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Abstract— In this study, we investigated the performance of a 

multi-class brain-computer interface (BCI). The BCI system is 

based on the concept of somatosensory attentional orientation 

(SAO), in which the user shifts and maintains somatosensory 

attention by imagining the sensation of tactile stimulation of a 

body part. At the beginning of every trial, a vibration stimulus 

(200 ms) informed the subjects to prepare for the task. Four SAO 

tasks were performed following randomly presented cues: SAO of 

the left hand (SAO-LF), SAO of the right hand (SAO-RT), 

bilateral SAO (SAO-BI), and SAO suppressed or idle state (SAO-

ID). Analysis of the event-related desynchronization and 

synchronization (ERD/ERS) in the EEG indicated that the four 

SAO tasks had different somatosensory cortical activation 

patterns. SAO-LF and SAO-RT exhibited stronger contralateral 

ERD, whereas bilateral ERD activation was indicative of SAO-BI, 

and bilateral ERS activation was associated with SAO-ID. By 

selecting the frequency bands and/or optimal classes, classification 

accuracy of the system reached 85.2±11.2% for two classes, 

69.5±16.2% for three classes, and 55.9±15.8% for four classes. The 

results validated a multi-class BCI system based on SAO, on a 

single trial basis. Somatosensory attention to different body parts 

induces diverse oscillatory dynamics within the somatosensory 

area of the brain, and the proposed SAO paradigm provided a new 

approach for a multiple-class BCI that is potentially stimulus-

independent. 

Index Terms— Brain computer interface (BCI), Somatosensory 

Attentional Orientation (SAO), Somatosensory Imagery, Oscillatory 

Dynamics, Multi-class BCI 

I. INTRODUCTION

Brain-computer interface (BCI) systems provide an 

alternative non-muscular control and communication channel 

for users with severe disabilities to interact with the external 

world [1]. Brain signals are collected either invasively [2] or 

non-invasively [3], [4] while the user performs mental tasks. 

Time and/or frequency domain features are extracted and 

classified for external device control [5]. BCIs have been 

successfully implemented in a wide variety of neuromuscular 

disorders [6]–[10], both for communication (e.g. amyotrophic 

lateral sclerosis – ALS) and for restoration of impaired motor 

function (e.g. stroke). In addition, they have shown viability in 

controlling applications such as wheelchair command [11], 

[12], helicopter navigation [13], [14], robotic arm control [15], 

and in neurorehabilitation [16]–[19].  

Motor imagery (MI) is one of the most commonly 

investigated mental tasks in BCIs research [20]–[22]. MI is 

independent of external stimuli and has shown a therapeutic 

benefit in neurorehabilitation [1], [23], [24]. MI (e.g. of the left 

or right hand) [25] induces event-related 

desynchronization/synchronization (ERD/ERS) often referred 

to as sensory-motor rhythms (SMR) [26]–[29]. Left hand MI 

results in a contralateral right hemisphere ERD and ipsilateral 

left hemisphere ERS, while right hand MI results in a left 

hemisphere ERD and right hemisphere ERS [30]. The 

ERD/ERS dynamic can not only be elicited by imagined or real 

movement, but also correlates strongly with the human 

somatosensory system in the processing of afferent inflow [31]. 

The oscillatory rhythmic activity induced by sensory 

stimulation should reflect how the brain processes these stimuli, 

e.g. tactile stimuli [32], [33]. In a recent series of studies [34]–

[38], we have demonstrated that a tactile selective sensation

(SS) BCI based on stimulus-induced oscillatory dynamics

outperforms other types of tactile-based BCIs, such as those

based on steady-state somatosensory evoked potentials

(SSSEPs) [39]–[41]. Further, we also demonstrated that a top-

down somatosensory attention shift (e.g. on either left or right

hand) can be reliably detected from the spontaneous EEG

rhythms, even without the presence of the actual stimuli. We

termed this sensory imagery (SI) task “somatosensory

attentional orientation” (SAO). We also recently combined MI

with SAO to improve conventional MI-based BCI performance

and increase the number of commands [42].

MI and SI are both based on the oscillatory dynamics of brain 

activity quantified as ERD/ERS, and both are imagined, thus 

covert mental tasks. Specifically, in SAO tasks, subjects shift 

and maintain their somatosensory attention to different body 

parts (e.g. left or right hand), and imagine a sensation of tactile 
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Figure 1. Illustration of the experimental protocol. (A) Graphic illustration 

of the SAO tasks (SAO-LF, SAO-RT, SAO-BI, SAO-ID). (B) The temporal 

sequence of each trial in SAO paradigm. 
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vibrational stimulus being applied. The resulting EEG signals 

can be classified with an accuracy >75% for two classes [37], 

[42]. In the current study, we aimed to extend the current SAO 

based two-class BCI to a multiple-class BCI system in order to 

provide a new approach to expand the currently limited BCI 

commands. 

Tactile stimulus-induced oscillatory dynamics have been 

shown to encode the subjects’ covert somatosensory attention 

in a multi-class tactile BCI [38]. Decoding these led to a 

promising tactile BCI performance as compared with the 

existing modalities of tactile BCIs. Furthermore, this SAO 

modality, where actual tactile stimuli are absent, had a reliable 

BCI performance when left and right SAO tasks were 

investigated [37], [43]. This motivated the current study design 

where subjects were instructed to perform four SAO tasks: 1) 

SAO of the left hand (SAO-LF); 2) SAO of the right hand 

(SAO-RT); 3) Bilateral SAO (SAO-BI); 4) SAO suppressed or 

idle (SAO-ID). In order to investigate only the BCI 

performance of the task effect, no feedback was provided to the 

subjects in order to minimize subjective adaptation. The 

oscillatory dynamics accompanying somatosensory attention to 

sensation of different body parts were investigated and the 

feasibility of a SAO-based multiple-class BCI system was 

systematically evaluated. 

II. METHODOLOGY  

A. Subjects and EEG recording 

A total of 19 healthy subjects participated in the experiments 

(10 females, all right-handed, average age 21.8±2.5 years). All 

subjects were BCI naïve. The study was reviewed and approved 

by the Ethics Committee of the University of Waterloo, 

Waterloo, Canada (ORE#: 22295). Before participation, all 

participants signed the informed consent forms. 

A wireless g.Nautilus EEG system with 32 channels (gtec, 

Austria) was used to record EEG signals. Electrodes were 

placed in accordance with the extended 10/20 system. The 

reference electrode was placed on the right earlobe, and the 

ground electrode was located on the forehead. The signals were 

digitally sampled at 250 Hz. Linear resonant actuators (10 mm, 

C10-100, Precision Microdrives Ltd., typical normalized 

amplitude 1.4 G) were used for producing vibrotactile 

stimulation [43]. 

B. Experimental Protocol 

Before starting the experiment, subjects were explicitly 

instructed not to perform any attempt or imagined movement; 

they were asked to only focus, according to cues shown, on the 

sensation in their left hand, right hand, both, or none. For the 

SAO tasks, the subjects were instructed to concentrate their 

somatosensory attention on either the left or the right wrist, and 

to imagine that a tactile stimulus (vibration) was being applied 

to these. Subjects were asked to continue imagining the tactile 

sensation while maintaining their attention on the 

corresponding hand. Four SAO tasks were randomly 

performed, according to the cue: 1) SAO-LF; 2) SAO-RT; 3) 

SAO-BI; 4) SAO-ID. The experimental paradigm is depicted in 

Fig. 1(A)(B). The subjects were asked to minimize eye blinks 

and body movements, and to avoid muscle contraction during 

the mental tasks. At the beginning of each trial (T=0 s), a white 

fixation cross (“+”) was presented in the center of the screen. 

 
Figure 2. The grand-averaged ERD/ERS dynamics at small-Laplace 

filtered C3 and C4 channels within [8 26] Hz (alpha-beta band). ERD/ERS 

corresponds to SAO-LF task in (A), SAO-RT task in (B), SAO-BI task in 

(C) and SAO-ID task in (D). The upper and lower curves indicate standard 

error. Note: time 0s corresponds to the start of the task. 

 
Figure 3. Grand-averaged ERD/ERS distribution within [8 26] Hz alpha-beta band in (A), [8 13] alpha band in (B) and [13 26] beta band in (C). (A)(1) 

ERD/ERS distribution with respect to SAO-LF task. (A)(2) ERD/ERS distribution with respect to SAO-RT task. (A)(3) ERD/ERS distribution with 

respect to SAO-BI task. (A)(4) ERD/ERS distribution with respect to SAO-ID task. (A)(5) ERD/ERS distribution with respect to vibration burst at the 

beginning of the trial. The subfigures in the panel (B) and (C) was similar as in panel (A). 
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At T=2 s, a 200-ms vibration pulse was applied to both hands 

to alert the subjects of the subsequent task. At T=3 s, a red 

visual cue appeared for 1.5s. When the cue was a left-pointing 

arrow, it indicated the SAO-LF task; a right-pointing arrow the 

SAO-RT task; a double-sided arrow the SAO-BI task; and a 

circle the SAO-ID task. The mental task lasted 5s, until the 

fixation symbol disappeared (T=8 s). Finally, subjects were 

instructed to relax for a random time interval of 1.5~3.5 s, so 

that the subject would not be habituated. A total of 240 trials 

were performed by the subject in six runs, with 10 trials of each 

task in each run in random order. There was a 2-4 min break 

between consecutive runs. 

C. Data analysis 

A fourth order Butterworth filter of [8 26] Hz was utilized for 

EEG filtering prior to ERD/ERS calculation. ERD (ERS) is 

defined as the percentage of band power decrease (increase) 

with respect to a reference interval (e.g. resting state before the 

task). The reference interval from 2.0 to 1.2s prior to the 

appearance of the arrow (i.e. 1 to 1.8 s from the beginning of 

the trial) was used for ERD/ERS calculation. To determine the 

cortical activation dynamics involved in each mental task, the 

grand averages of ERD/ERS from all subjects within the same 

task were calculated. 

Time-frequency decomposition of all the EEG channels was 

performed to construct the spatio-spectral-temporal structure 

within each SAO tasks. It was calculated every 200 ms with a 

Hanning tapper, and the number of cycles per window was 

chosen as seven to achieve adequate frequency and time 

resolution [44]. The R2 index is defined as the squared Pearson-

correlation coefficient between feature and class label [45], 

[46]. Based on the above spatio-spectral-temporal structures 

between different mental tasks, an R2 in the spatio-spectral-

temporal space was formulated and used to interpret the 

classification results between different SAO tasks.  

Spatial filtering based on Common Spatial Pattern (CSP) 

[47], [48], was used for enhancing feature discrimination 

among the investigated somatosensory attention tasks. The 

feature vectors were comprised of the log-variance values of the 

first and last three CSP components. Linear discriminative 

analysis (LDA) was used for classification. Moreover, a 10×10 

cross-validation was utilized for offline BCI performance 

evaluation, and for selecting the subject-specific frequency 

band. The frequency bands were individually selected for each 

subject among the following [37]: alpha-beta [8 26] Hz (αβ), 

alpha [8 13] Hz (α), beta [13 26] Hz (β), lower alpha [8 10] Hz 

(α-), upper alpha [10 13] Hz (α+), lower beta [13 26] Hz (β-), 

upper beta [20 26] Hz (β+), and eta [10 16] Hz (η) [38].  

The interval for EEG signal analysis and classification was 

chosen as 1 s to 4 s after the appearance of the cue bar (i.e. 4 s 

to 7 s after the beginning of the trial. For the 2-class 

classification, six class pairs were analyzed: SAO-LF vs SAO-

RT (P1), SAO-LF vs SAO-BI (P2), SAO-LF vs SAO-ID (P3), 

SAO-RT vs SAO-BI (P4), SAO-RT vs SAO-ID (P5), and SAO-

BI vs SAO-ID (P6). Four 3-class scenarios were investigated: 

SAO-LF vs SAO-RT vs SAO-BI (T1), SAO-LF vs SAO-RT vs 

SAO-ID (T2), SAO-LF vs SAO-BI vs SAO-ID (T3), and SAO-

RT vs SAO-BI vs SAO-ID (T4). Further, the four tasks were 

also classified in a 4-class scenario. To the general applicability 

of the SAO-based attention BCI system, we investigated the 

 
Figure 5. Grand-averaged R2 among different two-class BCI modalities 

within [8 26] Hz frequency band. (1) R2 discriminative information 

distribution between SAO-LF and SAO-ID. (2) R2 discriminative 

information distribution between SAO-RT and SAO-ID. (3) R2 

discriminative information distribution between SAO-BI and SAO-ID. (4) 

R2 discriminative information distribution between SAO-LF and SAO-RT. 

(5) R2 discriminative information distribution between SAO-LF and SAO-

BI. (6) R2 discriminative information distribution between SAO-RT and 

SAO-BI. The color bar indicates the R2 value. 

 
Figure 4. Classification accuracy in two-class BCI systems. The red bars 

indicate the BCI performance based on SAO-LF and SAO-RT, which we 

proposed in [35], [40]; the green bars the BCI performance with the 

optimal task pair for each subject; the blue bars the BCI performance with 

both task pair and frequency band optimization. The error bars represent 

the standard error, with N=19 (number of the subjects). The chance level 

classification is 61.67%. 

 
Figure 6. Classification accuracy in three-class BCI systems. Red bars 

indicate the BCI performance based on SAO-LF, SAO-RT and SAO-ID. 

Green bars indicate the BCI performance after selection of individual 

optimal task pair; the blue bars the BCI performance with both task pair 

and frequency band optimization. The error bars represent the standard 

error, with N=19 (number of the subjects). The chance level classification 

is 42.78% 
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performance of the above 2-class, 3-class and 4-class conditions 

offline, within a fixed frequency band of [8 26] Hz (αβ) for all 

subjects. Moreover, we also performed optimization of 

frequency bands and task scenarios subject-specific, to explore 

the best performance for individual subjects due to the existence 

of a large inter-subject variability [49]. 

D. Statistics 

Performance among different BCI task pairs was analyzed 

using a one-way ANOVA with repeated-measures (p=0.05). 

Whenever the main effect was found to be significant, 

Bonferroni correction was used for post-hoc testing to identify 

which level(s) of the factor were statistically different from 

other levels. The theoretical chance level was corrected with the 

number of trials [50]. The upper limit of a 99% confidence 

interval for chance accuracy based on the number of trials in 

this study was 61.67% for two classes, 42.78% for three classes, 

and 32.50% for four classes. 

III. RESULTS 

A. Oscillatory Dynamics of Somatosensory Attention to 

Imagined Body Sensation 

Fig. 2 shows the grand-averaged oscillatory dynamics within 

the alpha-beta frequency band across the four imagined 

sensation tasks. At -1 s, a 200 ms vibration burst induced a band 

power decrease that was similar in all trials in the channels C3 

and C4 (C3 and C4 were chosen since they were located over 

the sensory-motor regions). The cortical activity (ERD) reached 

a maximum at 0.5 s after the vibration burst. The somatosensory 

activation induced by the vibration burst is also indicated in Fig. 

3(A)(5), demonstrating a clear lateralization. From 0 s to 5 s, 

subjects performed imagined sensation tasks when no sensory 

stimuli were applied. These resulted in diverse oscillatory 

activation mainly around both somatosensory cortex. During 

the SAO-LF task, the ERD on the right hemisphere was more 

pronounced; conversely, during the SAO-RT task, the ERD in 

the left hemisphere was more prominent. During SAO-BI, a 

clear bilateral activation was present and this was stronger when 

compared to that during the SAO-ID task, while during the 

SAO-ID task, the ERD strength was much lower bilaterally 

compared to the other three tasks. ERD/ERS within the [8 26] 

Hz alpha-beta frequency band across the whole scalp are shown 

in Fig. 3(A). 

Grand-averaged ERD/ERS distributions within the alpha and 

beta bands are shown in Fig. 3(B) and (C). The activation 

pattern in both alpha and beta bands were similar and 

topographically distributed with respect to the body schema. 

Further, the SAO-induced oscillatory change (ERD) and the 

occipital alpha ERS were both stronger within the alpha band. 

B. BCI Performance for Two-class Scenarios 

Using the [8 26] Hz frequency band for all subjects, the 

average accuracy was 80.0±14.0% for P1 (SAO-RT vs SAO-

LF), 66.8±13.0% for P2, 76.4±13.5% for P3, 70.9±11.8% for 

P4, 76.1±14.8% for P5, and 73.2±11.9% for P6. One-way 

ANOVA with repeated measure showed that there was a 

significant difference in classification accuracy among different 

pairs (F(5,90)=12.32, p<0.01). Post-hoc testing (p=0.05) revealed 

that P1 was significantly better than P2, P4 and P6, and no 

significant difference was found among P1, P3, and P5. When 

the best two-class task pair for each individual subject was used 

(optimized pair selection in Fig. 4), the average classification 

accuracy increased to 82.9±12.2% (p<0.01), with the best result 

on an individual subject being above 95%. Moreover, when the 

subject-specific frequency band was selected, the average 

accuracy further increased to 85.2±11.2%. Sixteen out of 19 

subjects were above the corrected chance level of 61.67% when 

pair P1 and the frequency band of [8 26] Hz was selected. The 

number of subjects with a classification accuracy above chance 

level increased to 18 out of 19 when the optimized pair was 

selected, and all subjects surpassed the chance level when both 

optimized pair and frequency band were utilized. For a two-

class BCI control to be considered as usable, 70% accuracy has 

been defined as the threshold value in previous studies, i.e. 

lower than 70% is normally considered as BCI-illiterate [51], 

[52]. There are approximately 30% of subjects whose BCI 

performance is below the 70% accuracy level [53]. In the 

current study, 15 subjects crossed the 70% accuracy level, 

which equates to 79.0% of total number of subjects (15/19). 

Conversely, this meant that the BCI-illiteracy rate of the 

proposed system was 21% (4/19). With task pair and subject 

optimal frequency band selection, the BCI-illiteracy rate further 

reduced to 10.5% (2/19). (Fig. 4). 

The discriminative information distribution among different 

pairs, represented as R2, is shown in Fig. 5 (grand-average 

among subjects). 

C. BCI Performance on Three and Four Class Scenarios 

Using the frequency band of [8 26] Hz for all subjects, the 

average accuracy in the three-class scenarios was 58.7±12.2% 

for T1, 66.2±17.7% for T2, 58.7±15.1% for T3, and 

60.7±15.6% for T4. One-way ANOVA with repeated measures 

revealed a significant difference in classification accuracy 

between the four scenarios (F(3,54)=14.99, p<0.01), and post-hoc 

comparison (p=0.05) showed that the performance of T2 was 

significantly better than the other three scenarios, and no 

significant difference was found between T1, T3 and T4. Fig. 6 

illustrates the performance of the three-class BCI system. 

Seventeen out of 19 subjects exceeded the corrected random 

 
Figure 7. Classification accuracy in four-class BCI systems. The red bars 

and green bars represents the performance within the baseline time period 

and task period separately. Blue bars indicate the BCI performance after 

frequency band selection. The error bars represent the standard error, 

with N=19 (number of the subjects). The chance level classification is 

32.50%. The base-line period was [-2 0] s before the appearance of the cue. 
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chance level of 42.78%. The selection of the optimal pair did 

not substantially improve the performance with respect to T2. 

However, subject-specific frequency band and task pair 

selection significantly improved the accuracy (69.5±16.2%, 

Paired-t test p<0.05). 

Fig. 7 shows the performance of the four-class SAO based 

BCI system. The task activity discrimination accuracy was 

compared against the baseline performance, when no tasks were 

performed. The mean base-line accuracy was 27.2±1.9%, 

which was expected for a four-class scenario (25% in theory). 

The performance achieved an average accuracy of 53.3±17.0%, 

and 16 out of 19 subjects exceeded the corrected random chance 

level of 32.50%. For this scenario, a performance increase of 

approximately 3% (p=0.05) was achieved when the subject-

specific frequency band was selected.  

The discriminative information distribution with respect to 

the three-class and four-class BCI system, represented as R2, is 

shown in Fig. 8 (grand-average). The electrode C4 located over 

the right somatosensory cortex contributed the most to the 

classification results in the current experimental setting. 

IV. DISCUSSION 

In this study the characteristics of oscillatory dynamics with 

respect to a type of SI task, i.e. SAO, were systematically 

investigated. The SAO task induced a clear somatosensory-

attention induced oscillatory power decrease in both the alpha 

and beta frequency band when attention was shifted and 

maintained on the corresponding body part (left, right, and both 

hands) under the condition that no actual stimuli were applied. 

We also presented a novel approach for a multiple-class 

somatosensory BCI. To the best of our knowledge, this is the 

first time that a somatosensory attention based multiple-class 

stimulus-independent BCI has been proposed and 

experimentally validated. The SAO-based BCI differs from the 

typical motor imagery BCI because the extracted brain signal 

would be generated from the somatosensory cortex rather than 

mainly from the motor cortex. The three-class discrimination 

showed an average accuracy of 69.5±16.2% and the four-class 

discrimination 53.3±17.0%. These are comparable 

performances with respect to the existing multiple-class MI-

based BCI systems. Building on the pioneer studies of brain 

activation with respect to MI on different body parts, such as 

left hand, right hand, foot, and tongue, a first four-class MI BCI 

system was first proposed by Pfurtscheller [54], demonstrating 

a mean kappa coefficient of 0.418, which equates to a mean 

classification accuracy of 56.3%. This four-class BCI system 

was fully explored through several BCI competitions to 

improve its performance by designing suitable machine 

learning algorithms [55], [56]. Besides MI, other mental tasks 

have been proposed to increase the number of classes and their 

discrimination. For example, Friedrich [57] discriminated word 

association, mental subtraction, and spatial navigation with a 

comparable performance as the four-class MI-based BCI. 

Moreover, the combination of MI tasks has been used, such as 

simultaneous imagination of both left and right hands 

movement [14]. Since SAO is able to selectively activate the 

somatosensory cortex, it offers a novel avenue to be combined 

with MI based BCIs, increasing the different command types 

that will expand the currently limited BCI output. In our 

previous experimental study of MI with SAO [42], we found 

that the hybrid modality with left SAO and right MI tasks 

significantly improved conventional left and right MI 

discriminability. 

 BCI systems based on left-hand MI and right-hand MI are 

the state-of-the-art of stimulus-independent BCIs. The 

performance of this two-class BCI system has been largely 

improved, through the exploration of machine learning 

algorithms [49], [55], [58]–[60], adaptation of both human and 

machine [61], and extensive subject training protocols [13]. 

Three major MI studies on 193 [52], 80 [62] and 52 subjects 

[63], have shown that the proportion of subjects reaching 

adequate performance (accuracy ≥70% [64]) was 

approximately 50% [51]. In the present study, we have shown 

that the SAO-based two-class BCI can reach an average 

performance of 85.2±11.2% when the discriminative frequency 

band and the task pair are individually optimized for each 

subject and only ~10% of the subjects have an accuracy <70%. 

In our previous study we found that the  optimal frequency band 

was quite different across subjects [37], [42], indicating the 

necessity to do the frequency band selection. These results are 

in agreement with our previous results [37], where 

discrimination between SAO-LF with SAO-RT was performed 

with an average performance of 82.5% after subject specific 

frequency band selection. Paired sensory stimulation training 

will likely provide a way to further improve SAO-based BCI 

performance. 

 
Figure 9. Number of subjects in selected optimal frequency bands. (A) 

corresponds to the subject number distribution in two-class BCI, i.e. SAO-

LF vs SAO-RT. (B) distribution in three-class BCI, i.e. SAO-LF vs SAO-

RT vs SAO-ID. (C) distribution in four-class BCI. 

 
Figure 8 Grand-averaged R2 value distribution from three-class and four-

class BCI modality within [8 26] Hz frequency band. (1) R2 discriminative 

information distribution among SAO-LF, SAO-RT and SAO-ID. (2) R2 

discriminative information distribution among SAO-LF, SAO-RT, SAO-

BI and SAO-ID. The color bar indicates the R2 value. 
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 With the purpose of getting subjects ready for the task, the 

vibration burst induced an oscillatory power decrease (ERD) in 

the [8 26] Hz in both the left and right hemisphere (Fig. 2 (E)), 

concentrated in the C3 and C4 electrodes located above 

somatosensory cortex (passive tactile stimulation), and in 

accordance with our previous finding [42]. During the task 

period (the 3rd to 8th second from the beginning of the trial), 

ERD/ERS showed a task-related differentiation in the left and 

right somatosensory hemisphere. In SAO-LF and SAO-RT 

tasks, the contralateral activation was stronger than that in the 

ipsilateral side, which is in accordance with our previous results 

[37], [42]. In contrast, during the SAO-BI task, subjects were 

instructed to focus the imagined sensation on both hands, 

resulting in a bilateral activation. The ERD oscillatory 

activation during SAO-BI was also more pronounced than that 

during the SAO-ID task, in which subjects were in an idle state 

and actively suppressed the imagined sensation. This 

electrophysiological evidence lays the foundation for the 

current multiple-class SAO-based BCI. Interestingly, the 

oscillatory dynamic pattern of the four SAO tasks was similar 

to our previous finding in a tactile BCI, in which four real tactile 

SS tasks were performed [38], i.e. SS-LF, SS-RT, SS-BI and 

SS-ID. Generally, the SS showed enhanced ERD activation on 

both hemispheres due to the passive tactile stimulation. The 

comparison between SS and SAO among the four tasks will 

need a future investigation through a within-subject study. 

 Interestingly, when examining the topographical R2 

distribution among different two-class modalities, three-class 

and four-class modalities, the discriminative power was more 

concentrated on the right hemisphere. This clearly indicates that 

the cortical activities of the right hemisphere are modulated to 

a greater extend by the different SAO tasks. It is possible that a 

one channel setup using the right hemisphere (C4) channel 

would have the potential for a practical SAO based BCI system. 

In current study, all subjects were right-handed. Whether or not 

the present phenomena of the R2 concentrating on the right 

hemisphere is caused by handedness would be a question 

worthy of future investigation. 

Independent of any exogenous stimuli, the SAO and MI are 

cross-modal mental tasks. Covert volitions, both imagined 

motor intention and imagined sensation intention, are reflected 

in the spontaneous EEG rhythms. The ERD/ERS analysis has 

shown that SAO of different hands results in diverse brain 

activation patterns, with strong ERD activation concentrated on 

the contralateral hemisphere. Moreover, the R2 discriminative 

information was mainly concentrated on the left and right 

hemisphere, further supporting that the brain signals were 

generated from the sensory-motor cortex. The SAO-induced 

oscillatory dynamics were similar to those induced by MI, in 

which the contralateral ERD and ipsilateral ERS were mostly 

found when subjects performed the hand MI tasks. In our hybrid 

study of SAO and MI [42], the classification accuracy between 

SAO-LF and MI-RT was significantly higher than that between 

MI-LF and MI-RT, and that between SAO-LF and SAO-RT, 

indicating there was a significant difference between SAO and 

MI tasks although ERD/ERS analysis showed similar 

activations. For better control of the task that the subjects 

performed, for the SAO experiment, subjects were explicitly 

instructed to not perform any movement, imagine or attempt 

movement, but only to feel the sensation of their body. Due to 

the inherently internal nature of pure SAO mental tasks, we 

made the instruction clear to maintain subjects on track to 

perform only the somatosensory attention task rather than a 

motor task. Moreover, no feedback was provided to the subjects 

after every trial to avoid any subjective change of mental task 

strategy. The corresponding activation sources for MI and SAO 

should be further investigated using simultaneous EEG and 

fMRI recording, to achieve a greater spatial resolution. 

Previous fMRI studies have shown that tactile imagery 

activates the primary somatosensory cortex similar to real 

tactile stimulation [65], [66]. This supports the feasibility of our 

proposed sensory imagery paradigm, however the comparison 

between MI and SAO in terms of brain activation patterns using 

EEG would be worthy of further investigation. 

In the current study, subjects were informed to perform the 

four imagined sensation tasks according to randomly presented 

visual cues. The offline analysis results, with regards to the two-

class classification, were comparable with our previous online 

SAO study [37]. Three-class and Four-class online performance 

still require further investigation. It is worth noting that SAO is 

a type of sensory imagery (SI), and SI can also be used when 

imaging other properties of somatosensory stimulation, such as 

intensity, type (tactile, temperature, etc.). This property of SI 

for enhancing system performance would need further 

investigation. 

In this study, subject specific frequency band was selected to 

evaluate the BCI performance. In our previous study we found 

that the optimal frequency band differed between subjects [37], 

[42], indicating the necessity to do the frequency band selection 

on an individual basis. Interestingly, as shown in Fig. 9 the 

lower alpha band was not selected at all among the 19 subjects 

in the two-class, three-class and four-class scenarios, which is 

in accordance with our previous results [53], indicating a clear 

difference between lower alpha and upper alpha in BCI 

performance.  

In the current experimental paradigm, a cue-based design 

was utilized such that the system worked in a synchronous 

rather than asynchronous mode. Our results indicate the 

feasibility of separating the somatosensory tasks from the idle 

state, while a fully asynchronous system based on SAO will 

require future work. The vibration pulse was primarily used as 

a cue to allow the subjects to prepare for the subsequent task. In 

our previous study [37], we demonstrated that the SAO 

paradigm is capable to operate without any external stimuli, 

where it should be considered as a truly independent BCI. 

V. CONCLUSION 

We presented and validated a stimulus-independent multiple-

class BCI system based on SAO, with a group-level BCI 

performance of 69.5±16.2% for a three-class scenario and 

53.3±17.0% for a four-class scenario. These multiple-class BCI 

systems enlarge the types of current multiple-class BCIs. The 

combination of MI and SAO for offering more discriminative 

commands and higher BCI performance will be further 

investigated in future studies. 
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