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Abstract—The race among manufacturers to build convenient,
safe, and autonomous Connected Cars by applying the latest
digital technologies, and ultimately a completely self-driving
vehicle, is already underway. One of the cornerstones of such
vehicles is the continuous ingestion of massive amount of data
from wide variety of hardware components, including sensors, on-
board cameras, and further external sources. Cloud computing
and big data processing are ideal candidates and already proven
technologies in order to store and process the heterogeneous,
rapidly growing, and large-scale data sets. The cloud may act as
a kind of central hub or as an Internet of Things (IoT) back-end
where the sensor and the other available data can be gathered
while also offering an elastic platform where the vast amount
of data can be processed, analyzed and distributed real-time. In
our paper we detail the evolution of a cloud-based, scalable IoT
back-end framework and services built on top for handling and
processing vehicular data in various use case scenarios: CAN data
collection, remote device flashing, Eco-driving, weather report
and forecast. The first version is an Infrastructure-as-a-Service
(IaaS) solution with a reference implementation deployed on an
OpenNebula based cloud. The second iteration runs on a private
Platform-as-a-Service (PaaS) cloud built on the Cloud Foundry
platform within the premises of an automeotive supplier company.
Both variants have been successfully evaluated and validated with
benchmarks.

I. INTRODUCTION

Connected car technologies have been racing ahead as
vehicle manufacturers continue to unveil newer digital services
and autonomous driving features. Connected cars constantly
collect and make sense of massive amounts of data from a huge
array of sources. They talk to other cars, exchange data and
alert drivers to potential collisions. They can also communicate
with sensors on signs on stoplights, bus stops, and even ones
embedded in the roads to get traffic updates and rerouting
alerts. And lastly, they can communicate with your house,
office, and smart devices, acting as a digital assistant, gathering
information you need to go about your day. Even though
automobiles today contain an impressive amount of processing
power, the amount of information flowing back and forth
inside them requires technology with considerable storage
capabilities that can handle sophisticated processing and ana-
Iytical functions [1] [2]. An ideal task for cloud computing [3]
and big data [4] processing, used by cars on the road. In our
paper we detail the evolution of a cloud based framework and
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services built on top for handling and processing vehicular
data. The first version is an Infrastructure-as-a-Service (IaaS)
based solution with a reference implementation deployed on
an Open Nebula based cloud. The second iteration runs on
a private Platform-as-a-Service (PaaS) IoT cloud built on the
Cloud Foundry platform within the premises of an automotive
company.

The paper is structured as follows. Section II discusses
related work. Section III discusses the different architecture
variants and their reference implementations. Section IV de-
tails the different functionalities and applications built on
top of the architecture. Several smartphone applications were
developed for their respective functionalities, these are also
described in this part of the paper. Section V evaluates our
framework, while section VI details future work and concludes
the paper.

II. RELATED WORK

Amazon Web Services (AWS), Microsoft Azure and Google
Cloud may be considered the three dominant forces in public
cloud computing, and all three provide their own IoT platform
and services [5], [6], [7]. These are generic, hosted platforms
and not available as an on premise private solution. There are
several proposals available for big data processing that aim to
provide a generic architecture rather than one that fits a single
use-case [8], [9], [10]. Next we are going to discuss two such
architectures:

The lambda architecture for Big Data was proposed by
Nathan Marz and James Warren [9]. It aims to decompose
computing arbitrary functions on arbitrary dataset in real time
into three layers: (i) speed layer; (ii) serving layer; and (iii)
batch layer. Its batch layer is responsible for precomputing
results applying a distributed processing platform that is able
to handle extremely large quantities of data. The main goal of
this layer to provide high level accuracy with its processing
capabilities on all available data when generating views, i.e.
this layer is able to fix any errors using the complete data set
(and later updating the already existing views). Outputs are
mostly stored in a read-only database, with updates completely
replacing existing precomputed views. Hadoop [11] is the de
facto standard for batch-processing in most high-throughput



systems. The speed layer can process data streams in real-
time even without fix-ups or completeness of such streams.
As a trade-off, the speed layer sacrifices throughput when
it provides real-time views on the latest data in order to
minimize latency. In other words, the speed layer is responsible
for somehow filling the “gaps” originated from the previous
layer’s lag. The generated views may not be accurate or com-
plete, on the other hand, such views become available almost
immediately after receiving the data (might be replaced when
the batch layer’s more accurate or complete views for the same
data become ready). Stream-processing technologies typically
used in this layer include Apache Storm [12] or possibly
Apache Spark [13], while output is typically stored in NoSQL
databases like Cassandra [14]. Outputs from both layers are
stored in the so-called serving layer that is responsible for
responding ad-hoc queries either by providing precomputed
views or building views. Dedicated stores are used in the
serving layer, e.g. Apache Cassandra or Apache HBase [15]
for speed-layer output, and Cloudera Impala[16] for batch-
layer output. The architecture emphasizes the problem of
reprocessing data thus, processing input data over and over
again. This is required since applications using the data may
contain bugs that produce incorrect results, and after fixing
them the data must be reevaluated; or the application simply
evolves and new outputs are required from the same data. The
lambda architecture (or a variant of it) is in production by
Yahoo for analytics on its advertising data warehouse and by
Metamarkets [17].

The FIWARE Big Data Architecture [8] was created within
the FIWARE (Core Platform of the Future Internet) EU funded
R&D project as one of many Generic Enablers (GEs). A GE is
“a functional building block of FIWARE. Any implementation
of a FIWARE GE is made up of a set of components which
together supports a concrete set of Functions and provides
a concrete set of APIs and interoperable interfaces that are
in compliance with open specifications published for that
GE” [18]. The Big Data GE architecture expands the basic
Apache Hadoop one. The Master Node has all management
software and acts as a frontend for the users. Infinity is
the permanent storage cluster (based on HDFS). Computing
clusters have a lifecycle: they are created, used for computation
and finally they are removed. All data must be uploaded to
Infinity beforehand. Data can be uploaded to and retrieved
from Infinity via WebHDFS [20] or Cosmos CLI (a command
line interface to WebHDFS). The Big Data GE specifies the
use of SQL-like analytics tools like Hive, Impala or Shark.
Although the GE is based on Hadoop, FIWARE proposes
several alternative options: (i) Cassandra File System can
be used instead of HDFS and still Hadoop can be used on
top of it; (ii) a distributed NoSQL database like HBase can
be installed on top of HDFS; (iii) use Cascading [21] as
an extension or replacement. FIWARE Big Data GE was
created with multiple parallel users in mind. For each user
or calculation a dedicated environment (cluster) is deployed
and later tore down.

There are also specific efforts for creating cloud-based

solutions for Connected Cars, one of them (with wider and
slightly different scope than ours) is the Connected Car Proto-
typing Platform [1]. This pattern based platform builds upon a
layered architecture similarly to our approach (see Section III)
and their implementation using also a widespread platform,
namely VMware. However, they omit several crucial features,
such as high availability at application level and performance
benchmarking, since they did not consider them necessary for
prototyping.

Another Connected Car specific effort describes Vehicular
Data Cloud Services in the context of an IoT environment
that combines not only IoT platforms but traditional cloud
services with so-called temporary clouds as well [2]. In their
community-based approach, such temporary clouds might be
formed by harvesting the underutilized (spare) IT capacities of
vehicles, i.e. storage space, network bandwidth and computa-
tion power, in order to provide intelligent parking facilities for
drivers. However, they emphasized several open issues as well
(e.g. security) which may make the usage of their system in
real circumstances impossible. Our goals remain at traditional
TaaS and SaaS level with investigating other uses cases (see
Section IV).

III. ARCHITECTURE

The goal of the framework is to reliably receive and
store incoming sensor data from multiple array of configured
sensors with the capability to scale as the number of sensors
(and the incoming data) grows. This is augmented by different
user facing and administrative applications.

Sensor data is usually generated by small microcontroller
based devices where usually raw data is from one or many
different instruments. Measurements are taken periodically and
thus it generates a lot of small packets that usually consist of
instrument, sensor id, node id, timestamp, and measured data.
Storing large volume of this kind of data requires a tailored
infrastructure with the capability to scale up (horizontally) as
the volume of data grows. The architecture follows a three-
tier layout as depicted in Fig 1. Each component of each tier
is typically deployed on a separate node. This allows easy
scaling of appropriate tiers for example when the volume of
incoming sensor data increases or decreases.

Fig. 2 depicts the generic architecture of applications im-
plementing functions. The figure contains two archetypes for
Applications. a in Fig. 2 details the Web Application Archi-
tecture (WAA) and b in Fig. 2 details the TCP Application
Architecture (TAA). Both architectures are built using three
major blocks:

1) Security: Secure channel between clients and the appli-
cation; authentication and authorization; database access
and function specific requirements.

2) Application: The function implementation and required
components (Framework, Object Mapper, etc.) that im-
plements the given function logic.

3) Database: Interaction with the internal (to the cloud)
Database Service (including the Object Storage Service).

Next WAA and TAA generic characteristics are discussed:
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1) Web Application Architecture: 'WAA (presented in
Fig. 2) is for functions that expose a cloud based user interface
for the users (e.g., Backoffice or Community Based Weather
Forecast). Security (see / in Fig. 2) refers to HTTPS traffic
between the Service Endpoint and connected clients (i.e.,
web browsers or mobile applications). This HTTPS traffic is
then directed to an application instance by the load balancer
and routed to the internal service endpoint of the instance
(represented by B/l in Fig. 2). This internal (to the cloud)
traffic is still HTTP however; it is not encrypted anymore
(SSL/TLS is terminated at the frontend). Authentication is user
and password based (over the secure channel). Usually the web
framework provides a means for storing the user password
securely (i.e. salted and encrypted). In case of Flask this is
provided by Flask-Security module. Authorization in WAA

based application is role based. An Application (implementing
a function) may have multiple instances. This is required
for load balancing and failure tolerance. These instances are
identical and can be discarded any time thus; they cannot
contain any user-uploaded data. An application contains the
implementation of a single function, however it is possible
for a function to have a user interface (WAA) and machine
interface (TAA). This is detailed at the functions. A WAA
based application builds on a web application framework (e.g.
Flask). The framework also provides the Object Mapper and
Database Connector that allow interacting with the database
service. The Database component is responsible for containing
all persistent data, as the application instances cannot store
them locally. The connection with the database service (see
C in Fig. 2) is internal (to the cloud) but depending on the



selected database type can be secured as well. Each application
has unique credentials for the database service so it can access
only its data. The exact requirements will be determined during
implementation. The Object Storage Service (OSS in Fig. 2) is
a special database service as it is intended for storing binary
data (blobs e.g., for the Device Flashing function). Whenever
binary data transfer is detailed at any function it is assumed
that the meta data is stored in the database and the blob
is stored in the object store. It is directly connected with
application instances (see D in Fig. 2) however it is intended
only as an overlay above a database service. Credentials for
accessing it are also unique to each function and enforced by
the database service. WAA based applications are considered
by default compute intensive as they provide a dynamic rich
web based user interface with additional functionality (e.g.,
reporting) that requires even more compute capacity. For
the prototype introducing additional application instances can
solve the problem. For future work decoupling frontend (e.g.,
displaying the user interface) and backend (e.g., generating
reports) functionalities is required. Additionally WAA based
applications can be network intensive as well. If this is the
case we add a note at the given functionality.

2) TCP Application Architecture: TAA is presented as
Fig. 2/b. It is similar to WAA with the major difference stem-
ming from the difference in communication channel (TCP vs.
HTTPS). Channel encryption, authentication and authorization
are provided by a developed protocol that is out of scope
for this paper (depicted as Security Protocol Implementation
in Fig. 2/b). A2 in Fig. 2 depicts the encrypted channel;
in this case the encryption should extend to the application
instance (i.e., B/2 is encrypted as well) as the protocol is
implemented at the application level. As authorization is
certificate based (in case of Public Key Infrastructure [PKI])
the Key Management component is responsible for storing
keys. Whether it is a local store (wired in to the application
instance) or uses a database backend is not in the scope of
the architecture document. For TAA based applications the
Application itself cannot be based on a web framework, as it
does not expose a web interface. Rather it exposes a native
TCP interface that can be implemented at low level or with
a support of a framework (e.g., Socket Server in Python).
Database and OSS access is not different from WAA. TAA
based applications are considered network intensive since they
produce no user interface only data exchange is involved
between peers. However this insensitivity can be continuous
or burst. By default we assume continuous and we note for
each function discussed if it has burst like characteristics. TAA
based applications can be compute intensive if they include
some mean of processing. This is also noted in the summary
table of the function. Please note that for future work the
frontend and backend functionalities should be separate.

A. Variant 1: Infrastructure level architecture

The High Availability and Load Balancing Tier (shown in
Fig. 1) accepts incoming sensor data and forwards it to one
of the data collector application instances in the Application

Tier. The forwarding decision is made in two steps. First
based on a round-robin algorithm a high-availability proxy and
load-balancer (currently based on HAProxy [23]) is selected.
The proxy in turn will select an application server with the
lowest load and forward the request to that one. A CAN Data
Collector instance in the Application Tier (shown in Fig. 1)
will decode the received data and store them in the Database
Tier (shown in Fig. 1). Besides the CAN Data Collector,
other functionalities (see section IV for more details) are also
available and work similarly.

The Database Tier consists typically of a Cassandra or
MongoDB database cluster, besides a RDBMS like MySQL.
Cassandra is a decentralized structured storage system that
is well suited for storing time-series data like connected
car sensor data. As the volume of incoming data changes
Cassandra allows dynamically adding or removing new nodes
to the database cluster to either scale up or down.

Meta data submission is initiated by resolving the DNS
endpoint. The DNS endpoint may contain one or more load-
balancer addresses, in turn they distribute the load between
the available Receiver instances. Using round-robin DNS
techniques, it is possible to scale the number of load-balancer
nodes. Round-robin DNS is a well-known simple method for
load sharing, fault tolerance and load distribution for making
multiple redundant service hosts available. In the simplest
implementation round-robin DNS returns a list of IP addresses.
For each such request the returned list is permuted and the
client will connect to the first address in the list. If the
connection fails the second address should be tried and so on.
The permuting provides even distribution of requests between
the addresses in the list. If a server from the returned list fails,
the requests towards it will timeout and the client should try
the next server on the list. This will result in longer service
handling times, but ensures that the requests are served by one
of the working servers. Sequential requests can and usually
will be served by different servers thus, if the application in
the Application Tier is not stateless (e.g., has user sessions)
then either all requests belonging to the same session must be
handled by the same server (not possible when Round-Robin
DNS is used) or the Application Tier must be prepared to share
session data between all application servers. The receiver is
stateless so no such measures are required and round-robin
DNS is well suited.

HAProxy servers are responsible for balancing the load
across multiple application servers (e.g., CAN Data Receivers)
after through the Round-Robin DNS the client contacts one.
HAProxy is a lightweight high-performance TCP/HTTP load
balancer. It continuously monitors the health and performance
of the application servers connected to it and proxies the
submission request to the least loaded one.

The Application Server Tier is depicted in Fig. 3 and
presented via the CAN Data Collector application. It consists
of the following: Chef is used as a deployment orchestrator
for bootstrapping new nodes for the different tiers. The Data
Processing component and Cassandra Connector are imple-
mented using the Flask Web Framework and Python. The
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Sensor Meta Data Decoder is responsible for interpreting the
incoming data and passing it to the Cassandra Connector. The
Cassandra Connector is used to store the decoded meta data
in the database cluster. uWSGI [25] is used as a WSGI [24]
application server, and finally NGINX [26] is connected to the
wire-protocol of uWSGI to achieve a high performance WSGI
based web frontend. Other applications have (e.g., Backoffice)
similar architecture.

B. Variant 2: Platform level architecture

Cloud Foundry [27] allows to create on premise Platfrom-
as-a-Service (PaaS) clouds. It is available as an open source
software stack and from many commercial vendors either as
an on premise (e.g., Pivotal) or hosted solution (e.g., part of
IBM BlueMix). We adapted our platform for an on premise,
IoT cloud based on a private deployment of Pivotal Cloud
Foundry (PCF) running in a data center of an international
automotive company. Fig. 4 depicts the resulting architecture
at a high level with the components as follows.

Object storage (see Fig. 4) provides a mean to store and
retrieve (or publish) large binary data blobs. It can be used

for e.g., distribute publicly available files. This service can be
infrastructure level, e.g., providing storage for the virtual ma-
chines, or platform level, e.g., providing a REST interface for
storing and downloading files. For Variant 1 (see section III-A
this functionality is provided by Ceph [28] through its Amazon
S3 compatible RadosGW service. PCF does not recommend
storing data in application instances, since that is local only
to the instance and is not permanent and instances do not
share a file system. PCF did not provide such a functionality,
thus this means that either such a component needs to be
developed or the use of an external service is required. To
keep all components on premise and also since sensitive data
may be stored in the Object Storage we rolled our on solution.
Configuration management and deployment service is pro-
vided by PCF. Environments and different services (e.g.,
application scaler or database services via marketplace) can
be provisioned within the platform. At the infrastructure level
(see Variant 1 in section III-A) Chef [29] is utilized.
High-availability, load-balancing and health checking ser-
vices refer to the capability of the system to tolerate service
failures and balance traffic between available services and with
configuration management and deployment provide horizontal
scaling capabilities for the system. PCF allows applications
to scale horizontally and vertically. For marketplace services
(e.g., database servers) it highly depends on the service (e.g.,
allows horizontal scaling) and the available service plans.
There are two database services: The first one (see Database
service 1. in Fig. 4) is for storing application data; and
the second database service is for the object storage service
(see Database service 2. in Fig. 4). The first is MongoDB
(Cassandra was not supported by the IoT cloud), while the
second is MySQL for storing meta data for the object storage.
The role of the caching layer is storing frequently accessed
data. From the PCF service catalogue typical services used for
implementing the caching layer can be Redis or Memcached.
Each application implements a functionality (see sec-
tion IV). Scaling is either by increasing the number of in-
stances for the application (horizontal scaling) or increasing
the resources available for given instance(s) (vertical scaling).
PCF uses an own implementation for traffic routing. Although
it is possible to deploy a custom load-balancer like HAProxy
by the administrators, however it is not recommended for pro-
duction purposes. The dashed line between the Clients and the
different Applications (in Fig. 4) represent the communication
channel and protocols. The channel is HTTP for higher-level
APIs and end user services, while they can be e.g., TCP for
low-level services (assuming PCF platform allows it). How-
ever these and the application layer protocols are specific to
applications and thus, will not be detailed here. Authentication
and authorization is application specific. For sensitive services
(i.e., CAN data collector) a security protocol is needed. For
end user services like the Connected Car Backoffice System
(see section IV-A), password based authentication and role
based access control can be used over HTTPS. This can be
extended e.g., by two-factor authentication using e.g., an SMS
gateway, but this is beyond the scope of this paper.



IV. FUNCTIONALITIES (USE CASES SCENARIOS)

In this section we detail the functionalities of our platform
through use case scenarios.

A. CAN Data Collector

The core function responsible for the collection and storage
of several CAN (Controller Area Network) messages in the
Cloud for further processing. It perfroms a basic extract,
transform, load (ETL) functionality by pre-processing the data
and storing it in a structured format for the other cloud-
based functions. Additionally it is also stored directly in the
input format to have backup for security reasons and to be
available for future implemented functions and statistics. The
communication between the smartphone application and the
cloud service uses a secure connection as the data may con-
tain private information (e.g. location). Within the encrypted
channel the plain data is sent in a JSON format. There are two
methods used in this function to communicate between the car
and the cloud: periodic and event driven upload. These two
methods can be combined: it is possible to set some parameters
to be collected periodically while other parameters are sent in
an event driven fashion. It is sensible to use periodic mode
for telemetry type parameters and to use event driven mode
for special features such as ABS or ESP activity or in the
case of an accident (airbag or impact sensor). At the first
connection or on special request the cloud service downloads
the settings to the smartphone of the user. These setting are
the list of selected parameters to collect from the vehicle,
the periodicity of the data collection, and the connection type
including the periodicity of the upload to the cloud. With the
settings present on the device, if the connection is established
with the vehicle the smartphone can send these settings to
the vehicle. In case of the periodic data, Fig Sa illustrates
the vehicle to cloud via smartphone communication. After the
initial setup the data collection is triggered by the engine start.
From this point the car sends all selected parameters to the
smartphone with the given periodicity. The phone aggregates
this data and uploads it to the cloud service with a longer
periodicity. This arrangement optimises the communication,
improving battery life and server load.

In case of the event driven scenario, after the initial setup,
which is the same as in the previous method, each selected
event is immediately sent to the cloud service through the
smartphone. In this case the smart device doesnt do any kind
of processing on the data, it works simply as a relay. If the
vehicle is connected to the cloud without the smartphone, by
an internal GSM module or any type of V2X communication
system, periodic data collection is not available. The onboard
computers dont have the necessary storage space to aggregate
the data without the smartphone. This way the measured data
is sent immediately, resulting in the same scenario as the event
driven type.

B. Device Flashing

This function provides firmware upgrade capabilities for the
Connected Car system. Updating a device over a cloud service

raises several security concerns. Access to the firmware files
should be limited to authorized personnel only. Different files
may require different authorization thus specific roles may
be required, e.g., a service partner may get access or even a
car owner can be considered authorized in different scenarios.
Usually an update is initiated by a person connected to the
car. In this case the system has to make sure the car is safely
parked and the battery will provide enough power for the
whole process. Situations when the connection is lost during
an update should also be managed. Some security updates
however may be published as mandatory updates and should
be downloaded to connected cars regardless of the owners
initiation. In this case the car also has to be parked safely and
in absence of the owner a direct GSM connection is needed. If
the owner is using the car when the system wants to attempt
an update, then the system should wait for an appropriate and
safe time to start the process.

The cloud service needs to implement a way to distribute
the updates amongst the cars. This is not trivial because
even if an update package contains a small amount of data,
it will be delivered to millions of cars, all over the world.
The technology that should be used is a Content Delivery
Network (CDN). Most of the publicly available cloud service
providers offer such a service. This can be part of a rented
infrastructure or it can be a hybrid solution where only
the CDN service is outside the on premises, private cloud
architecture. To deliver the flash data to 1000 cars in a region
in 1 minute would require ~160Mbit/s bandwidth, but in 1
hour only ~26.49Mbit/s. For large scale deployments this
scales linearly, i.e., for 100 000 cars within 1 hours would
require ~2649Mbit/s bandwidth. Serving from a single source,
even within a region is not feasible for large scale deployments
and/ or the time frame must be increased.

Additionally the delivered data should be encrypted to
prevent unauthorized access and to protect data integrity. This
way the on-board computer of the car can validate the origin
of the retrieved data and make sure it was not modified
by malicious attackers or network errors. After the data is
delivered to the smart device it needs to be securely forwarded
to the vehicle. The device flashing process can start after the
data is fully downloaded, unencrypted and verified. In case
the vehicle is connected directly to the cloud without the
smartphone, by an internal GSM module or any type of V2X
communication system, one layer of security can be removed
from the data transfer. In this scenario the smartphone acts as
a user interface. In Fig. 5b the scenario is illustrated when
the phone communicates with both the cloud and the car,
and initiates the update. Another scenario is also possible
depending on the facilities of the vehicle: if there is no direct
communication between the car and the smartphone, the cloud
will initiate the update of the car after the phone sent the
signal to the cloud. We assume the following products with
corresponding data size for flashing with new software: (i)
Body Computer (BCM) using 1 MB of data; (ii) Electric
Battery Sensor (EBS) using 64 KB of data; and (iii) Parking
assistant with 512 KB of data. Although difference in ECU
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types should not make a big difference in the delivery of the
data, the flashing process can indeed be different. The gateway
in the vehicle needs to implement all the possible protocols
used. Being such versatile while using limited resources makes
it hard to design a generic solution.

C. Eco-driving

The goal of the function is to optimize driving habits
through the collection of driving data (e.g., consumption,
GPS data, measured forces, velocity, gear ratio, acceleration,
etc.). Based on this driving data additional statistical cloud
functionalities can be implemented to help drivers in achieving
more economical driving habits. As there is no need for
individual users to be able to monitor their incoming data
from the vehicles sensors while they are driving or in quasi
real-time, the system is designed so that it only receives the
collected data every hour or after each trip if it was shorter
than an hour. Based on these the system can create short
reports from the data collected about the driver. This report
evaluates the driver, mentions the major good and bad driving
habits identified, the average values of fuel consumption, and
highlighting the key areas where the user could improve their
efficiency, also showing estimated savings. The user may
generate more detailed reports on selected trips or time periods
in addition to the evaluation.

D. Weather: report conditions and forecast

Based on several car related data a cloud connected com-
munity service could provide helpful information for drivers
nearby about road conditions, weather, traffic and more. Such
useful data sources are for example: wiper control state, fog
light state, ABS, ESP data, inside/outside temperature and
humidity sensors. The ground-up design of a complete and
functional weather forecasting system is clearly out of the
scope of this paper. Also, it doesnt seem very sensible to
implement such system when every country has their own

national weather forecasting service and furthermore there are
organizations and companies that offer such services on a
global scale. The best way to carry out this task would be to
cooperate with such organizations or companies. The function-
ality concentrates on the weather nowcasting idea. Nowcasting
means showing very short term weather predictions based
on recent and localised measurements. Incorporating data
collected from a large user group allows these predictions to be
more precise and detailed than traditional weather forecasting.
Given enough input data the system can provide information
down to street-level resolution. The prototype function dis-
plays temperature values and rain on a map (see Fig. 6) via
the backoffice application (see section IV-E). Additionally the
maps can be extended with traffic information (average speed),
accidents and congestions. The map should also warn about
risks such as icy and slippery roads. A good example for a
system like this is S1INY [22] which is a free service of
the New York State Department of Transportation. The big
difference between that system and ours is the source of data.
While the STINY service works based on sensors built into
the road our system collects all the data from the vehicles.
This means several advantages: no need to build and maintain
costly sensors; the sensors are not fixed therefore can cover a
larger area; changes in the road structure dont need attention
to be integrated.

E. Backoffice

The Connected Car Backoffice System is a cloud-based web
application intended to be used as a desktop interface to the
different Connected Car functionalities, as the smartphone app
should be used on the go. As an example Fig. 6 depicts
the integrated user interface of the Weather functionality
(see section IV-D). Backoffice itself provides the following
functionalities for the system:

o Reports: All errors and warnings summarized for own

cars, fleets and all manufacturers belonging to the user.



TABLE I: Results of load testing the 5 node Cassandra cluster
with 90KByte payload/query using a 4VCPU/4GB RAM node

Thread Total Adj. Row/s Mean Med 0.95 Max
count ops row/s
4 74437 342 342 11.6 7.3 241 16314
8 | 218176 999 999 8.0 4 18.8  5392.7
16 | 411357 1963 1962 8.1 1.7 29.2 989.1
24 | 417118 1902 1902 12.6 1.6 50.3 20344
54 | 423090 1780 1779 30.3 1.7 1425 962.9

This section is divided into the above mentioned 3
subsections. All of these show the number of faults for all
the error and warning types. The parts required to repair
the errors are also displayed. Two actions are available
for the user here. They can request oil change for a car
and can order parts for the car. The items can be ordered
directly from a merchant partner or in case of a fleet,
the collected orders can be stored, managed, printed or
forwarded for internal or external use. When requesting
an oil change the user can book a suitable appointment
at a selected service station and the required oil type and
amount are automatically forwarded.

e Own cars: All errors and warnings detailed for all
cars owned by the user. The display is similar to the
above section with additional information on oil change
dates and mileages. However the structure is similar, the
list here shows each individual car separately. The two
actions of requesting oil change and ordering replacement
parts are also available here for each car.

o Fleets: All errors and warnings for fleets administered
by the user. The fleets are listed in the same fashion as
in the summary section, but with more details. The two
actions of requesting oil change and ordering replacement
parts are also available here for each fleet. When ordering
parts for a fleet all part required by all the cars in the
fleet are added up with an option to exclude parts and
cars from the list. Oil change appointments can be made
with service partners or if the fleet has a private service
station a private schedule can be managed internally.

o Manufacturer: All errors and warnings for manufactur-
ers administered by the user. Car types can be checked
for common issues; replacement parts can be tracked as
well.

Additionally it provides a user and/or administrative inter-
face for the different functionalities discussed in section IV.
Functionalities utilize a role-based access control scheme.
Each functionality has a defined set of roles that can access
it. Partial access is also possible: different roles see different
subset of data and functions for a functionality.

V. EVALUATION

We deployed Variant 1 (see section III-A) on an OpenNeb-
ula [19] based IaaS cloud within SZTAKI. The deployment
used the following resources: (i) 1 HAProxy node with 4
VCPUs and 2GB RAM; (ii) up to 5 Data Collector nodes with

4 VCPUs and 2GB RAM for each; and (iii) up to 5 Cassandra
nodes each with 4 VCPUs, 4GB RAM and 60GB iSCSI
storage from a storage area network (SAN). Additionally we
used an additional node as Chef server; a local Amazon
S3 compatible service (via Ceph RadosGW); and a node as
MySQL instance. All nodes ran as virtual machines on AMD
Opteron 6376 CPUs with all VCPUs mapped to actual physical
cores.

For evaluating the variant we performed load testing with
two scenarios: (i) Cassandra database cluster; and (ii) the
whole data collector framework. For the first case we used
the stress-testing tool (cassandra-stress [32]) provided by
Cassandra. In the second case load tests were carried out with
the Tsung load-testing framework [30] using the Zabbix [31]
monitoring tool for observing the infrastructure during tests.
The load testing framework includes 8 additional Tsung nodes
with 4VCPUs and 2GB RAM each. The Tsung nodes were
also deployed in the same OpenNebula, thus any measurement
that involves network speed was always using the internal
10Gbit/s network.

A. Cassandra

First we used the cassandra-stress tool to determine the
theoretical limit of number of inserts (row/s) for the database
cluster using payload size estimation representing the Weather
nowcast functionality of our platform (see section IV for more
details). We used the ’SimpleStrategy’ for replica placement
and a replication factor of 1. We used a payload of 90KBytes
of payload data per query. This is based on an internal
estimation of the amount of data a single client (vehicle) will
transmit after a data collection period of one hour. This consist
of a fixed size header and the collected data.

Cassandra stress tool increases the number of threads writ-
ing to the database as long as there is no large decreases in
write speed. This is denoted by “thread count. Table I shows
a representative measurement. There total ops represent the
rows written in this case, while row/s is the actual insert speed.
Mean, median, 0.95 and max are latency related (we omitted
0.99, 0.999, time and stderr from the table). The tests were
run always against an empty database, however the stress tool
always inserts a large amount (150000-250000+, depends on
the node count) rows as a warm up. Also it randomized the
partition key to avoid hot spots in the cluster.

Our results show that the deployed system was able to sus-
tain a median write speed of 2492.0 rows/s (with z = 2320.7
, 02 = 431.80) for thread count > 8.

B. Data Collector Framework

Second we load tested the whole data collector infrastruc-
ture as follows. We used different payloads of data repre-
senting a data collection interval between 1 and 60 minutes
with payload data between 2.5 and 90 KBytes. We used a 8-
node Tsung cluster for distributed load testing. Our goal was
twofold: i.) to see which defined scenarios the framework/
architecture is able to complete; and ii.) how the performance
compares to the performance measured in the raw Cassandra
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load testing. We first ran 5 minute tests via Tsung and
monitored via the HAProxy admin interface to see if any
requests are denied and how many requests are queued up
on the application servers. If the application servers were able
to handle the load we repeated the test, but now 60 minutes
long. The 60 minute tests was repeated 5 times. For the test
we used a 5 node Cassandra cluster, up to 5 Data collectors
and a single HAProxy.

Our results show that the simple deployment (with a single
HAProxy and 5 Data Collectors) is capable of handling
360000 clients in a configuration of 2400 active users/sec with
2.5KBytes of payload, or 400 active/sec with 24KBytes of
payload, or 100 active/sec with 90KBytes of payload data.
This seems far from the raw Cassandra results, however the
limiting factor is the processing power of the Data Collectors.
As the results showed the number of active users can vary
from 100 to 2400, depending on the payload data size. Fig 7
shows the transaction rate (requests/sec) and user arrrival and
departure rate for a measurement representing 400 users/sec
with 23.5KBytes of payload.

VI. FUTURE WORK AND CONCLUSIONS

Vehicles are on their way of becoming the most sophisti-
cated mobile devices in the world of the Internet of Things
(IoT) with their vast amount of integrated sensors and on-board
computers linked to the cloud by way of wireless technologies.
On the other hand, there are various cloud technologies,
deployment and service models already available. Therefore,
creating a cloud-based IoT back-end for Connected Cars is not
a straightforward task. In this paper we presented two well-
established solutions and the major problems we faced during
the development of such IoT platform for receiving, managing,
distributing and visualizing vehicular data in various scenarios,

including CAN data collection, device flashing, Eco-driving
functionalities, and weather report/forecast. Two reference
cloud implementations have been presented in details with
benchmarks: an IaaS based system and an industrial PaaS
based solution.

For future work, besides the previously described functions,
we are working on implementing some other well-known
functionalities to test the capabilities of the demonstrated
platforms including the followings:

e Remote Control functions including keyless entry, remote
engine start and remote climate control. A vehicle-user
account system or a smartphone-vehicle wireless con-
nection over Wi-Fi or GSM/LTE has to be developled
here so that the vehicle and a driver/user can paired with
each other. For the keyless entry function, which would
allow the driver of a car to lock his/her vehicle from
afar, a short range wireless connection like Bluetooth can
also be an eligible solution. Several security issues arise
when connecting to and from a smartphone device, the
necessary precautions have to be made when establishing
the pairing between the smartphone and the vehicle.
To prevent unintentional or excessive use, some form
of timing policy should be used/enforced on the usage
of the remote control. For example, Tesla uses a 30
minute automatic shut off policy on their remote climate
control application to prevent unnecessary battery drain.
Similarly the user should be able to provide a time
period when an extra security layer is in effect, like at a
nighttime engine start or vehicle opening.

e Car Sharing: The envisioned car sharing system re-
volves around a cloud based user database, a smartphone
application and a digital key or certificate, which is
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exchanged with the vehicle through a wireless network.
The communication technology used can be anything
ranging from GSM/LTE to Bluetooth or even NFC as
it is presumed that the user will have some form of
physical contact with the vehicle at some point, thus
the shorter range of Bluetooth or NFC is not a problem.
Once a user registered for a specific vehicle on his/her
account, the server sends the forgery-proofed certificate
in an encrypted format to the cell phone of the respective
user. This certificate gets authenticated by the vehicle
using its own certificate and once verified provides access
to the vehicle. For this system to work properly multiple
routes of communication are required. The vehicle needs
to communicate with the owners phone and the third
partys phone to which the vehicle was lent and the vehicle
also needs to connect to the cloud. This can either be a
direct GSM/LTE connection or a proxied connection over
a smartphone.

Park pilot assistance: This function tries to identify
sufficient parallel or perpendicular parking space when
passing them by. A smartphone displays this informa-

tion, moreover should automatically look for a parking
house nearby in case of unavailable parking spaces.
This function can be extended with a community park
spot finder feature. If enabled, this feature could collect
information about available parking places found by the
moving vehicle and transmit this information to the cloud
service. When looking for a parking spot the application
connects to the cloud service and downloads information
about nearby parking places. In addition to the location
of the spots the data contains the size and orientation of
the spots. This way the system can consider size of the
vehicle when searching. With this information the smart
device can recommend a route with the highest probabil-
ity to find the parking spot nearest to the destination.
Traffic assistant: A group of functionalities that can be
used for helping drivers avoid congestion on roads, warn
them about traffic accidents or about required fill-up and
accessory changes. With available and/or pre-recorded
traffic sign geolocation data the validity of these signs
can be verified.
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