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Monocular Vision-based Aircraft Ground Obstacle Classification*

Péter Bauer1, Bálint Vanek1 and József Bokor2

Abstract— This article presents the first steps towards extend-
ing the applicability of the author’s monocular vision-based air-

craft sense and avoid method for steady ground obstacles. The
goal is to decide if a ground obstacle is a collision threat or not.
The focus of the development is real-time onboard applicability
that’s why simple calculations are proposed. After extending
the calculation formulae for steady obstacles the results of a
software-in-the-loop simulation campaign are presented for car
and tower obstacles. The results are all acceptable so further
developments will target a proper avoidance strategy and real
flight tests.

I. INTRODUCTION

Sense and avoid (S&A) capability is a crucial ability for

the future unmanned aerial vehicles (UAVs). It is vital to

integrate civilian and governmental UAVs into the common

airspace according to [1] for example. Usually S&A is

understood as the sensing and avoidance of aerial vehicles,

however in case of low level flight with small UAVs the

avoidance of ground obstacles - such as transmission towers,

tower-cranes, smokestacks or even tall tress - can be also vital

to integrate them into the airspace.

This means that a small UAV’s S&A system should be pre-

pared also to detect and avoid ground obstacles. Considering

the size, weight and power constraints a monocular vision-

based solution can be cost and weight effective therefore

especially good for small UAVs [2], [3], [4].

Placing a vision system onboard can also help the obstacle

avoidance and landing of manned aircraft as the EU-Japan

H2020 research project [5] shows through its research goals.

During landing the presence of ground vehicles on the

runway can also be dangerous and should lead to a go-

around.

In the literature, the detection and avoidance of ground

obstacles is discussed for example in [6], [7], [8], [9] and

[10].

[6] Proposes a stereo vision-based obstacle avoidance

scheme for ground vehicles. [7] discusses path planning to

avoid obstacles with known position. [8] discusses monocular

SLAM-based obstacle avoidance applying also an altitude

sonar. Real flight test results are also presented with a
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quadrotor helicopter and applying ground station-based cal-

culations. [9] proposes a laser range finder-based method to

detect and avoid static and dynamic obstacles with a UAV

using a reactive path planner. Real flight test results are pre-

sented. [10] proposes an obstacle range estimation solution

based-on aircraft velocity and the numerical differentiation of

yaw angle and obstacle bearing angle. This solution can give

uncertain results because of the numerical differentiation in

case of noisy measurments. Another restriction is that a close

to zero pitch angle is assumed. Then the article proposes a

control solution to avoid multiple obstacles and presents real

flight test results.

Previous works of the authors of this article [11], [12], [13]

focused on the S&A of aerial vehicles applying monocular

camera system with onboard image processing and restricting

aircraft movement to constant velocity and straight trajec-

tories. No other assumption was done and no numerical

differentiation is required in the proposed solution which can

be an advantage compared to [10]. That’s why this article

focuses on the modification of previous results considering

steady obstacles to see how effective the derived solution

can be in the classification of ground obstacles. Constant

own velocity and straight trajectory are still assumed. In

the simulation test campaign two obstacle categories are

considered, tower-like objects and cars as these are the main

contingencies. The structure of the paper is as follows.

Section II summarizes the previous developments of the

authors and presents their extension for steady obstacles.

Section III first presents the software-in-the-loop (SIL) simu-

lation setup, then evaluates the results of collision possibility

and parameter estimation in case of a car and a tower

(cylinder). Finally, section IV concludes the paper.

II. TTCPA AND CPA ESTIMATION IN CASE OF

STEADY OBSTACLES

The results of previous developments in [11], [12], [13] are

summarized here and modified to consider steady obstacles.

Fig. 1 shows the definition of time to closest point of

approach (TTCPA) and closest point of approach (CPA) in

case of a steady obstacle.

The parameters are defined relative to the trajectory co-

ordinate system (defined later in II-A) of the own aircraft,

TTCPA is the time when the obstacle crosses the trajectory

X axis and Xa is the absolute distance between aircraft and

obstacle at this point. R is the characteristic size of the

obstacle.

Considering oblique camera placement relative to the

trajectory system the projection model of the obstacle in the

horizontal plane (assuming a disc cross section) is shown in

Fig. 2 where XC , ZC is the camera coordinate system.
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Fig. 1: Define TTCPA, CPA = Xa/R (obstacle red circle,

own aircraft blue from right)
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Fig. 2: Oblique camera disc projection model

The consideration of this disc projection model together

with the βC camera angle and Vx side and Vz forward relative

velocity components leads to the following formulae in [12].

S̄x = Sx(cosβ1 + cosβ2) =
2fR

ZC

x̄ = x

(

1−
S̄2
x

16f2

)

= f
XC

ZC

(1)

Where Sx and x are the horizontal size and centroid

position of the disc in the image, β1, β2 are the horizontal

view angles of the edges of the disc image (see the figure), f
is camera focal length and XC , ZC are the distances of the

disc from the own aircraft in the camera coordinate system.

They can be expressed by Vx, Vz , Xa, tCPA (the latter is

TTCPA) as follows:

XC = Xa cosβC − (Vx cosβC − Vz sinβC)tCPA

ZC = Xa sinβC − (Vx sinβC + Vz cosβC)tCPA

(2)

Substituting the expressions of XC and ZC into the

reciprocal and ratio of the expressions for x̄ and S̄x in (1)

and considering CPAx = Xa

R
one gets:

1

S̄x

=
CPAx

2

sinβC
f

−
Vx sinβC + Vz cosβC

2fR
tCPA

x̄

S̄x

=
CPAx

2
cosβC −

Vx cosβC − Vz sinβC
2R

tCPA

(3)

In this system of equations the unknowns are CPAx and

tCPA and the time varying terms are x̄, S̄x, tCPA. The

other terms such as f , βC , Vx, Vz and R are all constant.

Considering this and tCPA = tC − t one gets (t is actual

time, tC is the time when intruder is closest to own aircraft

(it is constant)):

1

S̄x

=
sinβC
f

CPAx

2
− a1tC + a1t = c1 + a1t

x̄

S̄x

= cosβC
CPAx

2
− a2tC + a2t = c2 + a2t

(4)

Making a simple least squares optimal line fit to the

measured 1
S̄x

, x̄
S̄x

, t paremeters will give a1, a2, c1, c2 and the

following system of equations.

[ sin βC

f
−a1

cosβC −a2

] [

CPAx

2
tC

]

=

[

c1
c2

]

(5)

CPAx and tC (and so tCPA) can be easily obtained from

this. Considering now a steady obstacle means that there will

be no side velocity component (Vx = 0) and the forward

component Vz is known as the own ground relative velocity.

This leads to simplified expressions in (3) but has no effect

on (4) and (5).

However, knowing the value of Vz makes it possible to

estimate the R absolute size of the obstacle considering

a1, a2.

a1 =
Vz cosβC

2fR
, a2 =

−Vz sinβC
2R

R =
Vz
4

(

cosβC
a1f

−
sinβC
a2

) (6)

Knowing the size of the obstacle makes it possible to

estimate the absolute side distance Xa and considering tCPA

and the forward velocity Vz the forward absolute distance Za

can be also estimated.

Xa = R · CPAx Za = Vz · tCPA

Considering the vertical situation in the S&A of aircraft

intruders the vertical image centroid position y and size Sy

together with similar formulae as in the horizontal situation

can be considered. However, for ground obstacles the ver-

tical parameters can be different. Considering the possible

avoidance strategies the aircraft can fly around the obstacle or

ascend above it. From this point of view its better to estimate

the altitude of the top point of obstacle relative to the own

aircraft. The related image parameter is the top coordinate

yT as shown in Fig.s 3, 4.

The figures show that considering the horizontal pareme-

ters in case of a tower-like object the average Sx width and

the horizontal centroid can be determined together with the

coordinate of the top point yT . In case of a car-like object

the full horizontal size gives Sx and the other coordinates

are also the x centroid position and yT .
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a tower
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Fig. 4: Image parameters of

a car

Considering the vertical pinhole camera projection for-

mula one can determine the absolute Ya distance relative

to the trajectory coordinate system if knows the forward

distance Za and the focal length of the camera.

yT = f
Ya
Za

, Ya =
yTZa

f
(7)

A. Note about ego motion transformation

In any S&A task it is very important to calculate the

position of the intruder/obstacle relative to a well defined

coordinate system. As at this stage of developments straight

aircraft trajectories are assumed it is straightforward to

calculate every parameter relative to a trajectory coordinate

system aligned with the own aircraft path. This will give

CPA relative to the undisturbed path of the aircraft and so

it can be decided if there is the need to leave the trajectory

and make an avoidance maneuver. However, the aircraft rolls

and pitches relative to the straight track and these motions

will corrupt the images. To avoid this corruption ego motion

compensation should be applied. Fig. 5 shows all of the

coordinate systems considered in this procedure.

XC
YC

ZC

XB

YB

ZB

Z

X
Y

XE

YE

ZE

Fig. 5: The applied coordinate systems

XE , YE , ZE is the Earth, X,Y, Z is the trajectory (Z
axis parallel with the straight trajectory (dotted line)),

XB, YB, ZB is the body and XC , YC , ZC is the camera coor-

dinate system. The goal is to transform the image coordinates

to characterize the situation relative to the trajectory system

as the image processing is done relative to this (see Fig. 2).

The measured image point vector PC =
[

x yT f
]

should

be first normalized as P̄C = PC/‖PC‖2. Then it should

be rotated with the TBC camera to body transformation

matrix to get P̄B . In the next step rotation to the trajectory

coordinate system should be done considering the Euler

angles (φ, θ, ψ) relating the body to the earth system and

the horizontal direction of the trajectory system ψ0 relative

to the Earth. It is assumed that the trajectory is almost

horizontal and so the trajectory system is only horizontally

rotated relative to the earth. This way a body to trajectory

transformation can be done considering φ, θ, ψ − ψ0. This

results in P̄T . This should be transformed back to the camera

system with TCB to obtain image coordinates Q relative to

the trajectory system. The final step is the back scaling of this

unit vector to have the f focal length as its third coordinate:

Q̄ = Q
Q(3)f . The image size coordinates are also transformed.

The transformed coordinates are again denoted by Sx, x.

However, in case of a steady object’s top vertical co-

ordinate (7) applies the forward Za distance along the Z

axis of the trajectory system. This means that yT should

be determined relative to the trajectory system instead of

the camera as the camera can be further rotated (see Fig.

2) and thus give different y image value. So in case of

the vertical coordinate P̄T should be directly scaled back

(PT = P̄T

P̄T (3)
f ) to get yT .

III. SIL SIMULATION RESULTS

Fig. 6: SIL simulation of

car approach

Fig. 7: SIL simulation of

tower approach
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Fig. 8: The sketch of the onboard two camera system

A SIL simulation test campaign was done considering car-

like (see Fig. 6) and tower-like (see Fig. 7) obstacles also

and an own aircraft equipped with a two camera system (see

Fig. 8). The horizontal field of view (FOV) of the cameras

was ±35◦ while the vertical was +45◦ and −25◦ which

means a downward looking camera. Pixelization errors were

considered in the simulation of the camera system.

The aircraft was flown on a straight trajectory towards the

obstacle applying autopilot for trajectory tracking. A Monte

Carlo simulation was run for each (car / tower) case. The own

velocity (Vo) was 15m/s or 30m/s. The glide slope was 0◦,

3◦ or 6◦ satisfying the almost horizontal track assumption

(no ascending was considered). The side distance from the
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obstacle was characterized by CPA and the characteristic

size. The considered CPA values are 0, 5, 10. In case of the

car model the size was not changed the width of the car

is 1.9m which is also the characteritic size. In case of the

tower the characteristic size is the diameter which is chosen

from 1.5m, 3m, 6m. On the other hand the orientation of

the car was chosen from 0◦, 30◦, 60◦, 90◦ where 0◦ means

the nose towards the aircraft while 90◦ means the side of

the car towards the aircraft. The last parameter considered

is the altitude where the aircraft is above the obstacle.

This was considered as a given percentage of the height

of the object. The height of the car is fixed to 1.5m and

the considered precentages are 0%, 100%, 200%, 400%. The

height of the tower is size ·5 and the considered precentages

are 0%, 50%, 100%, 150%. The difference of the car and

tower precentages is because of the large difference of their

absolute heights. The car is very small and so there is no

point in flying 0.75m and then 1.5m above the ground with

the aircraft, the two cases are almost the same. Note that the

given altitude values are only the references, the tracking

autopilot of the aircraft follows it with some transient and

tracking error. A threshold of 3 second was set for the

collision decision in each simulation so when the estimated

TTCPA value gets below this a decision is done and all the

estimated parameters are compared to the real ones (errors

are calculated). The CPA threshold was selected to be 7 to

decide about the CPA 0 and 5 cases as collision and about

the CPA 10 cases as no collision. Note that only the decision

was done, no avoidance maneuver was started to be able to

calculate the real TTCPA and CPA values.

The test results are plotted in histograms for the different

estimation errors in Fig. 9 to 14 for the car and in Fig. 15 to

20 for the tower. The first plot shows the real TTCPA value

when the decision is done. The second shows the ratio of

the estimated and the real CPA values (if the real values are

close to zero this ratio is not calculated). The third shows the

side distance estimation errors in percent (if the real values

are close to zero this ratio is not calculated). The fourth

shows the size estimation errors in percent. The fifth shows

the forward distance estimation errors in percent. Finally, the

sixth shows the vertical distance estimation errors in meters.

This is not in percent because the real values are close to zero

several times and so the error percentages get very large.

In case of the car 288 simulations were done. Regarding

the TTCPA values (Fig. 9) most of the real values (when

the estimate gets below 3 secs) is between 2.5 and 3.5

secs which means that the estimation error is about ±0.5s
in most of the cases which is a really good results. The

CPA ratios (Fig. 10) are below 1.2 in most of the cases.

The minimum values are about 0.3 and 0.5 for 15m/s and

30m/s own velocities respectively. The figure shows that CPA

is usually underestimated which gives conservative results.

This is underlined by the fact that collision is decided even

for CPA = 10 in all cases. This means that the CPA

threshold can be decreased to 6 (considering the maximum

1.2 overestimation) to avoid car in all CPA = 5 cases and

do not avoid it in CPA = 10 cases. Considering the side

distance errors (Fig. 11) they are between -60/+50% and -

60/+20% which are very large ranges however, the majority

of the values is between ±20% which can be acceptable. The

object size estimation errors (Fig. 12) can be large for 15m/s

own velocity and are below 20% for 30m/s. This can be

caused by the larger movements between two image frames

in the latter case which makes the line fitting in (4) more

accurate. The majority of the forward distance errors (Fig.

13) is between ±20% which can be acceptable. The majority

of the vertical distance estimation errors (Fig. 14) is between

±2m which is a really good result.

Summarizing the results, the TTCPA and CPA estimates

can be well used together with the vertical distance estimate

to decide about the need for avoidance and design a safe

avoidance maneuver. The estimated object size, side and

forward distance values can only be used as approximations

showing the order of magnitudes of these parameters.

In case of the tower 216 simulations were done. Regarding

the TTCPA values (Fig. 15) most of the real values (when the

estimate gets below 3 secs) is between 2.5 and 3.5 secs which

means that the estimation error is about ±0.5s in most of the

cases which is a really good results. The CPA ratios (Fig. 16)

are below 1.2 and above 0.8 in all of the cases. This means

a much better estimation compared to the car cases.This is

underlined by the good decisions as in this case non-collision

is decided for all CPA = 10 values. Considering the side

distance errors (Fig. 17) they are between -15/+50% and -

30/+15% which are better ranges then for the car but still

very large. However, the majority of the values is between

±15% which can be acceptable. The object size estimation

errors (Fig. 18) can be large for 15m/s own velocity and

are below 20% for 30m/s similarly to the car cases. The

majority of the forward distance errors (Fig. 19) is between

±10% which is better then for the car and is acceptable. The

majority of the vertical distance estimation errors (Fig. 20)

is between ±3m which is a really good result, but there are

outliers as large as 15m. Examining the data in details shows

that this is caused by the improper tracking of altitude by

the autopilot in some cases. There are transients which cause

unneccessary pitching motion and this leads to an uncertain

estimation of the vertical distance despite the ego motion

compensation (which is not perfect of course). After the

altitude stabilizes the vertical distance estimate converges

well to the real value, but this is too late in these cases,

the collision decision is done earlier.

Summarizing the results, the TTCPA and CPA estimates

are better then for the car and can be well used to decide

about the need for avoidance and design a safe avoidance

maneuver. The estimated object size, side and forward dis-

tance values are better then for the car but can only be

used as approximations showing the order of magnitudes of

these parameters. The excessive errors in the vertical distance

estimate are because of the pitching transient dynamics of

the aircraft in tracking the trajectory. After the transients the

results are acceptable so these parameters can also be used

if the aircraft is in steady trajectory flight.
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Fig. 9: Histogram of real TTCPA at decision for car (upper

for 15m/s lower for 30m/s Vo)

Fig. 10: Histogram of CPA ratios at decision for car (upper

for 15m/s lower for 30m/s Vo)

Fig. 11: Histogram of side distance estimation errors at

decision for car (upper for 15m/s lower for 30m/s Vo)

Fig. 12: Histogram of size estimation errors at decision for

car (upper for 15m/s lower for 30m/s Vo)

Fig. 13: Histogram of forward distance estimation errors at

decision for car (upper for 15m/s lower for 30m/s Vo)

Fig. 14: Histogram of vertical distance estimation errors at

decision for car (upper for 15m/s lower for 30m/s Vo)

Fig. 15: Histogram of real TTCPA at decision for tower

(upper for 15m/s lower for 30m/s Vo)

Fig. 16: Histogram of CPA ratios at decision for tower (upper

for 15m/s lower for 30m/s Vo)
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Fig. 17: Histogram of side distance estimation errors at

decision for tower (upper for 15m/s lower for 30m/s Vo)

Fig. 18: Histogram of size estimation errors at decision for

tower (upper for 15m/s lower for 30m/s Vo)

Fig. 19: Histogram of forward distance estimation errors at

decision for tower (upper for 15m/s lower for 30m/s Vo)

Fig. 20: Histogram of vertical distance estimation errors at

decision for tower (upper for 15m/s lower for 30m/s Vo)

IV. CONCLUSION

This paper made the first step towards the extension of the

author’s previous S&A method (considering aircraft intrud-

ers) into the direction of application for ground obstacles.

The previously derived formulae are extended to steady

ground obstacles. Then a software-in-the-loop (SIL) Monte-

Carlo test campaign is done considering a car and a tower

obstacle to show the capabilities of the developed method.

The time to closest point of approach estimation results

are really good the closest point of approach is usually

underestimated but by selecting a proper threshold it can

be well used to avoid dangerous (close) obstacles. The size,

side, forward and vertical distances of the obstacles can be

also estimated but their precision only make it possible to use

them as references for the order of magnitude of these values.

Future plans are to develop a proper avoidance strategy

considering also the precision of the estimated parameters.

After SIL testing real flight tests with a small UAV and

artifical ground obstacles is planned to be done.
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