
Mobile Robot Manipulator System
Design for Localization and Mapping

in Cluttered Environments

by

Chia-Sung Liu

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Mechanical and Mechatronics Engineering

Waterloo, Ontario, Canada, 2018

c© Chia-Sung Liu 2018

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In this thesis, a compact mobile robot has been developed to build real-time 3D maps
of hazards and cluttered environments inside damaged buildings for rescue tasks using
visual Simultaneous Localization And Mapping (SLAM) algorithms. In order to maximize
the survey area in such environments, this mobile robot is designed with four omni-wheels
and equipped with a 6 Degree of Freedom (DOF) robotic arm carrying a stereo camera
mounted on its end-effector. The aim of using this mobile articulated robotic system is
monitor different types of regions within the area of interest, ranging from wide open spaces
to smaller and irregular regions behind narrow gaps.

In the first part of the thesis, the robot system design is presented in detail, including
the kinematic systems of the omni-wheeled mobile platform and the 6-DOF robotic arm,
estimation of the biases in parameters of these kinematic systems, the sensors and calibra-
tion of their parameters. These parameters are important for the sensor fusion utilized in
the next part of the thesis, where two operation modes are proposed to retain the camera
pose when the visual SLAM algorithms fail due to variety of the region types. In the second
part, an integrated sensor data fusion, odometry and SLAM scheme is developed, where
the camera poses are estimated using forward kinematic equations of the robotic arm and
fused to the visual SLAM and odometry algorithms. A modified wavefront algorithm with
reduced computational complexity is used to find the shortest path to reach the identified
goal points. Finally, a dynamic control scheme is developed for path tracking and motion
control of the mobile platform and the robot arm, with sub-systems in the form of PD con-
trollers and extended Kalman filters. The overall system design is physically implemented
on a prototype integrated mobile robot platform and successfully tested in real-time.

iii

Acknowledgements

I would like to thank my supervisor, Dr. Baris Fidan, for giving me the opportunity to
study and work with a great team at the University of Waterloo. During these years, his
helpful guidance and patient support have taught me a great deal about the implementation
of cutting edge robotic research.

I would like to thank the members of my committee, Dr. William Melek and Dr.
Stephen Smith, for their recommendations to improve this thesis. On my coursework, I
also want to thank Prof. Baris Fidan, Prof. Behrad Khamesee, Prof. John Zelek, Prof.
Soo Jeon, Prof. Steven Waslander (in alphabetical order). I was joyfully immersed in
the knowledge they taught in their lectures. These courses are also the foundation of this
research.

I would like to thank my teammates, Mr. and Mrs. Zengin and Assylbek Dakibay,
who gave me constructive feedback and support on the development of this robot. Lastly,
I want to thank Elisabeth, Dave ,and Grant for providing comments to improve the clarity
of this thesis. Last but not least, I would like to sincerely thank all the teachers and friends
who had ever encouraged me when I was in the low tide of my life.

iv

Dedication

I would like to dedicate this thesis to my parents, wife and kids.

v

Table of Contents

List of Tables ix

List of Figures x

List of Abbreviations xiv

1 Introduction 1

1.1 Motivation . 2

1.2 The Mobile Platform Mapping and Surveillance Problem 2

1.3 Contributions . 3

1.4 Organization . 3

2 Background and Literature Review 5

2.1 Probabilistic SLAM . 6

2.1.1 Visual SLAM Algorithms . 8

2.1.2 Camera Model . 10

2.1.3 Temporal Camera Position . 14

2.2 Map Representation . 16

2.3 Place Recognition and Loop Closure Detection 19

2.3.1 Graph-Based Optimization . 22

2.4 Path Planning . 23

vi

3 The Surveillance Mapping Task and the Proposed Robotic System 26

3.1 General Structure of the Proposed System 26

3.2 Mechanical Robot System . 27

3.2.1 Robot Manipulator . 28

3.2.2 Mobile Platform . 31

3.3 Robot Sensors . 37

3.3.1 Inertial Sensors . 40

3.3.2 Passive Vision Sensors . 42

3.3.3 Stereo-Cameras and IMU Calibration 44

3.3.4 Vision-Inertial Model . 45

3.4 Articulated Arm Calibration . 46

4 Localization and Mapping 48

4.1 Sensor Transformation . 48

4.2 Mapping . 49

4.2.1 Base Mapping . 51

4.2.2 Detail Mapping . 52

4.3 Visualization . 53

5 Motion Planning and Collision Avoidance 55

5.1 Problem Description and Goal . 55

5.2 Modified Wavefront for 2D Path Planning 56

5.2.1 Methodology . 56

6 Planar Motion Control 60

6.1 State Feedback . 60

6.2 Mobile Platform Path Tracking . 61

vii

7 Experimental Testing 64

7.1 System Setup . 64

7.2 Experiments . 65

7.2.1 Eye-in-Hand Calibration . 65

7.2.2 Mapping Results . 71

7.3 Discussion . 74

8 Conclusion 75

References 76

APPENDICES 85

A Robot Arm Calibration Result 86

B Omni Wheel Platform Dynamic Model 88

viii

List of Tables

3.1 D-H table of the articulated robot arm . 29

3.2 LSM6DS0 IMU parameters. 42

3.3 Phidget IMU parameters. 42

3.4 Tara stereo camera calibration, pinhole model. 43

3.5 Tara stereo camera and IMU calibration. 44

3.6 D-H table of the 7Bot robot arm with joint angle biases and linkage offsets. 47

5.1 Modified wavefront algorithm benchmark. 57

7.1 The corrected D-H parameters of the 7Bot robotic arm. 66

ix

List of Figures

1.1 System roadmap. 4

2.1 The major sensors used in SLAM process and their associated metric mea-
surements. 6

2.2 Markov assumptions of the Bayes filter in [91]. 7

2.3 Matching the corresponding feature points in different images. These tem-
poral images are taken by Tara camera in our proposed system. 9

2.4 Benchmark of two major visual odometry and SLAM, taken from [42]. The
absolute translational errors (RMSE) is in meters. 10

2.5 Observation of the same feature points from different camera poses, (z: for-
ward, x: right, and y: down). 11

2.6 Depth and inverse depth coding[25]. 14

2.7 Bresenham’s ray tracing. 16

2.8 Likelihood of occupancy grid cells. 16

2.9 This is an example of Octomap built from the point clouds that are captured
using Tara stereo camera. The room dimension is 5.8m (L) x 4.1m (W) x
2.3m (H). 19

2.10 Factor graph-based SLAM is formulated by parameter nodes and measure-
ments. When the robot travels to the location where it passed before, the
loop closure detection will bridge the nodes and minimize the error residuals. 21

2.11 The cost increment mask of 8-connected grid graph starts at zero cost. It
comprises the current position cost with the mask and applies to the cell
not being calculated, and then keeps exploring until the wave mask reaches
the goal. 24

x

2.12 Wavefront path planning algorithm. 24

3.1 Integration layout of the sensors and processors of the proposed surveillance
robot system. 27

3.2 The robot arm geometry. 28

3.3 Robotic arm, mobile platform and april tag checkerboard. 28

3.4 Due to joint 2 to 6 are on the same plane, the end-effector position projected
to the robot base plane is the function of the first joint angle θ1. 30

3.5 Joint 2, 3, and 5, on the same plane can be formed a triangle. 30

3.6 Mobile platform. 32

3.7 SONY c©PS3 joystick for the teleoperation. 32

3.8 The posture definition of the mobile platform on the inertial frame. 33

3.9 Roller orientation of each omni-wheel. 33

3.10 Left: bottom-view of the mobile base; Right: top-view of the mobile base. . 34

3.11 Simulation of the mobile platform and the EKF design. 38

3.12 Simulation of the mobile platform and the EKF with multiple sensors design. 39

3.13 Tara stereo camera with built-in IMU. 40

3.14 Allan deviation of an inertial sensor, cf[21]. 41

3.15 LSM6DS0 Accelerometer. 41

3.16 LSM6DS0 Gyro. 41

3.17 PhidgetSpatial Accelerometer. 43

3.18 PhidgetSpatial Gyro. 43

3.19 Left camera reprojection errors. 45

3.20 Right camera reprojection errors. 45

3.21 Measure the end-effector trajectory using motion capture system. 46

4.1 The transformation chain between all sensors in the mobile robot. 49

4.2 Sensor fusion pipeline. 50

4.3 Pose graph in the detailed mapping mode. 51

xi

4.4 In this thesis, the point clouds is generated by SGBM algorithm implemented
in OpenCV [10]. 54

4.5 After each measurement, we can use the occupancy grid mapping algorithm
to update the voxels in the 3D map. 54

4.6 We can vertically project the occupied voxel in 3D map to the ground plane.
Thus, we can convert the 3D map to 2D occupancy grid map [61]. 54

5.1 The original map. 58

5.2 Resized map to 0.1 of original scale. 58

5.3 Apply wavefront path planning to the lower resolution map. 58

5.4 Restore the path found in the lower resolution to the original map. Some
path nodes are in the obstacles highlighted by red circles. 58

5.5 Refine the path falling on the obstacle areas. 59

5.6 The shortest path derived by scale λ = 0.1. 59

5.7 The resolution scale λ = 0.7. 59

6.1 Trajectory control loop with path following algorithm. 61

6.2 Path following a straight line. 62

6.3 Simulation of the omni-mobile platform following a square path (top-left).
The kinematic motion model includes an additive Gaussian disturbance to
simulate the robot moving over uneven ground. The measurement model
also contains Gaussian noise. The Kalman gain (top-right). The actual
state and the estimated states (bottom-left). All wheel speeds (bottom-right). 63

7.1 Using URDF to describe the mobile platform and robotic arm in Rviz. . . 65

7.2 During robotic arm calibration, each joint is moved individually one at a
time. All encoder readings on the robotic arm are saved to a ROS bag. . . 67

7.3 Robot arm joint biases calibration. 68

7.4 Compare the EF trajectories which is gathered by motion capture system
and derived by the forward kinematic model using corrected D-H table.
RMSE is 0.7[mm] after full calibration. 69

7.5 Trajectories of ORB-SLAM2 and ground truth in 3D. 70

xii

7.6 Trajectories of ORB-SLAM2 and ground truth. 70

7.7 The image is blurred when the camera is too close to the obstacle around a
gap. 71

7.8 Mapping ceiling. 72

7.9 Gap mapping (side view). 72

7.10 The camera trajectory is recovered by the sensor fusion, then the gap map-
ping can continue. This sparse map is built by ORB-SLAM2. 72

7.11 Gap mapping. 72

7.12 The collision-free camera trajectory in the gap mapping mode. 73

7.13 The results of the gap mapping experiment. The gap mapping started at
the 53-rd second and ended at the 80-th second. 73

7.14 This image shows the saturated areas with the same photometric value, the
white colour. 74

7.15 The saturated areas turn out the unexpected depths. In this image, the
overexposure area becomes a hole. 74

xiii

List of Abbreviations

AR Augmented Reality

DBoW an open source C++ library for indexing and converting images into a bag-of-word
representation

D-H parameters Denavit-Hartenberg parameters

DOF Degrees of Freedom

EF End Effector

IMU Inertial Measurement Unit

ORB Oriented FAST and Rotated BRIEF

PID Proportional-Integral-Derivative

SIFT Scale Invariant Feature Transform

SLAM Simultaneous Localization And Mapping

SURF Speeded-Up Robust Features

VR Virtual Reality

xiv

Chapter 1

Introduction

Autonomous robots play an important role in exploring unknown or dangerous environ-
ments such as collecting rock samples on Mars and surveying collapsed buildings for rescue
purposes [7, 89]. In such tasks, perceptive sensors on the robots reconstruct the 3D environ-
ment they travese, called the ‘map’ of an environment. A map produced by state-of-the-art
SLAM algorithms contains precious information such as textures, shapes, positions, and
geometries. The map can be contained in the robot’s local memory or shared with others
over a wireless network. A regional map done by a mobile robot is like a piece of puzzle
for the unknown environment.

The map can be used for further applications, including the Augmented Reality (AR),
Virtual Reality (VR) virtual reality tours, and path planning. For the rescue applications,
real-time mapping is exceptionally beneficial to the crew for preparing the safety protective
equipment and planning the safest route to reach wounded survivors.

Autonomous navigation is contingent on the availability of an accurate map. However,
mapping requires precise posture estimates of the mobile robot. This challenge of solving
mapping and localization iteratively has lead to development of Simultaneous Localization
And Mapping (SLAM) in the field of robotics.

In the past decade, there has been a significant amount of research on developing novel
SLAM algorithms and numerical methods to efficiently implement these SLAM algorithms
in real-time on affordable hardware platforms (sensors, CPU, and GPU). Another large
contribution to the field of SLAM comes from active open source communities, filling the
gap between theoretical studies and coding for real-time implementation.

This thesis proposes a methodology and develops the algorithms, mechanical design,
and instrumentation, to implement real-time SLAM in GPS-denied and cluttered envi-

1

ronments with a mobile robotic system composed of an omni-mobile platform, a low-cost
camera, and Inertial Measurement Unit (IMU).

In this thesis, the prototype of a compact mobile robot is built based on the kinematic
models, SLAM algorithms, and control schemes presented. This mobile robot is equipped a
robotic arm with a stereo camera fixed on the end-effector. This eye-in-hand setup can drive
the camera into gaps and holes to observe scenes occluded by obstacles. Meanwhile, the
camera on the end-effector is streaming the video to SLAM algorithms that can reconstruct
a 3D map in real-time. At the end, a modified wavefront algorithm is presented to find
the shortest route on the gathered map.

1.1 Motivation

On March 11, 2011, the Fukushima nuclear disaster resulted in three nuclear meltdowns
and hydrogen-air chemical explosions, from a tsunami following the Thoku earthquake in
Japan. Due to high levels of the radiation, rescuers could not reach the damaged reactor
buildings and many surrounding areas of the nuclear power plant. If autonomous mobile
robots were available at the time, that could have entered and mapped the real-time scene
inside the building. This would help first responses plan and minimize human casualties
and nuclear pollution. Furthermore, mobile robots equipped with manipulators could also
take some actions to mitigate the disaster such as closing control valves. That were rendered
inoperable from the control room.

In Canada, a coal mine exploded in Nova Scotia on May 9, 1992. The explosion killed
every person in the mine and tore off the metal roof at the pit entrance. The tunnel inside
the coal mine contained hazardous gas and loose rocks. That made it dangerous to send
rescue crews without knowing the best path inside the tunnel. If a robot could explore the
terrain ahead, it would be helpful to prevent the crew from entering any dangerous zones.

1.2 The Mobile Platform Mapping and Surveillance

Problem

In a collapsed building, the scene is not ordinary. Fallen walls or heavy shelves might
block pathways. In a robotic exploration and rescue scenario in such an environment, the
mobile robot cannot move further to survey the other side of the blocking obstacle. This
thesis mainly focuses on mapping in this kind of environments with narrow gaps using

2

a robot manipulator mounted on a wheeled robot. This kind of setting can enhance the
reachability of the perception sensor mounted on the End Effector (EF) to provide the
more in-depth search of the clutter building environment. Due to perception sensors being
fragile, collision avoidance needs to be considered.

A mobile robot is designed as compact as possible to travel inside the cluttered area.
When a mobile robot reaches to the targets, e.g. disaster survivors, other robots can rely
on the map to be shared by the reaching robot, and then carry foods and tools to the
destination where peers need supports.

1.3 Contributions

The main contribution of this thesis, which is novel to the best of our knowledge, is to
integrate and implement the eye-in-hand manipulator SLAM in GPS denied and cluttered
environments for mobile robots. In damaged or contaminated buildings, there are many
obstacles scattered throughout the floor. The motion of robots is limited by these obstacles.
The proposed system can go around obstacles to achieve gap mapping and maximize the
surveillance area without lost tracking.

The other contribution is on the path planner. A modified wavefront algorithm is pro-
posed aiming to increase the efficiency to compute the effective and reachable destination
where people or robots need supports on a given map.

1.4 Organization

This thesis is organized as follows: The background literature review on SLAM and path
planning, presented in Chapter 2. Chapter 3 defines the cluttered environment surveil-
lance mapping problem of interest with detailed specifications, and provides the general
description of the mobile robot manipulator system proposed for this task, including the
mechanical design and sensor instrumentation. SLAM algorithm development, motion
planning, and low-level control design, are presented in Chapters 4, 5, 6, respectively. The
system architecture is outlined in the Fig.1.1. The experimental results and conclusions
are provided in the last two chapters.

3

Figure 1.1: System roadmap.

4

Chapter 2

Background and Literature Review

In [18, 34], SLAM is defined as the problem, for an autonomous mobile robot, of building the
consistent map of an unknown environment and localizing itself within this map. Therefore,
the task of a rescue robot to explore an unknown environment can be formulated as SLAM.
In late 1980’s, a number of researchers including Peter Cheeseman, Jim Crowley, and Hugh
Durrant-Whyte, Raja Chatila, Oliver Faugeras, Randal Smith, and others concluded that
consistent probabilistic mapping is a fundamental problem in SLAM. Since then, SLAM
process is generally modelled as the standard Bayesian formulation in which estimates the
relative positions to landmarks and a mobile robot pose recursively.

In the early stage, the key papers produced by Smith and Cheesman [81] and Durrant-
Whyte [35] have shown that the correlations between estimates of the location of different
landmarks in a map grow with successive observations. In increasing number of observa-
tions, computational complexity is a crucial issue. Later on, researchers focused on a series
of problems on building the consistent map and estimating the robot state. Thrun [92]
proposed the Kalman-filter-based SLAM method which achieved the convergence between
the probabilistic localization and mapping. It is briefly introduced in the next section.

The research in SLAM has grown gradually in recent years. Some researchers are
generous to share their implementations as open source code [11] with public. That gets
more attention than ever. Recently, the researches have been mainly focusing on four key
areas:

1. Real-time implementation (computational complexity).

2. Map representation.

5

3. Data association (loop-closure detection and feature matching).

4. Measurement sensors, such as GPS, IMU, Wheel Odometer, LiDar, RGB-D camera,
Stereo camera, and radar, etc. They can measure the robot state and landmark
directly or indirectly. (See Fig. 2.1)

Figure 2.1: The major sensors used in SLAM process and their associated metric measure-
ments.

2.1 Probabilistic SLAM

In the probabilistic SLAM approach [34], following the theory in [91, 92], a robot state and
its observing map can be described in terms of the following conditional probability:

P (xt,m|Y0:t,U0:t,x0). (2.1)

6

where xt is the state vector of mobile robot at time t, m is the vector of time-invariant
landmarks in the map, Y0:t = [y0,y1, ...,yt], U0:t = [u0,u1, ...,ut], x0 is the initial state of
the robot.

The motion model of mobile robot can be described by another conditional probability,

P (xt|xt−1,ut). (2.2)

The observation model of the mobile robot can be described in the form

P (yt|xt,m). (2.3)

Figure 2.2: Markov assumptions of the Bayes filter in [91].

The SLAM algorithm in [91, 92] is implemented as a recursion of the prediction-update

P (xt,m|Y0:t−1,u0:t,x0) =

∫
P (xt|xt−1,ut)P (xt−1,m|y0:t−1,u0:t−1,x0)dxt−1 (2.4)

and the measurement-update

P (xt,m|Y0:t,u0:t,x0) =
P (yt|xt,m)P (xt,m|Y0:t−1,u0:t,x0)

P (Yt|Y0:t−1,u0:t)
(2.5)

Based on Markov assumptions as shown in Fig.2.2, the motion model is described in
the form of a state-space model with additive Gaussian noise wt, as follows:

P (xt|xt−1,ut)⇐⇒ xt = f(xt−1,ut) + wt. (2.6)

7

The measurement model is described, considering an additive Gaussian noise vt,

P (Yt|xt,m)⇐⇒ Yt = h(xt,m) + vt. (2.7)

f(xt−1,ut) in Eq.2.6 and h(xt,m) in Eq.2.7 are nonlinear functions. The most common
algorithms used to solve the SLAM problem defined above include EKF-SLAM [19] and
Rao-Blackwellized particle filter, or FastSLAM algorithm [93].

In vision-based SLAM implementations, the digital camera is not only a cost-effective
sensor but also comes with the richest information, such as colours, textures, intensity and
a huge number of pixels. It can adapt to indoor and outdoor environments. Meanwhile,
there are many profound researches in computer vision area transferable to solve SLAM
issues. In this thesis, a monochrome stereo camera is chosen to be the main sensor to
observe the unknown environment. Wheel odometer and IMU are utilized to measure the
robot states. An articulated robot arm is used to maximize the explore area.

2.1.1 Visual SLAM Algorithms

Following are two the state-of-art approaches to data association in the passive vision-
based SLAM algorithms. In this thesis, these two SLAM algorithms are utilized in our
experiments.

1. Feature-based SLAM: The features are described by the unchanged characters at
certain specific locations on the map. There are many descriptors from the computer
vision category, such as Oriented FAST and Rotated BRIEF (ORB) [77] , Scale
Invariant Feature Transform (SIFT) [64] and Speeded-Up Robust Features (SURF)
[20]. used to be the signatures of features. The descriptor, a set of numbers, can
be used to match the corresponding points in different images. For instance, in Fig.
2.3, the matching points in the left image and the right image are linked by lines in
light blue colour. The adjustable threshold of the feature number depends on the
system computation capability. The 7-point/8-point correspondences algorithm[50]
or optimization-on-manifold can be applied to solve the transformation of one image
to another. On the contrary, the mismatch feature points may increase the error
dramatically. Concerning the risk of the mismatch, RANSAC [39] is one kind of
algorithm to reject the outliers. The number of feature points depends on the texture
of an image. Overall, this number is still less than all the pixels in an image. The
feature points are also called ‘sparse’ feature points. The advantage of this type of
SLAM is sufficiency to compute the transformation matrix from an image frame to

8

another frame due to sparse points. The disadvantage is its sensitivity to the blurred
images. Using a high-speed camera which takes a picture in fast frame rate can
overcome this issue. However, the cost is higher than standard cameras under 30
frames per second(fps). ORB-SLAM2[74] is an efficient algorithm for this domain.

Figure 2.3: Matching the corresponding feature points in different images. These temporal
images are taken by Tara camera in our proposed system.

2. Dense SLAM: Dense SLAM algorithm uses the photometric value of each pixel di-
rectly without preprocessing. The benefit is strong tolerance to blur issues. However,
all photometric errors of the pixels in the image are in account. Hence, higher image
resolution becomes a burden on the CPU. The semi-dense SLAM is an alternative
solution to reduce the computation. It aligns the small size of patch in the image
and minimizes the photometric error in the selected area of image. The patches are
applied to the region with sufficiently photometric gradient, such as corners, edges
and high texture areas. LSD-SLAM [38], SVO [41], and DSO [37], are widely studied
in the recent papers. The benchmark of feature-based and dense SLAM algorithms
is shown in Fig.2.4.

9

Figure 2.4: Benchmark of two major visual odometry and SLAM, taken from [42]. The
absolute translational errors (RMSE) is in meters.

3. Robotic Arm SLAM: In [57], Matthew et al. proposed the first paper regarding the
robotic arm SLAM using a robotic arm. This articulated manipulator is mounted
on a fixed base. A RGB-D camera is equipped on its EF. They used TSDF SLAM
algorithm to estimate the EF poses and build a 3D map. In this paper, the forward
kinematics is assumed invalid due to overload, backlash or disturbance.

2.1.2 Camera Model

In this thesis, the stereo camera is the only perceptional sensor that can measure the
distances of the obstacles in front of the camera. Furthermore, the images from the camera
can be sent to visual SLAM algorithms which can estimate the camera position as well. In
order to achieve the precise measurements, the accurate camera parameters are required.
Following subsections are the background of the camera models and parameters.

Pinhole Camera Model

The origin of a pixel matrix of a digital image is starting from the top-left corner. The
X-axis and Y-axis are in the horizontal direction and vertical direction respectively. Based
on the right-hand rule, the Z-axis is normal to the image plane and passing the center of
camera lens. If there are n feature points in 3D space observed by a camera; these n points
can be projected through the centre of the camera lens to the vision sensor. The perfect
pinhole camera model is assumed that a projection point, q1, on the image is laid on the

10

ray from the centre point of lens, Xi, to the point, Q1, in 3D and its projection on the
image of vision sensor, are laid on a ray and formed in Eq.2.8. A camera intrinsic matrix,
K in 2.8, includes the focal lengths and the centre of the image. By triangulation in the
temporal stereo analysis, the actual depth of a feature point along two projected rays from
the camera posture, Xi, to the posture, Xj, can be computed if two extrinsic matrices in
2.8 are given (see Fig. 2.5).

Figure 2.5: Observation of the same feature points from different camera poses, (z: forward,
x: right, and y: down).

11

s

 u
v
1

 = K [R|t]

X
Y
Z
1

=

fx 0 cx
0 fy cy
0 0 1

︸ ︷︷ ︸

K: intrinsic matrix

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

︸ ︷︷ ︸

extrinsic matrix︸ ︷︷ ︸
P : projection matrix

X
Y
Z
1

 (2.8)

where:

• extrinsic matrix is the transformation from the world frame to the camera frame,

• intrinsic matrix, K, is related to the lens parameters regarding 3D objects projected
to the pixel matrix,

• Q(X, Y, Z) are the coordinates of a 3D point in the world coordinate space,

• q(u, v) are the coordinates of the distortion-free projection point in the pixel matrix,

• (cx, cy) is a principal point that is usually at the image centre,

• fx,fy are the focal lengths expressed in pixel units.

The lens curvature leads to the image distorted from the centre. In order to meet the
pinhole model in Eq.2.8, following two models [10, 98, 100] are commonly utilized to rectify
the distorted images before applying to visual SLAM algorithms:

• Radial Distortion Model
A pixel in a distorted image is governed by following polynomial equation:

xd = x(1 + k1r
2 + k2r

4 + k3r
6 + ...)

yd = y(1 + k1r
2 + k2r

4 + k3r
6 + ...)

(2.9)

where (x, y) is a pixel on the distance r =
√
x2 + y2 from the principal point of the

correction image.

12

(2.9) can be simplified as

(xd, yd) = (x, y)f(r,k).

(x, y) = f−1(r,k)(xd, yd).
(2.10)

where k = [k1, k2, k3, ...].

• Tangential Distortion Model
This is used for the lens not being parallel to the image sensor.

xd = x+ [2p1xy + p2(r
2 + 2x2)]

yd = y + [p1(r
2 + 2y2) + 2p2xy]

where p = [p1, p2] are the parameters of this model.

Stereo Camera Model

The stereo camera is normally composed of two cameras with the same orientation. The
camera sensors are aligned in the same plane apart with a fixed baseline along the x-axis
of the camera frame. The projection matrix becomes the intrinsic matrix and camera
translation:

P =

 fx 0 cx tx
0 fy cy ty
0 0 1 tz

 . (2.11)

Its left 3x3 portion is the intrinsic matrix used for the rectified image. The fourth
column [tx ty tz]

T is the translation from the position of the optical centre of a camera to
the left camera’s frame. Thus the fourth column of the projection matrix of the left camera
can be simply set as tx = ty = tz = 0. Then ideally the right camera can be simplified to
ty = tz = 0 and tx = −fx × B, where B is the baseline from the left camera to the right
camera.

Given a 3D point Q(X, Y, Z), the projection q(u, v, d) of the point onto the rectified
image is given by [u v]T = P [X Y Z 1]T .

Depth and inverse depth comparison

The inverse depth representation, 1
ρ0

, is widely used in the mapping applications [25]. The
advantage of this representation can be easy to extended to infinity, when ρ0 is close to

13

zero. The only limitation is that the depth closed to zero cannot be accounted. The
additive Gaussian noise of the depth measurement can be propagated to the new image by
linearization of transformation function as shown in Fig. 2.6.

Figure 2.6: Depth and inverse depth coding[25].

2.1.3 Temporal Camera Position

The camera in our system is mounted on the end-effector of a robotic arm. The trajectory
of camera can be represented by a 4×4 homogenous transformation matrix which contains
a 3 × 3 rotation matrix and 3 × 1 translation vector in the rigid-body transformation
Tj,i ∈ SE(3) where the temporal footnotes i and j denote the transformation taken from
the i-th frame to the j-th frame. The rotation matrix can be derived from Eular angles in
order of roll-pitch-yaw in SO(3) or unit quaternion [33].[

Xj

1

]
=

[
R3×3 t3×1
01×3 1

] [
Xi

1

]
. (2.12)

where Xi and Xj are the measurement positions of the i-th frame and j-th frame, and
the rotation matrix:

R(φ, θ, ψ) = Rr(φ)Rp(θ)Ry(ψ) =

 cθcψ cθsψ −sθ
sφsθcψ − cφcψ sφsθsψ + cφcψ cθsψ
cφsθcψ + sφsψ cφsθsψ − sφcψ cθcψ

 . (2.13)

14

or quaternion:

R(q) =

 q20 + q21 − q22 − q23 2q1q2 + 2q0q3 2q1q3 − 2q0q2
2q1q2 − 2q0q3 q20 − q21 + q22 − q23 2q2q3 + 2q0q1
2q1q3 + 2q0q2 2q2q3 − 2q0q1 q20 − q21 − q22 + q23

 . (2.14)

where q = [q0, q1, q2, q3]
T .

Reprojection Errors (2D points on images to 3D points in the space)

When the camera moves a short distance in the consecutive N images. The corresponding
feature points on these images can be reprojected to 3D space using the projection matrix.
Ideally, the static feature points from different images reprojected to 3D space will be
aligned together. Alternatively, the 3D points can be transformed from the i-th frame to
the j-th frame.

Xj = Tj,iXi (2.15)

where Xi are the 3D points projected from the i-th image frame, Xj are the 3D points

projected from the j-th image frame, Tj,i =

[
R3×3 t3×1
O1×3 1

]
∈ R4×4, T−1j,i =

[
RT

3×3 −RT t3×1
O1×3 1

]
∈

R4×4. Thereby, the residual of the reprojection error of the observed common static points
to 3D space can be formulated as the following cost function:

E =
∑
i,j

‖X∗j − Tj,iX∗i ‖2. (2.16)

Tj,i comprises two factors: one is from the translation ∆t ∈ R3, the other is from the
rotation angles r ∈ R3.

‖∆t‖+ min(2π − ‖r‖, ‖r‖) (2.17)

To solve the camera motion, Tj,i, through minimizing the reprojection error is called
‘Perspective-n-Point’ [12].

15

Figure 2.7: Bresenham’s ray tracing. Figure 2.8: Likelihood of occupancy
grid cells.

2.2 Map Representation

There are two types of maps commonly used in the robotics field:

1. Point cloud map is a collection of the measurements defined by a given coordinates,
a set of 3D points, to represent non-transparent objects.

2. Volumetric map is defined by 2D grid cells or 3D cubic volumes with a given metric
unit and probability. When a measurement point falls in a 2D grid cell, the likelihood
of the cell occupied will increase.

Bresenham’s line tracing algorithm (Algorithm 1) can be used to determine the grid
cells is occupied or not. The algorithm searches the discrete cells passed by a straight
line from a robot’s sensor to the measured point. The cells passed by this straight
line are assumed to be free, and then the algorithm decreases the likelihood of these
cells. On the contrary, the probability of an observed point is increased. Thus, its
likelihood of occupancy is increased. Once a cell’s likelihood of occupancy reaches a
predefined threshold, this cell is considered occupied by an obstacle. For example,
in Fig. 2.7, the robot’s sensor is on the cell, (1, 1), and the measured point is on the
cell, (6, 8). The likelihood of occupied is as shown in the Fig. 2.8. The algorithm
can be extended to 3D mapping in the same scheme.

In this thesis, the map is exploited for mobile robot navigation and path planning with
collision avoidance. The volumetric map is used to determine obstacles. In [53], Hornung

16

et al. proposed the Octo Map, which is an efficient probabilistic 3D volumetric mapping
represented by Octree. Each node, a cubic volume called a voxel, in an Octree tree has
eight descendant nodes. In Octree, the 3D space is recursively subdivided into eight octants
until reaching the demanded metric size. This approach has the following advantages:

1. Full 3D model: The map is able to model arbitrary environments without prior
assumptions. The occupied area represents the obstacles. Thereby, to compute the
distance between the robot geometry and occupied space is essential for collision
avoidance detection.

2. Updatable: Each cubic region contains all the prior information. It is possible to
add new information or sensor readings at any time. Furthermore, multiple robots
are able to contribute to the same map and a previously recorded map is expendable
when the robot can be localized itself in the map.

3. Flexible: The map can be dynamically expanded as needed.

The depth of the octree impacts on the resolution and memory consumption. For
instance, if the depth of the tree is 16 and each cubic is 1[cm2], the OC tree represents a
volume of 2160.01[m3] = 655.36[m3]. 2320.01[m3] = 42949672.96[m3].

Each class node contains a probability value and a pointer to the eight child nodes. Each
occupancy probability of volume is initialized to the uniform probability of P (n) = 0.5, as
shown in Fig. 2.8.

Large-Scale Mapping

The number of measurements will keep growing when a robot explores a large-scale area.
That becomes the burden of the computer resources on the mobile robot. The scale of the
complexity is O(n2) time, where n is the sum of poses and measurements [1]. Thereby, to
manage the memory becomes another critical issue.

In [75], Reid et al. proposed a multi-robot SLAM algorithm to build the map in
the large-scale area. The map building was implemented by a centralized ground control
station (GCS) to fuse the submaps from different unmanned ground vehicles (UGVs). In
[61], Labbe et al. exploited multi-session approach to solve the memory shortage issue

1In computer science, big O notation is used to classify algorithms according to how their running time
or space requirements grow as the input size grows. [2]

17

Algorithm 1 Bresenham’s ray tracing algorithm in 2D map

1: See the correspondent points in Fig. 2.1
2: function Ray Tracing(pix,piy, qix,qiy, T):
3: point(qix, qiy) is falling in the cell n

4: p(n|z1:T) =
[
1 + 1−P (n|zT)

P (n|zT)

1−P (n|z1:T−1)

P (n|z1:T−1)
P (n)

1−P (n)

]−1
5: α = logit(p) = log

(
p

1−p

)
6: p = logit−1(α) = 1

1+exp(−α)
7: L(n|z1:T) = L(n|z1:T−1) + L(n|zT)
8: if L(n) > loccupied then
9: the cell is an obstacle
10: end if
11: if L(n) < lfree then
12: the cell is free
13: end if
14: dx = qix − pix
15: dy = qiy − piy
16: D = dy − dx
17: y = qiy
18: for x from pix to qix − 1 do
19: set cell(x,y) free
20: if D ≥ 0 then
21: y = y + 1
22: D = D − dx
23: end if
24: D = D + dy
25: end for
26: end function
27:

where T is the time. For example, if the likelihood of occupied is loccupied = 0.85 and the like-
lihood of free is lfree = 0.4, the corresponding to probabilities of poccupied = log−1(0.85) =

1
1+exp(−0.85) = 0.700567142 and poccupied = logit−1(0.4) = 1

1+exp(0.4)
= 0.40131234 for occu-

pied and free volumes .

18

Figure 2.9: This is an example of Octomap built from the point clouds that are captured
using Tara stereo camera. The room dimension is 5.8m (L) x 4.1m (W) x 2.3m (H).

with large-scale mapping. The zone of the map around the robot saves in the short-term
memory. If a given zone is further away than a predefined distance from current robot
position, the zone will be moved to long-term memory, e.g. local hard drive or remote
GCS, for later use. Thus, remote GCS can stitch the maps from multiple robots in the
field.

2.3 Place Recognition and Loop Closure Detection

When a vision-based robot travels to where it had been before and recognizes the place,“Loop
Closure Detection” takes place. For example, a mobile robot at the centre of a room changes
its heading angle (yaw) from starting point 0 degree to 360 degrees, it will face the same
scene again. If the robot recognizes that this scene is the same as the one it observed at 0
degree, the first node of the pose-graph is equal to the last node of it. This means the no
more new node is required to be added and these nodes become a closed loop. Through
the iterative optimization algorithms, the first node and last node may be aligned more
closely and corrected the accumulated drift errors from node to node. All nodes inside the
loop will be refined after the iterative optimization.

19

For larger loops, a robot needs to search a large number of images in the memory to
find a similar scene. So the loop closure detection is another challenging topic in the SLAM
problem. Bag of Words [46] is an efficient algorithm to store and search the feature points
in the historical images, like the an open source C++ library for indexing and converting
images into a bag-of-word representation (DBoW) [3].

A place recognition algorithm can be applied to solve the recovery issue. For example,
if a visual SLAM algorithm is lost tracking or a robot power is reset, a robot can use a
place recognition algorithm to localize itself on the existing map.

The detected loop comprises nodes which have robot state and measurements in the
following form.

P = {p1, p2, . . . , pN} ∈ X. (2.18)

Q = {q1, q2, . . . , qM} ∈ Y. (2.19)

∀i, pi = Rqi + t. (2.20)

where R is rotation matrix, t is the translation vector.

The map can be refined and the drift error can be minimized to minimize.

min
R,t

N∑
i=1

‖pi − (Rqi + t)‖2 (2.21)

In graph-based SLAM[48], the trajectory, states and parameters of robot moved in a
period of time are described by nodes x = {x1, . . . , xN} on the graph. The measurement
done by odometry and perception sensors are represented by y = {y1, . . . , yk}. See Fig.
2.10. There are several methods commonly used in the graph optimization to solve (2.21),
such as Gauss-Newton method, Levenberg-Marquardt, gradient descent on a manifold to
find the adjacent links on the graph. g2o [59], GTSAM [32] and Google Ceres-Solver
[17] are popular open source C++ algorithms to solve non-linear least square problems in
real-time.

20

Figure 2.10: Factor graph-based SLAM is formulated by parameter nodes and measure-
ments. When the robot travels to the location where it passed before, the loop closure
detection will bridge the nodes and minimize the error residuals.

21

2.3.1 Graph-Based Optimization

Graph-Based SLAM is formulated by the nodes of a robot state and each node is connected
by the control input in the sequence of time steps as shown in Fig.2.10. Each node contains
the timestamped states and measurements taken at that states, such as the feature points
extracted from the 2D image. The feature points can be reprojected to 3D space with a
metric depth using a stereo camera or a scaled depth in monocular camera.

The log-likelihood lij of measurements, residual of reprojecting feature points from the
i-th frame and the j-th frame to 3D space, can be formulated in the following form [48]

lij ∝ Eij = [zij − ẑij(xi,xj)]
TΩij[zij − ẑij(xi,xj)]

= eTij(xi,xj)Ωijeij(xi,xj)

= eTijΩijeij

where Ωij is w.r.t. the zero mean and information matrix of the measurements taken from
the i-th frame and the j-th frame.

The SLAM algorithms minimize the sequence of residuals, eij, of the measurements to
derive the approximated camera poses.

x∗ = arg min
x

∑
〈i,j〉∈C

Eij

= arg min
x

E(x)
(2.22)

where C = {〈j1, i1〉, ..., 〈jn, in〉} is set of pairs of nodes ∈ [1..n]for which ẑ exists.

Based on the current solution x∗, we let x̆ = x∗ to compute the approximation of next
solution x∗ = x̆ + ∆x∗ .

Eij(x̆ + ∆x) = eij(x̆ + ∆x)TΩijeij(x̆ + ∆x)

' (eij + Jij∆x)TΩij(eij + Jij∆x)

= eTijΩijeij︸ ︷︷ ︸
cij

+2 eTijΩijJij︸ ︷︷ ︸
bij

∆x + ∆xT JTijΩijJij︸ ︷︷ ︸
Hij

∆x

= cij + 2bij∆x + ∆xTHij∆x

(2.23)

Eq. (2.23) is the least squares optimization problem.

22

H∆x∗ = −b (2.24)

where

Hij =

. . .

AT
ijΩijAij · · · AT

ijΩijBij
...

. . .
...

BT
ijΩijAij · · · BT

ijΩijBij

. . .

, (2.25)

bij =

...
AT
ijΩijeij

...
BT
ijΩijeij

...

, (2.26)

and Aij =
∂eij(x)

∂xi
and Bij =

∂eij(x)

∂xj
. In [69, 74], the optimization solver is based on the

library proposed by Rainer Kummerle [59].

2.4 Path Planning

The main idea of path planning for visual servoing is to plan and generate a feasible
trajectory while satisfying for the robot’s kinematic constraints, and then to guide the
robot to follow this collision-free path. A planned trajectory can be decomposed into
discrete segments and saved to a linked list beginning with the current robot position and
ending up with a goal.

2D Planner

Wavefront algorithm is a methodology to find the shortest path from one point to the other
in a map [45]. In the occupancy grid map, we use in this thesis, is a 2D plane segmented by
equal spacing grid cells. The size of each grid cell is represented as an absolute scale on the
map. From the starting position, a grid cell in Fig. 2.11, is set to zero cost/distance. The

23

Figure 2.11: The cost increment mask of 8-
connected grid graph starts at zero cost. It
comprises the current position cost with the
mask and applies to the cell not being calcu-
lated, and then keeps exploring until the wave
mask reaches the goal.

Figure 2.12: Wavefront path planning algo-
rithm.

adjacent cells are set at an incremented cost value based on distance. Discrete grid cells
around a starting point have the same cost. Therefore, the cost of each cell is represented as
the distance from the starting point. After all reachable cells on the map are computed, the
breadth first search algorithm can be applied to find the shortest path to the goal reversely
due to monotonic. However, to compute entire grid cells on a map is very expensive and the
complexity is proportional to the number, n, of grid cells, O(n2). In order to, leverage the
computation, the modified method is proposed in the chapter 5 to reduce the computation
the issue.

Path Following

In [70], Derek R Nelson et al. proposed a method based on the vector fields, which are
exploited to generate desired inputs to the control loop. Two path following algorithms
are presented in this paper. One is for straight-line paths and the other is circular arcs.
This algorithm can be used for cruise control effectively from one waypoint to another.
This algorithm is integrated into our control system.

Collision Avoidance

In [72], Jia Pan presented a library to integrate and perform collision checking. This
library can take articulated models to create a set of queries to perform penetration depth
estimation, discrete collision detection and continuous collision detection with a unified

24

interface. Moreover, it can perform the probabilistic collision checking. In [62], Leeper
proposed a Collision-Free Arm Teleoperation (CAT) method using sequential quadratic
programming and a bi-directional sampling-based planner RRT in OMPL to plan the EF
trajectory. Meanwhile, it computes a collision-free trajectory by the Flexible Collision
Library (FCL) [72].

25

Chapter 3

The Surveillance Mapping Task and
the Proposed Robotic System

In this chapter, the kinematic models of the omni-wheeled mobile platform and an equipped
robotic arm are presented. The stereo camera is rigidly mounted on the EF of the robotic
arm to allow the camera to be travelled across a gap where the mobile platform cannot
traverse to maximize the mapping and searching area. Accordingly, to satisfy this demand
requires driving the robotic arm base close to a gap that permits the work envelope of the
robotic arm to cover the observed gap. So the omni-wheeled mobile platform which can
move the car body in the lateral direction without changing its heading direction, without
nonholonomic motion constraints, is chosen in our system. Next, all the major sensors
in the mobile platform and the robotic arm are presented. At the end of this chapter, a
proposed methodology successfully adjusts the bias in the Denavit-Hartenberg parameters
(D-H parameters) which are not provided by the producer of 7Bot c©.

3.1 General Structure of the Proposed System

The proposed surveillance robot system is composed of four modules: Mechanical robot
system, perception sensors, motion control system, path planning and SLAM scheme. The
robot hardware comprises two major components: omni-wheeled mobile platform and an
attached 6-Degrees of Freedom (DOF) serial robotic arm. The only perception sensor
which measures the distances of surrounding obstacles is a stereo camera in our system.

In the system block diagram Fig. 3.1, the main controller is the embedded PC in the
middle block. The PC has Intel c© CoreTM i5-3337U CPU @ 1.80GHz, 16GB RAM and

26

60 GB Solid State hard drive. It is running Ubuntu 14.04 and ROS Indigo packages. Two
measurement sensors, IMU and stereo camera, are connected to embedded PC via USB
interface. The four individual omni-wheels are driven by four gear motors controlled by an
Arduino Mega 2560 board. Each gear motor has an optical rotary encoder mounted on the
end of the motor shaft. The Arduino Mega 2560 reads the encoder pulse counts through
the I2C interface and outputs control signal to the motor drive through the built-in PWM
pins. The serial robotic arm, 7Bot, is controlled by an Arduino Duo. The control scheme
is similar. The controller reads joint angles through six encoders on the revolute joints and
outputs voltage signal to PWM pins. The remote computer, Intel c© CoreTM i7-4710MQ
CPU @ 2.50GHz × 8, 16GB RAM and 120 GB Solid State hard drive, is used for data
logging and path planning. It is running Ubuntu 16.04 and ROS Kinetic packages.

Figure 3.1: Integration layout of the sensors and processors of the proposed surveillance
robot system.

3.2 Mechanical Robot System

The proposed mechanical robot system is composed of an omni-wheel mobile platform
and a 6-DOF serial robot manipulator equipped on the front edge of the mobile platform,
as shown in Fig. 3.3. The robot manipulator holds the stereo camera and is utilized to
control the camera poses. Next, we present the details and kinematic models of the robot
manipulator and the mobile platform, which are used in the motion control and visual
SLAM of our prototype robot.

27

3.2.1 Robot Manipulator

7Bot c© is a low cost six DOF articulated robot manipulator. The six revolute joints are
driven by six servo motors which have been retrofit and controlled by a PID implemented
on an Arduino DUE board. The command angle of each joint is sent from the mini PC
through the ROS serial interface. The original design of its end-effector is equipped with a
gripper. In order to mount our stereo camera, the gripper is replaced by a bracket instead.

Figure 3.2: The robot arm geometry.
Figure 3.3: Robotic arm, mobile platform and
april tag checkerboard.

Forward Kinematics

Based on the D-H table 3.1 from the measurement by hand, the homogeneous transforma-
tion matrix, Ti,i+1, from a i-th joint to the (i+ 1)-th joint through the following sequence
of individual transformations can be derived. The joint rotation angle θi (i = 1, 2, ..., 6)
is measured by a joint encoder about the z-axis associated with the given joint using the
right-hand rule[27].

Substituting the D-H parameters in Table 3.1 into the generic homogeneous transfor-

28

Link i di(mm) ai(mm) αi θi(t)
1 77.8 30 π

2
θ1(t)

2 0 120 0 θ2(t)
2v 0 0 0 θ2v(t)
3 0 29.42 π

2
θ3(t)

4 198.5 0 π
2

θ4(t)
5 0 0 −π

2
θ5(t)

6 0 0 0 θ6(t)

Table 3.1: D-H table of the articulated robot arm

mation matrix formula

Ti,i+1 =

cosθi −sinθi 0 ai

sinθicosαi cosθicosαi −sinαi −disinαi
sinθisinαi cosθisinαi cosαi dicosαi

0 0 0 1

 . (3.1)

the forward kinematics of each link is derived as follows:

T0,6 = T0,1T1,2T2,2vT2v ,3T3,4T4,5T5,6 (3.2)

Inverse Kinematics

All the joints of 7Bot robot arm are on the same plane. Thus, we can use the closed-form to
describe the inverse kinematic solution and find the desired angle of each joint individually.
The wrist transformation from joint 4 to joint 6 will not be affected by joint 1 to joint 3.
Therefore, we use the geometric method to decompose entire inverse kinematics into the
inverse position kinematics and the inverse orientation kinematics instead.

29

Figure 3.4: Due to joint 2 to 6 are on the same plane, the end-effector position projected
to the robot base plane is the function of the first joint angle θ1.

Figure 3.5: Joint 2, 3, and 5, on the same plane can be formed a triangle.

θ1 = Atan(0P y
5 ,

0 P x
5), (3.3)

where 0P y
5 and 0P x

5 is the point where the 5th joint is projected to on the arm base
plane with respect to the joint 1 as the origin.

30

θ2 = φ1 + φ2, (3.4)

θ3 = π − (φ2 + φ3), (3.5)

where L = a + b =
√

(2P x
5)2 + (2P y

5)2, 2P x
5 and 2P z

5 are the translation vector from
joint 2 to the joint 5 w.r.t. the frame of joint 2 , φ1 = Atan2(2P z

5 ,
2P x

5), φ2 = Acos(b/c),
φ2 = Acos(a/c), c = a2, d =

√
(a3)2 + (d4)2; a2, a3 and d4 are parameters in the D-H

table. See Fig. 3.5.

c2 − d2 = a2 − b2 = const., (3.6)

where a = L
2

+ c2−d2
2L

.

The role of the robotic arm is to increase the visual observation area. Thereby, the
dynamic control which needs to consider the various payload and speed variations is not a
focus of this thesis.

3.2.2 Mobile Platform

In Figure 3.9, the mobile platform is actuated by four omni-wheels which are composed of
several rollers around the circumference of the wheel hub. When the wheel rotates and the
roller contacts on the ground surface, the axial direction of the roll gets the reaction. On
the contrary, the opposite direction is free to move. The type of wheeled mobile platforms
is able to move in any direction without changing the heading direction. This allows the
mobile platform to travel in narrow paths without collision.

Nexus c© Mobile Base in Fig. 3.6 is the platform used in the experiment. The geometry
of this platform is compact. So it is suitable to move in narrow paths or tunnels. The base
comprises four individual motors equipped with omni-wheels. Each motor has an upgrade
encoder with 300 pulses per revolution. The wheel hubs and the motors are coupled by
reduction gearboxes with 1:64 ratio to generate more torque. Four DC brush motors are
equipped and controlled by Arduino Mega 2560 board. Four individual PID controllers are
implemented on an Arduino Mega 2560 board in 20Hz update rate. The teleoperation is
done by keyboard or the commercial joystick via the Bluetooth interface, as shown in Fig.
3.6.

31

Figure 3.6: Mobile platform.

Figure 3.7: SONY c©PS3 joystick for
the teleoperation.

Posture Kinematic Model

In this subsection, the posture kinematic model of the omni-wheeled platform [54] is intro-
duced. The compact form [79] is adapted to describe the pure rolling constraints for the
omni-wheels.

The position and heading of the geometric centre of the wheeled mobile robot is denoted
by

ξ(t) = (xI(t) yI(t) θI(t))
T . (3.7)

where (xI , yI) ∈ R are the coordinates of the centre of mass(C.M.) with respect to the
inertial frame in X and Y directions. θI ∈ (−π, π] is the heading angle about z-axis in Fig.
3.8.

Following is the general posture kinematic model for the omni-wheeled platform,

J1swR(θ)ξ̇ + J2ϕ̇ = 0. (3.8)

where ϕ̇ =
[
ϕ̇1 ϕ̇2 ϕ̇3 ϕ̇4

]T
is the vector of wheel angles, J1sw ∈ R4×3 , J2 =

diag[rwcosδ1, rwcosδ2, rwcosδ3, rwcosδ4], rw is the uniform radius of each omni-wheel,

32

Figure 3.8: The posture definition of the mobile platform on the inertial frame.

, δi (i = 1, 2, 3, 4) is the angle between the small rollers’ axial and the wheel plane in Fig
3.9.

Figure 3.9: Roller orientation of each omni-wheel.

33

Figure 3.10: Left: bottom-view of the mobile base; Right: top-view of the mobile base.

Following are the steps to derive J1sw [96]:

V1XR
= V1w + V1rcos(δ1) , V1YR = V1rsin(δ1). (3.9)

V2XR
= V2w + V2rcos(δ2) , V2YR = −V2rsin(δ2). (3.10)

V3XR
= V3w + V3rcos(δ3) , V3YR = −V3rsin(δ3). (3.11)

V4XR
= V4w + V4rcos(δ4) , V4YR = V4rsin(δ4). (3.12)

V1XR
= VXR

− lθ̇ , V1YR = VYR + Lθ̇. (3.13)

V2XR
= VXR

+ lθ̇ , V2YR = VYR + Lθ̇. (3.14)

V3XR
= VXR

− lθ̇ , V3YR = VYR − Lθ̇. (3.15)

V4XR
= VXR

+ lθ̇ , V4YR = VYR − Lθ̇. (3.16)

34

where δ1 = δ2 = δ3 = δ4 = 45◦. By comparison with Eq.3.9-3.16, the following
equations are derived.

V1w = rwϕ̇1 = VX − VY − (L+ l)θ̇. (3.17)

V2w = rwϕ̇2 = VX + VY + (L+ l)θ̇. (3.18)

V3w = rwϕ̇3 = VX + VY − (L+ l)θ̇. (3.19)

V4w = rwϕ̇4 = VX − VY + (L+ l)θ̇. (3.20)

Combining (3.8) and (3.17) - (3.20) into matrix form (3.21).

J1swR(θ)ξ̇ = −J2ϕ̇. (3.21)

In our experiment L = l, hence, we have

J1sw =

1 −1 −(L+ l)
1 1 (L+ l)
1 1 −(L+ l)
1 −1 (L+ l)

 =

1 −1 −2l
1 1 2l
1 1 −2l
1 −1 2l

 , (3.22)

J2 =

rwcos(δ1) 0 0 0

0 rwcos(δ2) 0 0
0 0 rwcos(δ3) 0
0 0 0 rwcos(δ4)

 . (3.23)

where ξ̇ =
[
ẋI ẏI θ̇

]T
, .

The platform velocity can be obtained from the wheel’s angular speed by a pseudo
inverse

ξ̇ = −R(θ)TJ†1swJ2ϕ̇, (3.24)

35

J†1sw = (JT1swJ1sw)−1JT1sw = 1
4

 1 1 1 1
−1 1 1 −1
− 1

2l
1
2l
− 1

2l
1
2l

 . (3.25)

The nonlinear kinematic model (3.24) can be put in compact form

ξ̇(t) = g(ϕt, ξt) = R(θt)
TΣϕt + εt, εt ∼ N(0, Rt), (3.26)

Σ = −J†1swJ2 = rw
4

 1 1 1 1
−1 1 1 −1
− 1

2l
1
2l
− 1

2l
1
2l

 . (3.27)

Linearizing the non-linear equation (3.26) w.r.t. the mean of robot states, µt−1, of the
prior state by the first order Taylor series expansion.

g(ϕt, ξt−1) ≈ g(ϕt, µt−1) +
∂

∂ξt−1
g(ϕt, ξt−1)|ξt−1=µt−1(ξt−1 − µt−1)

= g(ϕt, µt−1) +Gt(ξt−1 − µt−1).
(3.28)

The mobile platform motion system contains two sensors with different rates. One is
IMU which is able to measure bearing in 50Hz. The other one is the stereo camera with
different visual odometries to measure the position and bearing.

The measurement model is

yt = Ctξt + σt, σt ∼ N(0, Qt). (3.29)

Extended Kalman Filter (EKF) algorithm [91] for (3.33)-(3.36) is designed as follows:

The prediction update is

µt = g(µt−1, ut)

Σt = GtΣt−1G
T
t +Rt.

(3.30)

The measurement update is

36

Kt = ΣtC
T
t (CtΣtC

T
t +Qt)

−1

µt = µt +Kt(yt − Ctµt)
Σt = (I −KtCt)Σt

(3.31)

A simulation of the linearized motion model together with the EKF design above for
the mobile platform moving on a dual circle trajectory is shown in Fig. 3.11. The dynamic
equation is not used in this thesis and moved to the Appendix B for future work, such as
cooperative control of multiple-agent systems.

3.3 Robot Sensors

Following are the sensors mounted on the surveillance robotic platform to measure the
robot states:

1. High-speed counter, LS7366, 32-bit quadrature counter module reading the pulses
from each encoder attached to the end shaft of the motor. The Arduino Mega 2560
is cycling through four modules to read the motor rotation angles via the serial
interface.

2. IMU, BNO055 board integrate 3-axis 12bit accelerometer, 3-axis magnetometer and
3-axis 16-bit gyroscope together. This module includes a Cortex-M0 ARM processor
to process the fusion data and export quaternions, Euler angle, rotation vector, linear
acceleration, angular velocity and magnetic field. These data are transmitted through
I2C bus to MCU.

3. PhidgetSpatial Precision 3/3/3 IMU has the functionality of a 3-axis accelerometer,
a 3-axis gyroscope, and a 3-axis compass. It stays precision in the accelerometer
when measuring less than 2g, and gyroscope precision at angular velocities less than
100/s in 16-bit resolution. It is controlled by mini-USB interface.

4. Joint encoders: magnetic type, resolution 0.35, range 0-360, PWM(deadband 1-2s)
output.

37

Figure 3.11: Simulation of the mobile platform and the EKF design.

38

Figure 3.12: Simulation of the mobile platform and the EKF with multiple sensors design.

39

Figure 3.13: Tara stereo camera with built-in IMU.

3.3.1 Inertial Sensors

MEMS gyroscopes and linear accelerometers [99] have a list of the advantageous properties,
such as compact size, low weight, rugged construction, low power consumption, short
start-up time, high reliability, low maintenance and low cost. IMU used in this thesis is
comprised by MEMS gyroscopes and linear accelerometers. Orientation, rotation matrix,
linear acceleration and position of the mobile platform can be calculated by measurements
of IMU. There are estimation approaches such as the gradient descent algorithm [66] to
calculate the orientation using the acceleration and angular velocity from IMU. These are
the states used for the multiple sensor fusion.

IMU Parameters

IMU sensor measures the angular velocities and linear accelerations w.r.t. three axes of a
three-dimensional Cartesian coordinate system. So the noise can be defined as a function
in the frequency domain, such as power spectral density (PSD) or Fast Fourier Transform
(FFT). In the frequency domain, the noise becomes a function of the bandwidth of the
sensor. Furthermore, the rate of angle can be integrated over time to get the angle as a
function of time. The linear acceleration can also be double integrated over time to get
the distance function of time.

Fig. 3.15, 3.16, 3.17, and 3.18 are the results of Allan deviation of two IMUs sitting
standstill for 3 hours. In Table 3.2 and 3.3 are the parameters calculated from the sensor
measurement. Random Walk (RW) is defined as (unit√

time
) to describe the average deviation

or error that occurs when we integrate the signal. When the sensor is rest on the table,
the integration of the measured angular velocity should be zero degree. However, the noise
is also integrated that causes the angle drifting by time.

ΣLSM6DS0 Gyro =

0.0097 0.0009 0.0004
0.0009 0.0059 0.0003
0.0004 0.0003 0.0060

 . (3.32)

40

Figure 3.14: Allan deviation of an inertial sensor, cf[21].

Figure 3.15: LSM6DS0 Accelerometer. Figure 3.16: LSM6DS0 Gyro.

41

Table 3.2: LSM6DS0 IMU parameters.

Axis White Noise Bias Instability Rate Random Walk

Ax 5.4319e-04 4.7165e-04 6.9490e-05
Ay 4.2224e-04 4.2760e-04 1.8210e-04
Az 5.6288e-04 4.9614e-04 1.1453e-04

Gx 1.5252e-04 1.9684e-04 1.6154e-05
Gy 1.2514e-04 1.3722e-04 2.9837e-05
Gz 1.4034e-04 1.2923e-04 8.8494e-06

Table 3.3: Phidget IMU parameters.

Axis White Noise Bias Instability Rate Random Walk

Ax 9.8209e-04 2.3518e-04 1.6970e-05
Ay 8.9154e-04 2.2659e-04 1.5818e-05
Az 1.1036e-03 2.2425e-04 1.4733e-05

Gx 4.3330e-04 1.1008e-04 7.6734e-06
Gy 3.9599e-04 8.7191e-05 7.5833e-06
Gz 3.1963e-04 1.0348e-04 1.0230e-06

ΣLSM6DS0 Acc =

0.0000777 0.0000070 0.0000424
0.0000070 0.0000764 −0.0000185
0.0000424 −0.0000185 0.0001578

 . (3.33)

ΣPhidgetSpatial Gyro =

 0.0223 −0.0003 0.0004
−0.0003 0.0176 −0.0004
0.0004 −0.0004 0.0162

 . (3.34)

ΣPhidgetSpatial Acc =

 0.00001827 −0.00000408 −0.00000046
−0.00000408 0.00001370 0.00000159
−0.00000046 0.00000159 0.00000908

 . (3.35)

3.3.2 Passive Vision Sensors

We exploit the stereo camera to estimate the depth of obstacles using two cameras with a
fixed baseline (6cm). The point clouds we use to detect obstacles are coming from stereo

42

Figure 3.17: PhidgetSpatial Accelerometer. Figure 3.18: PhidgetSpatial Gyro.

block matching algorithm [23] which processes the undistorted images. Then, the metric
depth of each point cloud can be used to update the occupancy map.

Camera Parameters

Distortion is mainly caused by a characteristic of the lens. In order to detect the features
in different position in an image, we do need to do the camera calibration to get distortion
parameters. Then we can undistort the images and use the result to rectify images before
generating the point clouds. There is a ROS package [15, 67] available.

Table 3.4: Tara stereo camera calibration, pinhole model.

Left Camera k1 k2 k3 k4

Pinhole model 8.982447e-2 -1.07281e-1 1.005296e-3 -1.59310e-3
Radtan model 753.530413 752.6850 305.7520 259.7882

Right Camera

Pinhole model 8.49042e-2 -0.107633 -5.36353e-4 -1.4541e-3
Radtan model 756.7709 756.05422 304.31874 252.66928

43

TC0,C1 =

0.9999973 −1.663546e− 05 2.282859e− 3 −5.9340e− 2

1.39334e− 05 0.9999992 1.18363e− 3 −4.4084889e− 4
−0.002282 −0.0011836 0.99999 7.9437e− 4

0 0 0 1

 . (3.36)

3.3.3 Stereo-Cameras and IMU Calibration

In order to derive the intrinsic and extrinsic parameters of the IMU and cameras, Kalibr
[44, 67], a well-known offline toolbox, can be used to measure the transformation among
multiple cameras and IMUs. The first step is using the stereo camera from different poses
to capture images of a static April grid, which comprises different coded April tags in
grid cells and separated by equal space. Since the tags’ size are given, thereby the metric
distance from the camera to each tag is measurable. Therefore, the camera poses in the
April tag frame can be estimated For IMU trajectory, it can be derived from Newton’s law.
Thus, the static transformations between camera(s) and IMU(s) can be estimated through
the nonlinear optimizers.

The stereo camera has two cameras, the left camera, cam0, is the main camera used
in the SLAM algorithm. The right camera, cam1, is provided as the reference image to
calculate disparity and point clouds.

Table 3.5: Tara stereo camera and IMU calibration.

Reprojection error mean median std

cam0 [px] 0.217889164512 0.203345692995 0.118197230139
cam1 [px] 0.225464454778 0.207969892634 0.12640559052

Gyro [rad/s] 0.509795240203 0.438614100972 0.392775070394
Acc [m/s2] 0.0305871166197 0.0229676499537 0.0391722635506

44

Figure 3.19: Left camera reprojection errors.
Figure 3.20: Right camera reprojection er-
rors.

Following are the derived static transformation matrices from the IMU to the left
camera ,TC0,I , and the IMU to the right camera,TC1,I .

TC0,I =

0.08028368 0.99662157 −0.01731996 0.04867814
−0.99643282 0.08069753 0.02468892 −0.00194908
0.02600319 0.01527606 0.99954513 0.06839485

0 0 0 1

 . (3.37)

TC1,I =

0.08035941 0.9966525 −0.01503851 −0.01050617
−0.99640023 0.08072944 0.02587176 −0.00230829
0.02699921 0.01290533 0.99955215 0.06908017

0 0 0 1

 . (3.38)

3.3.4 Vision-Inertial Model

Through vision-inertial SLAM algorithms [94], the position and orientation of the percep-
tion camera can be derived as following discrete motion model:

pk+1 = pk + vk∆t. (3.39)

vk+1 = vk +Rk(az − ba)∆t. (3.40)

Rk+1 = Rkexp([ωz − bω]×∆t). (3.41)

45

where [·]× is the skew-symmetric matrix for the cross product. The ba is the bias of the
linear accelerometer, bω is the bias of the gyroscope.

3.4 Articulated Arm Calibration

The 7Bot robotic arm is designed for education and entertainment. Therefore, its accuracy
is not as good as industrial manipulators. In order to convert the measurements from EF
frame to mobile base frame, the offsets of each link and each joint angle are required. Thus,
we formulate a cost function to estimate the offsets through an experiment to gather the
end-effector poses from the forward-kinematics and the ground truth by motion capture
system, OptiTrack. The setup is shown in Fig. 3.21. Four markers formed a rigid body
are placed on the base of the robotic arm. Similarly setting, five markers are mounted on
the camera case. Driving each joint motor, the motion capture system is streaming out
the trajectory of end-effector p(t)to the PC. Meanwhile, all the joint angles θi(t) are also
recorded to compute the end-effector position using forward-kinematics. The result is on
the left graph in Fig. 7.3.

Figure 3.21: Measure the end-effector trajectory using motion capture system.

In order to aligned the trajectory which is derived from forward-kinematics with the
ground truth, following cost function is defined with joint angle bias and link offsets:

min
ab,αb,θb,db

N∑
i=1

‖pi − xe(i,ab, αb, θb, db)‖ (3.42)

where pi is the position of the geometrical centre of several marks measured by Op-
tiTrack at the i-th step in discrete time, xe is the position of end-effector by forward-

46

Link i di(mm) ai(mm) αi θi(t)
1 77.8 + d1b 30 +a1b

π
2

+ α1b θ1(t) + θ1b
2 0 + d2b 120 +a2b 0 + α2b θ2(t) + θ2b
2v 0 + d2vb 120 +a2vb 0 + α2vb θ2v(t) + θ2vb
3 0 + d3b 29.42 +a3b

π
2

+ α3b θ3(t) + θ3b
4 198.5 + d4b 0 +a4b

π
2

+ α4b θ4(t) + θ4b
5 0 + d5b 0 +a5b −π

2
+ α5b θ5(t) + θ5b

6 0 + d6b 0 +a6b 0 + α6b θ6(t) + θ6b

Table 3.6: D-H table of the 7Bot robot arm with joint angle biases and linkage offsets.

kinematics with following undetermined biases in the D-H table, ab, αb, θb,db. Use Levenberg-
Marquardt algorithm to compute this nonlinear least-squares function and derive ab, αb, θb,db.
Later, we applied the offsets to the forward-kinematic function. The undetermined biases
and offsets are defined in Table 3.6.

47

Chapter 4

Localization and Mapping

Current state-of-the-art visual SLAM algorithms can build a precise 3D map and export
the camera poses in the specific conditions, such as proper illumination, static objects
around and distinguishable textures in the observed scene. However, the visual SLAM
algorithms will fail when the eye-in-hand camera traverses through a gap due to invalid to
the above conditions. In this research, we propose the two operation modes to retain the
camera pose when the visual SLAM algorithms fail in the gap mapping mode. The key
point is using the forward kinematic equation of the robotic arm to estimate the camera
poses. The estimated camera pose can be used to recover the failed visual SLAM/odometry
algorithms. Thus, the visual SLAM algorithms can be reset and then use the computed
camera pose to initialized visual SLAM algorithms. Thereby, the visual SLAM algorithms
can continue on the gap mapping mode.

4.1 Sensor Transformation

In our mobile robot, the individual sensors are mounted on different locations. In order
to well estimate the robot position, all the metric measurements from the stereo camera
and IMU(s) on the robot can be fused to the mobile base coordinate frame, base link. The
estimation of base link will be utilized for the position and velocity control in the next
chapter. Thereby, the static transformations between fixed sensors should be determined
before applying the sensor fusion scheme. Kalibre 1 is an open-source tool used to calibrate
such static transformations, e.g. the left camera to the right camera, TC2,C1 ; the left

1This product includes software developed by the Autonomous Systems Lab and Skybotix AG. [43?]

48

Figure 4.1: The transformation chain between all sensors in the mobile robot.

camera to IMU, TI,C1 . On the contrary, the dynamic transformation, TE,A, from the arm
base to the EF is relied on the joint angles reading from joint encoders and the forward
kinematic Eq. 3.2.

In our system, the weight of Tara stereo camera is 80.5 grams with an enclosure, and
it is under the payload of the 7Bot robotic arm. Thus, we assume the forward kinematic
equation is valid to convert from the mobile base frame to the EF.

4.2 Mapping

Two operating modes are proposed to implement the localization and mapping of cluttered
environments. In the navigation mode, the mobile robot builds the base map. In the gap
mapping mode, the robotic arm SLAM is performed to achieve detail mapping.

49

Figure 4.2: Sensor fusion pipeline.

50

Figure 4.3: Pose graph in the detailed mapping mode.

4.2.1 Base Mapping

In the first operating mode, for navigation, the robotic arm holds the camera parallel to
the x-axis of the mobile base frame shown in Fig. 3.10. The camera position, derived from
the visual SLAM algorithms, can be fused to the base link of the mobile platform using the
inverse transformation matrix, T−1c1,m. The inverse transformation is from the left camera
to the centre of the mobile base as shown in Fig. 4.1. The map built in this mode is named
“base map”. The mobile robot is also used the visual SLAM algorithms to localized itself
in the base map.

The base mapping mode is used to build the large free space where the mobile can
freely move around. A mobile robot can be controlled remotely either in the teleoperation
mode or autonomously running “bug algorithm” on the PC in the mobile robot. The
operators in the ground control station can watch the interior 3D map sending from the
mobile robot. Furthermore, the operators have to determine all gaps in the map where
may have wounded people behind and perform the gap mapping mode in the next section.

51

4.2.2 Detail Mapping

In the second operating mode, for gap mapping, we do need to confirm the visual SLAM
algorithms are alive before we anchor our mobile platform. Thus, our mobile robot can
build the consistent map. In this mode, the camera position is mainly maintained by
the forward kinematic transformation matrix, Tc1,m, the serial transformation from static
mobile base to the camera frame, as shown in Fig. 4.1. The operators can look into the
gaps because the obstacles may occlude survivors.

If a gap between obstacles is wider than the equipped camera on the EF, and the
working envelope of the robotic arm can cover the gap, then the eye-in-hand camera can
traverse through the gap in the detail mapping mode. However, the critical challenge in the
gap mapping mode is the visual SLAM algorithms to deal with the blurred images caused
by a camera too closed to the obstacles and out of focusing. Such blurred images without
distinguishable textures will potentially lead to visual SLAM/odometry algorithms lost
tracking. Therefore, the failed visual SLAM algorithms cannot output the camera position,
and no more map can be built. In our system, the way to recover the camera’s position
is fusing the known position of the standstill mobile base. Thereby, the transformation,
Tc1,m, from the mobile base to the left camera frame can be utilized to derive the camera
poses. We can use this estimated camera pose to reinitialize the failed visual SLAM
algorithms. This is the key point to keep the visual SLAM to retain the camera position
consistently in the gap mapping mode. Then, the pose graph is linked by the forward
kinematic transformation as the red edges shown in Fig. 4.3. The pipeline of transition
between the base mapping and the detailed mapping is shown in Fig. 4.2.

Considering the transformation matrix from the mobile base, base link, to the left
camera frame can be described as:

Tc1,m(θi) = TA,mTE,A(θi)Tc1,E. (4.1)

where Tc1,E is the static transformation from the end-effector to the left camera, and
TA,m is the static transformation from the mobile base to the arm base. TE,A(θi) is the
forward kinematic transformation, a function of joint rotation angles θi (i = 1, 2, ..., 6)
measured by joint encoders. Thereby, the motion of mobile base can be derived from the
visual odometry through the chain of transformation matrices, T−1c1,m

.

52

4.3 Visualization

In order to exploit the map from the SLAM algorithm for path planning and collision
avoidance, we choose the occupancy grid type map, OCtree map.

The Octree map algorithm uses log odds to update the likelihood of an occupancy grid
cell:

lt,i = log
p(mi|yt)

1− p(mi|yt)
(4.2)

The probability of each grid cell can be converted from the log odds ratio:

p(mi|yt) =
exp(lt,i)

1 + exp(lt,i)
(4.3)

The common assumption of a uniform prior probability is set to 0.5 on each cell on the
initial map, so

l0 = log
p(mi)

1− p(mi)
= log

0.5

1− 0.5
= 0. (4.4)

The point clouds, the stereo camera output, in Fig. 4.4 illustrates the observed objects’
surface in 3D space. The point clouds are refreshed and updated at each measurement.
In order to convert the point clouds to a volumetric map, the occupancy of each voxel is
carried out in line 3 through 13 in Algorithm 1. Thereby, a firm occupied voxel gradually
becomes a solid cube as shown in Fig. 4.5. The distance from the mobile robot to an
obstacle can be computed by using radius search algorithm in [30] or the Flexible Collision
Library (FCL) [72].

All the voxels in 3D map can be projected into the ground plane to form a 2D occupancy
grid map in Fig. 4.6. We can add a threshold of height to filter out the voxels higher than
the mobile manipulator platform to create a map which represents the real obstacles and
free space to the mobile robot. Thus, we can use this 2.5D map for the path planning in
the next chapter.

53

Figure 4.4: In this thesis, the point clouds is
generated by SGBM algorithm implemented
in OpenCV [10].

Figure 4.5: After each measurement, we can
use the occupancy grid mapping algorithm to
update the voxels in the 3D map.

Figure 4.6: We can vertically project the occupied voxel in 3D map to the ground plane.
Thus, we can convert the 3D map to 2D occupancy grid map [61].

54

Chapter 5

Motion Planning and Collision
Avoidance

When the map has been built from a mobile robot in a hazard building, this map can
be transmitted to the ground control station. Based on this real-time map, the wounded
people can be identified on the map. Thus, the location can be set as a goal to the
path planner to search the shortest route to get there. Consequently, the rescue crew
or support robots can follow the shortest routes to arrive at the destinations as soon as
possible. In this chapter, the modified wavefront, a path planning algorithm, is proposed.
This algorithm can compute the shortest path more effective compared with the original
wavefront algorithm.

5.1 Problem Description and Goal

The problem is set up as follows: The cluttered environment has limited accessible paths.
The most popular path planner is the sample-based path planning algorithms, such as
RRT, which leverage the complexity of time and calculation. However, the sample based
planner may not get the shortest path if the samples are not enough on narrow paths.
Another disadvantage of the sample-based planner is to produce jerky paths. Our research
is focusing on the full search to find the shortest and smooth route.

55

5.2 Modified Wavefront for 2D Path Planning

The wavefront algorithm can guarantee to find the shortest path to a reachable goal.
However, it is expensive to calculate the “cost to go” of all grid cells in the map. Thus, it is
difficult for the onboard computer. The proposed methodology can reduce the computation
of the local path planning.

Global Path Planning

Inspired by the coarse-to-fine approach in SLAM field, the hybrid method is proposed as
shown in Algorithm 2. The First step is to reduce the resolution of the 2D occupancy
map. In this process, the number of occupancy grid cells is decreasing. This low-resolution
map allows the wavefront algorithm to finish the search with fewer cells. If the goal is still
reachable on the low-resolution map, we can utilize the breadth first search algorithm to
find the shortest path on this lower resolution map. Then, this path can be rescaled to the
original map.

Local Path Planning

The path derived from the global path planner might lay on the obstacles on the original
map. In this condition, the wavefront algorithm or sample based path planning algorithms
can be applied to the collision area and search an accessible path to go around the obstacles
in this local region. This local planner is carried out in line 8 through 13 in Algorithm
2. The other applicable scenario is when a mobile robot is on the halfway of the planned
trajectory, the robot senses unexpected obstacles on its following path. The local path
planning can also address this issue without recalculating the entire trajectory again.

5.2.1 Methodology

We introduce the approach with an example of point-to-point path planning within a given
map as shown in Fig. 5.1 with 900(w) × 700(h) cells where the red circle is the starting
position and the green cross is the destination. The black cells represent occupied. The
rest cells are free space as white. According to the global path planning, we reduce the
original map to the scale, λ = 0.1 as shown in Fig. 5.2. Then, the low-resolution map
becomes 90(w) × 70(h) cells. We apply the wavefront algorithm to this downsize map as
shown in Fig. 5.2. The shortest path can be derived as shown in Fig. 5.3. Thereby, we

56

rescale this shortest path found in the low-resolution map to the original map using the
scale, λ−1, as shown in Fig. 5.4. However, part of the path is in the obstacles. In these
highlight areas, the path planning algorithm sets a bounding box covering the collision area
and crops the box to form a local map. Consequently, the wavefront algorithm searches
the shortest path on the local map, as shown in Fig. 5.5.

Algorithm 2 Modified wavefront algorithm.

1: function Modified Wavefront(PosG,PosR, λ, M):
2: Mλ = Resize M to scale, λ
3: PosGλ = λPosG
4: PosRλ = λPosR
5: PathListλ(PosGλ, PosRλ) = Wavefront(PosGλ,PosRλ,Mλ)
6: PathList(PosG, PosR) = λ−1PathListλ
7: for nodes in PathList do
8: if Path(m,n) in an obstacle then
9: crop the region and save it to a submap, Ms

10: Path(m+ 1, n− 1) = Wavefront(m+ 1, n− 1,Ms)
11: Translate Path(m+ 1, n− 1) to original map
12: remove Path(m,n)
13: end if
14: end for
15: return Path(PosG, PosR)
16: end function

The benchmark of running the modified wavefront in above example, Algorithm 2, is
presented in Table 5.1, based on the Matlab c© code running on a laptop with Intel c©
CoreTM i7-4710MQ CPU @ 2.50GHz × 8. The result shows that the time complexity
becomes O(n log n) when the map resolution is reduced.

Table 5.1: Modified wavefront algorithm benchmark.

Scale, λ Time [sec]

0.10 52.48732300
0.30 89.92375400
0.50 447.71091500
0.70 2653.32454000
0.90 5624.97035100

57

Figure 5.1: The original map.
Figure 5.2: Resized map to 0.1 of
original scale.

Figure 5.3: Apply wavefront path
planning to the lower resolution
map.

Figure 5.4: Restore the path found in the
lower resolution to the original map. Some
path nodes are in the obstacles highlighted
by red circles.

58

Figure 5.5: Refine the path falling on the obstacle areas.

Figure 5.6: The shortest path derived by scale
λ = 0.1.

Figure 5.7: The resolution scale λ = 0.7.

59

Chapter 6

Planar Motion Control

For the omni-wheeled robot, its moving direction can be in any direction without nonholo-
nomic motion constraints. We can define the trajectories without considering curvature
constraints, and plan the robot to move on these trajectories without changing heading
angle. From the state space model in Chapter 3, the mobile platform is a nonlinear system
which is driven by inputs to the four individual wheels. Feedback control can be utilized
to constrain the robot states to follow the path from the planning algorithm [55].

6.1 State Feedback

The control system of the mobile platform design is composed of two loops. One is the
outer loop for path tracking, with details given in Section 6.2. The other is the inner loop
controls with the wheel speed as the output and output of the outer loop as the input, as
depicted in Fig. 6.1.

However, the path following with constant speed, [V T
I ωI]

T = [vxI vyI ωI]
T , is based

on the twist velocity command, u = [vxId vyId ωId]
T . The motion kinematics is given by

Eq. 3.24 , and the desired motion kinematics is given by

ξ̇d = u. (6.1)

The trajectory from path following algorithm is ξ̇d. Then the output, u, of the outer
loop which is the velocity command for desired kinematics becomes the input of the inner
loop using PD (Proportional-derivative) control:

60

Figure 6.1: Trajectory control loop with path following algorithm.

u = Ap(ξd − ξ̂) + ξ̇d. (6.2)

The inner loop control maps u to the commands V d
ϕi

for individual wheel speeds, i =
1, 2, 3, 4, i.e., Vd

ϕ = [vdϕ1
vdϕ2

vdϕ3
vdϕ4

] is the desired value of ϕ̇ in Eq. 3.24. Hence we
assign

Vd
ϕ = −J−12 J1swR(θ)u. (6.3)

The command Vd
ϕ is mapped to the actual wheel DC motor voltages, V = [V1 V2 V3 V4]

T

using a Proportional-Integral-Derivative (PID) controller implemented on an Arduino board.
V through the DC motor dynamics produces the kinematic states of the platform.

6.2 Mobile Platform Path Tracking

The most of the guidance laws for the path following is using the kinematic constraint to
control the vehicle with a constant speed on it. Typically, the path can be decomposed into
many small sections of the straight line and circular orbit paths. In our planning method,
Wavefront, which is using grid cell to express the map. So the path can be expressed
by straight lines from one grid to the other. In reset of this thesis, we propose the PD
controller mainly based on the straight line path following algorithm.

61

Figure 6.2: Path following a straight line.

By reference [87], the idea of this algorithm is to set a Virtual Target Point(VTP),
PV , on the path and this point is always ahead from the closest point (P ′) on the path
to the current robot position with a fixed distance (δ). The robot is chasing the PV till
reaching the target goal (See Figure 6.2). The desired heading angle θd points to PV . This
algorithm is also named Carrot Chasing Algorithm.

Algorithm 3 Virtual Target Point Algorithm

Straight Line following

1: Initialize: Pi = [xi, yi], Pi+1 = [xi+1, yi+1], PR = [x, y]

2:
−−→
PiP

′ = [PR − Pi][Pi+1 − Pi]T inner product

3: R =‖
−−→
PiP

′ ‖
4:
−−−→
PiPV = (R+δ

R
)
−−→
PiP

′

5: PV = [x′t, y
′
t] = Pi +

−−−→
PiPV

6:
−−−→
PRPV = [x′t − x, y′t − y]

7: θd = atan2(x′t − x, y′t − y)

Following is the simulation of tracking a square trajectory. The mobile platform started
with prior state, X = 0, Y = 0, θ = 30◦ and carrot distance, δ = 0.05 (m). The control
speed is 1.3 (m/s).

62

Figure 6.3: Simulation of the omni-mobile platform following a square path (top-left). The
kinematic motion model includes an additive Gaussian disturbance to simulate the robot
moving over uneven ground. The measurement model also contains Gaussian noise. The
Kalman gain (top-right). The actual state and the estimated states (bottom-left). All
wheel speeds (bottom-right).

63

Chapter 7

Experimental Testing

In this chapter, we shortly overview our system setup which comprises the framework and
software dependencies in the first section. Consequently, we present the proposed scheme
to calibrate the D-H parameters of the robotic arm on our prototype mobile platform.
Subsequently, we apply the calibration results to the forward kinematic equation. Finally,
using the two approaches to operate at the real mobile robot, we successfully create the
3D base map and detailed map done by the eye-in-hand camera.

7.1 System Setup

The system stack from the lower level of sensing and actuating drivers to the high level
of planning is complicated, particularly the system is keeping growing. Therefore, Robot
Operating System (ROS) [73] framework provides tools to manage the complexity and
rapid prototypes programming, such as running multiple processes (nodes) simultaneously
with interprocess communication.

The prototype of our manipulator platform system design is utilized the kinematic
models described in Chapter 3 and the visual SLAM scheme in Chapter 4 to build a 3D
map. The experimental implementation is mainly based on several open source projects
from ROS community: g2o [6], OctoMap [8], OpenCV 3.3 [10], Ubuntu 14.04 with ROS
Indigo [13], Rtab-Map [61], ORB-SLAM2 [69], Stereo DSO [97].

In ROS community, a robot model can be defined by a Unified Robot Description
Format (URDF) file which includes sensors’ location, kinematic properties, transmis-
sions(revolute, prismatic, cylindrical) link, simulation properties and the state of a model.

64

Figure 7.1: Using URDF to describe the mobile platform and robotic arm in Rviz.

In our experiment, we convert the D-H table to the portion of the robotic arm to a URDF
file. A ROS node manages the transformation chain between all these sensors, subscribing
all encoders outputs and then publishing all transformation matrices. The robot posture
and measurements can be visualized in Rviz, as shown in Fig. 7.1.

7.2 Experiments

We have done two experiments in this thesis. One is using the proposed methodology to
calibration the uncertain parameters of a 7Bot robotic arm. The other one is to perform
the detailed mapping using the eye-in-hand approach.

7.2.1 Eye-in-Hand Calibration

In this section, we implement the methodology proposed in Section 3.4 to calibrate the
joint biases and the link offsets. Figure 3.21 illustrates the calibration setup. Five markers
are asymmetrically fixed on a rig. We mount this rig on the camera case and perform
following steps to achieve our calibration.

65

Link i di(mm) ai(mm) αi(rad) θi(t)(rad)
1 77.8+12.8 30−4.3 π

2
+0.0015 θ1(t)+0.0029

2 0+9 120+8.7 0+0.0227 θ2(t)+0.0829
2v 0−6.9 0+3 0−0.0156 θ2v(t)−0.0095
3 0−6.9 29.42−17.1 π

2
+0.0009 θ3(t)−0.0094

4 198.5+20.9 0+4.9 π
2
−0.0048 θ4(t)+0.0046

5 0−12.1 0−7.2 −π
2
−0.0008 θ5(t)−0.0004

6 30−6.7 0+1.7 0+0.0003 θ6(t)+0.0001

Table 7.1: The corrected D-H parameters of the 7Bot robotic arm.

Data Collection

First, we launch the ROS framework and start to record the outputs of all joint encoders
by ‘ROS Bag’. Second, the motion capture system, OptiTrack, records the trajectory of
the centre of the five markers on the eye-in-hand camera. This trajectory of the markers’
rig will be treated as the ground truth utilized to calibration the offsets of the 7Bot robotic
arm. Third, we move each joint individually at a time through a batch profile of joint
angles shown in the Fig. 7.2. Consequently, we can calculate the EF trajectory using
the forward kinematic with the measured joint angles in the ROS bag. Finally, using
Levenberg-Marquardt optimizer to solve Eq. 3.42, we can derive the corrected D-H table
of our 7Bot robotic arm, and the transformation from the EF to the makers rig, Tmk,E. The
Table7.1 presents the calibration results. Using corrected D-H parameters, the absolute
translational error (RMSE) is 0.7[mm].

Likewise, we can use the visual SLAM algorithm to calibrate the transformation from
the markers’ rig to the left camera. Two trajectories w.r.t. the ground truth of the markers’
rig and the left camera poses from a visual SLAM algorithm, ORB-SLAM2, can be aligned
through Levenberg-Marquardt optimizer. The results of two trajectories are shown in Fig.
7.5 and 7.6 to derive the transformation matrix, Tc1,mk, from the markers’ rig to the left
camera. Thus, we have calibrated all the transformations in Fig. 4.1.

66

Figure 7.2: During robotic arm calibration, each joint is moved individually one at a time.
All encoder readings on the robotic arm are saved to a ROS bag.

67

Figure 7.3: Robot arm joint biases calibration.

68

Figure 7.4: Compare the EF trajectories which is gathered by motion capture system and
derived by the forward kinematic model using corrected D-H table. RMSE is 0.7[mm] after
full calibration.

69

Figure 7.5: Trajectories of ORB-SLAM2 and ground truth in 3D.

Figure 7.6: Trajectories of ORB-SLAM2 and ground truth.

70

7.2.2 Mapping Results

Performing the base mapping mode is straightforward when the image quality is adequate.
The 3D map built in the base mapping mode is presenting the space where the omni-
wheeled mobile robot can move around and observe, as shown in Fig. 4.6. However, the
gap mapping is the challenge due to obscure images caused by poor illumination or out of
focus, as shown in Fig. 7.7.

Figure 7.7: The image is blurred when the camera is too close to the obstacle around a
gap.

Therefore, the mobile robot needs a secured reference point in the gap mapping process
to avoid the main perception sensing, visual SLAM algorithms, break. Hence, we anchor
the mobile base in front of a gap during the robotic arm moving. The mobile base position
can be fused to the camera poses through the forward kinematic transformation. If the
visual SLAM algorithms fail in the middle of gap mapping, it can be reset and then
initialized by the sensor fusion. Such manoeuvre can keep visual SLAM algorithms alive
and continue mapping, as shown in Fig. 7.10.

As starting the gap mapping, the operators rely on the gap size derived from the 3D
metric map to determine whether the eye-in-hand camera can pass the gap or not. The
collision detection in this operation is based on the distance from the links of the robotic

71

arm to the obstacles, solid voxels, on the 3D OctoMap. As the operation, we can see
all links of the robotic arm in the real-time map showing on the remote computer in the
ground control station and determine the distance in between the robotic arm and around
voxels from different viewpoints. The fully autonomous gap mapping will be in our future
work at the moment. In Fig. 7.12 and 7.13, the result of the camera trajectory is well
maintained in the gap mapping mode. The 3D map beyond a gap has been built.

Figure 7.8: Mapping ceiling.

Figure 7.9: Gap mapping (side view).

Figure 7.10: The camera trajectory is recov-
ered by the sensor fusion, then the gap map-
ping can continue. This sparse map is built
by ORB-SLAM2. Figure 7.11: Gap mapping.

72

Figure 7.12: The collision-free camera trajectory in the gap mapping mode.

Figure 7.13: The results of the gap mapping experiment. The gap mapping started at the
53-rd second and ended at the 80-th second.

73

7.3 Discussion

In this research, we have done the full calibration of the transformation between all sensors.
The motion control is as expected. However, there is still an issue we cannot handle
properly, such as overexposure.

The accuracy of visual SLAM/odometry algorithms relies on the distinguishable tex-
tures. In this thesis, the monochrome camera outputs the 8-bit grayscale images. There-
fore, the overexposure areas have the same intensity, 255. These areas turn out the unpre-
dictable depths. In Fig. 7.14, we can see the bright spot in the middle of the image. That
is caused by the longer exposure time or the strong illumination. In the saturated area, it
forms a hole in the 3D point cloud map in Fig. 7.15. Thus, the mobile robot will assume
the spot is a collision-free gap. If the exposure time is set to shorter, the other dark areas
will become darker and fewer textures. Using machine learning to build a transformation
function to perform an adaptive histogram equalization [88] will be the future work.

Figure 7.14: This image shows the saturated
areas with the same photometric value, the
white colour.

Figure 7.15: The saturated areas turn out the
unexpected depths. In this image, the over-
exposure area becomes a hole.

74

Chapter 8

Conclusion

In this thesis, a mobile robot has been designed to search for objects in uncertain clut-
tered indoor environments using shortest path planner algorithms with the ability to avoid
collisions with obstacles. This research has application in helping rescue crews find the
shortest and safest paths to reach the survivors, in an indoor hazard area.

Visual sensors are commonly fix mounted on the base frame of mobile robots and face
the moving direction. The transformation matrices from the C.G. of the robot to the visual
sensor bases are known and unchanged once the calibrations have been done. However,
such fixed cameras are constrained by nonholonomic motion and limited to horizontal
observations. In this thesis, the proposed eye-in-hand setup on an omni-wheeled mobile
robot increases the area that visual sensors can monitor, such as ceilings, gaps, floors and
the robot itself. The benefit of the visual SLAM approach is the ability to show an intuitive
3D model in a real-time manner. This helps crews make a better informed decision.

In a damaged building, rooms or corridors may be blocked by obstacles, such as shelves
or other furniture. The advantage of a compact mobile robot equipped with a robotic arm
is that it can reach tight spaces and observe gaps between obstacles. On the contrary, small
robots have limited payloads and cannot move heavy obstacles. Future work on cooperative
multi-agent systems have the potential to address these issues. Such multi-agent systems
can speed up the exploration and maximize its range. The other major subject is to use
the state-of-the-art Artificial Intelligence approach to recognize the deformed and dusty
objects in the scene. Overall, this is not the end of research. It is a new start to the
continuation of the development of a fully autonomous rescue robot.

75

References

[1] Arduino. http://www.arduino.cc/.

[2] Big O notation. https://en.wikipedia.org/wiki/Big_O_notation.

[3] DBoW2. https://github.com/dorian3d/DBoW2.

[4] Dense-based SLAM. https://github.com/tum-vision/dvo_slam.

[5] FABMAP. http://mrg.robots.ox.ac.uk/fabmap/.

[6] g2o. https://github.com/RainerKuemmerle/g2o.

[7] Mars science laboratory curiosity rover. https://www.jpl.nasa.gov/missions/

mars-science-laboratory-curiosity-rover-msl/.

[8] Octo map website. http://octomap.github.io.

[9] OCtree. https://en.wikipedia.org/wiki/Octree.

[10] OpenCV. http://http://opencv.org/.

[11] OpenSLAM. http://www.openslam.org/.

[12] Perspective-n-Point Solver. https://en.wikipedia.org/wiki/

Perspective-n-Point.

[13] ROS. http://www.ros.org/.

[14] Sift stitching example. http://www.vlfeat.org/applications/

sift-mosaic-code.html.

[15] Stereo Camera Calibration. http://wiki.ros.org/camera_calibration/

Tutorials/StereoCalibration.

76

http://www.arduino.cc/
https://en.wikipedia.org/wiki/Big_O_notation
https://github.com/dorian3d/DBoW2
https://github.com/tum-vision/dvo_slam
http://mrg.robots.ox.ac.uk/fabmap/
https://github.com/RainerKuemmerle/g2o
https://www.jpl.nasa.gov/missions/mars-science-laboratory-curiosity-rover-msl/
https://www.jpl.nasa.gov/missions/mars-science-laboratory-curiosity-rover-msl/
http://octomap.github.io
https://en.wikipedia.org/wiki/Octree
http://http://opencv.org/
http://www.openslam.org/
https://en.wikipedia.org/wiki/Perspective-n-Point
https://en.wikipedia.org/wiki/Perspective-n-Point
http://www.ros.org/
http://www.vlfeat.org/applications/sift-mosaic-code.html
http://www.vlfeat.org/applications/sift-mosaic-code.html
http://wiki.ros.org/camera_calibration/Tutorials/StereoCalibration
http://wiki.ros.org/camera_calibration/Tutorials/StereoCalibration

[16] Waterloo Robotics Course. https://github.com/WaterlooRobotics/

mobilerobotics.git.

[17] Sameer Agarwal, Keir Mierle, and Others. Ceres solver. http://ceres-solver.org.

[18] Tim Bailey and Hugh Durrant-Whyte. Simultaneous localization and mapping
(slam): Part ii. IEEE Robotics & Automation Magazine, 13(3):108–117, 2006.

[19] Tim Bailey, Juan Nieto, Jose Guivant, Michael Stevens, and Eduardo Nebot. Consis-
tency of the ekf-slam algorithm. In Intelligent Robots and Systems, 2006 IEEE/RSJ
International Conference on, pages 3562–3568. IEEE, 2006.

[20] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up robust
features (surf). Computer vision and image understanding, 110(3):346–359, 2008.

[21] ISS Board. Ieee standard specification format guide and test procedure for single-axis
interferometric fiber optic gyros. IEEE Std, pages 952–1997, 1998.

[22] G. Bradski. The opencv library. Dr. Dobb’s Journal of Software Tools, 2000.

[23] Myron Z Brown, Darius Burschka, and Gregory D Hager. Advances in computational
stereo. IEEE transactions on pattern analysis and machine intelligence, 25(8):993–
1008, 2003.

[24] Sachin Chitta, E Gil Jones, Matei Ciocarlie, and Kaijen Hsiao. Perception, planning,
and execution for mobile manipulation in unstructured environments. IEEE Robotics
and Automation Magazine, Special Issue on Mobile Manipulation, 19(2):58–71, 2012.

[25] Javier Civera, Andrew J Davison, and JM Martinez Montiel. Inverse depth
parametrization for monocular slam. IEEE transactions on robotics, 24(5):932–945,
2008.

[26] Javier Civera, Andrew J Davison, and José Marıa Martınez Montiel. Inverse depth
to depth conversion for monocular slam. In Robotics and Automation, 2007 IEEE
International Conference on, pages 2778–2783. IEEE, 2007.

[27] Peter I Corke. A robotics toolbox for matlab. IEEE Robotics & Automation Maga-
zine, 3(1):24–32, 1996.

[28] Brian Curless and Marc Levoy. A volumetric method for building complex mod-
els from range images. In Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, pages 303–312. ACM, 1996.

77

https://github.com/WaterlooRobotics/mobilerobotics.git
https://github.com/WaterlooRobotics/mobilerobotics.git
http://ceres-solver.org

[29] Arun Das and Steven L Waslander. Calibration of a dynamic camera cluster for
multi-camera visual slam. In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ
International Conference on, pages 4637–4642. IEEE, 2016.

[30] Daniele De Gregorio and Luigi Di Stefano. Skimap: An efficient mapping framework
for robot navigation. In Robotics and Automation (ICRA), 2017 IEEE International
Conference on, 2017.

[31] Daniele De Gregorio and Luigi Di Stefano. Skimap: An efficient mapping framework
for robot navigation. In Robotics and Automation (ICRA), 2017 IEEE International
Conference on, pages 2569–2576. IEEE, 2017.

[32] Frank Dellaert. Factor graphs and gtsam: A hands-on introduction. Technical report,
Georgia Institute of Technology, 2012.

[33] James Diebel. Representing attitude: Euler angles, unit quaternions, and rotation
vectors. Matrix, 58(15-16):1–35, 2006.

[34] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping: part
i. IEEE robotics & automation magazine, 13(2):99–110, 2006.

[35] Hugh F Durrant-Whyte. Uncertain geometry in robotics. IEEE Journal on Robotics
and Automation, 4(1):23–31, 1988.

[36] Alberto Elfes. Using occupancy grids for mobile robot perception and navigation.
Computer, 22(6):46–57, 1989.

[37] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct sparse odometry. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2017.

[38] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-slam: Large-scale direct
monocular slam. In European Conference on Computer Vision, pages 834–849.
Springer, 2014.

[39] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography. In
Readings in computer vision, pages 726–740. Elsevier, 1987.

[40] Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza. Imu prein-
tegration on manifold for efficient visual-inertial maximum-a-posteriori estimation.
Robotics: Science and Systems (RSS), Rome, 2015, 2015.

78

[41] Christian Forster, Matia Pizzoli, and Davide Scaramuzza. Svo: Fast semi-direct
monocular visual odometry. In Robotics and Automation (ICRA), 2014 IEEE Inter-
national Conference on, pages 15–22. IEEE, 2014.

[42] Christian Forster, Zichao Zhang, Michael Gassner, Manuel Werlberger, and Davide
Scaramuzza. Svo: Semidirect visual odometry for monocular and multicamera sys-
tems. IEEE Transactions on Robotics, 33(2):249–265, 2017.

[43] Paul Furgale, Timothy D Barfoot, and Gabe Sibley. Continuous-time batch esti-
mation using temporal basis functions. In Robotics and Automation (ICRA), 2012
IEEE International Conference on, pages 2088–2095. IEEE, 2012.

[44] Fadri Furrer, Marius Fehr, Tonci Novkovic, Hannes Sommer, Igor Gilitschenski, and
Roland Siegwart. Evaluation of combined time-offset estimation and hand-eye cali-
bration on robotic datasets. In Field and Service Robotics, pages 145–159. Springer,
2018.

[45] Enric Galceran and Marc Carreras. A survey on coverage path planning for robotics.
Robotics and Autonomous Systems, 61(12):1258–1276, 2013.

[46] Dorian Gálvez-López and Juan D Tardos. Bags of binary words for fast place recog-
nition in image sequences. IEEE Transactions on Robotics, 28(5):1188–1197, 2012.

[47] Santiago Garrido, Luis Moreno, Dolores Blanco, and Piotr Jurewicz. Path planning
for mobile robot navigation using voronoi diagram and fast marching. Int. J. Robot.
Autom, 2(1):42–64, 2011.

[48] G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard. A tutorial on graph-based
slam. IEEE Intelligent Transportation Systems Magazine, 2(4):31–43, 2010.

[49] Giorgio Grisetti, Slawomir Grzonka, Cyrill Stachniss, Patrick Pfaff, and Wolfram
Burgard. Efficient estimation of accurate maximum likelihood maps in 3d. In Intel-
ligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference
on, pages 3472–3478. IEEE, 2007.

[50] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision.
Cambridge university press, 2003.

[51] Berthold KP Horn. Closed-form solution of absolute orientation using unit quater-
nions. JOSA A, 4(4):629–642, 1987.

79

[52] Berthold KP Horn, Hugh M Hilden, and Shahriar Negahdaripour. Closed-form so-
lution of absolute orientation using orthonormal matrices. JOSA A, 5(7):1127–1135,
1988.

[53] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram
Burgard. OctoMap: An efficient probabilistic 3D mapping framework based on oc-
trees. Autonomous Robots, 2013. Software available at http://octomap.github.

com.

[54] B.E. Ilon. Wheels for a course stable selfpropelling vehicle movable in any desired
direction on the ground or some other base, 1975.

[55] L. Jaulin. Mobile Robotics. ISTE Press Limited - Elsevier Incorporated, 2015.

[56] George Karypis and Vipin Kumar. A high performance sparse cholesky factorization
algorithm for scalable parallel computers. Frontiers of Massively Parallel Compu-
tation, 1995. Proceedings. Frontiers’ 95., Fifth Symposium on the, pages 140–147,
1995.

[57] Matthew Klingensmith, Siddartha S Sirinivasa, and Michael Kaess. Articulated robot
motion for simultaneous localization and mapping (arm-slam). IEEE Robotics and
Automation Letters, 1(2):1156–1163, 2016.

[58] DE Koditscheck and JM Hollerbach. Robotics Research: The Ninth International
Symposium. Springer-Verlag New York, Inc., 2000.

[59] Rainer Kümmerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and Wolfram
Burgard. g2o: A general framework for graph optimization. In Robotics and Au-
tomation (ICRA), 2011 IEEE International Conference on, pages 3607–3613. IEEE,
2011.

[60] Mathieu Labbe and Francois Michaud. Appearance-based loop closure detection
for online large-scale and long-term operation. IEEE Transactions on Robotics,
29(3):734–745, 2013.

[61] Mathieu Labbe and François Michaud. Online global loop closure detection for large-
scale multi-session graph-based slam. In Intelligent Robots and Systems (IROS 2014),
2014 IEEE/RSJ International Conference on, pages 2661–2666. IEEE, 2014.

[62] Adam Leeper, Kaijen Hsiao, Matei Ciocarlie, Ioan Sucan, and Kenneth Salisbury.
Methods for collision-free arm teleoperation in clutter using constraints from 3d

80

http://octomap.github.com
http://octomap.github.com

sensor data. In Humanoid Robots (Humanoids), 2013 13th IEEE-RAS International
Conference on, pages 520–527. IEEE, 2013.

[63] Lih-Chang Lin and Hao-Yin Shih. Modeling and adaptive control of an omni-
mecanum-wheeled robot. Intelligent Control and Automation, 4(02):166, 2013.

[64] David G Lowe. Object recognition from local scale-invariant features. In Computer
vision, 1999. The proceedings of the seventh IEEE international conference on, vol-
ume 2, pages 1150–1157. Ieee, 1999.

[65] S Lynen, M Achtelik, S Weiss, M Chli, and R Siegwart. A robust and modular
multi-sensor fusion approach applied to mav navigation. In Proc. of the IEEE/RSJ
Conference on Intelligent Robots and Systems (IROS), 2013.

[66] Sebastian OH Madgwick, Andrew JL Harrison, and Ravi Vaidyanathan. Estimation
of imu and marg orientation using a gradient descent algorithm. In Rehabilitation
Robotics (ICORR), 2011 IEEE International Conference on, pages 1–7. IEEE, 2011.

[67] Jérôme Maye, Paul Furgale, and Roland Siegwart. Self-supervised calibration for
robotic systems. In Intelligent Vehicles Symposium (IV), 2013 IEEE, pages 473–
480. IEEE, 2013.

[68] Justinas Miseikis, Kyrre Glette, Ole Jakob Elle, and Jim Torresen. Multi 3d camera
mapping for predictive and reflexive robot manipulator trajectory estimation. arXiv
preprint arXiv:1610.03646, 2016.

[69] R. Mur-Artal and J. D. Tards. ORB-SLAM2: An Open-Source SLAM System
for Monocular, Stereo, and RGB-D Cameras. IEEE Transactions on Robotics,
33(5):1255–1262, Oct 2017.

[70] Derek R Nelson, D Blake Barber, Timothy W McLain, and Randal W Beard. Vec-
tor field path following for miniature air vehicles. IEEE Transactions on Robotics,
23(3):519–529, 2007.

[71] Gabriel Nützi, Stephan Weiss, Davide Scaramuzza, and Roland Siegwart. Fusion of
imu and vision for absolute scale estimation in monocular slam. Journal of intelligent
& robotic systems, 61(1):287–299, 2011.

[72] Jia Pan, Sachin Chitta, and Dinesh Manocha. Fcl: A general purpose library for
collision and proximity queries. In Robotics and Automation (ICRA), 2012 IEEE
International Conference on, pages 3859–3866. IEEE, 2012.

81

[73] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot operating system. ICRA
workshop on open source software, 3(3.2):5, 2009.

[74] Juan D. Tards Ral Mur-Artal. Orb slam2 library. https://github.com/raulmur/

ORB_SLAM2.

[75] Robert Reid and Thomas Bräunl. Large-scale multi-robot mapping in magic 2010. In
Robotics, Automation and Mechatronics (RAM), 2011 IEEE Conference on, pages
239–244. IEEE, 2011.

[76] David M Rosen, Michael Kaess, and John J Leonard. An incremental trust-region
method for robust online sparse least-squares estimation. In Robotics and Automation
(ICRA), 2012 IEEE International Conference on, pages 1262–1269. IEEE, 2012.

[77] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. ORB: An efficient
alternative to SIFT or SURF. In Computer Vision (ICCV), 2011 IEEE international
conference on, pages 2564–2571. IEEE, 2011.

[78] John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry Bradlow,
Jia Pan, Sachin Patil, Ken Goldberg, and Pieter Abbeel. Motion planning with
sequential convex optimization and convex collision checking. The International
Journal of Robotics Research, 33(9):1251–1270, 2014.

[79] Bruno Siciliano and Oussama Khatib. Springer Handbook of Robotics. Springer,
Berlin Heidelberg, 2008.

[80] Roland Siegwart and Illah R. Nourbakhs. Introducetion to Autonomous Mobile
Robots. The MIT Press, Cambridge, Massachusetts, 2004.

[81] Randall C Smith and Peter Cheeseman. On the representation and estimation of
spatial uncertainty. The international journal of Robotics Research, 5(4):56–68, 1986.

[82] Joan Sola. Slam toolbox. https://github.com/joansola/slamtb.

[83] Joan Sola, André Monin, Michel Devy, and Teresa Vidal-Calleja. Fusing monocular
information in multicamera slam. IEEE transactions on robotics, 24(5):958–968,
2008.

[84] Mark W Spong, Seth Hutchinson, Mathukumalli Vidyasagar, et al. Robot modeling
and control, volume 3. Wiley New York, 2006.

82

https://github.com/raulmur/ORB_SLAM2
https://github.com/raulmur/ORB_SLAM2
https://github.com/joansola/slamtb

[85] Walter Stockwell. Angle random walk. Application Note. Crossbow Technologies Inc,
pages 1–4, 2003.

[86] Hauke Strasdat, JMM Montiel, and Andrew J Davison. Scale drift-aware large scale
monocular slam. Robotics: Science and Systems VI, 2, 2010.

[87] P. B. Sujit, S. Saripalli, and J. B. Sousa. An evaluation of uav path following
algorithms. 2013 European Control Conference (ECC), pages 3332–3337, July 2013.

[88] Richard Szeliski. Computer vision: algorithms and applications. Springer Science &
Business Media, 2010.

[89] Szymon Szomiski, Zbigniew Kaleta, Wojciech Turek, and Krzysztof Cetnarowicz.
Predictive planning method for rescue robots in buildings. Procedia Computer Sci-
ence, 76:539 – 546, 2015. 2015 IEEE International Symposium on Robotics and
Intelligent Sensors (IEEE IRIS2015).

[90] Feng Tan, Winfried Lohmiller, and Jean-Jacques Slotine. Simultaneous localization
and mapping without linearization. arXiv preprint arXiv:1512.08829, 2015.

[91] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. Intelligent robotics and
autonomous agents. MIT Press, 2005.

[92] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. A probabilistic approach to
concurrent mapping and localization for mobile robots. Autonomous Robots, 5(3-
4):253–271, 1998.

[93] Sebastian Thrun, Yufeng Liu, Daphne Koller, Andrew Y Ng, Zoubin Ghahramani,
and Hugh Durrant-Whyte. Simultaneous localization and mapping with sparse ex-
tended information filters. The International Journal of Robotics Research, 23(7-
8):693–716, 2004.

[94] Vladyslav Usenko, Jakob Engel, Jörg Stückler, and Daniel Cremers. Direct visual-
inertial odometry with stereo cameras. In Robotics and Automation (ICRA), 2016
IEEE International Conference on, pages 1885–1892. IEEE, 2016.

[95] Andrea Vedaldi. Scale Invariant Feature Transform (SIFT) . http://www.vlfeat.

org/api/sift.html.

[96] Pakpoom Viboonchaicheep, Akira Shimada, and Yuhki Kosaka. Position rectification
control for mecanum wheeled omni-directional vehicles. In Industrial Electronics

83

http://www.vlfeat.org/api/sift.html
http://www.vlfeat.org/api/sift.html

Society, 2003. IECON’03. The 29th Annual Conference of the IEEE, volume 1, pages
854–859. IEEE, 2003.

[97] Rui Wang, Martin Schwörer, and Daniel Cremers. Stereo dso: Large-scale direct
sparse visual odometry with stereo cameras. arXiv preprint arXiv:1708.07878, 2017.

[98] Juyang Weng, Paul Cohen, Marc Herniou, et al. Camera calibration with distortion
models and accuracy evaluation. IEEE Transactions on pattern analysis and machine
intelligence, 14(10):965–980, 1992.

[99] Oliver J Woodman. An introduction to inertial navigation. Technical report, Uni-
versity of Cambridge, Computer Laboratory, 2007.

[100] Zhengyou Zhang. Flexible camera calibration by viewing a plane from unknown
orientations. In Computer Vision, 1999. The Proceedings of the Seventh IEEE In-
ternational Conference on, volume 1, pages 666–673. Ieee, 1999.

84

APPENDICES

85

Appendix A

Robot Arm Calibration Result

After Optimizat ion (Resu l t s)
==================

Norm of F i r s t−order
I t e r a t i o n Func−count f (x) s tep opt ima l i ty
0 7 9.74017 123
1 14 0.783543 0.0958549 15 .4
2 21 0.0636576 0.109766 1 .82
3 28 0.004862 0.062801 0 .291
4 35 0.000519551 0.0197438 0.0456
5 42 0.000192332 0.0532432 0.00507
6 49 0.000192332 0.111046 0.00507
7 56 0.000162563 0.0277615 0.00567
8 63 0.000146069 0.0277615 0.00538
9 70 0.000146069 0.0277615 0.00538
10 77 0.000146069 0.00694037 0.00538
11 84 0.000133156 0.00173509 0.000465
12 91 0.000132909 0.00173509 0.000726
13 98 0.000132909 0.00173509 0.000726
14 105 0.000132567 0.000433773 0.000273
15 112 0.000132475 0.000433773 0.00027
16 119 0.000132379 0.000433773 0.000274
17 126 0.000132283 0.000433773 0.000326
18 133 0.000132171 0.000433773 0.000347
19 140 0.000132059 0.000433773 0.000336
20 147 0.000131943 0.000433773 0.000268
21 154 0.000131835 0.000433773 0.000235
22 161 0.000131727 0.000433773 0.000183
23 168 0.000131529 0.000867546 0.000209
24 175 0.000131152 0.00173509 0.000171
25 182 0.000130527 0.00347018 0.000267
26 189 0.000129653 0.00694037 0.000145
27 196 0.000129612 0.0138807 0.000427
28 203 0.000129472 0.00347018 0.000515
29 210 0.000129472 0.00347018 0.00056
30 217 0.000129448 0.000867546 0.000586
31 224 0.000129374 0.000216887 0.000287
32 231 0.000129366 0.000216887 0.000255
33 238 0.000129348 5.42216 e−05 3 .54 e−05
34 245 0.000129347 5.42216 e−05 3 .28 e−05
35 252 0.000129345 5.42216 e−05 2 .97 e−05
36 259 0.000129344 5.42216 e−05 2 .8 e−05
37 266 0.000129343 5.42216 e−05 2 .12 e−05
38 273 0.000129341 0.000108443 2 .12 e−05
39 280 0.000129337 0.000216887 2 .54 e−05
40 287 0.000129333 0.000433773 1 .39 e−05
41 294 0.00012933 0.000433773 2 .57 e−05
42 301 0.00012933 0.000433773 2 .57 e−05
43 308 0.00012933 0.000108443 2 .65 e−05
44 315 0.00012933 0.000108443 2 .89 e−05

86

45 322 0.00012933 2.71108 e−05 2 .78 e−05
46 329 0.00012933 6.7777 e−06 5 .68 e−07
47 336 0.00012933 6.7777 e−06 9 .74 e−07
48 343 0.00012933 1.35554 e−05 1 .98 e−06
49 350 0.00012933 1.35554 e−05 3 .73 e−06
50 357 0.00012933 1.35554 e−05 4 .67 e−06
51 364 0.00012933 3.38885 e−06 5 .03 e−06
52 371 0.00012933 8.47213 e−07 1 .6 e−06

Optimizat ion i n i t i a l co s t : 9 .74 e+00
Optimizat ion f i n a l co s t : 1 .29 e−04

87

Appendix B

Omni Wheel Platform Dynamic
Model

We define the vector of configuration coordinates [63, 79], q =
[
ξ ϕ

]T , where ξ is the
posture vector from (3.7) and control input ϕi ∈ (−π, π], (i = 1, 2, 3, 4) are rotation angles
of the wheels.

The configuration kinematic model:

q̇ = S(q)u. (B.1)

where u = η = [0 ϕ̇]T is inputs and S(q) =

[
RT (θ)Σ
I4×4

]
.

Convert (3.21) into (B.2).

J(q)q̇ = 0. (B.2)

where
J(q) =

[
J1swR(θ) J2

]
. (B.3)

From (B.1) and (B.2), S(q) and J(q) have the relation

S(q)TJ(q)T = 0. (B.4)

Lagrange equation:

88

d

dt
(
∂L

∂q̇
)− ∂L

∂q
= τ + JT (q)λ. (B.5)

The mobile robot platform is moving on the plane. So we can ignore the potential
energy.

1. L = T − V , where T is kinetic energy and V is potential energy which is zero due to
the platform moving on the plane.

2. T (q, q̇): kinetic energy of the robot platform, It can be described as a quadratic form

T (q, q̇) =
1

2
q̇TMq̇. (B.6)

M is symmetric positive-definite matrix.

3. τ : generalized forces associated with the torques generated by the actuators. i.e.
There is no external forces applied to the robot platform. So the first row of τ is zero
with respect to the posture coordinate.

τ =

[
0
τϕ

]
. (B.7)

Then (B.5) can be rewritten as

Mq̈ + f(q, q̇) = τ + JT (q)λ. (B.8)

After left multiplying ST (q) in (B.8) and substituting q̇ and q̈ by (B.1), the dynamic
equation becomes,

ST (q)MS(q)u̇+ ST (q)MṠ(q)u+ ST (q)f(q, S(q)u) = ST (q)τ. (B.9)

where M =

mb 0 0 0 0 0 0
0 mb 0 0 0 0 0
0 0 Ib 0 0 0 0
0 0 0 Iw 0 0 0
0 0 0 0 Iw 0 0
0 0 0 0 0 Iw 0
0 0 0 0 0 0 Iw

, mb: mass of the mobile platform, Ib:

moment inertia of the mobile platform, Iw: moment inertia of four wheels (assume all
wheels identical).

89

(B.9) can be rewritten in the compact form

H(q)u̇+ F (q, u) = ST (q)τ. (B.10)

Now, we start to derive the kinetic energy of the mobile platform. We consider to
involve the shift of the center of mass. d1 and d2 are the offsets of the center of the mass
from the geometry centre corresponding to the X and Y axis of the robot frame. The
velocity w.r.t. the C.M. is

RVG′ =R VG + θ̇ẑR ×R rG′/G. (B.11)

The transformation matrix of C.M. offset w.r.t. the geometry centre is T Ir .

T Ir =

1 0 0 d1
0 1 0 d2
0 0 1 0
0 0 0 1

 . (B.12)

where S(q) =

[
(T IR)−1Σ
I4×4

]
, ST (q) =

[
ΣT ((T IR)−1)T I4×4

]
,

J(q) =
[
J1w(T IR) J2

]
, JT (q) =

[
(T IR)TJT1w

J2

]
,

ST (q)JT (q) =
[
ΣT ((T IR)−1)T I4×4

] [(T IR)TJT1w
J2

]
= 0 (B.13)

.

L = T =
1

2
q̇TMq̇ =

1

2
mb[(ẊIcθ + ẎIsθ + θ̇d2)

2 + (−ẊIsθ + ẎIcθ − θ̇d1)2] +
1

2
Ibθ̇

2+

1

2
(mw +

Iw
r2w

){[(cθ + sθ)ẊI + (sθ − cθ)ẎI − (L+ l)θ̇]2+

[(cθ − sθ)ẊI + (sθ + cθ)ẎI + (L+ l)θ̇]2+

[(cθ − sθ)ẊI + (sθ + cθ)ẎI − (L+ l)θ̇]2+

[(cθ + sθ)ẊI + (sθ − cθ)ẎI + (L+ l)θ̇]2}
(B.14)

90

By Lagrangian Eq.

d

dt
(
∂L

∂q̇
)− ∂L

∂q
= Fi (B.15)

where i=1,2,3 with respect to forces on Xr, Yr and θ

For the force on FIX:

d

dt
(
∂L

∂ẊI

)︸ ︷︷ ︸
(1)

− ∂L

∂XI︸︷︷︸
(2)

= Fx (B.16)

Term (1) in (B.16)

d

dt
(
∂L

∂ẊI

) =
d

dt
{mb[(ẊIcθ + ẎIsθ + θ̇d2)cθ + (ẊIsθ − ẎIcθ + θ̇d1)sθ]+

(mw +
Iw
r2w

){[(cθ + sθ)ẊI + (sθ − cθ)ẎI − (L+ l)θ̇](cθ + sθ)+

[(cθ − sθ)ẊI + (sθ + cθ)ẎI + (L+ l)θ̇](cθ − sθ)+
[(cθ − sθ)ẊI + (sθ + cθ)ẎI − (L+ l)θ̇](cθ − sθ)+
[(cθ + sθ)ẊI + (sθ − cθ)ẎI + (L+ l)θ̇](cθ + sθ)}}

= [mb + 4(mw +
Iw
r2w

)]ẌI +mb(d2cθ + d1sθ)θ̈ +mbθ̇
2[−d2sθ + d1cθ]

Term (2) in (B.16)
∂L

∂XI

= 0

[mb + 4(mw +
Iw
r2w

)]ẌI +mb(d2cθ + d1sθ)θ̈ +mbθ̇
2[−d2sθ + d1cθ] = FX (B.17)

Finally, repeating the same derivation for the force on FIY :

d

dt
(
∂L

∂ẎI
)︸ ︷︷ ︸

(1)

− ∂L

∂YI︸︷︷︸
(2)

= Fy (B.18)

91

(1)

d

dt
(
∂L

∂ẎI
) =

d

dt
{mb[(ẊIcθ + ẎIsθ + θ̇d2)sθ + (−ẊIsθ + ẎIcθ − θ̇d1)cθ]+

(mw +
Iw
r2w

){[(cθ + sθ)ẊI + (sθ − cθ)ẎI − (L+ l)θ̇](sθ − cθ)+

[(cθ − sθ)ẊI + (sθ + cθ)ẎI + (L+ l)θ̇](sθ + cθ)+

[(cθ − sθ)ẊI + (sθ + cθ)ẎI − (L+ l)θ̇](sθ + cθ)+

[(cθ + sθ)ẊI + (sθ − cθ)ẎI + (L+ l)θ̇](sθ − cθ)}}

= [mb + 4(mw +
Iw
r2w

)]ŸI +mb(d2sθ − d1cθ)θ̈ +mbθ̇
2[d2cθ + d1sθ]

(2)
∂L

∂YI
= 0

[mb + 4(mw +
Iw
r2w

)]ŸI +mb(d2sθ − d1cθ)θ̈ +mbθ̇
2[−d2sθ + d1cθ] = Fy (B.19)

For the torque on C.G. FIτ :

d

dt
(
∂L

∂θ̇
)︸ ︷︷ ︸

(1)

− ∂L

∂θ︸︷︷︸
(2)

= Fτ (B.20)

(1)

d

dt
(
∂L

∂θ̇
) =

d

dt
{mb[(ẊIcθ + ẎIsθ + θ̇d2)d2 + (ẊIsθ − ẎIcθ + θ̇d1)d1] + Ibθ̇

(mw +
Iw
r2w

){[(cθ + sθ)ẊI + (sθ − cθ)ẎI − (L+ l)θ̇](−L− l)+

[(cθ − sθ)ẊI + (sθ + cθ)ẎI + (L+ l)θ̇](L+ l)+

[(cθ − sθ)ẊI + (sθ + cθ)ẎI − (L+ l)θ̇](−L− l)+
[(cθ + sθ)ẊI + (sθ − cθ)ẎI + (L+ l)θ̇](L+ l)}}

= [mb + 4(mw +
Iw
r2w

)]ŸI +mb(d2sθ − d1cθ)θ̈ +mbθ̇
2[d2cθ + d1sθ]

92

(2)
∂L

∂θ
= 0

[mb + 4(mw +
Iw
r2w

)]ŸI +mb(d2cθ + d1sθ)θ̈ +mbθ̇
2[−d2sθ + d1cθ] = Fτ (B.21)

Combining (B.17), (B.19) and (B.21), results in,

mb + 4(mw + Iw
r2w

) 0 mb(d2cθ + d1sθ)

0 mb + 4(mw + Iw
r2w

) mb(d2sθ − d1cθ)
mb(d2cθ + d1sθ) mb(d2sθ − d1cθ) (d21 + d22) + Ib + 4(mw + Iw

r2w
)(L+ l)2

ẌI

ŸI
θ̈

+

 0 0 mbθ̇(−d2sθ + d1cθ)

0 0 mbθ̇(d2cθ + d1sθ)

mbθ̇(d1cθ − d2sθ) mbθ̇(d1sθ + d2cθ) 0

ẊI

ẎI
θ̇

 =

FXI

FYI
Fτ

(B.22)

Ignoring the C.G. offset, (B.22) becomes,

mb + 4(mw + Iw
r2w

) 0 0

0 mb + 4(mw + Iw
r2w

) 0

0 0 Ib + 4(mw + Iw
r2w

)(L+ l)2

ẌI

ŸI
θ̈

 =

FXI

FYI
Fτ

(B.23)

93

	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	The Mobile Platform Mapping and Surveillance Problem
	Contributions
	Organization

	Background and Literature Review
	Probabilistic SLAM
	Visual SLAM Algorithms
	Camera Model
	Temporal Camera Position

	Map Representation
	Place Recognition and Loop Closure Detection
	Graph-Based Optimization

	Path Planning

	The Surveillance Mapping Task and the Proposed Robotic System
	General Structure of the Proposed System
	Mechanical Robot System
	Robot Manipulator
	Mobile Platform

	Robot Sensors
	Inertial Sensors
	Passive Vision Sensors
	Stereo-Cameras and IMU Calibration
	Vision-Inertial Model

	Articulated Arm Calibration

	Localization and Mapping
	Sensor Transformation
	Mapping
	Base Mapping
	Detail Mapping

	Visualization

	 Motion Planning and Collision Avoidance
	Problem Description and Goal
	Modified Wavefront for 2D Path Planning
	Methodology

	Planar Motion Control
	State Feedback
	Mobile Platform Path Tracking

	Experimental Testing
	System Setup
	Experiments
	Eye-in-Hand Calibration
	Mapping Results

	Discussion

	Conclusion
	References
	APPENDICES
	Robot Arm Calibration Result
	Omni Wheel Platform Dynamic Model

