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Abstract: Effective sustainable forest management for broad areas needs consistent country-wide
forest inventory data. A stand-level inventory is appropriate as a minimum unit for local and regional
forest management. South Korea currently produces a forest type map that contains only four
categorical parameters. Stand height is a crucial forest attribute for understanding forest ecosystems
that is currently missing and should be included in future forest type maps. Estimation of forest
stand height is challenging in South Korea because stands exist in small and irregular patches on
highly rugged terrain. In this study, we proposed stand height estimation models suitable for rugged
terrain with highly mixed tree species. An arithmetic mean height was used as a target variable.
Plot-level height estimation models were first developed using 20 descriptive statistics from airborne
Light Detection and Ranging (LiDAR) data and three machine learning approaches—support vector
regression (SVR), modified regression trees (RT) and random forest (RF). Two schemes (i.e., central
plot-based (Scheme 1) and stand-based (Scheme 2)) for expanding from the plot level to the stand
level were then investigated. The results showed varied performance metrics (i.e., coefficient of
determination, root mean square error, and mean bias) by model for forest height estimation at
the plot level. There was no statistically significant difference among the three mean plot height
models (i.e., SVR, RT and RF) in terms of estimated heights and bias (p-values > 0.05). The stand-level
validation based on all tree measurements for three selected stands produced varied results by
scheme and machine learning used. It implies that additional reference data should be used for
a more thorough stand-level validation to identify statistically robust approaches in the future.
Nonetheless, the research findings from this study can be used as a guide for estimating stand heights
for forests in rugged terrain and with complex composition of tree species.

Keywords: forest stand height; plot-level to stand-level expansion methods; airborne LiDAR;
machine learning

1. Introduction

Sustainable forest management has been identified as a key part of one of the 17 Sustainable
Development Goals from the 2015 United Nations Sustainable Development Summit. Others have
mentioned the importance of sustainable forest management in association with climate change
mitigation, biodiversity, water resources, and the sustainable supply of forest products [1–5]. At the
government level, effective sustainable forest management for broad forest areas requires country-wide
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forest inventory data. A stand-level inventory is appropriate as a minimum unit for local and regional
forest management. In South Korea, stand-level forest type maps have been produced at a national
scale since 1972 to characterize the status of forests across the country. These maps have been widely
used to support various tasks such as generating forest statistics, forest-land management, fostering
forest resources, and forest protection. Since 2008, the scale of Korean forest type maps has been
enhanced from 1:25,000 to 1:5000. The attributes of the forest type maps consist of tree species, age,
diameter-at-breast-height (DBH), and crown density as categorical variables. Other nations have also
been producing forest type maps. For example, forest services in the United States and Canada generate
Vegetation Resources Inventory (VRI) maps with attributes recorded based on the interpretation of
aerial photos and ground samples. The thematic maps can contain various parametric information such
as cover pattern, crown closure, tree layer, vertical complexity, species composition, age, height, basal
area, density of living trees, dead tree density, confidence indices, and data source codes. The maps
provide these forest parameters as geospatial layers to facilitate monitoring of overall forest condition.
Finland produces forest thematic maps using multi-source data, which include forest inventory data,
satellite images, land-use maps, and digital elevation models. The thematic maps contain information
such as biomass, crown closure, stand-level mean DBH, stand height, basal area, and soil productivity.
Unlike the forest maps produced by other countries that include many properties, the forest type
maps in South Korea contain only four categorical parameters. Therefore, there is a strong need
to supplement the forest type maps of South Korea with additional forest information to enhance
monitoring and management of forest ecosystems. Among forest attributes, forest stand height is a
representative index of vertical forest structure that informs how an ecosystem works, including cycles
of carbon, water and nutrients [6]. In addition, it is a useful index to estimate forest stand quality, site
index, forest volume, and aboveground biomass.

In the context of remote sensing, Light Detection and Ranging (LiDAR), an active sensor that
can be used to obtain three-dimensional information of geographical features, has been widely used
for forest characterization. Advances in LiDAR technology make it possible to consistently and
semi-automatically extract forest parameters when compared to traditional photogrammetry whose
data quality depends on the scale and resolution of photographs, and the experience and skills of
the photographic interpreter. In particular, airborne LiDAR has been used as a robust data source for
obtaining forest inventory data [7–10]. The definition of canopy or stand height is a representative
height of the tallest tree stratum in a forest patch or stand [11]. Different from gridded forest patches,
a forest stand consists of adjacent trees with same tree species, age and DBH class distribution,
site quality, spatial arrangements, structure and conditions that are distinguished from neighboring
communities. Estimation of forest stand height using LiDAR data can be conducted using two types
of approaches: individual tree-based and plot-based approaches [12]. The individual tree-based
approach calculates forest stand heights by averaging tree heights extracted based on individual tree
crown delineation [13,14]. This approach works well over relatively flat and homogeneous forests,
but may not work well for rugged or heterogeneous areas [7]. The plot-based approach estimates
stand heights with various descriptive statistics at the plot level. Most previous studies modeled forest
stand heights based on the plot-based approach [15,16]. Some studies used linear regression to relate
field-surveyed stand/plot heights and LiDAR-based statistical variables. Means et al. [17] estimated
ground-based stand heights with airborne LiDAR-derived metrics using stepwise regression analysis.
The average maximum height, maximum height, average mean height, height percentiles, and
canopy cover percentiles were used as independent variables. The model accuracy for all 19 plots
showed coefficient of determination (R2) of 0.93 and root mean squared error (RMSE) of 3.4 m;
model accuracy for 11 old-growth plots showed an R2 of 0.98 and RMSE of 1.7 m. Similarly, other
studies used multiple regression analysis between field measurements and airborne laser data on
young forests, mature forests with poor site quality, and mature forests with good site quality [18–20].
The height percentiles, maximum values, mean values, and variations were used as independent
variables with R2 of about 0.8–0.95. Other recent studies estimated forest stand heights using linear
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regression with LiDAR data and optical satellite images. Donoghue and Watt [21] compared linear
regression-based stand height models with three different datasets: airborne LiDAR, Landsat ETM+
and IKONOS. Wulder and Seemann [22] used an empirical model to estimate airborne LiDAR-derived
stand heights from Landsat5 TM data after delineating forest stands with an image segmentation.
Mora et al. [23,24] estimated LiDAR-based stand heights with high resolution satellite images (i.e.,
QuickBird-2, Worldview-1) using diverse regression techniques including linear regression, k-nearest
neighbor, regression trees, and random forest. However, prior studies were generally carried out on
non-rugged terrain with relatively analogous tree species composition, which makes it difficult to
apply to mountainous forests in South Korea. Vega et al. [25] also described difficulty in extracting
tree biophysical parameters where complex forest terrains affect height normalization, which causes
distortions to the canopy height model (CHM). Khosravipour et al. [26] showed that tree top detection
on slope-distorted CHMs is strongly influenced by individual tree crown shape, which usually
depends on tree species. Korean forests have rugged terrain with small patches of tree species.
Therefore, there is a need for developing an improved model to estimate forest stand height under
such complicated conditions.

The primary goal of this research was to develop novel forest stand height estimation models
for rugged terrain with highly mixed tree species, considering their operational use and adding a
new attribute (i.e., stand height) to the Korean forest type maps. We extracted area-based descriptive
statistics of forest structure from airborne LiDAR data and then estimated forest canopy heights at the
plot level using three machine learning approaches—support vector regression, modified regression
trees, and random forest. We also proposed two approaches for expanding the plot level model to
estimate stand level forest height, which was validated using field survey data.

2. Data and Methods

2.1. Study Area

The study area is located on the southwestern region of Mt. Maehwa in Gangwon-do, South
Korea, and covers 2500 ha (centered at 37◦38′ N, 127◦50′ E) (Figure 1). The mountainous forest
has been designated as a government-owned sustainable forest management model since 2008.
The forest management model consists of four forest function types: timber production forest, forest
for conservation of water, living environment conservation forest, and disaster prevention forest.
The ratio of natural forest to planted forest is 54%. The dominant tree species in the study area are
Pinus koraiensis Siebold & Zucc., Larix kaempferi (Lamb.) Carr., Betula platyphylla var. japonica, Pinus
densiflora Siebold & Zucc., and varied broad-leaf species. The dominant low vegetation species are
saplings of Quercus mongolica Fisch. ex Ledeb., Rhododendron mucronulatum Turcz., Corydalis remota
Fisch. Ex Maxim., and Lindera obtusiloba Blume.

The study area is in the temperate mid-latitude zone, which is hot and humid in the summer
influenced by the North Pacific air mass, and cold and dry in the winter influenced by the Siberian
air mass. Compared to the east coast, the difference between summer and winter temperature at this
inland mountainous area is large. The annual mean temperature is 10.1 ◦C, January mean temperature
is −5.6 ◦C, and August mean temperature is 24 ◦C. The rainfall pattern shows topographic variation
and the annual mean precipitation is 1291.3 mm.
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Figure 1. Study area located on the southwestern part of Mt. Maehwa, Gangwon-do, South Korea. 
The right-bottom figure shows the field-survey plots (cyan points) with a radius of 11.3 m and forest 
type map (black line and gray line) with the digital terrain model (DTM) as a background. In addition 
to 42 field-surveyed plots, the two right-top figures show three field-surveyed forest stands denoted 
as ‘A’, ‘B’ and ‘C’, where all individual canopy trees were measured within the stands. 

2.2. Data 

Airborne LiDAR data were acquired during 4 to 17 September 2013 using a Leica ALS60 sensor 
(Leica Geosystems, Heerbrugg, Switzerland) (Table 1). The LiDAR data were collected with an 
average point density of 6.25 pts/m2 and neighboring flight lines overlapped by about 70%. Digital 
surface models (DSM) and digital terrain models (DTM) with spatial resolution of 0.25 m grid cells 
were made using the triangulated surface models and raster conversion in TerraScan Software 
(version 013, Terrasolid, Helsinki, Finland). A canopy height model (CHM) was created as the 
difference between the DSM and DTM. We filtered the CHM with a 5 m threshold to distinguish 
dominant trees from other shrubs and grasses. 

Table 1. Specifications and acquisition parameters of the airborne Light Detection and Ranging 
(LiDAR) sensor used in this research. 

Sensor Name Leica ALS60 
Laser pulse rate 85,600 Hz 

Scan field of view 25 degree 
Flying altitude 1250 m 
Swath width 554.24 m 

Flight line spacing 217.74 m 
Footprint diameter 0.29 m 

Average point density 6.25 pts/m2 
  

Figure 1. Study area located on the southwestern part of Mt. Maehwa, Gangwon-do, South Korea. The
right-bottom figure shows the field-survey plots (cyan points) with a radius of 11.3 m and forest type
map (black line and gray line) with the digital terrain model (DTM) as a background. In addition to 42
field-surveyed plots, the two right-top figures show three field-surveyed forest stands denoted as ‘A’,
‘B’ and ‘C’, where all individual canopy trees were measured within the stands.

2.2. Data

Airborne LiDAR data were acquired during 4 to 17 September 2013 using a Leica ALS60 sensor
(Leica Geosystems, Heerbrugg, Switzerland) (Table 1). The LiDAR data were collected with an average
point density of 6.25 pts/m2 and neighboring flight lines overlapped by about 70%. Digital surface
models (DSM) and digital terrain models (DTM) with spatial resolution of 0.25 m grid cells were
made using the triangulated surface models and raster conversion in TerraScan Software (version 013,
Terrasolid, Helsinki, Finland). A canopy height model (CHM) was created as the difference between
the DSM and DTM. We filtered the CHM with a 5 m threshold to distinguish dominant trees from
other shrubs and grasses.

Table 1. Specifications and acquisition parameters of the airborne Light Detection and Ranging (LiDAR)
sensor used in this research.

Sensor Name Leica ALS60

Laser pulse rate 85,600 Hz
Scan field of view 25 degree

Flying altitude 1250 m
Swath width 554.24 m

Flight line spacing 217.74 m
Footprint diameter 0.29 m

Average point density 6.25 pts/m2
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Three field surveys were conducted: 6–9 August 2013, 30 April 2014, and 19–21 May 2014. Field
data were measured at the plot level using circular plots with a radius of 11.3 m. Tree locations, tree
heights, representative tree species, and DBH were measured for a total of 42 plots. The 42 plots were
selected with stratified random sampling based on tree species DBH classes considering accessibility.
For each of 42 plots, approximately 5610 elevation cells (standard deviation of 750 cells) with 0.25 m
resolution were used to develop the plot height models after filtering shrubs and grasses (<5 m).
There were 9 dominant tree species in the sample plots (in decreasing order): Larix kaempferi (32.40%),
Pinus densiflora (29.70%), Pinus koraiensis (10.80%), Quercus mongolica (10.80%), Quercus variabilis Blume
(8.10%), Pinus rigida Mill. (2.70%), Quercus dentata Thunb. (2.70%), Carpinus laxiflora (Siebold & Zucc.)
Blume (1.40%), Platycarya strobilacea Siebold & Zucc. (1.40%). In addition, to validate the stand height
estimation models, three small stands (Stands A, B and C) were selected considering the dominant
tree species in the region and accessibility for sampling (Figure 1). We collected data for all dominant
and co-dominant trees within the three stands. The location of individual trees was calculated using
the azimuth and distance from the plot center to each tree. Tree heights were estimated using devices
called Haglof Vertex and TruPulse. Tables 2 and 3 show statistics for the sample plots and stands
including number of trees, mean DBH, mean tree height, and mean slope.

Table 2. Statistics from field-survey of 42 plots.

Number of Trees Mean Diameter at Breast Height
(cm)

Arithmetic Mean Height
(m)

Mean Slope
(◦)

Mean 27.60 24.61 16.13 24.42
Standard deviation 15.05 8.06 5.12 8.09

Table 3. Statistics from field-survey of three stands. Stand C has much lower canopy density than
stand A although they have similar mean diameter at breast height (DBH) and stand size. It is because
more than 50% of stand C consist of grasses.

Stand Number of
Trees

Mean Diameter at
Breast Height (cm)

Mean Tree
Height (m) Mean Slope (◦) Dominant Tree Species

A 88 26.57 16.32 17.11 Pinus koraiensis Siebold & Zucc.,
Populus nigra L.

B 47 34.31 20.34 16.82 Larix kaempferi (Lamb.) Carr.
C 14 28.10 19.96 25.35 Pinus koraiensis Siebold & Zucc.

The digital forest type map produced by the National Institute of Forest Science (NIFS) provides
forest status information including land use, forest type, forest physiognomy, tree species, age class,
DBH class, and crown cover. NIFS has produced 1:25,000-scale forest type maps since 1972, with
the 5th edition of this map series produced from 2006 to 2010. In addition, NIFS produced the first
1:5000-scale forest type map from 2009 to 2013. The 1:5000-scale forest type map was used in this study,
providing the forest type polygons shown in Figure 1. Among the attributes of the forest type map,
forest physiognomy and tree species are distinguished by an image interpretation system combining
digitized aerial photographs and field data. In the case of mixed forests, the mixed ratio is categorized
into ten classes while undistinguishable forest physiognomy is differentiated through comparison
with field data. The DBH is calculated using an empirical formula, which is based on the relationship
between DBH and the diameter of a crown estimated from stereo images of aerial photographs. DBH
values are then classified into four classes: under 6 cm, 6–16 cm, 18–28 cm, and over 30 cm. The age
class is identified using the tree height matrix composed of age class and tree species that is optimized
for the Korean forest environment. The age class for undesignated tree species in the tree height matrix
is filled using similar tree species in the matrix. The crown cover is classified into three classes—under
50%, 50–70% and over 70%—through visual interpretation of aerial photographs.
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2.3. Methods

Stand height is defined as the mean height or the top height of trees within a stand [12,27].
There are several ways for stand height calculation, which are widely used for forest inventory.
This study used the arithmetic mean height (Equation (1); preferable for forest inventory in South
Korea) of dominant and co-dominant trees for calculating stand heights, where hi indicates the i-th
dominant or co-dominant tree height, N is the number of dominant and co-dominant trees and HD is
the arithmetic mean height.

HD =
∑i hi

N
(1)

The proposed forest stand height estimation models in this study consist of two parts: (1) the
development of height estimation models at the plot level (Figure 2) and (2) expansion of the
developed models from the plot level to the stand level (Figure 3). First, the forest plot height
was empirically modeled using 20 input variables, which were extracted for the 42 field-surveyed
plots using the CHM (Table 4). The variables have been commonly used for extraction of forest
inventory data from LiDAR [10,12]. As the target variable, arithmetic mean heights at the plot
level were calculated from individual tree-based height data measured from field-surveyed plots
using Equation (1). Machine learning approaches, which have been used for various purposes in
remote sensing fields [28–35], were used to estimate the forest plot height from the 20 input variables.
In forestry-focused remote sensing, machine learning techniques have been commonly applied to
estimation of forest parameters such as biomass and leaf area index, tree species classification, and
individual tree characterization [36–38].

In this study, among many kinds of machine learning algorithms available, support vector
regression (SVR), modified regression trees (RT) and random forest (RF) were used for estimating forest
height at the plot level. SVR is a regression version of widely used support vector machines (SVM),
which is a supervised non-parametric statistical technique [39]. SVR/SVM have been known to have
powerful predictability, especially when training data are small [40]. SVR tries to find a hyperplane to
separate data to predict a target variable in the high-dimensional feature space transformed through
a kernel function [41,42]. The selection of a kernel function with appropriate parameters is crucial
for successful results. In this study, SVR was performed by using the libsvm open source library
(https://www.csie.ntu.edu.tw/~cjlin/libsvm/) in matlab [42,43]. We tested several widely used
kernel functions with parameter optimization using a grid search approach, and finally selected Radial
Basis Function (RBF) for the kernel function of the SVR model with the optimum parameters (i.e.,
gamma of 0.001953125 and the penalty of 2048).

A typical regression tree partitions input data into relatively homogeneous groups at nodes
through recursive binary splits to predict a target variable. In this study, a modified regression tree
(RT) approach based on Cubist software (RuleQuest, Pomona, Australia) was used [44]. Unlike typical
regression trees having constant values at final nodes, RT produces rules and their associated
multivariate regression equations to estimate the target variable. Rules generated from RT are
not mutually exclusive, and results are averaged when multiple rules apply to unknown samples.
RT provides information on the frequency of input variables as percentage used in the rules and
multi-variate equations, which can be used as relative variable importance. The more a variable is
used, the more important the variable. Because RT provides rules and multi-variate equations, it is
much easier to understand the results when compared to the typical regression trees or RF [32].

RF is an ensemble approach based on classification and regression trees (CART) [45]. RF adopts
two randomization processes to produce numerous independent trees (i.e., CART) to overcome
well-known limitations of CART (i.e., sensitivity of training data and overfitting). The two processes
are based on bootstrapping sampling: using a random subset of training samples for each tree and a
random subset of input variables for each node of a tree. The results from multiple trees (typically
500–1000) are then integrated to reach a solution through majority voting (or weighted voting) for

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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classification or averaging (or weighted averaging) for regression. Similar to RT, RF also provides
relative variable importance information using out-of-bag (OOB) data, which are not used in training
for each tree. When a variable is randomly perturbed from OOB data, the decrease of the accuracy
is calculated. The larger the decrease of the accuracy (mean decrease accuracy in percentage is typically
used) for a variable, the more important the variable. RF was carried out with the random forest
package in R statistical software (http://www.r-project.org). The RF was trained with default settings
(e.g., the number of variables per node = 6) except for the number of trees (i.e., 1000 trees). For more
information about the three machine learning algorithms, please see [42,44,46].

Table 4. Input variables of machine learning techniques for estimating forest stand heights.

Variable Type Variable Explanation Number of Variables

Height 10th to 100th percentiles with interval of 10 10
Mean, variance, skewness and kurtosis 4

Crown Geometric Volume (CGV) [10,47] 50th to 100th percentiles with the interval of 10 6

The machine learning models developed at the plot level were evaluated using the coefficient of
determination (R2) and the root mean square error (RMSE) through 10-fold cross-validation due to the
small number of samples. In addition, cross-validation mean bias (MB) was calculated to evaluate the
machine learning models. ANOVA tests were also conducted to see if there is any significant difference
between the three machine learning models in terms of estimation performance.

Since the mean height models were developed at the plot level, there is a need to expand these
machine learning-based plot height models into the stand-level. Næsset et al. [18–20] attempted
to expand plot-level models (i.e., mean tree heights and dominant heights) by averaging mean plot
heights in each stand. The mean plot heights were calculated using the plot-level model and aggregated
to a pixel size similar to the field-survey plots. Previous expansion methods, such as that reported by
Næsset et al. [18–20], were conducted on forest areas where the terrain is relatively flat and tree species
are homogeneous within stands (i.e., Picea abies Karst. and Pinus sylvestris L.). However, such an
approach would not work well to forests in South Korea because of the extreme variability of canopy
heights due to the complex terrain and the highly mixed tree species in relatively small, patchy stands.
In this study, we proposed two different schemes (Schemes 1 and 2) for expanding our plot-level
empirical models into the stand-level to estimate stand heights (Figure 3).

Scheme 1: A plot with a 11.3 m radius (same size as the surveyed plots) around the geometric
center of a forest stand (i.e., a central plot) is generated. Then, input variables, listed in Table 4, are
extracted from CHM within the central plot. Finally, the empirical plot-level models are applied to the
extracted input variables to estimate forest stand heights.

Scheme 2: The 20 input variables (Table 4) are extracted from CHM within a forest stand. Unlike
the height-based variables, crown geometric volume (CGV) variables should be calculated considering
the different areal scales between the plot and stand levels. Thus, the ratio of area between a plot and a
stand is multiplied to the stand-level CGV to match the spatial scales. The empirical plot-level models
are then applied to estimate forest stand heights based on the extracted variables.

The estimated stand heights over the study site were compared by model and scheme using R2

and root mean square difference (RMSD). ANOVA tests were also conducted to see if there is any
significant difference between each pair of estimated stand heights. The models were finally validated
against field-survey stand heights for three stands (A, B and C).

http://www.r-project.org
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Figure 3. The flow diagram of the proposed two schemes to expand the plot-level height estimation
models to the stand level. The 20 predictor variables, extracted for Schemes 1 and 2, were applied to
the models developed based on 42 plots (Figure 2). Scheme 1 extracted 20 variables from the canopy
height model (CHM) in a circular plot (radius = 11.3 m) with the geometric center of a forest stand.
Scheme 2 extracted the variables from CHM within a forest stand. The 1:5000 scale digital map of forest
stands was provided as polygon data by National Institute of Forest Service.

3. Results and Discussion

3.1. Comparison of Plot-Level Height Models

The arithmetic mean height was modeled at the plot level using SVR, RT and RF (Figure 4).
Three models were compared in terms of R2, calibration RMSE, cross-validation RMSE (CV RMSE),
and cross-validation MB. The SVR model resulted in R2 of 0.82, RMSE of 2.15 m, CV RMSE of 3.08 m,
and CV MB of −0.24 m. The RT model yielded the lowest CV RMSE (2.43 m) compared to the other
two models. On the other hand, the RF model showed the best calibration performance resulting in the
highest R2 value (0.93) and calibration RMSE (1.48 m) among the three machine learning algorithms.
However, the CV RMSE was the largest for the RF model, which implies an overfitting of the model
to the training data. RF is known not to be prone to overfitting especially when training sample
size is large [10,45]. The large difference between calibration and CV RMSEs by the RF model is
possibly due to the small training sample size (42 plots). While the RT model showed similar results
for calibration and cross-validation, it yielded the highest absolute value of CV MB, which indicates
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the underestimation of arithmetic mean heights at the plot level. The RF model produced the lowest
absolute value of CV MB, which implies that the estimation was relatively less biased than the other
two models. The ANOVA test results (all p values of the pairs of the models >0.05) showed that
there was no significant difference between the three models in terms of the performance estimating
arithmetic mean heights at the plot level.

Other researchers have attempted similar analysis under different forest conditions. Næsset [19]
modeled dominant height and mean height at plot level dividing forests based on age (young vs.
mature) and site quality (poor vs. good). Næsset [19] found that the mean differences between the
predicted and field-surveyed dominant height data ranged from −0.01 m to 0.03 m and their standard
deviations were 1.27 m–1.54 m. Yu et al. [16] compared forest attributes with area-based and individual
tree-based methods at plot level. Their mean height with area-based method showed relative RMSE
as 6.42% and R2 of 0.94. Although these results seem to be better than our results, the terrain in our
study is much more rugged and the plots have more diverse tree species. For example, the elevation
ranges are 70–120 m for [19] and 125–185 m for [16], while 145–751 m for our study site with the
maximum slope of 88.2◦. In addition, even the relatively homogeneous coniferous plots in our study
site include a few deciduous trees, which made it difficult to estimate the canopy height at the plot level.
Donoghue and Watt [21] found that a mixture of coniferous and deciduous trees within plots or stands
degraded the accuracy of forest canopy height estimation.

We also analyzed the input variable importance for RF and RT (Figure 5). The two machine
learning algorithms used the same input variables for modeling. The RF model showed a similar
pattern of variable importance for estimating arithmetic mean height. The 100th percentile, 90th
percentile, 80th percentile, kurtosis and variance of height highly contributed to the RF models, but
volume-related variables did not influence the models. The RT model used 10th percentile, 30th
percentile, 70th percentile of height, and kurtosis for developing the arithmetic mean height model.
Interestingly, for both RF and RT models, height-based variables contributed more than volume-based
variables, and the variance of height was one of the most contributing variables. This could be
explained through the work of Montealegre et al. [48], whose second figure shows the vertical
distribution of LiDAR point data of Aleppo pines under three height groupings: short, medium
and tall. They reported that the variance of the vertical distribution is larger for the taller Aleppo pines,
which implies that the variance of height is closely related to canopy height at a plot or stand level.
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Figure 4. Plot-level empirical model calibration and cross-validation results using three machine
learning algorithms. Low vegetation under 5 m were removed for calculating input variables. R2 means
the coefficient of determination, RMSE means the root mean square error, CV RMSE means the 10-fold
cross-validation RMSE, and CV MB indicates the mean bias of 10-fold cross-validation. (a) Arithmetic
mean height model with SVR (b) Arithmetic mean height model with RT (c) Arithmetic mean height
model with RF.
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3.2. Inter-Comparison of Stand-Level Height Models

We evaluated the relative performance of our models in terms of the three machine learning
algorithms and two expansion methods (i.e., Schemes 1 vs. 2) using 575 stands in the study area.
Figure 6 shows the comparison between the machine learning approaches when the expansion method
is fixed. Stand height models of arithmetic mean height (Figure 6) show an approximately linear
relationship between SVR, RT and RF. The estimated stand heights with the SVR-based model were
slightly higher than those with RT and RF (Figure 6a–d). The RT model produced relatively higher
arithmetic mean heights than the RF model, and the correlation between the heights by the two
models (Figure 6e,f) was not higher than those by the other comparisons by scheme (Figure 6a–d).
RMSDs between the models for Scheme 1 were relatively smaller than those for Scheme 2, which
implies that Scheme 1 might be more stable than Scheme 2. ANOVA test results (p-values > 0.05)
show that the estimated arithmetic mean heights at the stand level between the three models by
scheme are not significantly different except for the pair between the RT and RF models with Scheme 2
(p-value = 0.01) (Figure 6f).

Based on forest reports for the Maehwa mountain region and communications with forest
managers, it is expected that the typical range of dominant tree heights is between 10 m and 35 m.
Although it is not possible to quantitatively assess all of the stand-level heights estimated using the
proposed models, the SVR-based models tend to over-estimate the stand heights (Figure 6).

Since we trained the machine learning algorithms with plot-level input variables, there is a need to
compare whether the choice of expansion method impacts the estimation of stand heights. We explored
the difference in the results of the two different expansion schemes when the same machine learning
algorithm and stand height type were used. Most of the pairwise comparisons (Figure 7) show low R2

values, which indicate that there are weak relationships between Schemes 1 and 2. In addition, the
slopes of trend lines in Figure 7 are smaller than 1, suggesting that the estimated stand heights from
Scheme 1 tend to be slightly higher than those from Scheme 2. ANOVA test results (p-values < 0.01)
show that the estimated stand heights are significantly different between the two schemes regardless of
the model used, which might indicate that one scheme is more reliable than the other. The comparison
between the schemes is further examined using the comprehensive validation for the three selected
stands shown in the next subsection.
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3.3. Validation of Forest Stand Height Models

Field surveys of forest stands are typically time-consuming and require huge efforts over
large areas. We investigated three relatively small forest stands for exhaustive validation. Each stand
height was calculated using individual tree heights. We additionally compared the proposed
approaches to calculation of stand heights based on individual tree crown delineation. For delineating
individual tree crowns, we used the algorithm proposed in Fang et al. [7], which was developed
for the same study area. Table 5 summarizes the mean difference and the mean absolute difference
between forest stand height models (i.e., SVR, RT and RF) and ground reference data by scheme.
The stand height model with RT and Scheme 1 shows the lowest mean difference, and the model
with SVR and Scheme 2 shows the lowest mean absolute difference among the models for arithmetic
mean height. The models with the lowest mean difference and mean absolute difference of estimated
stand heights are also slightly lower than individual tree-based stand heights. This result is somewhat
consistent with Yu et al. [16] who showed relatively better accuracy for estimating mean height using
an individual tree-based approach than the area-based approach with airborne LiDAR data with
average LiDAR density of 2.6 pts/m2. However, Fang et al. [7] pointed out that the proposed crown
delineation approach used in this study worked better for relatively flat (e.g., slope < 20 degrees) plots
while having larger errors for rugged plots. Considering that the three stands used for validation
have moderately rugged terrain (with mean slopes of 16–25 degrees; Table 3), it seems reasonable that
both the individual tree-based method and some of the proposed approaches (e.g., Scheme 1 with RT)
produced similar results for the three stands. The individual tree-based approach resulted in high
errors in estimating canopy heights for 42 plots, especially those with rugged terrain often resulting
in overestimation up to 8.73 m. However, since only three stands (i.e., small sample size) were used
for stand-level validation of the schemes and models, it is not possible to draw a conclusion from this
case study. More stand-level samples with rugged terrain should be used for a thorough validation.

It is challenging to directly compare the results to other studies presented in the literature not
only because of the influence that different environmental characteristics have on the results, but
also because of the differences in data being applied. Nonetheless, our results are similar to previous
stand-level height estimation. For example, Ahmed et al. [49] modeled forest heights at the stand level
with Landsat time series images and airborne LiDAR data using multiple regression and RF. Their RF
models resulted in R2 of 0.88, RMSE of 2.39 m for mature forests, R2 of 0.79, RMSE of 3.52 m for young
forests, and R2 of 0.82, RMSE of 3.17 m for combined forests.

Table 5. Mean difference and mean absolute difference between stand height models and field-survey
stand heights (SVR: support vector regression, RT: regression tree, RF: random forests, Individual
tree-based: average of individual tree heights extracted based on the crowns delineated using the
method in [7], Scheme 1: central plot-based expansion, Scheme 2: stand-based expansion).

Mean Difference (Mean Absolute Difference)

Scheme\Model SVR RT RF Individual Tree-Based

Scheme 1 −0.29 m (3.43 m) 0.04 m (1.99 m) −0.94 m (3.22 m)
0.05 m (1.38 m)Scheme 2 −0.3 m (0.64 m) 1.09 m (1.89 m) 4.69 m (5.04 m)

3.4. Potentials and Limitations

The novelty of this study is that the stand height models were developed for areas with very
rugged terrain composed of highly mixed tree species. In particular, the comparison of the proposed
two expansion methods (Schemes 1 and 2) gives us an insight on how to conduct stand-level forest
height estimation from plot-level data and models for an operational purpose. The stand height map
for the whole study area is depicted in Figure 8a. Few prior studies verified forest stand heights with
field-survey data [18–20] and the method used by those studies was to calculate field-survey stand
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heights using sample plots systematically distributed in each stand. By contrast, we examined all trees
within three stands and used them for a stand-level validation of the proposed approaches.

However, this study has several limitations. First of all, due to small sample size in both plot-
and stand-level analyses (42 and 3, respectively), statistically robust approaches were not identified.
A more thorough plot- and stand-level validation should be conducted with more samples to further
improve the approaches. In addition, the generalization capability of the proposed approaches should
be further investigated for different forested areas. Based on the testing performed, it is not possible to
say that the proposed approaches would work for forests in the US or China.

A forest stand is defined as an adjoining community which has similar species composition,
structure, age class, size class, and site qualities. However, since forests in South Korea are very
heterogeneous, many deciduous trees are often found in coniferous stands and vice versa, which makes
it difficult to accurately estimate stand heights. In addition, it should be noted that field-surveyed tree
heights contain measurement errors especially for dense forests with rugged terrain.
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4. Conclusions

This study used airborne LiDAR data to estimate stand heights for forests with rugged terrain
and highly mixed tree species. To calculate stand heights, the arithmetic mean height was used.
Three machine learning algorithms were used for empirical modeling based on 20 statistical variables at
plot level. Then two expansion schemes (i.e., central plot-based expansion and stand-based expansion)
from the plot level to the stand level were examined. Plot-level models using SVR, RT and RF
algorithms were first developed with the results showing varied performance metrics (i.e., coefficient
of determination, root mean square error, and mean bias) by model for forest height estimation at the
plot level. There was no statistically significant difference in performance among the three machine
learning models based on the ANOVA test results (p-values > 0.05). The stand-level validation using
all tree measurements for the three selected stands showed varied results by scheme and model used,
which implies that more rigorous validation is required with more samples. Thus, it is not possible to
suggest a statistically robust method among the tested approaches that can be used to quantify stand
heights in forests with rugged terrain in South Korea. The proposed approaches should be further
investigated with more samples over other areas with complex forest and terrain conditions so that
they can be considered for use to operationally update stand-level forest inventories.
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46. Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions.

ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [CrossRef]
47. Chen, Q.; Gong, P.; Baldocchi, D.; Tian, Y.Q. Estimating basal area and stem volume for individual trees from

lidar data. Photogramm. Eng. Remote Sens. 2007, 73, 1355–1365. [CrossRef]
48. Montealegre, A.L.; Lamelas, M.T.; Riva, J.D.L.; García-Martín, A.; Escribano, F. Use of low point density

ALS data to estimate stand-level structural variables in Mediterranean Aleppo pine forest. Forestry 2016, 89,
373–382. [CrossRef]

49. Ahmed, O.S.; Franklin, S.E.; Wulder, M.A.; White, J.C. Characterizing stand-level forest canopy cover and
height using Landsat time series, samples of airborne LiDAR, and the Random Forest algorithm. ISPRS J.
Photogramm. Remote Sens. 2015, 101, 89–101. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/1961189.1961199
http://www.rulequest.com/
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.011
http://dx.doi.org/10.14358/PERS.73.12.1355
http://dx.doi.org/10.1093/forestry/cpw008
http://dx.doi.org/10.1016/j.isprsjprs.2014.11.007
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Data and Methods 
	Study Area 
	Data 
	Methods 

	Results and Discussion 
	Comparison of Plot-Level Height Models 
	Inter-Comparison of Stand-Level Height Models 
	Validation of Forest Stand Height Models 
	Potentials and Limitations 

	Conclusions 
	References

