
To be presented at IEEE Multimedia Signal Processing Workshop (MMSP), Vancouver, BC, Aug. 2018

De-sketching
Lior Bragilevsky

School of Engineering Science
Simon Fraser University
Burnaby, BC, Canada

lbragile@sfu.ca

Ivan V. Bajić
School of Engineering Science

Simon Fraser University
Burnaby, BC, Canada

ibajic@ensc.sfu.ca

Abstract—Many software applications exist for plotting graphs
of mathematical functions, yet there are none (to our knowledge)
that perform the inverse operation – estimating mathematical
expressions from graphs. Since plotting graphs (especially by
hand) is often referred to as “sketching,” we refer to the inverse
operation as “de-sketching.” As the number of mathematical
expressions that approximate a given curve can be quite large, in
this demo we restrict our attention to polynomials, and present
a deep model that performs de-sketching by finding the best
second-degree polynomial to fit the curve in the input image.
Currently, our trained model is able to provide reasonably accu-
rate estimates of polynomial coefficients for both synthetically-
generated and hand-drawn curves.

I. PROTOTYPE DESCRIPTION

Determining an equation for a graph would usually involve
reading off several points from the curve and then inputting
those values into an appropriate software for curve fitting. In
this work we developed and trained a deep neural network to
allow users to automatically “de-sketch” a graph of a function
and produce a mathematical expression that approximates the
function. Since the number of mathematical expressions that
could approximate a given curve is quite large, we restricted
our attention to second-degree polynomials over [−5, 5]. Our
model finds the best polynomial of the form p(x) = a2x

2 +
a1x+ a0 to fit the curve in the input image.

To tackle this task, we developed a deep model inspired by
the well-known VGG16 architecture. Our model contains 4
convolution-convolution-maxpooling (CCM) blocks, followed
by a fully connected layer that reduces to 3 nodes at the output,
each producing one polynomial coefficient. As a result, our
model generates second-degree polynomial coefficients for a
given input image. All convolution filter sizes were 3× 3 and
the number of filters used per layer doubled from 16 up to
128 as the depth increased. The CCM blocks used “ReLU”
activation, whereas the output layers used “tanh” activation to
produce real numbers in [−1, 1], which are then scaled by 2
to match the range of coefficient values for which the model
is trained, as described below.

The model was trained on 80, 000 synthetically generated
polynomial curves, where the coefficients were drawn ran-
domly and uniformly from [−2, 2]. Training images were
similar to those shown in Fig. 1. The loss function J was the
L1-norm between the true polynomial that generated the curve

This work was supported in part by the NSERC Grant RGPIN-2016-04590

Fig. 1. Synthetic test image prediction results

in the input image, p(x) = a2x
2+a1x+a0, and the polynomial

induced by the estimated coefficients, p̂(x) = â2x
2+â1x+â0:

J =

∫ 5

−5

|p(x)− p̂(x)| dx. (1)

The model was allowed to train for up to 250 epochs.
The loss function was continuously monitored for 20, 000
randomly chosen images from the training set and the model’s
weights were saved once it reached a minimum value. If
the loss function did not decrease from the minimum for 5
consecutive epochs, the training procedure was stopped.

Fig. 1 illustrates our model’s predictions for sample input
synthetic test images. The predicted polynomials are very close
to the ground truth in each case, with coefficient errors mostly
in the second decimal place.

Fig. 2 shows the results obtained on hand-drawn images.
In these cases, both the axes and the curves were drawn by
hand, and the images were taken by a smart-phone camera.
In these images there are no axes ticks, which makes it
impossible to accurately determine the axes intercept points.
Despite these challenges and non-uniform lighting, the model
gets the polynomial degree right, and even produces reasonable
first- and second-degree coefficients.

We plan to demonstrate the system at the conference. The
users will be able to draw a curve on a piece of paper, take a
photo of the drawing and feed it to the system, which will then
produce the estimates of the best-fit second-degree polynomial.

0.06, 1.60, 0.02 -0.02, -1.69, -0.13 1.61, -0.15, 0.02 -1.58, -0.69, -0.14

Fig. 2. Hand-drawn test image results (Coefficients displayed: â2, â1, â0)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Simon Fraser University Institutional Repository

https://core.ac.uk/display/159779929?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

	Prototype Description

