Chl-a and the product retrieval values iterating 1000 times.

The results are recorded for 1000 equation and the R2, slope, and intercept associated

with each. Then an R2 histogram created to obtain the most frequent R2 from all the

recorded R2 to identify equations with the most frequent range of this parameter. We

plotted the coefficients (slope, intercept) of the identified equations with the most frequent

R2 and created the confidence region (Figure 3.10). The calibrated model was selected

with the best R2 in the confidence region based on mean and standard deviation. Then

we validate the equation with 10 test data. Figures 3.9 and 3.10 are the R2 histograms
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Figure 3.8: 12 out of 1000 calibration samples for MERISMCI algorithm.
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Figure 3.9: Histograms of the R2 distribution for MERISMCI and S2MCI algorithms.

Figure 3.10: Plot of the slope vs intercept.
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Figure 3.11: 12 out of 1000 calibration samples for S2MCI (Sentinel-2) algorithm.
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and confidence region plots from the model assessment process.

3.5.4 Statistical Analysis

Statistical analysis was carried out to evaluate the uncertainty in satellite-derived esti-

mates. Following estimators were used to comparison between in-situ measured and satel-

lite derived estimates: R2 coefficient, Root Mean Square Error (RMSE), Bias, and Mean

Absolute Error (MAE). Table 3.6 shows the formulation of these metrics.

Table 3.6: The error metrics for the model assessments.

Error metric Equation Error metric Equation

R2 1−
∑

(ei)
2∑

(yi−y)2
Bias 1

n

∑
(ei)

RMSE
√

1
n

∑
(ei)2 MAE 1

n

∑
|ei|

3.6 Results and discussion

3.6.1 In-situ data

Table 3.7 presents the basic descriptive statistics of Chl-a measurements and confirms the

complexity of optical properties of the waters being measured in western Lake Erie over

summer 2017. N is the number of samples collected, and Std is standard deviation. In this

study, the three models were evaluated for Chl-a less than 300 mg m−3 with a range of

1.28 to 116 mgm−3 with a mean value of 19.66 mg m−3. Figure 3.12 displays the monthly

variation of all weekly Chl-a measurements. The dataset is representative of a broad range

of Chl-a concentrations. Overall, the level of Chl-a increases gradually over the months,

showing the lowest values in May and highest in August and September.

Table 3.8 shows the summary of basic descriptive statistics of measured Chl-a concen-

tration of the waters being measured in 24 Jun, 9 and 29 July, October 2th in 2017 and
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Figure 3.12: Time series of measured Chl-a obtained from NOAA-GLERL (May to October
2017).

Table 3.7: Descriptive statistic of Chl-a measurements match up with Sentinel-3 satellite
overpass acquisition times for western Lake Erie over summer 2017.

N Min Max Mean Median Std

Chl-a 74 1.28 116 19.66 14.8 22.16

Table 3.8: Descriptive statistic of Chl-a measurements match up with Sentinel-2 satellite
overpass acquisition times for western Lake Erie over summer 2016 and 2017.

N Min Max Mean Median Std

Chl-a 37 0.13 88 16.5 9.2 20.7
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18 July, 9 and 29 August 2016 in Western Lake Erie match up with the Sentinel-2 image

acquisition dates. In this study we evaluate the L2 S2MCI product for the data with a

range of 0.13 to 88 mg m−3 with a mean value of 16.5 mg m−3.

3.6.2 Model Assessment

We used in situ Chl-a measurements to analyze the performance of FLH and MCI algo-

rithms based on Sentinel-3 spectral bands. Figure 3.13 and Figure 3.14 display the retrieval

of the fluorescence and scattering components from the Sentinel-3 images correlated with

Chl-a and Log Chl-a . Three bands are utilized for each of the three algorithms to compute

FLH and MCI (Table 3.5). The bands are 665, 681, and 709nm for MERISFLH [65] and

681, 709 and 753nm for MERISMCI [90]. An additional Sentinel-3 band exists at 673nm;

thus we configured 673, 681, and 709nm and named it S3FLH algorithm. Table 3.9 and

Table 3.10 presents local tuned equations, R2, and RMSE for the three Sentinel-3 products.

Figure 3.15 shows the correlation between FLH and MCI indices and Log Chl-a in a range

10 - 120 mg m-3.

Table 3.9: Equations and performance of Chl-a model for Sentinel-3A.

Model Locally tuned equation R2 RMSE

MERISMCI Rad. Chl-a = 8.9 MCI + 15.98 0.82 8.86
S3FLH Rad. Chl-a = −34.6 MCI + 18.3 0.76 10.8
MERISFLH Rad. Chl-a = −15.4 FLH + 13.8 0.79 10.1
MERISMCI Ref. Chl-a = 2548 MCI + 13.3 0.67 12.7
S3FLH Ref. Chl-a = −9464 MCI + 20 0.54 15
MERISFLH Ref. Chl-a = −5292 FLH + 18 0.77 10.5

The result of FLH and MCI products in Level-2 processing, which is the normalized

FLH and MCI, showes lower performance compared to the processing of Level-1 products.

This normalization included pre-processing of geometrical and meteorological parameters

(such as wind and pressure, bidirectional effects) at each pixel, pixel screening to find the
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Figure 3.13: Correlation between FLH and MCI indices and in situ Chl-a using Sentinel-3
bands in TOA radiance and TOA reflectance.
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Figure 3.14: Correlation between FLH and MCI indices and Log Chl-a using Sentinel-3
bands in TOA radiance and TOA reflectance.
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Table 3.10: Equations and performance of Log Chl-a model for Sentinel-3A.

Model Locally tuned equation R2 RMSE

MERISMCI Rad. MCI = 4.38 log(Chl − a)− 11.9 0.83 8.4
MERISMCI Ref. MCI = 0.01 log(Chl − a)− 0.02 0.76 10.1
S3FLH Rad. FLH = −1.08 log(Chl − a) + 3.0 0.81 9.01
S3FLH Ref. FLH = −0.003 log(Chl − a) + 0.008 0.67 12.3
MERISFLH Rad. FLH = −2.42 log(Chl − a) + 6.41 0.82 8.5
MERISFLH Ref. FLH = −0.007 log(Chl − a) + 0.02 0.80 8.5

valid pixel, and conversion of the radiance signal to reflectance). The lower performance

of normalized FLH and MCI radiances might be related to the poor pixel identification

during the process of pixel flagging, which is affected by the complexity of the water and

atmosphere condition.

MERISFLH using 665, 681, and 754nm performed better in comparison to the band

combination of 673, 681, and 754 (S3FLH); this finding might be related to the closer

positioned 673 nm proximate to 681nm, which makes the baseline a less accurate replace-

ment of the elastic radiance (with the baseline) compared to the other band combinations.

This sensitivity of the proximity of the band selection for FLH products in case 2 waters

is not seen in the case 1 waters due to the low water constituents influences on the elas-

tic radiance reflectance in the red spectral region. Nevertheless, despite their correlation

of R2 = 0.79, 0.76 in both algorithms, MERISFLH and S3FLH respectively, the results

could be biased and not applicable for the lake type studied. In Figure 3.13 for the FLH

band configurations, the FLH is positively correlated with Chl-a values up to 8 mg m−3;

however, at the higher Chl-a concentration, the FLH values become rapidly negative. This

behavior is strongly due to the shift of the reflectance peak to the longer wavelengths along

with the increase in [Chl-a] values [123].

As discussed in Chapter 2, FLH algorithms have proven to be applicable to ocean

and oligotrophic waters where the Chl-a concentration is less than 10 mg m−3. This
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limitation is due to the replacement of elastic reflectance to the baseline between λ1 and

λ2 which deviate (associated with the cell scattering) from the flat line with increasing

Chl-a amounts. However, in the low Chl-a concentrations the baseline nearly matches to

the elastic reflectance in the red region.

MERISMCI products have been shown as a useful tool for monitoring algal blooms

in optically complex waters (discussed in Chapter-2) [120]. In this study with a [Chl-a]

range 0.1-300 mg m−3, this product presented the best performance, for both L1 and L2

products processed compared to FLH products. The retrieved MCI showed a strong linear

correlation with the Chl-a measurements (Chl − a = 8.9 MERISMCI + 15.98, R2 =

0.82, and RMSE = 8.86), (Table 3.9). Binding et al. [124] investigated a comprehensive

evaluation of all Chl-a MERIS products and determined the MCI to be a more effective

algorithm for eutrophic conditions. They also studied [120] the assessment of MCI for

waters ranging from optically complex to low Chl-a conditions. Their results showed the

MCI algorithm to be a useful tool in algae monitoring with Chl-a range of 10-300 mg m−3.

In our study, also in agreement with [120, 124], the MCI values are negative or negligible

for almost Chl-a< 20 mg m−3, meaning that there was no reflectance in the peak 709 nm

and following Chapter-2 discussion, the peak should be shifted to the shorter wavelengths

for could capture by FLH products at 681nm. Moses et al. [125] suggest the threshold

of 10 mg m−3 for MCI application. Gower et al. [94] noted the applicability of the MCI

algorithm for Chl-a concentration above 30 mg m−3. We tuned the equation for Chl-a

values > 30 mg m−3. Subsequently, the MCI showed a strong correlation with R2 > 0.91.

L2S2MCI with the combination of 665, 705, 740nm to compute the MCI from the

Sentinel-2 images, showed a very good correlation with the in situ Chl-a data in the studied

stations (Chl − a = 2158 S2MCI + 3.9, R2 = 0.92) . Figure 3.16 displays correlation

between S2MCI and in-situ Chl-a. The sensor has the advantage of higher spatial resolution

(10, 20m) compared to Sentinel-3 OLCI instruments (300 m), which make it useful for

monitoring small lakes [126]. Water constituents are varied spatially even within a few

meters and within a short period; for instance, during the raining season loading a mass of

particulate and dissolved matters discharge into the water body. Kutser [127] studied the

extent of blue-green algae using different satellite sensors. The result noted the limitation
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Figure 3.15: Correlation between FLH and MCI indices and Log Chl-a (10 - 120 mg m-3)
using Sentinel-3 bands in TOA radiance and TOA reflectance.
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Table 3.11: Equations and performance of Log Chl-a (10 - 120 mg m-3) model for Sentinel-
3A.

Model Locally tuned equation R2 RMSE

MERISMCI Rad. MCI = 5.24 log(Chl − a)− 15.8 0.87 8.4
MERISMCI Ref. MCI = 0.014 log(Chl − a)− 0.038 0.76 11.8
S3FLH Rad. FLH = −1.33 log(Chl − a) + 4.09 0.87 8.1
S3FLH Ref. FLH = −0.004 log(Chl − a) + 0.012 0.87 8.2
MERISFLH Rad. FLH = −2.88 log(Chl − a) + 8.49 0.88 7.8
MERISFLH Ref. FLH = −0.008 log(Chl − a) + 0.024 0.87 8.1

of these sensor spatial resolutions for quantitatively accurate estimation of the Chl-a, as

the high variation in the phytoplankton biomass happens at smaller than 30 m scales.

The results of S2MCI have potential to improve with an advanced atmospheric cor-

rection. Inland waters have the limitation of enhanced atmospheric correction algorithms

(discussed in Chapter-2) compared to the ocean water. Toming. [126] used Sen2cor in

the Sentinel-2 toolbox for atmospheric correction of Sentinel-2 Level-1 data in mapping

Chl-a. However, their results showed a lower correlation of algorithm values versus field

measurements. Retrieving the scattering peak around the red-edge region while applying

the developed atmospheric corrections has shown ineffective results spatially in the blue-

green bloom observations. Sentinel-3 OLCI images were atmospherically corrected using

the Case-2 Regional/Coast Colour (C2RCC) tool in SNAP Sentinel-3 toolbox to measure

the MCI during the algae bloom. The comparison of TOA radiance and BOA reflectance

showed poor performance of C2RCC in the bloom condition [128]. Nevertheless, the red-

edge band algorithms are relatively less influenced by the atmospheric effects which is a

greater advantage of using this spectral region compared to blue-green algorithms that use

the blue green region.

MERISMCI and S2MCI calibration and assessment of performance are presented in

Table 3.12 for Chl-a estimation in western Lake Erie, with the statistical performance es-

timators. We also plotted the estimated Chl-a values of Sentinel-2 and Sentinel-3 retrieval
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Figure 3.16: Correlation between S2MCI and in-situ Chl-a.

Table 3.12: Performance of the calibration and validation algorithms.

Algorithm
Calibration Validation

R2 RMSE MAE Bias R2 RMSE MAE Bias

MERISMCI Rad. 0.83 8.59 6.64 0 0.86 8.61 6.01 -1.25
S2MCI Ref. 0.92 6.03 3.8 0 0.84 9.6 6.66 0.15

MCI correlated with the Chl-a measured values to see the 1:1 model estimation perfor-

mances. We split the extreme data and show the remaining data in the plots desplaing in

Figure 3.17. Results indicate no significant differences between the retrieval algorithms in

comparison with the in situ measurements, Sentinel-2 (R2 = 0.90, 0.84, RMSE = 6.03, 9.6)

and Sentinel-3 (R2 = 0.83, 0.86, RMSE = 8.59, 8.61) for calibration and validation, re-

spectively. However, inaccurate estimation will be inevitable using all Chl-a concentration

ranges affected by deviating the peak along with Chl-a content variation [122].

In this lake study, the result for Sentinel-2 MCI shows better performance (R2 = 0.90).

This finding is highly related to the 300 m spatial resolution of OLCI pixel values, it one

of the significant problems of ocean satellite application to lake studies with substantial

optical property variations in meter scales. Both instrument applications will benefit from
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Figure 3.17: Estimated Chl-a vs in situ Chl-a, calibration and validation dataset.

an advanced atmospheric correction.

The MCI has been shown to be negligibly affected by the CDOM due to the spectral

distance of red-edge peak from the blue wavelength. In Lake Erie, that the suspended

sediment is a major contribution to the optical signal, increasing the magnitude of spectral

reflectance, likely is the significant source of error in MCI approaches [122]. The use of MCI

in shallow waters may be affected by the seagrasses and sandy bottom which contribute

peak reflectances in the red-edge region [129]. To have a more accurate evaluation, we

needed more in-situ parameter measurements with fuller information about their quality,

and accuracy of measuring instruments in field and laboratory since these highly affect

satellite product performances and evaluation.
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3.7 Conclusion

This research aimed to evaluate the performance of Sentinel-3 OLCI and Sentinel-2 MSI

Chl-a retrieval algorithms in eutrophic lakes using in situ data. We assessed four Chl-a

retrieval products. For two of the products (MERISFLH and MERISMCI) already charac-

terized to fit MERIS bands, we configured a new algorithm (S3MCI) based on Sentinel-3

band combination and Sentinel-2 S2MCI product to retrieve Chl-a concentration. We

used the Chl-a data from western Lake Erie weekly monitoring stations. The result indi-

cates that the applahn2012developmenticability of FLH is limited to Chl-a range less than

8 mg m−3. In contrast, the MCI approach is limited to Chl-a retrieval above 20 mg m−3.

However, FLH and MCI approaches both have the advantages of being less influenced by

atmospheric effects. Sentinel-2 MCI product offered the highest performance in this study.

This performance is mainly related to the high spatial resolution of the MSI sensor which is

a necessity of sensor characterization in Chl-a estimation. Furthermore, the performance is

due to the maximum peak location of 705 nm in S2MCI band combination compared to 709

nm of MERISMCI signal band position. This study indicates the suitability of Sentinel-3

and Sentinel-2 satellite products using the red-edge scattering approaches for use in moni-

toring phytoplankton biomass (in large Chl-a range values) with a highly promising result

to add services aimed at reducing the impact of the eutrophication on aquatic systems.

3.7.1 Future Work

This research demonstrates the potential of the MCI algorithms to qualitatively monitor

green algae blooms in eutrophic lakes . However, there is still some inconsistency between

in situ Chl-a measurements and MCI that currently preclude their application as a robust

quantitative approach for estimating the bloom condition. This is mainly due to the high

variability of regional and temporal optical properties of the water bodies. moreover, di-

verse phytoplankton taxonomy with different pigment composition, cell size, population

distribution, and the display of specific behaviors in different environment conditions par-

ticularly in the case of cyanobacteria, which highly impacts on the spectral reflectance
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due to their vertical distribution in the water column [81]. Therefore, considering variable

IOPs in developing bloom monitoring algorithms in addition to considering the depth of

phytoplankton in situ sampling for model assessment would enhance bloom studies. This

study would be improved by creating Chl-a mapping by the different processors, which

could help show the performance of each product in desplaying the extent of a bloom and

information about the spatial distribution of Chl-a concentrations.
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in mapping lake water quality parameters with sentinel-2 msi imagery,” Remote
Sensing, vol. 8, no. 8, p. 640, 2016.

[127] T. Kutser, “Quantitative detection of chlorophyll in cyanobacterial blooms by satel-
lite remote sensing,” Limnology and Oceanography, vol. 49, no. 6, pp. 2179–2189,
2004.

[128] K. Toming, T. Kutser, R. Uiboupin, A. Arikas, K. Vahter, and B. Paavel, “Mapping
water quality parameters with sentinel-3 ocean and land colour instrument imagery
in the baltic sea,” Remote Sensing, vol. 9, no. 10, p. 1070, 2017.

[129] V. J. Hill, R. C. Zimmerman, W. P. Bissett, H. Dierssen, and D. D. Kohler, “Eval-
uating light availability, seagrass biomass, and productivity using hyperspectral air-
borne remote sensing in saint josephs bay, florida,” Estuaries and coasts, vol. 37,
no. 6, pp. 1467–1489, 2014.

80


	Author's Declaration
	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	General introduction
	Need for monitoring phytoplankton Chl-a
	Rational for use of remote sensing for phytoplankton Chl-a monitoring
	Motivation
	Objectives
	Thesis structure 

	Background
	Bio-optical modeling
	Bio-optical modeling of phytoplankton Chl-a 
	Absorption
	Fluorescence
	Scattering
	Chl-a retrieval algorithms 

	Past and current satellite instruments used for monitoring phytoplankton Chl-a
	Sentinel-3
	Sentinel-2 

	In situ methods

	Evaluation of Sentinel-2 and Sentinel-3 Chlorophyll-a Products in the Western Basin of Lake Erie
	Study area
	In-situ data
	Remote sensing data 
	Baseline algorithm
	Methodology
	Image processing 
	Model assessment
	Calibration and validation
	Statistical Analysis

	Results and discussion 
	In-situ data
	Model Assessment

	Conclusion
	Future Work


	References

