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Math-based Spark Ignition Engine Modelling Including Emission 

Prediction for Control Applications 

 
A complete spark ignition (SI) engine model is a multi-domain model including fluid dynamics, 

thermodynamics, combustion, electrical, and mechanical sub-models. The complexity of these 

models depends on the type of analysis used for model development, which may vary from 

highly detailed computational fluid dynamics (CFD) analysis (multi-dimensional model) to 

simpler data-based analysis in which the data is obtained from experiments (zero-dimensional 

model). 

The main objective of our research is to develop a math-based SI engine model for control 

application and real time simulation. The model must be accurate enough to capture the 

combustion characteristics (e.g. combustion temperature) and predict emission gases, while 

being fast enough for real time simulation purposes. 

In this paper, a physics-based model of an SI engine is presented which consists of different 

sub-models including: throttle body and manifold model, four-stroke quasi-dimensional 

thermodynamic model of gas exchange and power cycles, two-zone combustion and flame 

propagation model, emission gases model based on the chemical kinetics equations, and 

mechanical torque model. Moreover, part of the simulation results is validated against the GT-

Power simulation results.  

The math-based model is created in the MapleSim environment. The symbolic nature of 

MapleSim significantly shortens the simulation time and also enables parametric sensitivity 

analysis.  

Keywords: spark ignition engine model; two-zone combustion; quasi-

dimensional modelling; emission prediction; real-time simulation 

1. Introduction 

Today, automobile manufacturers are moving towards more and more virtual vehicle 

prototypes, including prototypes of the powertrain. A virtual prototype facilitates the 

modeling and simulation of a physical (real) prototype in a software environment 

(virtual domain). The main advantages of simulating virtual prototypes before making 

physical prototypes are:  

 Lower expenses: the cost of making a virtual prototype is less than the physical 

prototype. 
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 Higher quality: virtual prototypes enable the rapid virtual testing of many 

iterations to study the effect of parameter changes on a design, thus improving 

the quality of the physical prototype when constructed.    

The main objective of our research is to develop a math-based SI engine model for 

control application and real time simulation. The model must be accurate enough to 

capture the combustion characteristics (e.g. combustion temperature) and predict 

emission gases, while being fast enough for real time simulation purposes. The math-

based model is created in the MapleSim environment [1]. The advantages of using the 

MapleSim environment to build the engine model are:  

 The symbolic nature of MapleSim in modeling significantly reduces the 

simulation time, which makes the model suitable for control study and real time 

simulation. 

 The model can be integrated with the rest of the powertrain (e.g. transmission), 

or the complete vehicle, through acausal connections for powertrain simulation. 

SI engines have been modelled in different ways based on the level of the model 

complexity. For instance, the SI engine characteristics can be expressed by a group of 

look-up tables, or simple torque-speed differential equations, or a more detailed model 

with chemical reactions and fluid dynamics. The level of complexity of the model in 

this study is defined such that it predicts in-cylinder thermodynamic properties (e.g. 

pressure, burned and unburned temperature), emission gases, and mechanical torque, 

while having real time simulation performance. 

A quasi-dimensional approach, using a two-zone combustion model, is used in this 

study to model a four-stroke engine. The schematic diagram in Figure 1 depicts the 

main inputs, outputs, and sub-models. The main sub-models which are discussed in this 

paper are the single cylinder model and emission model. The throttle body and manifold 

sub-model is similar to the model developed by Saeedi [2]. The main inputs to the 

cylinder sub-model are the air/fuel mixture, which is delivered from intake manifold, 

spark timing, which is fed to the model as a constant angle (e.g. 30 degrees before top 

dead centre) at each cycle, and the engine rotational speed (rpm). The desired outputs of 

the model are torque delivered to the transmission shaft, and emission gases.   

In the next section, we describe previous work on SI engine modelling, in order to 

establish the novelty of the current work.  
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The details of the sub-models, including two-zone combustion, output torque, and 

emission gases, are discussed in the following sections. 

 
Figure 1: Schematic diagram of SI engine sub-models 

 

2. Background 

The mean-value engine model (MVEM), which is widely used in model-based control 

applications [2], is partially a physics-based SI engine model. However, detailed 

physical phenomena such as the combustion model, including fuel chemical kinetics, 

and the emission model cannot be represented by the MVEM.  

Combustion in SI engines is the complex phenomenon which directly affects the fuel 

consumption, emission gases, and powertrain vibration. The combustion in the SI 

engine happens just before the end of the compression stroke, extends through the 

combustion stroke, and ends after the peak cylinder pressure occurs [3].   

Mathematical models of spark ignition engines, from a thermodynamics point of view, 

can be categorized into single zone and multi-zone models. In the single zone model, 

the fuel composition, temperature, and pressure are assumed to be uniform in the 

cylinder. The multi-zone model is a more realistic model which contains the burned and 

unburned regions [4]. Considering more zones in the combustion chamber increases the 

number of calculations, but the results are more realistic, specifically when evaluating 

the formation of emissions [5], [6], and [7].  
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In multi-zone models (e.g. two zones) the combustion chamber is divided into burned 

and unburned zones. Each zone has different properties in terms of composition, 

temperature, and pressure distribution. Essentially the governing equations are based on 

conservation of mass and energy which are used to calculate the cylinder 

thermodynamic state variables (e.g. cylinder pressure) [4]. The two-zone 

thermodynamic assumptions and mathematical derivations are presented in the next 

section. 

Benson et al. [8] studied a comprehensive simulation model of a four-stroke SI engine 

model. The proposed model simulated a full power cycle and gas dynamic model in the 

exhaust pipe. Moreover, the simulations can predict NOx emissions. In their work, a 

two-zone combustion model is employed to simulate the ignition (expansion) stroke. 

Equations of each stroke (e.g. compression, ignition, and expansion) are derived and 

combustion kinetics is used to model NOx emissions along the exhaust pipe. The 

simulation results show good agreement with experimental results.  

Blumberg et al [9] were among the first researchers that presented a physics-based SI 

engine model. They described the SI engine complex structure as a group of separate 

physically-based sub-models that are phenomenologically important. In other words, the 

sub-models are presented based on fundamental physical formulations (e.g. 

conservation of mass and energy) in a suitable way that can depict the phenomena in the 

proposed sub-model. However, the model is not able to predict full emission gases and 

simulate many cycles scenario.  

Bayraktar [10] and Bayraktar and Durgun [11] developed a quasi-dimensional SI engine 

cycle with a combustion model as a flame propagation process. The model is based on a 

two-zone combustion model, and all four strokes are mathematically formulated. The 

pressure and temperature variations of the proposed math-based model show good 

agreement with the experimental results for different engines (e.g. Figure 2 compares 

the theoretical pressure variation with experiments). Although their math-based SI 

engine model can well predict power, temperature, and pressure in a cylinder, it could 

not predict emissions (no chemical kinetics is included in the model).    
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Figure 2: Pressure variations of the math-based model vs. experimental results [10] 

 

Verhelst and Sheppard [12] presented a critical overview of SI engine combustion 

modeling using a multi-zone approach. The authors mentioned that choosing a multi-

zone, also called quasi-dimensional, or multi-dimensional model is largely dictated by 

the applications of the proposed engine model. For instance, if the goal of the SI engine 

model is to simulate the engine characteristics in a wide range of operation and to 

evaluate the effect of engine parameters on the engine performance with a reasonable 

level of accuracy and fast computational time, then a multi-zone model is 

recommended.       

Math-based two-zone SI engine combustion models have been simulated in 

Matlab/Simulink [13] and Modelica/Dymola [14]. The combustion models, in these 

works, include physical and thermodynamic formulations to simulate the generated 

power, but they do not include an integrated model of combustion chemical kinetics to 

predict emissions.  

In this current paper, we use a similar approach to that of Bayraktar [10] to model the 

two-zone combustion thermodynamics. An emission model based on equilibrium 

concentrations and free Gibbs energy calculations is simulated along with the 

thermodynamics model at each time step. The thermodynamic sub-model and emission 

sub-model are tightly integrated and simulated simultaneously. The whole SI engine 

model is built in the MapleSim software, which has a multi-domain environment, so 

that the engine model can be connected to the rest of the powertrain for model-based 

powertrain or vehicle control.  
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3. Two-zone SI Engine Model 

In a two-zone approach, the combustion chamber is split into “burned” and “unburned” 

zones [4]. The flame propagation (entrained zone) is moving from burned toward 

unburned zone during combustion as shown in Figure 3.   

The advantage of using a physics-based two-zone combustion approach is achieving 

better fidelity, in comparison with zero-dimensional approach, while having fast 

simulation time for many cycles simulation.  

 

Figure 3: Schematic of two-zone combustion chamber 

The main assumptions used to model a two-zone combustion SI engine in this paper are:  

 The intake and exhaust strokes are isentropic processes. 

 The compression and expansion strokes are modelled based on the first 

thermodynamic law as a single zone model.  

 The pressure distribution is uniform inside the cylinder during each stroke. 

 The combustion process is modelled based on the turbulent flame propagation 

theory in addition to the first law of thermodynamics. 

 The flame front shape is assumed to be spherical. However, the flame thickness 

(volume) is assumed small in comparison with burned and unburned zones. 

 During the combustion, each zone has a uniform composition and temperature.  

 The burned/unburned gases are considered as ideal gases. 

The whole cycle simulation is described by Figure 4. The intake stroke starts when the 

piston goes from top-dead-centre (TDC) of the cylinder to the bottom-dead-centre 
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(BDC). Then, the simulation switches to the compression stroke from BDC to some 

angle close to the next TDC.  

The combustion process is started when the spark plug is ignited until the total mass is 

burned. The burned duration (BD), as a fraction of crank angle, is empirically defined 

for the model used in this research by Eq. (1) [15]. In this equation,    ,  ,  , and    

represent compression ratio, engine speed, equivalence ratio, and spark advance angle in 

degrees, respectively. 

    

(             (  
   ⁄ )      (  

   ⁄ )
 

) (             (     ⁄ )  

      (     ⁄ )
 
) (            ( )        ( ) ) (           (   

  ⁄ )  

      (   

  ⁄ )
 

)          (1) 

The expansion stroke starts at the end of the combustion process and finishes when the 

piston reaches the BDC. Finally, the exhaust valve is opened and the piston moves from 

BDC to TDC and the exhaust gases are driven out through the exhaust valve.  

The detailed formulations of thermodynamic equations and flame propagation model 

are given by Bayraktar [10].  

 

Figure 4: Cycle simulation procedure  

The output torque (      ) is calculated based on the in-cylinder pressure (    ) and 

geometrical parameters (Eq. (2)) including in-cylinder instantaneous volume ( ), rod 

length, crank radius, and crank angle ( ) [16]. The schematic diagram, shown in Figure 

5, depicts the equilibrium calculation of output torque from cylinder geometry and in-
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cylinder thermodynamic pressure. The mass of the piston, rod, and crankshaft are 

assumed to be negligible in comparison to the load. 

       (    )( )(
     (   )

      ⁄ )        (2) 

Where: 

          (      
    ⁄ )         

            

 

 

 

Figure 5: Schematic diagram of in-cylinder pressure and torque 

4. Emission Model 

The emission sub-model, which is created along with the two-zone combustion model, 

takes the in-cylinder pressure, burned temperature, and volume as inputs and calculates 

the emission gases (e.g. NO and CO). The emission calculation procedure is shown in 

Figure 6. 
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Figure 6: Emission calculation procedure  

The general formulation of air and fuel reaction is shown in Eq. (3), where   and    

represent the type of hydrocarbon fuel,   is given by Eq. (4), and   is the equivalence 

ratio (the ratio between stoichiometric and actual air-fuel ratio).  

      (         )                                  

                                   (3) 

  
(    )

  ⁄          (4) 

The products of the reaction are eleven species, and the coefficients    represent the 

number of moles of each species during the reaction [17]. 

The eleven emission species are assumed in equilibrium, so four atom balance and 

seven equilibrium reaction equations are derived to calculate the equilibrium species at 

each time step.   

The four atom balance equations for  ,  ,  , and   are listed in the set of equations in 

Eq. (5). 

                   

                                 (5) 
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The seven equilibrium reactions are shown in Eq. (6), where the molar fraction of each 

species, in the equilibrium reactions, is represented by    
  

      
⁄ . 

The      represents the equilibrium constant of the     equilibrium reaction. The 

equilibrium constant is calculated based on the Gibbs free energy and combustion 

temperature (Eq. (7)).    and    are in-cylinder pressure at each time step and ambient 

(reference) pressure respectively, where           .  

                   √
   

 
  

⁄
⁄ √     
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The specific Gibbs energy, a property of each species, varies with the burned 

temperature (  ). Therefore, the specific Gibbs energy values of the eleven species are 

modelled as a group of look-up tables based on physical properties [17].    

       (    
    

⁄ )                                (7) 

 

The equilibrium concentration of each species at each time step is calculated by solving 

four algebraic atom balance and seven nonlinear algebraic equilibrium concentration 

equations. Then, the well-known extended Zeldovich mechanism is employed to 

calculate the kinetic concentration of    (Eq. (8)), and a similar formulation is derived 

in [18] for    (Eq. (9)), where    represents the burned volume of the mixture.  
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Where:  

               (
  

    ⁄ )        

               (      
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5. Symbolic Sensitivity Analysis  

This section presents symbolic sensitivity analysis of a single cylinder SI engine model. 

Sensitivity analysis is the study of the model’s parameters, and their effect on the model 

outputs or performance. Cylinder design parameters such as bore, stroke, and 

compression ratio, play an important role to achieve higher performance (e.g. power) 

and reduce undesirable in-cylinder phenomenon (e.g. knocking).  

The set of DAEs is expressed in Eq. (10), and a dynamic sensitivity equation is derived 

in Eq. (11), where X and   represent state variable and design parameter.   
  is the 

vector representing the sensitivity functions of the a state variable with respect to the     

parameter. The symbolic sensitivity equations are generated in Maple worksheet, and 

then the sensitivity equations are integrated with the two-zone combustion model. The 

whole DAEs are solved at each crank angle with the stiff solver, Rosenbrock, in the 

MapleSim environment. 
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The parameters of the two-zone combustion model are listed in Table 1, and the 

sensitivity functions of the state variables are generated with respect to the bore 

diameter and stroke length. The nominal value of the bore diameter ( ̅) and the stroke 

length ( ̅) are 0.085 m and 0.1 m respectively. By changing the nominal values, the new 

sensitivity functions must be regenerated. In other words, the sensitivity function 

simulation result is only valid for the specific values of the bore diameter and stroke 

length. 

Since the pressure, burned temperature, and unburned temperature are all nonlinear first 

order differential equations, the corresponding sensitivity functions of the new states are 

integrated with the flame propagation sensitivity functions (  
 ) to symbolically 

generate the sensitivity graphs of the DAEs (Eq. (12)). Figure 7 and Figure 8 represent 

the solution of the sensitivity equations of the in-cylinder pressure with respect to the 

bore diameter and stroke length. The peak pressure during the combustion process is 

very sensitive to both the bore diameter and stroke length. The total mass inside the 

combustion chamber is constant during the combustion process. Therefore by increasing 

the combustion chamber volume, the peak pressure drops at the same operating 

conditions (Figure 9).  
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Figure 7: In-cylinder pressure sensitivity with respect to bore diameter  

 
Figure 8: In-cylinder pressure sensitivity with respect to stroke length 

 
Figure 9: In-cylinder pressure variations for different perturbations from the nominal 

values  

A similar approach, to that used to generate turbulent flame speed sensitivity function, 

is employed to derive mechanical torque sensitivity with respect to the design 
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parameters (Eq. (13)) and Figure 10 and Figure 11. The plots in Figure 12 show that the 

torque variation during the combustion process is not as sensitive as the in-cylinder 

pressure. The main reason is that the mechanical torque is proportional to product of the 

in-cylinder pressure and volume at each crank angle. Therefore by increasing either the 

bore diameter or stroke length, the peak pressure drops and the combustion chamber 

volume increases. 

  
   

⁄  (
   

     
)   

  (
   

   
)        (13) 

 

Figure 10: Mechanical torque sensitivity with respect to bore diameter  

 
Figure 11: Mechanical torque sensitivity with respect to stroke length  
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Figure 12: Mechanical torque variations for different perturbations from the nominal 

values 

6. Simulation Results 

The integrated two-zone combustion and emission models are simulated for one full 

cycle (720 degrees of crank angle). The single cylinder parameter values, as well as fuel 

properties, are provided in Table 1.  

 

Table 1: SI engine model parameters and values 

Fuel  

(    ) 

  8,    8 Rod length  0.165 [ ] 

Equivalence ratio 

 ( ) 

1 Bore diameter  0.085 [ ] 

Gas universal constant 

( ) 

8.314 

[  (     )  ] 

Compression ratio  

(  ) 

10 

Ambient pressure 

 (  ) 

1 [   ] Engine speed  3000 

[   ] 

Ambient temperature 

(  ) 

293 [ ] Spark advance 

 (  ) 

-30 [   ] 

Cylinder wall 

temperature (  )  

473 [ ] Total in-cylinder mixture 

mass 

0.0005 

[  ] 

Stroke length 0.1 [ ] Average heat capacity 

ratio ( ) 

1.35 

 

The instantaneous (swept) volume during four-stroke operation is shown in Figure 13. 

The curves are identical, since the swept volume is just function of the engine 

geometries and rotational speed.   
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Figure 13: Instantaneous volume during four-stroke operation 

The simulation is executed in the GT-Power environment with the same parameter 

values and engine speed. The models in the GT-Power software are calibrated and 

validated with experimental results. Therefore, GT-Power can be used as a reliable 

reference for engine validation purposes. The spark ignition engines in GT-Power are 

modelled using a two-zone quasi-dimensional approach, which is similar to the 

modelling method used in this paper. However, GT-Power does not provide the 

system’s physics-based equations. On the other hand, MapleSim generates symbolic 

equation from a physical model and provides suitable tools for equations manipulation 

such as symbolic sensitivity analysis, optimization, and model order reduction.     

Figure 14 represents the in-cylinder pressure a during four-stroke operation in GT-

Power software. The trend of in-cylinder pressure as well as peak pressure in both 

MapleSim and GT-Power models shows a good agreement. However, there are some 

differences due to the empirical parameters that are tuned differently in both models.  
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Figure 14: In-cylinder pressure variation during compression and power stroke 

(MapleSim vs. GT-Power) 

The burned temperature is defined from start of the combustion process to the end of 

exhaust stroke, and the total mixture is fully burned at the end of the combustion 

process (Figure 15). The temperature rise during the combustion, the trend of the curve 

during the power stroke, and the exhaust temperature are fairly compatible to the GT-

Power simulation result. However, there are some errors due to the differences in the 

pressure variation and the heat transfer rate.  

 

Figure 15: Temperature of burned mixture  

The engine torque, which is calculated based on the in-cylinder pressure and volume, is 

shown in Figure 16. The negative torque during compression and exhaust introduces 

negative work to move the piston from BDC to TDC to compress the mixture during the 

compression stroke, or to drive out the exhaust gases during the exhaust stroke. 
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Figure 16: Mechanical/brake torque generated during the four-stroke operation 

The proposed model can be used to simulate many simulation cycles with variable spark 

timing. In other words, the spark timing can be changed at any cycle for control 

purposes. The crank angle ( ( )) is used as a criterion to switch from one cycle to the 

other cycle. Each cycle takes two full rotations of crank, which is equal to 720 degrees. 

The floor function in Eq. (14) is used to define the start of intake stroke at each cycle, 

and the start of other strokes (e.g. compression, combustion, expansion, and exhaust) is 

defined based on the start of the previous stroke. For instance, the simulation starts from 

zero crank angle ( ( )   ) and                ( )   , then the whole cycle evolves 

during 720 degrees. At the end of the first cycle (at  ( )      ), the value of the floor 

function is one, and the value of                 ( ) becomes 720. The whole process 

of four-stroke operation with new inputs (load, engine speed, and air-fuel mixture) is 

repeated for the new cycle simulation. 

               ( )  ⌊
 ( )

   ⁄ ⌋             (14) 

                    ( )                 ( )       

                   ( )                      ( )          ( ) 

                  ( )                     ( )     ( ) 

                ( )                    ( )       

              ( )                  ( )       

 

The emission sub-model generates the concentration of eleven species in equilibrium, as 

shown in Figure 17, as well as the solution of chemical kinetic equations (Eq. (8) and 

(9)) for    and    as shown in Figure 18 and Figure 19. The trends of the emission 
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gases are similar to the GT-Power simulation results, but the values are not identical. 

The differences in the in-cylinder pressure and temperature affect the emission 

variation.  

The    equilibrium concentration has the highest molar fraction value at stoichiometric 

condition, which is in agreement with the molar concentration of the fresh air in the 

reactants (Eq. (3)). The     and     are the next major species in the equilibrium 

products. The rest of the products have a minor molar fraction contribution in the 

product as shown in the Figure 17. The emission calculation can be repeated at each 

cycle with different inputs such as spark timing and air-fuel ratio for many simulation 

cycles.  

 

Figure 17: Molar fraction of equilibrium species concentration  

 
Figure 18: Kinetic NO emission 
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Figure 19: Kinetic CO emission 

The simulation time for four-stroke thermodynamic equations with two-zone 

combustion is faster than real time. The simulations are executed on a 64-bit Windows 7 

computer with Intel (R) Core (TM) Duo 3.33 GHz CPU. The simulation time for one 

cycle at 3000 rpm is about 0.035 seconds, which is faster than real time (0.04 seconds).  

7. Conclusions 

In this paper, a math-based spark ignition engine is developed as a plant model for 

control applications. For this purpose, the quasi-dimensional spark ignition engine 

modeling approach is accurate enough to generate in-cylinder properties (e.g. pressure, 

temperature) and consequently emission gases, while the simulation time is fast enough 

for real time simulation and powertrain control applications.     

The main inputs to the proposed model at each cycle simulation are: premixed air/fuel 

mass, spark advance angle, and engine rotational speed (rpm). The intake, compression, 

power (combustion and expansion), and exhaust strokes are simulated based on the 

crank angle variations. The in-cylinder outputs (e.g. pressure, burned temperature, and 

burned volume) are generated for each cycle, and integrated with the emission sub-

model to calculate equilibrium and kinetic concentrations. A simple formulation is used 

to calculate mechanical torque as a function of in-cylinder pressure, volume, and crank 

angle.  

The proposed model is a suitable plant for SI engine control applications such as 

emission control. Also, by taking advantages of the symbolic nature of MapleSim in 
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modeling, a symbolic sensitivity analysis can be easily evaluated to study the effect of 

the parameters on SI engine performance.  
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