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Graphical Abstract 

 

Highlights 

 ·A new efficient method utilizing MOFs is developed to synthesize PtCo alloys.  

 ·Fine PtCo alloys within nitrogen-doped hollow porous carbon capsules are obtained.  

 ·The sample displays outstanding catalytic activity in oxygen reduction reaction  

 ·The sample exhibits excellent catalytic durability and stability.  

Abstract 

Pt-based nanomaterials are regarded as the most efficient electrocatalysts for the oxygen 

reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). However, 

widespread adoption of PEMFCs requires solutions to major challenges encountered with 

ORR catalysts, namely high cost, sluggish kinetics, and low durability. Herein, a new efficient 

method utilizing Co-based metal-organic frameworks is developed to produce PtCo bimetallic 

nanoparticles embedded in unique nitrogen-doped hollow porous carbon capsules. The 

obtained catalyst demonstrates an outstanding ORR performance, with a mass activity that is 

5.5 and 13.5 times greater than that of commercial Pt/C and Pt black, respectively. Most 

importantly, the product exhibits dramatically improved durability in terms of both 

electrochemically active surface area (ECAS) and mass activity compared to commercial Pt/C 

and Pt black catalysts. The remarkable ORR performance demonstrated here can be attributed 
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to the structural features of the catalyst (its alloy structure, high dispersion and fine particle 

size) and the carbon support (its nitrogen dopant, large surface area and hollow porous 

structure). 

Keywords: PtCo bimetallic nanoparticles; Metal-organic frameworks; Nitrogen-doping; 

Hollow porous capsules; Oxygen reduction reaction 
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1. Introduction  

 The proton exchange membrane fuel cell (PEMFC) has long been regarded as one of 

the most promising clean and efficient energy conversion devices for a wide variety of 

applications [1-3]. Its ability to provide on-demand power from hydrogen, which importantly 

can be stored on a seasonal basis, makes it a vital component of future zero-carbon energy 

grids [4,5]. However, the sluggish kinetics of the oxygen reduction reaction (ORR) at the 

cathode is currently preventing extensive usage of PEMFCs due to the consequential 

reduction in energy efficiency [6-8]. Existing carbon-supported Pt-based electrocatalysts can 

efficiently catalyze the ORR [9-13], but the scarcity and high cost of Pt as well as its poor 

stability still limit the practical applications of PEMFCs [1,2,14]. To tackle these challenges, 

the ORR catalyst community has traditionally focused on (i) engineering of the morphology, 

structure and component of Pt-based catalysts and (ii) optimization of the catalyst supports, 

for the purpose of maximizing both activity and durability. 

 Regarding the first strategy, an effective method of indirectly reducing the Pt mass 

requirement is to improve the ORR activity and stability of Pt-based catalysts via advanced 

morphologies and structures [15-18]. Meanwhile, alloying of Pt with a secondary metal can 

further enhance the performance of Pt-based catalysts and concurrently reduce the usage of Pt 

[19,20]. These bimetallic nanostructured Pt-based materials can exhibit a superior activity and 

stability with an optimized oxygen absorption energy [21]. Among all Pt-based bimetallic 

nanomaterials, alloys of Pt and transition metals, in particular PtCo and PtNi, have been 

identified as the most active and stable catalysts for ORR by numerous studies [22-27]. The 

second strategy involves rational design the catalyst supports [28]. One effective method is to 

introduce heteroatom dopants such as nitrogen into the carbon support, which can not only 

increase chemical binding or “tethering” between the catalyst and support, but also largely 

facilitate interfacial electron transfer and adsorption of reactants (such as O2) by modifying 

the charge of adjacent C atoms [29,30]. Moreover, supports with well-designed nanostructures 

such as carbon nanotubes [31,32], hollow carbon spheres [33,34], and hollow porous carbons 

(HPCs) [35-38] further improve the ORR activity and stability for Pt-based catalysts. 

Particularly, when HPCs encapsulate metal nanocrystals, the hybrid catalysts often exhibit 
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remarkable catalytic activity and stability due to the high surface area, efficient mass 

transport, excellent conductivity and high electrochemical stability of HPCs along with the 

shell protection of the metal nanocrystals against aggregation/sintering [36-39]. 

 Ideally, one should combine the above strategies such as high catalyst dispersion, 

transition metal alloying of Pt, heteroatom-doping of carbon support, and creation of a HPC 

structure to produce a top-performing Pt-based catalyst. More specifically, we envision that 

PtCo nanoparticles encapsulated in nitrogen-doped HPC would meet the exceptional ORR 

activity and durability requirements for commercial PEMFCs. However, it remains a great 

challenge to obtain this model catalyst owing to tedious and complex synthesis procedures 

currently described in the literature. Therefore, a procedure that can effectively and 

consistently produce the aforementioned hybrid material is highly desired.  

 In this study, we report for the first time an efficient method for synthesizing PtCo 

bimetallic nanoparticles mixed with Co nanoparticles encapsulated in nitrogen-doped hollow 

porous carbon capsules (denoted as PtCo/Co@NHPCC). It is derived from metal-organic 

frameworks (MOFs) via three steps, including introduction of Pt within the MOFs by a 

hydrophobic/hydrophilic approach, coating with a polymer shell, and finally a thermal 

treatment. The prepared products possess many desirable features such as well-dispersed 

nanoparticles, embedded alloys, hollow porous structures, capsule-like morphology, and 

nitrogen dopants. The obtained PtCo/Co@NHPCC displays an excellent catalytic activity for 

ORR in terms of mass activity and specific activity (0.566 A mgPt
-1 and 0.876 mA cm-2), 

which are much better than those of the commercial Pt/C catalysts (0.102 A mgPt
-1 and 0.177 

mA cm-2) and commercial Pt black (0.042 A mgPt
-1 and 0.221 mA cm-2). More notably, 

PtCo/Co@NHPCC exhibits outstanding structural stability and catalytic durability, as it 

shows no obvious change in its nanostructure and only a slight ORR activity change after 

5000 potential sweeps. This work demonstrates that PtCo/Co@NHPCC, which owns the 

advantages of both Pt alloys and advanced supports, are indeed a promising ORR 

electrocatalyst with improved activity, durability, and utilization efficiency of Pt. 

2. Experimental section 

2.1 Preparation of ZIF-67 
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 ZIF-67 materials were synthesized according to the published literature with a slight 

modification [40]. In a typical synthesis of ZIF-67, 0.718 g of Co(NO3)2‧6H2O and 1.622 g of 

2-methylimidazole were respectively dissolved in 50 mL of methanol at room temperature, and 

then mixed under vigorous stirring. After 20 min, the stirring was stopped and the mixture was 

kept in the static state for 20 h. The products were collected by centrifugation and washed with 

methanol several times, followed by vacuum drying at 80 oC overnight. 

2.2 Preparation of Pt@ZIF-67 

 In a typical synthesis of Pt@ZIF-67, 200 mg of dried ZIF-67 was dispersed in 30 mL of 

n-hexane and the mixture was sonicated for 30 min until it became homogeneous. After 2 h 

stirring, 0.4 mL of 30 mM aqueous H2PtCl6·6H2O solution was added slowly and the solution 

was kept stirring for another 2 h. The products were collected by filtrating and drying at 150 oC 

overnight, followed by treating in a gas flow of H2/Ar (1/9) at 200 oC for 5 h to yield Pt@ZIF-

67.  

2.3 Preparation of PtCo/Co@NHPCC 

 In a typical synthesis of PtCo/Co@NHPCC, 120 mg of Pt@ZIF-67 was dispersed in 10 

mL of deionized water by sonicating. 3 mL of 24 mM tannic acid was adjusted to pH 8 by 

adding 6 M KOH aqueous solution. Then, the Pt@ZIF-67 solution was poured into the tannic 

acid solution under stirring. After 6 min, Pt@ZIF-67@TA was collected by centrifugation, 

washed with methanol three times, and dried under vacuum overnight. Finally, 

PtCo/Co@NHPCC was obtained by calcining Pt@ZIF-67@TA under an argon flow at 800 oC 

for 2 h. 

2.4 Characterization 

 X-ray diffraction (XRD) patterns were collected on a XRG 3000 diffractometer 

equipped with Cu Kα radiation. Scanning electron microscopy (SEM) experiments were carried 

out on a LEO FESEM 1530 and S-4800 electron microscope. Transmission electron microscopy 

(TEM) images were collected on a JEOL 2010F microscope. The nitrogen adsorption and 
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desorption isotherms were measured by using a Micromeritics ASAP 3020 system. Before the 

adsorption/desorption measurements, the samples were outgassed for 8 h at 180 oC. The BET 

specific surface area was evaluated from adsorption data in the relative pressure range of 0.1-

0.3. The amount of catalysts was determined by the inductively coupled plasma atomic 

emission spectroscopy (Perkin Elmer Ltd., USA). 

2.5 Electrochemical measurements 

 A three-electrode cell was used for electrochemical measurements. A platinum wire was 

used as a counter electrode and a reversible hydrogen electrode (RHE) was used as a reference 

electrode. The working electrode was a glassy-carbon Rotating Disk Electrode (RDE, diameter: 

5 mm, area: 0.196 cm2). The Pt loading on glassy-carbon was 6.5 μg cm-2 for 

PtCo/Co@NHPCC. Cyclic voltammetry (CV) curves were collected in 0.1 M HClO4 solutions 

under a flow of N2 at a sweep rate of 50 mV s-1. ORR measurements were carried out in 0.1 M 

HClO4 solutions under the flow of O2 using a glassy-carbon RDE at a rotation rate of 1600 rpm 

with a sweep rate of 10 mV s-1. The electrochemically active surface area (ECSA) 

measurements were determined by integrating the hydrogen adsorption/desorption charge on 

the CV. The accelerated durability tests (ADTs) were performed at room temperature in O2-

saturated 0.1 M HClO4 solution by applying cyclic potential sweeps between 0.6 and 1.1 V 

versus RHE at a sweep rate of 50 mV s-1 for 5000 cycles. For comparison, commercial Pt/C 

catalyst (TKK, 28.2 wt% Pt) and Pt black (Sigma-Aldrich, 99.9% fuel cell grade) were used as 

the benchmarks, and the same procedure as described above was used to conduct the 

electrochemical measurement, except that the Pt loadings were 20.0 μg cm-2 for Pt/C and 51.0 

μg cm-2 for Pt black catalysts. 

3. Results and discussion  

 The overall synthesis procedure of the hybrid catalyst PtCo/Co@NHPCC is illustrated 

in Fig. 1. Pt nanoparticles are firstly encapsulated and dispersed into MOFs via the following 

hydrophobic/hydrophilic method: (i) synthesis of ZIF-67 [40,41], a Co-based highly porous 

MOF with high nitrogen content and a hydrophilic nature, as the starting materials (Fig. 1a); 

(ii) dispersion of ZIF-67 in n-hexane, a hydrophobic solvent that cannot enter into the pores of 
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ZIF-67 due to the high hydrophilicity of ZIF-67 (Fig. 1b); (iii) absorption of Pt precursor into 

the pores of ZIF-67 due to its hydrophilic affinity to ZIF-67 (Fig. 1c); (iv) removal of all of 

the solvents via evaporation (Fig. 1d) and (v) formation of Pt nanoparticles in the pores of 

ZIF-67 (Pt@ZIF-67) by hydrogen reduction (Fig. 1e). The amounts of both solvents play 

important roles; a small amount (no more than the pore volume of ZIF-67 used) of metal 

precursor aqueous solution can be totally absorbed into the pores of ZIF-67 through capillary 

forces, while the large amount of n-hexane can help disperse ZIF-67. The latter solvent 

creates the repulsive outer hydrophobic environment around ZIF-67 and facilitates the 

absorption process. After completion of the above method, the as-synthesized Pt@ZIF-67 is 

covered with a polymer coating of tannic acid, yielding a product denoted as Pt@ZIF-67@TA 

(Fig.1f). Finally, pyrolysis of Pt@ZIF-67@TA at high temperature is carried out under the 

protection of an inert atmosphere; this step triggers three separate phenomena which combine 

to create the elusive combination of a finely dispersed PtCo structure and a protective and 

catalytically active nitrogen-doped porous carbon capsule. Firstly, the tannic acid coating 

forms the hollow and porous carbon capsule which maintains the conformal morphology 

templated from polyhedral ZIF-67 through the pyrolysis treatment. Secondly, diffusion of the 

Co from ZIF-67 and the Pt nanoparticles during pyrolysis produces a unique combination of 

very small PtCo bimetallic nanoparticles and relatively large Co monometallic nanoparticles. 

Thirdly, diffusion of nitrogen from the ZIF-67 structure efficiently introduces the nitrogen 

dopant into the porous carbon capsule, therefore resulting in the final PtCo/Co@NHPCC 

product (Fig. 1g). 

 SEM images for ZIF-67, Pt@ZIF-67, Pt@ZIF-67@TA, and PtCo/Co@NHPCC are 

shown in Fig. 2a-d. ZIF-67 synthesized via a simple method in methanol solution at room 

temperature exhibits a polyhedral shape with an average particle size of ~ 300 nm (Fig. 2a). 

The XRD (Fig. S1a) and N2 adsorption-desorption (Fig. S2a) results confirm the highly 

crystalline structure and high porosity of ZIF-67, which are in good agreement with the 

previous literature [40]. After encapsulating Pt nanoparticles in the pores of ZIF-67 though the 

hydrophobic/hydrophilic method, the obtained Pt@ZIF-67 displayed a similar surface 

morphology to pristine ZIF-67 (Fig. 2b), and Pt nanoparticles were well-dispersed within ZIF-

67 (Fig. S3). The non-visualized color change after Pt encapsulation (Fig. S4) also suggests 
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the homogeneous dispersion of Pt nanoparticles in the ZIF-67. Pt@ZIF-67 shows similar 

diffraction peak positions and intensities to those of ZIF-67 (Fig. S1b), indicating that the 

framework of ZIF-67 remains intact after encapsulation of Pt. No characteristic peaks for Pt 

appeared in the XRD pattern of Pt@ZIF-67, demonstrating the formation of ultrafine Pt 

nanoparticles. From the N2 absorption-desorption data (Fig. S2b and Table S1), compared 

with pristine ZIF-67, both the Brunauer-Emmett-Teller (BET) surface area and pore volume 

of Pt@ZIF-67 have largely decreased, suggesting the successful immobilization of Pt 

nanoparticles inside the pores of ZIF-67. Fig. 2c and Fig. S5 show the SEM images of 

Pt@ZIF-67@TA. It is clearly revealed that the core-shell nanostructures of Pt@ZIF-67@TA 

include a thin and conformal shell layer of TA over the polyhedral shape of the core Pt@ZIF-

67. 

 PtCo/Co@NHPCC shown in Fig. 2d exhibits a uniform capsule-like morphology and 

conformal shape, indicating the retention of the polyhedral shape of Pt@ZIF-67@TA during 

carbonization by pyrolysis treatment. The TEM images (Fig. 2e,f) of PtCo/Co@NHPCC 

exhibit a novel hollow porous structure, where the outer shell layer was derived from 

carbonization of polymer TA and the inner porous nanostructure was evolved from ZIF-67 by 

the high-temperature process. The hollow structure with interior porous features is presented 

more clearly in the high-angle annular dark-field scanning TEM (HAADF-STEM) image 

(Fig. 2g). Moreover, N2 adsorption-desorption measurement further confirms the highly 

porous nature of PtCo/Co@NHPCC, which shows a high BET surface area of 356 m2 g-1 (Fig. 

S2c and Table S1). As shown in the TEM and STEM images (Fig. 2f,g) of 

PtCo/Co@NHPCC, many nanoparticles with various sizes in the range of one to dozens of 

nanometers are highly dispersed inside the hollow porous capsules. To verify the composition 

of these nanoparticles in PtCo/Co@NHPCC, the element mapping and XRD were performed. 

As shown in Fig. 2j,k, Pt elements are well-dispersed, thus corresponding to the relatively 

small nanoparticles, while Co elements are mainly concentrated in the relatively large 

nanoparticles, indicating the different compositions of these nanoparticles. The XRD pattern 

of PtCo/Co@NHPCC (Fig. 2l and Fig. S1d) shows four intense peaks at 2 the values of 41.6o, 

44.2o, 51.5o and 75.9o. The peaks at 44.2o, 51.5o and 75.9o can be assigned to the typical (111), 

(200), and (220) planes of the face-centered cubic (fcc) structure of Co (JCPDS no. 15-0806). 
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Another peak of 41.6o located between the peak positions of the Pt (111) plane (JCPDS no. 

04-0802) and Co (111) plane can be reasonably ascribed to the (111) plane of PtCo alloy, 

which is caused by the change of the lattice parameters via the incorporation of Co in the fcc 

structure of Pt during the formation of the alloyed structure [37]. The broad peak of the PtCo 

(111) plane also indicates the small particle sizes. Therefore, these nanoparticles are inferred 

to be a combination of small PtCo bimetallic nanocrystals and large Co monometallic 

nanocrystals. To definitively prove the nature of the nanoparticles, PtCo/Co@NHPCC was 

further measured by SAED (selected area electron diffraction), FFT (fast Fourier transform), 

and EDX (energy-dispersive X-ray spectroscopy) analysis (Fig. 3). As shown in Fig. 3a and 

its inset, the SAED pattern acquired on a large area including large and small particles 

displays sets of both sharp diffraction spots and concentric rings, which can be indexed with 

fcc Co and PtCo, respectively. This is in good agreement with the XRD results. For a large 

particle (Fig. 3b), the FFT pattern shows the diffraction spots of Co (inset of Fig. 3b), while 

PtCo diffraction spots are displayed in the FFT pattern from a small particle (Fig. 3c and 

inset). Furthermore, the EDX analysis of 10 large particles and 10 small particles further 

demonstrates that the nanoparticles in PtCo/Co@NHPCC consist of large Co nanocrystals and 

small PtCo bimetallic nanocrystals (Fig. 3d-f). Element mappings of carbon and nitrogen 

shown in Fig. 2h,i display that the carbon and nitrogen elements are homogeneously 

distributed throughout the hollow porous capsule, demonstrating their nitrogen-doped carbon 

feature. The X-ray photoelectron spectroscopy (XPS) study (Fig. S6) of PtCo/Co@NHPCC at 

the N 1s levels further confirms the nitrogen-doped character. Additionally, the nitrogen 

species in PtCo/Co@NHPCC are mainly pyridinic N and graphitic N, which have been 

demonstrated to improve the ORR activity and enhance the adhesion between Pt catalysts and 

supports, resulting in improved stability [42,43]. Thus, all the results fully confirm the 

successful formation of small PtCo bimetallic nanoparticles encapsulated in unique nitrogen-

doped hollow porous carbon capsules. 

 In virtue of their unique hollow porous nanostructures with the beneficial features of 

embedded small alloyed particles, nitrogen-doped carbon, and high surface area, 

PtCo/Co@NHPCC is expected to exhibit significantly superior catalytic performance to 

traditional Pt-based catalysts, particularly in electrocatalysis. Thus, the electrocatalytic 
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property of PtCo/Co@NHPCC was evaluated toward the ORR. For comparison to baseline 

performance, commercial Pt/C (Fig. S7a) and Pt black (Fig.S7c) catalysts were also 

investigated under the same condition. Fig. 4a shows the CV curves of the three catalysts 

performed at room temperature in N2-purged 0.1 M HClO4 solution with a sweep rate of 50 

mV s-1. The ECSA was calculated by integrating the charge collected in the hydrogen 

adsorption/desorption region from the electrode surface after double-layer correction and 

assuming a value of 210 μC cm-2 for the adsorption of a hydrogen monolayer. 

PtCo/Co@NHPCC exhibits a considerably high ECSA of 64.6 m2 g-1 based on the Pt mass, 

which is even slightly higher than that of commercial Pt/C (57.6 m2 g-1), and much higher 

than that of Pt black (19.0 m2 g-1). To some extent, the high ECSA also can confirm the small 

particle size of PtCo alloys in PtCo/Co@NHPCC, which is consistent with the SAED, FFT, 

and EDX data. The ORR tests were performed in O2-saturated 0.1 M HClO4 solutions by 

using a glassy carbon rotating disk electrode (RDE) at room temperature with a sweep rate of 

10 mV s-1. Fig. 4b shows the ORR polarization curves for PtCo/Co@NHPCC, commercial 

Pt/C, and Pt black. The half-wave potential of PtCo/Co@NHPCC is 0.883 V, which is higher 

than that of commercial Pt/C (0.864 V) and Pt black (0.868 V), indicating the best activity of 

PtCo/Co@NHPCC among these three catalysts. In addition, the Tafel slopes of these catalysts 

at low over-potentials are close to 60 mV/decade (Fig. S8), indicating that their rate 

determining steps are pseudo two electron procedures [44,45]. According to the Koutecky-

Levich equation [46,47], the kinetic current density, which represents the intrinsic activity of 

the electrocatalyst, was calculated and then normalized with respect to the mass loading of Pt 

and ECSA to obtain the mass activity and specific activity, respectively (Table S2). As shown 

in Fig. 4c, PtCo/Co@NHPCC demonstrates an outstanding mass activity of 0.566 A mgPt
-1, 

which is 5.5 and 13.5 times greater than that of commercial Pt/C (0.102 A mgPt
-1) and Pt black 

(0.042 A mgPt
-1), respectively. Likewise, as observed in Fig. 4d, the specific activity of 

PtCo/Co@NHPCC (0.876 mA cm-2) is 4.9 and 4.0 times greater than that of commercial Pt/C 

(0.177 mA cm-2) and Pt black (0.221 mA cm-2), respectively. Notably, both the mass activity 

and specific activity of PtCo/Co@NHPCC (0.566 A mgPt
-1 and 0.876 mA cm-2) are superior to 

that of the previously reported PtCo/C catalysts (Table S3) and the U.S. Department of 

Energy (DOE) 2017 targets of 0.440 A mgPt
-1 and 0.720 mA cm-2, respectively [2].  
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 The ADTs of PtCo/Co@NHPCC, commercial Pt/C, and Pt black were also conducted 

to assess the ORR stability of the catalyst by performing 5000 potential cycles sweeping 

between 0.6 and 1.1 V versus a RHE at the rate of 50 mV s-1 in O2-saturated 0.1 M HClO4 

solution at room temperature. Fig. 5a-c show the CV curves of these three catalysts before and 

after ADT. In comparison with the dramatic drops in the current densities of the peaks in the 

hydrogen adsorption/desorption regions for commercial Pt/C and Pt black after ADT, the drop 

for PtCo/Co@NHPCC is only marginal. As shown in Fig. 5g, PtCo/Co@NHPCC shows a 

loss of 29.8% in ECSA after ADT, whereas commercial Pt/C and Pt black display losses of 

53.2% and 41.4% in ECSA, indicating that the durability of PtCo/Co@NHPCC is much better 

than commercial Pt/C and Pt black. Fig. 5d-f plot the polarization curves of these three 

catalysts before and after ADT. Only a 19 mV loss in half-wave potential for 

PtCo/Co@NHPCC is observed after ADT, which is much lower in comparison with 67 mV 

and 74 mV half-wave potential losses for commercial Pt/C and Pt black, respectively. The 

mass activities of these three catalysts on the basis of Pt mass before and after ADT are given 

in Fig. 5h. Notably, PtCo/Co@NHPCC retains 62.7% of the initial mass activity with a high 

value of 0.355 A mgPt
-1 after ADT, which is still 3.5 and 8.5 times greater than that of pristine 

commercial Pt/C and Pt black, respectively. As comparisons, the retentions in mass activities 

for commercial Pt/C and Pt black are 16.7% and 20.5%, respectively. Similarly, 89.4% of the 

initial specific activity is observed for PtCo/Co@NHPCC after ADT, while 35.6% and 35.3% 

are retained for commercial Pt/C and Pt black, respectively (Fig. 5i). These results definitively 

demonstrate that PtCo/Co@NHPCC has an excellent ORR durability which is far better than 

that of commercial Pt/C and Pt black. To clarify the reasons of their different durability, the 

morphologies of these three catalysts after ADT were investigated by TEM. As shown in Fig. 

S7e,f, the morphology and hollow porous structure of PtCo/Co@NHPCC shows no obvious 

change, except for the elimination of the large Co particles in the capsules due to the 

dissolution of the unstable Co metals in acid solution during ADT [48,49]. By contrast, severe 

aggregation/sintering after ADT (Fig. S7b,d) are observed for both commercial Pt/C and black 

Pt, resulting in their poor durability. Overall, PtCo/Co@NHPCC has demonstrated an 

outstanding ORR activity, stability, and durability, which should be attributed to its unique 

features: i) alloy structure and fine size of PtCo nanoparticles which improves the intrinsic 
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activity, stability, and utilization efficiency of Pt; ii) nitrogen-doping and high surface area of 

hollow porous carbon capsules that facilitate the electron transport and oxygen diffusion in 

the ORR; iii) synergistic effect between bimetallic catalyst and novel nanostructured carbon 

support, which further enhances their activity and durability. 

4. Conclusions 

   In summary, we have presented an efficient and novel strategy to rationally design and 

synthesize PtCo bimetallic nanoparticles embedded in unique nitrogen-doped hollow porous 

carbon capsules. PtCo/Co@NHPCC shows much superior ORR activity and durability in 

comparison to commercial Pt/C and Pt black. Notably, both the mass activity (0.566 A mgPt
-1) 

and specific activity (0.876 mA cm-2) of PtCo/Co@NHPCC are beyond the U.S. DOE 

recommended 2017 target of 0.440 A mgPt
-1 and 0.720 mA cm-2, respectively. The excellent 

ORR performance of PtCo/Co@NHPCC could be ascribed to the multitude of features of the 

catalyst and support, including the alloy structure, small particle size, high dispersion, nitrogen-

dopant, high surface area, and hollow porous structure. Our investigation shows that advanced 

ORR electrocatalysts can be developed by combining the advantages of superior Pt-based 

nanostructured catalysts and novel support materials, which ultimately supports the widespread 

commercial penetration of PEMFCs. 
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Fig. 1. Schematic representation of the preparation of PtCo/Co@NHPCC. 
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Fig. 2. SEM images of (a) ZIF-67, (b) Pt@ZIF-67, (c) Pt@ZIF-67@TA, and (d) 

PtCo/Co@NHPCC. (e) TEM, (f) HRTEM, and (g) HAADF-STEM images of 

PtCo/Co@NHPCC. (h-k) Elemental mapping results of PtCo/Co@NHPCC: h) C (yellow), i) 

N (red), j) Pt (purple), and k) Co (blue). (l) XRD pattern of PtCo/Co@NHPCC. 
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Fig. 3. (a) HAADF-STEM image of PtCo/Co@NHPCC. Inset is SAED pattern recorded from 

a). (b) HRTEM image of a large particle from PtCo/Co@NHPCC and corresponding FFT 

image (inset). (c) HRTEM image of a small particle from PtCo/Co@NHPCC and 

corresponding FFT image (inset). (d,e) HAADF-STEM images of PtCo/Co@NHPCC and (f) 

corresponding EDX analysis for individual nanoparticles as labelled by numbers.  
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Fig. 4. (a) CV curves, (b) ORR polarization curves, (c) mass activity, and (d) specific activity 

at 0.9 V versus RHE for PtCo/Co@NHPCC, Pt/C, and Pt black catalysts. 
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Fig. 5. CV curves of (a) PtCo/Co@NHPCC, (b) Pt/C, and (c) Pt black, ORR polarization 

curves of (d) PtCo/Co@NHPCC, (e) Pt/C, and (f) Pt black before and after ADT, and 

corresponding summary of (g) ECSA, (h) mass activity, and (i) specific activity for 

PtCo/Co@NHPCC, Pt/C, and Pt black before and after ADT, respectively.  
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