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The aim of this work is to develop a comprehensive yet practical driver model to be

used in studying driver-vehicle interactions. Drivers interact with their vehicle and the road

through the steering wheel. This interaction forms a closed-loop coupled human-machine

system, which influences the driver’s steering feel and control performance. A hierarchical

approach is proposed here to capture the complexity of the driver’s neuromuscular dynamics

and the central nervous system in the coordination of the driver’s upper extremity activities,

especially in the presence of external disturbance. The proposed motor control framework

has three layers: the first (or the path planning) plans a desired vehicle trajectory and the

required steering angles to perform the desired trajectory; the second (or the musculoskeletal

controller) actuates the musculoskeletal arm to rotate the steering wheel accordingly; and

the final layer ensures the precision control and disturbance rejection of the motor control

units. The physics-based driver model presented here can also provide insights into vehicle

control in relaxed and tensed driving conditions, which are simulated by adjusting the driver

model parameters such as cognition delay and muscle co-contraction dynamics.

Keywords: musculoskeletal arm model, human driver model, disturbance rejection, stretch

reflex, intrinsic muscle properties

1. Introduction

Realistic driver models and computer simulations can play an important role in design-

ing and improving driver-assist technologies by reducing the cost and time associated

with vehicle development. For example, a high-fidelity driver model, which considers

the physiological limitations and attributes of a human, can reasonably approximate a
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real driver’s steering behavior; as such, it can be used to study the performance of new

driver-assist technologies [1].

Driver models can be categorized into vehicle-based and human-based [2, 3]. A vehicle-

based driver model will calculate the steering angle/torque required to perform a given

maneuver [4–7], but it does not consider how this torque is produced, or if the produced

torque is physiologically possible. In contrast, a human-based (physiological) driver model

is focused on the understanding of the driver’s limitation and preferences. Together, the

driver and the vehicle form a coupled human-machine system, which should be treated

as a whole in the design process of driver-assist technologies.

Studies of coupled human-machine systems date back to the early work on aircraft

pilots done by Weir and McRuer [8] in 1970. Those studies helped to reveal various

properties and characteristics of humans as adaptive controllers of dynamic systems.

Since then, more specific studies considered the automobile driver’s neuromuscular sys-

tem to understand the behavior of human vehicle drivers [9–13]. Physical limitations and

attributes of the human driver, such as the required processing and transition time for

sensory information to reach the brain, the cognitive requirement to anticipate or per-

ceive the information, and muscle contraction dynamics, help to characterize the human

control behavior. For example, Pick and Cole, in a series of papers [13–16], reported the

passive dynamics of driver arms. They showed that the angle and torque measurements

of a steering wheel held by a driver can be represented by a lumped system at the steering

wheel, and can easily be fitted to a second-order transfer function of inertia, damping,

and stiffness. Non-linear driver models with three-dimensional (3D) musculoskeletal arm

models were developed in [9, 17, 18] to study steering tasks for a wide range of steering

motions. However, these studies did not include the effects of muscle dynamics, muscle

co-contraction, and stretch reflex. The aim of our research is to include these elements

in the motor control framework of the human driver model to study steering tasks in

the presence of external disturbances. Motor control, especially the disturbance rejec-

tion mechanism of the human musculoskeletal system, is highly non-linear; therefore, a

fairly sophisticated system is required to capture its dynamics. In this research, a novel

hierarchical framework is proposed to model the complexities of human motor control of

steering.

The Central Nervous System (CNS) is responsible for processing all information from

and to the peripheral nervous system. It can modulate the motor commands based on
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the available sensory information, and its internal knowledge of the body and the en-

vironment to coordinate the voluntary movements of the body. The CNS can maintain

the limb position in space despite external perturbations such as external loads, e.g., the

act of stabilizing the steering wheel when tires hit a curb/road irregularity or when the

wind gusts. These commands lead to voluntary and involuntary driver actions, which

respectively result in long and short latency reflexes to maintain a desired position.

It is a well-established fact [19, 20] that the CNS uses two mechanisms to stabilize a

limb in the presence of external disturbances. The first one is based on intrinsic properties

(mechanical resistance) of the individual muscles. The CNS can increase the resistance

of the joint against the external disturbances by co-contracting all the muscles wrapping

around a joint. The Hill-type muscle model shown in [21, 22] can be used to simulate the

total mechanical resistance of the limb. However, different combinations of the muscle

elements have been used in the literature to simplify the mathematical representation of

muscle dynamics to study joint stability. A Hill-type model can be variously configured;

for instance, a contractile element in series with a tendon [23, 24] or a contractile element

in parallel with connective tissues [25] have been used to simulate the muscle dynamics.

It has been demonstrated in [26] that stabilizing a limb requires at least a pair of agonist

and antagonistic muscles. The stabilization is achieved by increasing the mechanical

resistance of the joint by raising the amount of antagonistic co-contraction [9, 20, 26].

The second mechanism is based on the proprioceptive feedback. Proprioceptors con-

sist of spindles and Golgi tendon organs that sense the relative movements and orien-

tation of limbs. For example, the primary (Ia) afferent fibers of muscle spindles sense

the changes in the muscle length and contraction velocity. These feedbacks program the

γ-motor neurons with the expectation of how the muscle should shorten during the move-

ment. Short-loop pathway reflexes, such as mono-synaptic actions of the Ia afferent on

α-motor neurons, allow the nervous system to quickly correct errors in the muscle length

(e.g., the knee-jerk response). This mechanism offers a fast and energy-efficient solution

to quickly reject a disturbance.

α-motor neurons innervate muscle fibers, and therefore are directly responsible for

muscle contraction, while γ-motor neurons indirectly contract muscle fibers by adjusting

the sensitivity of the muscle spindles to control the firing rate of α-motor neurons. This

phenomenon is called the co-activation of α and γ motor neurons. The co-activation of

α and γ signals in driver models is studied in [16, 27, 28]. In these articles, however,
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the α and γ signals are represented as lumped variables, working at the level of steering

wheel angle and torque, and not at the muscle level. Thus, their biological significance

(relationship between muscle length and activation) is not properly represented.

To the best of the authors’ knowledge, muscle-level stretch reflex and voluntary mus-

culoskeletal response to disturbance have not been used to study a driver’s behavior in

the presence of an external disturbance. The muscle co-contraction ratio is included in

the driver model so that the effects of driving with relaxed and tensed muscles can be

studied.

This paper is organized as follows. In the second section, the 3D musculoskeletal driver

model is presented. The hierarchical motor control framework is described in detail in

section 3. Section 4 presents the numerical results and discuses the steering task. Finally,

the conclusions and plans for future research directions are presented in section 5.

2. Integrated Vehicle–Driver Model Description

Before getting into the details of the driver and vehicle models, we would like to explain

the difference between two types of models that we have used in our simulations: the high-

fidelity models and the simplified models. The high-fidelity ones (sections 2.1 and 2.2)

try to faithfully replicate the real system, and are used to obtain the simulation outputs.

The simplified models, on the other hand, do not necessarily contain all the details

of the system, and are only used to help to predict the real system. These simplified

models are confined within the motor control systems (sections 3.1 and 3.2), and are

solved multiple times at each time step. Therefore, the simplicity of the models is vital

in keeping the computational burden manageable. The validity of both types of models

is equally important, as the errors in either will affect the reliability of the results.

Additionally, due to the interaction of the models, error in the any of models will hinder

the interpretation of the results.

2.1. 3D Musculoskeletal Arm Model

Simple neuromuscular driver models have been reported in the literature [13, 29], but

their range of motion is essentially limited due to their linear nature. Therefore, to

reliably study steering tasks, a model with a larger range of operations needs to be

employed. In this article, a modified version of a three-dimensional musculoskeletal arm
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Figure 1. (a) Schematic view of the 3D arm model. (b) Coordinate systems for torso (T), humerus (H), and

forearm (F) (ulna and radius).

model developed earlier by the authors [9, 17] is used.

Figure 1 shows the schematic view of the 3D arm model. Its torso (scapula, assumed

fixed relative to the vehicle) is attached to the upper arm (humerus) via a spherical joint.

The forearm (ulna and radius) is, in turn, connected to the upper arm via a revolute joint

to allow for flexion/extension of the elbow. Finally, a universal joint is used to connect

the forearm to the hand, allowing the flexion/extension and abduction/adduction of the

wrist joint. It is also assumed that the hand firmly grips the steering wheel; thus, the

hand/steering wheel connection is modeled as a fixed (weld) joint.

Since the deltoid muscle comprises approximately one-fifth of shoulder muscles [30, 31],

the three main portions (anterior, middle, and posterior) of deltoid muscle are modeled

separately here to improve the fidelity of the model. Therefore, unlike the upper arm

model shown in [17] in which thirteen muscles were used, the current model employs

fifteen muscles to articulate the upper limb. In the new model, eight muscles cross the

shoulder, and the remaining seven actuate the elbow. Similar to [17], the muscles associ-

ated with forearm supination/pronation (Supinator, Pronator Teres and Subscapularis)

and wrist muscles are not included in the current model in order to reduce the compu-

tational burden of the muscle redundancy problem.

In this article, a Hill-type model is used to simulate the muscle contraction dynamics

[21, 22]. Since the Hill muscle model is based on empirical relations, it is computationally

less demanding than other microscopic approaches [32] and is computationally manage-

able for a system with several muscles. Furthermore, the Hill muscle model parameters

can be easily adjusted to represent age-related and gender-related changes in muscle

mechanical properties. The Hill muscle model consists of a Contractile Element (CE)

5



March 24, 2017 Vehicle System Dynamics VSDdriver

(a) (b)

Figure 2. The 3D arm and the vehicle models in MapleSim (a) A view of the vehicle model (b) The muscle-
actuated 3D arm model

and a Parallel Elastic element (PE) in series with a Series Elastic element (SE). In this

research, the tendon dynamics (SE) are neglected, as the motion is relatively slow and

the amount of energy transfer in tendons is small. However, stiffness produced by the

SE element of muscles wrapping the shoulder and elbow joints, as a result of muscle

co-contraction, is approximated by stiffness and viscoelastic damping at the joints.

Details of the muscle model are given in Appendix B. This musculoskeletal model of

a driver’s arm is validated using surface electromyography (EMG) of a human driver’s

right arm performing two steering maneuvers in a driving simulator [33–35]. The muscle

path parameters from [17] are slightly re-tuned to provide better correlation between the

experiments and model predictions. The muscle path parameters used in this article are

summarized in Table C1 of Appendix C. The plausible range of steering motion for the

driver model with both hands on the steering wheel is -90◦ to +90◦; beyond this range,

the kinematic constraints cannot be satisfied anymore and the arm mechanism locks up.

2.2. Vehicle Dynamics

To reliably simulate the driver-vehicle interaction, the vehicle dynamics has to be faith-

fully modeled as well. In this research, a vehicle model with a front MacPherson suspen-

sion and a rear multilink/semi-trailing arm suspension typical in SUVs (Sport Utility
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Figure 3. The motor control framework to study steering task

Vehicle) is developed in MapleSim as shown in Fig 2(a). The symbolic modeling engine

of MapleSim is able to generate optimized C code describing the system’s equations of

motion. These symbolically generated equations can reduce the simulation time signifi-

cantly and allow extensive manipulation of the system’s equations.

The developed model consists of 50 generalized coordinates coupled by 34 algebraic

equations. This model in total has 16 degrees of freedom (DOF). Six DOF are associated

with the rigid body motion, four are related to the wheels’ spin, four are related to the

suspensions’ vertical motion and two are associated with the steering motion. Since the

vehicle model development is not the focus of this paper, the vehicle model details are

not included in this article, and more information about the high-fidelity vehicle model

can be found in [35–37].

3. Motor control framework of driver

A feature-rich motor control framework for the musculoskeletal driver model considering

the sensory and actuator dynamics of human limb has been developed here to study

the driver/vehicle interaction. In humans, the CNS comprises information processing
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in the brain, the cerebellum and the neural circuits of spinal cord, to modulate motor

commands and control the voluntary and the involuntary actions of the driver.

To reliably study motor action tasks, we need to establish a predictive framework with

sufficient bio-fidelity. With the motor control framework presented in this article, we can

define an environment (which may include disturbances and uncertain dynamics) and a

desired steering action, run the simulation, and observe the consequences. Such a model

can help to study steering tasks and design new driver-assist technologies.

As shown in Fig. 3, the proposed motor control framework consists of three hierarchies:

the path planning, the musculoskeletal control, and finally the stabilizer. The path plan-

ning controller (level one of control hierarchy) works in the low-dimensional end-effector

space (in this context the steering wheel angle); it defines a desired steering wheel tra-

jectory, θsw,des, based on its internal representation of the system. The musculoskeletal

controller (level two in the hierarchy), works in the high-dimensional muscle space, and

tries to predict the muscle activation, apredict, required to follow the high-level controller’s

set points. In the stabilizer part, the stretch reflex (the lowest level in the hierarchy) also

works in high-dimensional muscle space, and the intrinsic stiffness module works in the

joint space. The lowest level of hierarchy is responsible for compensating for inaccura-

cies and disturbances in the system. The path-following controller and musculoskeletal

controller shown in [17] are modified and used here in the first and second layers of the

motor control framework, respectively.

3.1. Level one – path planning controller

The first layer of the framework, the path planning, estimates the required steering wheel

angle to perform a specific task, and is represented by a model predictive controller

(MPC) [17, 38].

As argued by Kim and Cole [39], the cerebellum may contain representations of the

nonlinear body/vehicle dynamics, in the form of a set of linear models (internal models).

The versatility of this set shows the driver steering skill, which results in better perfor-

mance of the driver in the near-limit conditions. In this article, a single linear model,

consists of a linear bicycle model with a linear tire model as shown in Appendix A, is

used to represent the driver’s steering skill. Since all the predictions in the path planning

are based on this internal model, this model should be able to replicate dynamics of

the yawing and lateral motion of the vehicle. Figure 4(b) shows the comparison of the
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Figure 4. System response for the high fidelity vehicle and the bicycle models (a) The steering wheel angle as the
input to the systems (b) The lateral position as the output of the systems

lateral response to a sweep sinusoidal steering wheel angle (shown in Fig. 4(a)) for the

high-fidelity and this internal model at a constant speed of 10 m/s.

The MPC path planning controller use the internal model to predict the best steering

wheel trajectory by solving an optimization problem. In this article, the Model Predictive

Control toolbox [40] of Matlab is used to implement the path planning controller. In this

implementation of MPC, the time is discretized into 10 ms intervals, in which the control

inputs (the steering wheel angle) are assumed to be constant. MPC finds the optimal

sequence of control input (with the control horizon length) over the prediction horizon

length resulting in the optimal tracking of the desired lateral displacement and yaw rate

of the vehicle. Then, the MPC selects the initial element of the sequence and applies it

to the high-fidelity model.

To study the effect of prediction and control horizon lengths on the path planning

performance of the driver model, two simulation studies using the internal model are

performed. In these simulations, a step signal with amplitude of 3 m is set as the desired

lateral trajectory of the vehicle, as shown in Fig. 6. Since the desired trajectory is a sharp

step signal, the path planning controller should begin steering earlier than when the step

arises. This behavior of MPC clearly mimics the predictive path planning ability of human

drivers. In the first set of simulations, the prediction and control horizons of the MPC

controller are kept identical, and raised from looking 1 s (np = nc = 100 × 0.01 = 1 s)

ahead of the vehicle to 3 s (np = nc = 300 × 0.01 = 3 s), consecutively. Figure 5 shows

the steering wheel angle calculated by the MPC to perform the lane change maneuver.
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Figure 5. The effect of prediction and control horizon of MPC path planning controller on the steering wheel

angle variation
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Figure 6. The effect of control and prediction horizon lengths of MPC path planning controller on the vehicle

lateral displacement and yaw rate

It can be seen that with the prediction horizon of 1 s, the driver model cannot manage

to perform the lane change in the specified time. By increasing the horizons, the perfect

lane change can be achieved. As shown in Fig. 6, with prediction horizons over the 2.5 s,

the vehicle actual path does not change significantly. Therefore, 2.5 s is chosen as the

prediction horizon length in the remaining of this article.

In the second set of simulations, to study the influence of control horizon on the per-
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Figure 7. The effect of control horizon of MPC path planning controller on the steering wheel angle variation
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Figure 8. The effect of control horizon length of MPC path planning controller on the vehicle lateral displacement

and yaw rate

formance of controller, the prediction horizon kept constant and equal to 2.5 s while the

controller horizon increases gradually. As shown in Fig. 8, with a single interval control

horizon (nc = 1× 0.01 = 0.01 s), the performance of controller is degraded; nonetheless,

the closed-loop system is stable. By increasing the control horizon, the performance of

controller converges to the case with full length control horizon; however, the increase

more than 0.25 s only slightly improves the performance of the controller, while notably

increases the computational expense. Figure 7 shows the required steering wheel angle to
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perform the lane change maneuver corresponding to the varied prediction control length.

Therefore, in our path planning MPC, the prediction horizon length is 250 intervals

(250× 0.01 = 2.5 s) and the control horizon length is 25 intervals (25× 0.01 = 0.25 s).

3.2. Level two – force distribution controller and disturbance observer

The second layer of the motor control framework, the musculoskeletal control, includes

the Force Distribution (FD) controller and the disturbance observer. This layer represents

the process of information collection from the sensory organs and the control of conscious

voluntary actions of the upper limb.

In this article, the FD controller assigns the required muscle activations to perform

a specific arm motion. The development of the FD controller has been inspired from a

well-known motor control hypothesis [41, 42]: it postulates that the CNS minimizes a

physiological cost function while performing a motion. However, the configuration and

states of the body should be known to the CNS/FD controller to find the optimal muscle

activations. Therefore, an observer is required to estimate the state variables during the

motion. In the following sections, the FD controller and the disturbance observer are

presented.

3.2.1. Force distribution controller

Similar to the path planning controller, the system behavior (steering wheel rotation as

a result of the muscle activity) is predicted by an internal representation of the system,

called the vehicle-driver internal model. Here, the resistive steering torque at the steering

wheel in conjunction with the 3D model of arm (section 2.1) holding the steering wheel

is selected as the vehicle-driver internal model.

The resistive torque is approximated with a passive torque (see Eq. (1)) at the steer-

ing column to accelerate the simulations. Figure 9(b) demonstrates the comparison of

prediction of the passive torque and the high-fidelity model of vehicle steered with right

hand only (in terms of the resistive torque). In this figure, the resistive steering torque is

shown when the steering wheel angle follows a sinusoidal trajectory at speed of 10 m/s

(see Fig. 9(a)). The passive resistive torque at the steering wheel, Tsw, is given by

Tsw = Kswθsw + Cswθ̇sw (1)
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Figure 9. Simplified model resistive steering torque for a sinusoidal steering angle trajectory, compared against

the high fidelity model: (a) Steering wheel angle (b) resistive steering torque

where the stiffness, Ksw, and the damping coefficients, Csw, are found so that the internal

model response matches the real vehicle dynamics as closely as possible within the linear

response range. Ksw and Csw are functions of vehicle driving condition such as vehicle

speed, road coefficient of friction, etc.

The output of the path planning controller is the low-dimensional value for the steering

wheel angle θsw,des. To perform the steering task, the desired steering wheel angle must

be transformed into the high-dimensional muscle activation space. This transformation

can be performed by an optimization routine that minimizes the steering wheel angle

tracking error. The major challenge associated with such a transformation is the inher-

ent redundancy of the problem (there are more actuators than required), which results

in infinite combinations of muscle activations that can track the desired steering wheel

angle. However, the redundancy issue can be addressed by including an additional crite-

rion when solving for the muscle activations apredict. Such criteria are usually chosen to

minimize a form of the physiological cost (such as muscle force or muscle fatigue) while

maintaining the desired response. In this research, the muscle fatigue representation

shown in Eq. (2) is used as the physiological cost.

As suggested in [43, 44], drivers tend to co-contract their muscles when their knowledge

of the steering torque feedback behavior is inaccurate. In addition, the co-contraction of

muscles wrapping a joint increases the stiffness and viscoelasticity of that joint, and

therefore improves the joint stabilization and control accuracy [45]. In this research, to

simulate steering with low and high muscle co-contractions, a muscle co-contraction ratio
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(αi) has been added to the physiological cost function [46], as shown in Eq. (2).

G(a) =

n∑
i=1

(ai − αi)p (2)

where the symbols ai and αi represent the individual muscle activations, and the muscle

co-contraction ratios, respectively. The exponent p is chosen to be 2 in the simulations,

and the summation accounts for all muscles (n = 15).

Additionally, since our motor control framework is a forward dynamic simulation (i.e.

the applied forces generate the motion), tracking the desired motion is challenging. To

ensure that the applied forces result in the desired motion, the tracking error is also

included as a separate term into the FD controller cost function.

apredicti [k] = arg min
{
w1 (θsw[k]− θsw,des[k])2 + w2 G(a[k])

}
(3)

where θsw[k] is the resultant steering wheel at time step k, which is compared against

the desired value (θsw,des[k], defined by the path planning controller), and w1 and w2 are

the weighting factors in the cost function.

The minimization can be performed at each time step (Forward Static Optimization

[17]) or over the entire time span (Dynamic Optimization [47, 48]). In this research, the

former approach is selected. At each time step, the force distribution controller solves a

constrained optimization problem, using the sequential quadratic programming (SQP)

optimization routine, to minimize both the physiological effort and the tracking error

(Eq. (3)), while keeping the activations in the range ai ∈ [0, 1].

Figure 10(b) shows the performance of the second layer of motor control framework

in performing a sinusoidal steering maneuver. In this simulation, the driver holds the

steering wheel with two hands at the 3 and 9 o’clock positions, as shown in Fig. 10(a).

Figure 11 illustrates the right and left shoulder muscle activations to perform the steering

task. As shown in Figs. 11(a) and 11(b), the shoulder muscles can be classified into

two groups: those providing counterclockwise steering torque (group I), and muscles

providing a clockwise steering torque (group II). Group I consists of the long head of

triceps, latissimus dorsi and posterior portion of deltoid, and group II consists of anterior
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Figure 10. (a) Schematic view of the driver model in MapleSim with two hands on the steering wheel, (b) The
sinusoidal steering wheel angle maneuver
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Figure 11. Sinusoidal steering wheel task (a) Right arm shoulder muscle forces, (b) Left arm shoulder muscle

forces

and middle portions of deltoid, pectoralis major and coracobrachialis. When the driver

turns the steering wheel clockwise, the group I muscles of the right arm and the group II

muscles of the left arm are activated, and in the counterclockwise rotation, the opposite

muscles of each arm are involved.

3.2.2. Disturbance observer

The FD controller needs the steering and body states to predict the optimal muscle acti-

vations. In this research, a disturbance observer is used to estimate the arm and steering
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state variables as well as the external disturbance torque at the steering wheel. From

the biological point of view, the disturbance observer is used to replace the kinaesthetic

sensory system and the predictor/corrector process of the CNS internal model structure

to estimate the limb position.

If there is no disturbance in the system, the estimated states are similar to the actual

states of the system, since they have started from the same initial condition and have

similar dynamics. In this situation, the identified disturbance torque accounts for the

small differences between the driver-vehicle internal model (passive torque) and the actual

resistive steering torque. However, when the system states are altered by an external

disturbance, there is an error in the estimated states. To correct this error, a feedback

loop on the steering wheel position is added to the observer to identify the disturbance

at the steering wheel and predict the altered states, as shown in Fig. 12(a).

The feedback estimator is a proportional-integral controller with a time delay. The

time delay is associated with vestibulo-ocular and signal processing of the CNS, which

results a latency in the the disturbance observer/force distribution performance. The

transfer function of the feedback loop used to identify the disturbance torque is,

He(S) =
T̂ disturbance(S)

∆θsw(S)
=

(
Ke
P +

Ke
I

S

)
e−τ

e
dS (4)

where T̂ disturbance and ∆θsw are the estimated disturbance torque and the steering wheel

angle error, and Ke
P and Ke

I are the proportional and integral coefficients, respectively

and τ ed is the time delay associated with the biological signal processing.

Figure 12(b) shows the performance of the disturbance observer in identifying a distur-

bance torque at the steering wheel. In this simulation, the car is driving in a straight line

when a sudden unknown disturbance is applied to the car, which results in a pulse shape

steering torque at the steering wheel. The observer starts to identify the disturbance

after 300 ms, reaches the actual disturbance after one second, and then returns to zero

again.

3.3. Level three – stretch reflex/intrinsic stiffness

The third layer of the motor control framework, the stabilizer, stabilizes the limb and

reduces the error introduced by external disturbances. This layer includes the stretch

reflex and the intrinsic stiffness modulation mechanisms. The stretch reflex uses the
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Figure 12. Disturbance observer mechanism and performance (a) The mathematical realization of the disturbance
observer in the motor control framework (b) The disturbance torque at the steering wheel estimated by the

disturbance observer

muscle proprioceptive feedback of the muscle spindles to regulate the muscle length,

and the intrinsic stiffness modulates the visco-elastic properties of the muscles by co-

contracting muscles wrapping a joint to stand against external disturbances.

The involuntary response due to stretch reflex occurs more quickly than the voluntary

actions. In spite of the difference in their nature and response time, both the involuntary

stretch reflex and the voluntary co-contraction contribute to movement stabilization.

3.3.1. Stretch reflex

In human anatomy, the γ-motoneuron activity and the stretch reflex are thought to be

important mechanisms in improving motion accuracy and attenuating unwanted mo-

tions [49, 50]. During a voluntary action, the nervous system has expected settings for

muscle lengths; such expected lengths are set by adjusting the muscle spindle sensitivity,

which in turn is done by modulating the γ-motoneuron activities. If due to a change in

environment, the muscle length diverges from the expected value (i.e. over-stretched),

then the Ia afferent activity will increase. Because of the excitatory synapse between the

Ia afferent and α-motoneurons, such increase in Ia activity will boost the α-motor neuron

activity which results in more muscle force that resists the muscle stretch. The stretch

reflex can therefore provide disturbance rejection properties. In this research, the short-

loop monosynaptic spinal stretch reflex is considered as the most effective mechanism

for disturbance rejection and the transcortical (long-loop) stretch reflex is neglected due
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Figure 13. Stretch reflex mechanism in individual muscles (a) The schematic of the stretch reflex loop in humans

(b) The mathematical realization of the stretch reflex in the arm model

to its complexity. Figure 13 presents a schematic of the stretch reflex mechanism in a

human, and its block diagram representation in our model.

The accuracy of the stretch reflex mechanism depends on the muscle spindle model

accuracy. The spindle model can either include highly detailed models of nuclear bag, bag

fiber and chain fiber and afferent firing models [51–53], or a reduced-order and simplified

model of spindle [54]. In this research, a reduced order model is used to simulate the

response of the muscle spindles to a change in the muscle length. In this model, the

muscle spindle response is considered as a nonlinear summation of the muscle length

and muscle contraction velocity with a short time delay [55], as shown in the following

transfer function:

Hsr(S) =
amuscle(S)

∆Lmuscle(S)
= (Ksr

P +Ksr
D S) e−τ

sr
d S (5)

where ∆Lmuscle and amuscle are individual muscle length error and activation, and Ksr
P ,

Ksr
D and τ srd are the proportional and derivative coefficients and the delay associated

with short-loop stretch reflex mechanism, respectively.

The expected muscle length is found from the response of the internal model to the

predicted optimal muscle activations (within the FD controller, see Figure 3). For each

muscle, the error between the expected length and the actual length is calculated, and

then multiplied by Hsr to find the amount of corrective activation. It is then added to

the original activation command to drive the muscle (see Figure 13(b)).
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Figure 14. Disturbance rejection properties of the stretch reflex (a) Actual and desired steering wheel angle (b)
The middle part of deltoid muscle force. The three graphs are the force distribution controller prediction, the

stretch reflex addition and the total muscle force.

Figure 14 shows the disturbance rejection capabilities of the driver’s reflex loop while

steering with right hand only. Figure 14(a) shows that the driver tries to keep the steer-

ing wheel stationary, when the disturbance torque as described in section 3.2.2 (see

Figure 12(b)) is suddenly applied to the steering wheel. Figure 14(b) shows the middle

portion of deltoid muscle response to the disturbance to stabilize the steering wheel. It

can be seen that the stretch reflex responds quickly when the disturbance occurs but it

takes more time for voluntary contribution of the CNS to notice, identify, and resist the

disturbance.

3.3.2. Intrinsic Stiffness

Joint stiffness (impedance) modulation is another strategy employed by the CNS to

resist external disturbances. This strategy works against all sorts of perturbations, but

it is highly energy consuming. This strategy is voluntary and is a result of the physical

structure and properties of muscle during contraction.

In this article, the equilibrium-point hypothesis [56] has been used to regulate the

intrinsic properties of joints. Feldman proposed that the net passive moment at the

joint is a function of joint angle and the equilibrium point, and the CNS manipulates the

equilibrium point by adjusting the antagonistic co-contraction [56]. Here, the equilibrium

point or expected arm kinematics is found from the response of internal model to the

muscle activations as shown in Fig. 3.
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Figure 15. (a) Sketch of the joint stiffness mechanism (b) The passive joint moment produced by intrinsic prop-
erties of the muscles (reference frame as shown in Figure 2.1).

Since in the implementation, the SE element of Hill-type muscle model is not included, a

moment is added to the joints to represent the intrinsic properties of the muscles wrapping

the joint. This moment is the function of the deviation of the actual 3D direction of

shoulder/elbow from its expected value and the muscle co-contraction ratio as illustrated

in Eq. (6),

T̄ ISj = α (KIS
j θj + CISj θ̇j) n̄ (6)

where α is the muscle co-contraction ratio and θj and θ̇j are angle and angular veloc-

ity difference between the expected and actual shoulder/elbow directions. The passive

moment is in the direction n̄ which is the unit vector normal to the error plane, and

is constructed using the cross product of the actual and expected direction vectors as

shown in Fig. 15(a).

Figure 15(b) shows the passive joint moments produced by intrinsic properties of mus-

cle when the muscle co-contraction ratio is assumed to be 30%, in the scenario described

in 3.2.2.

4. Simulation Results and Discussion

All the simulations are performed in the Matlab/Simulink environment. The models are

exported to Matlab as an optimized C-code using the Maple CodeGeneration toolbox,
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Parameters Description Value Unit

Ksw, Csw identified steering stiffness and damping coeffi-
cients of the internal model

7.5, 0.9 [N/rad], [N/rad s]

α muscle co-contraction ratio (relaxed, tensed) 0%, 30% [-]

Ke
P , Ke

I proportional and integral coefficients of distur-
bance observer

25, 120 [rad]

τed disturbance observer time delay (relaxed,
tensed)

∞, 300 [ms]

Ksr
P , Ksr

D proportional and integral coefficients of stretch
reflex

9, 1 [mm], [mm/s]

τsrd stretch reflex time delay 25 [ms]

KIS
sh , CIS

sh intrinsic stiffness and damping coefficients of
shoulder

12, 8 [rad], [rad/s]

KIS
e , CIS

e intrinsic stiffness and damping coefficients of el-
bow

50, 10 [rad], [rad/s]

Table 1. List of parameters used in the simulations

and the motor control framework is constructed in the Simulink environment. The pa-

rameters used in the simulations are summarized in Table 1. To secure the interpretation

of results, our neuromusculoskeletal driver model has been verified against the experimen-

tally validated neuromuscular driver model from [43]. In this comparison, the behavior

of our driver model with relaxed and co-contracted muscles has been compared to the

neuromuscular driver model in the presence of an external disturbance. This comparison

showed a good correlation between the neuromuscular driver model and our driver model

in terms of predicting the steering wheel angle [35]).

The simulation results for a step-like lane change maneuver steered with the right hand

only at the speed of 10 m/s are presented in Figures 16 and 17. Three simulations have

been performed to show the full extent of the physics-based driver model capabilities. The

first simulation is performed in the normal driving condition (no disturbance). The other

two simulations correspond to driving with relaxed and tensed muscle conditions, when

a two second long pulse-shaped disturbance occurs at the steering wheel. The torque

disturbance at the steering wheel can be considered to be the result of a pothole or a

strong cross wind.

In the relaxed condition, the voluntary contribution of the CNS (the FD controller)

in disturbance rejection is neglected; in other words, it takes longer for the observer

to estimate the altered states than the duration of disturbance itself. Additionally, the

muscle co-contraction ratio is assumed to be zero; therefore, there is no intrinsic muscle

stiffness properties in the relaxed driving condition. In the tensed driving condition,

the driver actively tries to identify and reject the disturbance. In this case, the latency
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Figure 16. Simulation results of the lane changing maneuver (a) Desired and actual lateral displacement with
and without disturbance (b) Actual and estimated disturbance torque applied to the steering wheel (c) Desired

and actual steering wheel angles, with and without disturbance. PPC is the output of path planning controller.

associated with the disturbance observer and the muscle co-contraction ratio are assumed

to be 300 ms and 30%, respectively.

Figures 16 and 17 show the effect of the external disturbance on all layers of the motor

control framework. Figure 16(a) shows the comparison between the lateral displacement

of the vehicle in the presence and absence of the disturbance. It can be seen that, for all

three conditions, the driver starts to steer 2.5 seconds before the desired trajectory, which

is consistent with predictive ability of the path planning controller; the responses also

settle down at about t=9 s. However, the deviation from the desired path (overshoot)

of the perturbed vehicle is different across the three simulations. In the relaxed driving
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Figure 17. (a) Total shoulder muscle forces during the maneuver without disturbance (only active muscles are
shown) (b) Total muscle forces during the maneuver with the presence of disturbance in the relaxed driving

condition (c) Total muscle forces during the maneuver with the presence of disturbance in the tensed driving
condition. Note the difference in vertical scale.
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condition, the overshoot is more than the tensed condition and unperturbed vehicle. This

difference is a result of the difference in the actual steering wheel angles in Figure 16(c).

As a result of the disturbance, the reflex addition to the muscle forces is substantial.

However, despite the stretch reflex corrections, the arm cannot follow the desired steering

wheel trajectory. This deviation in the steering wheel angle, in turn, results in a deviation

in the vehicle’s path. The path planning controller then corrects the path by providing a

new desired steering wheel angle, which finally results in different muscle activations that

are predicted by the force distribution controller compared to the case with no external

disturbance.

In addition to the disturbance itself, Figure 16(b) also shows the performance of the

disturbance observer for the tensed driving condition. It can be seen that the observer

does not start to identify the disturbance at the steering wheel until 300 ms (the observer

time delay) after its onset, after which it quickly reaches the actual disturbance torque.

The time delay associated with the observer is the latency regarding the information

transmission to and processing in the sensorimotor area of brain, which leads to voluntary

response of the driver to overcome the disturbances. The slight difference between the

estimated and actual disturbance in the no disturbance zone is due to the difference

between the internal model and the actual vehicle model.

At the beginning and end of the disturbance we have the largest error in the distur-

bance estimation, which causes the largest error in the actual and desired steering wheel

angles. These periods are the times before the voluntary action intervenes and reduces

the disturbance. At the same time, because of this error in the steering wheel angle, the

first layer of the motor control framework, the path-following controller, intervenes and

corrects the desired steering wheel angle to follow the new desired path.

Figure 17 shows the required muscle activations wrapping the shoulder to perform the

expected steering wheel angle in the three simulation conditions. It can be seen that there

is no antagonist muscle activation in the no disturbance condition as shown in Fig. 17(a),

as the gravity helps the driver to turn the steering wheel clockwise. In this condition,

the anterior and the middle part of deltoid muscle (DELT1, DELT2), coracobrachialis

muscle (CORB), infraspinatus (INFRA) and pectoralis major (PECT) are responsible

for the steering action. On the other hand, in the relaxed condition, as a result of the

disturbance and consequently the deviation of steering angle from its expected value, the

antagonist muscles are activated to first stabilize the steering wheel and then to return it
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to its expected value. In the tensed driving condition, the muscle activations are already

built up to stabilize the steering if there is a disturbance. As shown in Fig. 17(c), both

agonist and antagonist muscles are activated to reject the disturbance; thus the vehicle

closely follows the path of the unperturbed vehicle.

5. Conclusions and Future work

Having a clear understanding of the dynamical system is crucial in control system design,

it provides knowledge of the system that can be used to reduce development time and

cost. In this research, a high-fidelity vehicle model and a neuromusculoskeletal driver

model are developed in silico to replicate the interaction between the driver and vehicle.

A hierarchical approach is used to capture the complexity of neuromuscular dynamics

and the central nervous system in the coordination of the driver upper limb activity, with

a particular attention to steering disturbance rejection.

This physics-based driver model can be used to study the underlying dynamics of a

human driver in stabilizing the vehicle in the presence of external disturbances, or when a

steering fault occurs in the steering system. This model is also equipped with the driver’s

internal representation of the vehicle, musculoskeletal disturbance observer, and muscle

co-contraction ratio, which can represent the driver’s steering skill and simulate relaxed

or tensed driving conditions. The model can be used to quantify objective criteria such as

fatigue and muscle stress for drivers of different age, gender, and physical ability, which

can be used to support the development of new assistive steering technologies.
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Figure A1. Schematic view of the linear bicycle model.

Appendix A. Bicycle Model

A linear bicycle model of the vehicle as shown in Fig. A1 is confined in the model

predictive controller of the motor control framework. This vehicle model is represented

in the following linear state space representation,

ẋ = Ax + Bu (A1)

where x are the state variables and u is the steering wheel angle. The matrices and

vectors in Eq. (A1) are written as,

A =


−2Cf+2Cr

M U0
−
(
U + 2lfCf−2lrCr

M U0

)
0 0

−2lfCf−2lrCr
IzU

−2l2fCf−2l2rCr
IzU

0 0

1 0 0 U0

0 1 0 0

 B =


2Cf
MGr
2lfCf
IzGr

0

0

 (A2)

and x =
[
x1 x2 x3 x4

]T
, where x3, x1 are the vehicle lateral position and velocity and

x4, x2 are the vehicle yaw angle and rate, respectively. The bicycle model parameters

and descriptions are shown in table A1.

Parameters Description Value Unit

Cf , Cr front and rear tire cornering stiffness 117000 [N/rad]
U0 longitudinal vehicle velocity 10 [m/s]
M vehicle mass 2077 [kg ]
Iz vehicle yaw inertia 1995.78 [kg m2]
lf , lr distance to the front and rear axles from CG 1.192, 1.548 [m]
Gr steering gear ratio 15.29 [-]

Table A1. List of identified bicycle model parameters used in the path planning controller
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Appendix B. Hill-type Muscle Model

The model used to simulate the muscle dynamics is inspired from the popular Hill muscle

model [21, 22]. As shown in Fig. B1, the Hill muscle model consists of a Contractile

Element (CE) and a Parallel Elastic element (PE) in series with a Series Elastic element

(SE). In this article, the tendon dynamics (SE) are neglected to simplify the mathematical

representation of muscle dynamics. Therefore, the muscle model is reduced to the CE

element in parallel with the PE element. Based on these assumptions, the muscle force

can be found as follows:

FTM (t) = Fmax0 {FPE (t, LM ) + FCE(t, a, LM , VM )} cos(αp) (B1)

where FPE and FCE are the passive and active forces of the muscle, respectively. LM , VM ,

αp and Fmax0 are the muscle length, contraction velocity, pennation angle and maximum

isometric muscle force, respectively. The muscle activation (a) represents the fraction of

active motor units in the muscle (between 0 and 1), and since the SE element is removed,

the pennation angle for all muscles is assumed to be zero.

The force generated by the active part of muscle (CE) can be separated into force-

length and force-velocity relations [22], which is scaled by the activation level of the

muscle as shown in Eq. (B2). A schematic diagram of these two relations is shown in

Fig. B2.

FCE(t, a, VM ) = a (t) FLCE (t, LM ) F VCE(t, a, LM , VM ) (B2)

The force-length relation is described by the normal distribution function as fol-

lows [22]:

FL
CE (t, LM ) = e

−
(

LM (t)

L
opt
M

−1

)2

/γ
(B3)

where the shaping factor γ is set to 0.45, and the length of muscle in the initial posture is

selected as the optimal length of muscle (LoptM ). The driver is holding the steering wheel
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Figure B1. An example of a Hill-type muscle model [22]. The Hill muscle model consists of series elastic element

(SE), parallel elastic element (PE) and contractile element (CE) as the active part of muscle.

at 3 o’clock position in his/her initial posture, and the steering axis is parallel to the line

connecting the shoulder to the steering wheel. The force-contraction velocity dependent

relation is approximated by the following formula [22, 57]:

F VCE =


VM/V maxM LoptM +AV maxM

VM/V maxM LoptM Af+AV maxM

VM < 0

VMBF̄ lenmax/V
max
M LoptM +ACV maxM

VMB/V maxM LoptM Af+ACV maxM

VM > 0

(B4)

where V max
M , the maximum contraction velocity of the muscle, is set to 10 (LoptM /s) and

A, B and C are shape factors calculated by A = 0.25 + 0.75 a(t), B = 2 + 2/Af and

C = F̄maxlen − 1, respectively. F̄maxlen , the maximum normalized muscle force achievable

during lengthening, is set to 1.4 and Af , a force-velocity shape factor, is set to 0.25.

The force-length relationship of the PE element of the muscle as shown in Fig. 2(b) is

represented by an exponential function [22]:

FPE (t, LM ) =
e
kpe

(
LM (t)

L
opt
M

−1

)
/εm0 − 1

ekpe − 1
(B5)

where kpe, a shape factor, is set to 5 , and εm0 , the passive muscle strain due to the

maximum isometric muscle force, is set to 0.6.
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Figure B2. (a) The muscle force-velocity dependent relation (FV
CE), (b) The muscle force-length dependent rela-

tion of CE (active force) and PE element (passive force)

Appendix C. Muscle Parameters

The muscle path parameters used in the 3D musculoskeletal arm model are adopted from

the published research articles [22, 58–60], and are summarized in Table C1. The muscle

origin and insertion coordinates are given with respect to the local reference frames as

shown in Figure 2.1.

max first coordinate (mm) second coordinates (mm)
# muscle iso. connection connection

force (N) (origin)∗∗ x y z (insertion)∗∗ x y z

1 Coracobrachialis (CORB) 63 torso 20 30 35 humerus 174 21 0
2 Deltoid (DELT1)* 240 torso -30 40 15 humerus 106 -24 -11
3 Deltoid (DELT2)* 200 torso -9 64 25 humerus 119 -9 9
4 Deltoid (DELT3)* 200 torso -45 35 -10 humerus 95 -9 9
5 Latissimus dorsi (LAT) 360 torso -35 90 -125 humerus 50 0 -13
6 Pectoralis major (PECM) 210 torso 45 95 -125 humerus -14 1 2
7 Supraspinatus (SUPSP) 98 torso -20 90 35 humerus -14 17 27
8 Biceps brachii (BICshort) 47 torso 0 0 15 ulna 38 0 10
9 Biceps brachii (BIClong) 90 torso 0 15 10 ulna 38 0 10
10 Infraspinatus (INFRA)* 210 torso -15 80 -40 humerus 28 -19 27
11 Anconeus (ANC)* 40 humerus 265 5 -19 humerus 42 12 -29
12 Triceps brachii (TRIlong)* 135 torso -25 20 -20 radius 38 27 -20
13 Triceps brachii (TRImed)* 108 humerus 78 11 -10 ulna 38 27 -20
14 Brachialis (BRA) 167 humerus 176 -8 16 radius 33 5 10
15 Brachioradialis (BRD) 45 humerus 246 -27 0 radius 283 -12 0
∗ These muscles consider via-points to preserve the muscle path and functionality
∗∗ Coordinates given with respect to the local reference frames in Figure 2.1.

Table C1. List of muscle origin/insertion points used in the 3D arm model
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