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Abstract

Nav1.6 and Nav1.6 mediated resurgent currents have been implicated in several pain pathologies. 

However, our knowledge of how fast resurgent currents are modulated in neurons is limited. Our 

study explored the potential regulation of Nav1.6 mediated resurgent currents by isoforms of 

Fibroblast growth Factor Homologous factor 2 (FHF2) in an effort to address the gap in our 

knowledge. FHF2 isoforms colocalize with Nav1.6 in peripheral sensory neurons. Cell line studies 

suggest that these proteins differentially regulate inactivation. In particular, FHF2A mediates long-

term inactivation, a mechanism proposed to compete with the open-channel blocker mechanism 

that mediates resurgent currents. On the other hand, FHF2B lacks the ability to mediate long-term 

inactivation and may delay inactivation favoring open-channel block. Based on these observations, 

we hypothesized that FHF2A limits resurgent currents, whereas, FHF2B enhances resurgent 

currents. Overall our results suggest that FHF2A negatively regulates fast resurgent current by 

enhancing long-term inactivation and delaying recovery. In contrast FHF2B positively regulated 

resurgent current and did not alter long-term inactivation. Chimeric constructs of FHF2A and 

Navβ4 (likely the endogenous open channel blocker in sensory neurons) exhibited differential 

effects on resurgent currents suggesting that specific regions within FHF2A and Navβ4 have 

important regulatory functions. Our data also indicate FHFAs and FHF2B isoform expression are 

differentially regulated in a radicular pain model and that associated neuronal hyperexcitability is 

substantially attenuated by a FHFA peptide. As such, these findings suggest that FHF2A and 

FHF2B regulate resurgent current in sensory neurons and may contribute to hyperexcitability 

associated with some pain pathologies.
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INTRODUCTION

Voltage gated sodium channels (VGSC) selectively mediate the inward flow of sodium ions 

generating the rapid upstroke of the action potential (26, 41). As such alteration of sodium 

channel activity can be an underlying mechanism in neurological pathologies (31) including 

but not limited to pain (8, 10, 12, 61). Painful sensations can commonly arise from increased 

firing of peripheral sensory neurons in Dorsal Root Ganglia (DRG) and Trigeminal Ganglia 

(49). Adult DRG neurons normally express a variety of VGSC isoforms that can be 

distinguished based on their sensitivity to tetrodotoxin (TTX) inhibition resulting in two 

classes: TTX-Sensitive (TTXS: Nav1.1, 1.6, Nav1.7) and TTX-Resistant (TTXR: Nav1.8 

and Nav1.9) channels (4, 13–15, 25). Some of these VGSC isoforms can generate an 

unusual current known as resurgent current (6, 22, 28, 44, 55). Resurgent currents are 

generated when VGSCs open (upon membrane depolarization) and an open channel blocker 

out-competes the intrinsic mechanism of inactivation (fast inactivation) and blocks the 

channels in the open conformation (1, 21, 34). This open channel block mechanism 

temporarily terminates further sodium influx because as the membrane repolarizes the 

blocker unbinds and sodium influx resurges (46). Thus, resurgent currents generate a 

depolarizing drive during membrane repolarization that may enable the generation of 

another action potential (47). In this manner, resurgent currents contribute to increased 

neuronal activity.

Two types of resurgent currents have been identified in DRG neurons based on their 

kinetics: fast and slow. Under normal conditions, Nav1.6 predominantly mediates fast 

resurgent currents (6), whereas Nav1.8 mainly mediates slow resurgent currents (55). In this 

study we investigate how fast resurgent currents are modulated in DRG neurons. There is a 

breadth of evidence that implicates fast resurgent currents in increased neuronal activity and 

pain pathologies such as: radicular pain (71), oxaliplatin acute painful neuropathy (53), 

ATX-II induced pain (29), and Paroxysmal Extreme Pain Disorder (28, 56). Interestingly, 

recent studies using animal models of inflammatory, neuropathic and chemotherapeutic 

induced pain suggest Nav1.6 has an important role in mediating painful sensations (9, 38, 

52, 53, 68, 70). Together these findings suggest targeting Nav1.6 mediated activity, such as 

resurgent currents, may provide novel strategies for pain therapeutics. However, our 

understanding of how fast resurgent currents are modulated in DRG neurons is fairly 

limited. Sodium channel auxiliary subunits are potential candidates for resurgent current 

modulation. For example, we recently reported that sodium channel beta 4 subunit (Navβ4) 

is a major determinant of resurgent currents in DRG neurons (3). Our results were consistent 

with Central Nervous System (CNS) studies, which proposed the C-terminal sequence of 

this subunit acts as an open channel blocker (2, 21, 39). In particular, a region of 20 amino 

acids within the cytoplasmic C-terminal region (known as the β4 peptide) is predicted to be 

key for Navβ4 positive regulation of fast resurgent currents (57, 75). Inclusion of the β4 
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peptide in cell lines and neurons that do not endogenously generate resurgent currents 

evokes them (42, 51). Similar effects are observed in DRG neurons, where inclusion of the 

β4 peptide or expression of the full length Navβ4 protein evokes and enhances resurgent 

currents (64). In contrast, overexpression of a mutant form of Navβ4 in which key residues 

within the β4 peptide region were neutralized reduced resurgent current generation further 

confirming the importance of this region for resurgent current generation.

Fibroblast Growth Factor Homologous Factors (FHF1–4 also known as FGF11–14) are 

another family of auxiliary proteins that recent studies suggest regulate resurgent currents in 

CNS neurons (57, 75). Contrary to their homologue counterpart, FHFs are not secreted and 

function independent of fibroblast growth factor receptors (42, 51). Thus, FHFs are 

intracellular signaling proteins that have multiple interacting partners including microtubules 

(64), kinases (62), scaffolding proteins (50, 51), nuclear factors (30), calcium channels (74) 

and VGSCs (19, 77). FHF interaction with VGSC can alter the biophysical properties of 

activation, inactivation and current density (19, 43). Adult DRG neurons can express a 

variety of FHF isoforms including FHF1, FHF2 and FHF4 (27, 35, 48, 63, 77). Each FHF 

gene can result in different isoforms through alternative splicing and promoter usage 

resulting in distinct N-terminal sequences (40). “A” and “B” isoforms have conserved core 

domains that enable them to bind to the C-terminus of sodium channels (18, 36, 58, 60).

FHF “A” isoforms have two distinct features: 1) a long N-terminal sequence and 2) a 

bipartite nuclear localization signal (NLS), which may be active or inactive depending on the 

cell background (54). FHFAs unique N-terminus expresses a peptide sequence (which is 

highly conserved between all FHFAs) that may interact with VGSC channels and induce 

long-term inactivation (16). This long-term inactivation particle competes with the intrinsic 

mechanism of inactivation (fast inactivation). Open channel block, which mediates resurgent 

currents, also competes with fast inactivation (34). Based on these observations, Goldfarb et 

al. (2012) proposed that long-term inactivation might compete with open-channel block (20). 

In a Nav1.5 cell line addition of long-term inactivation peptide reduced β4-peptide mediated 

resurgent currents supporting the possibility that these particles compete with each other 

(57). In contrast, FHF “B” isoforms do not mediate long-term inactivation but may alter 

voltage dependence and kinetics of inactivation in ways that likely favor open channel block 

(19). For example FHF4B in Purkinje neurons increased resurgent currents by slowing the 

rate of inactivation and shifting the voltage dependence of inactivation to positive potentials 

increasing the probability of binding for the endogenous open channel blocker (75). It is 

important to note that not all FHF isoforms are reported to have the same effect with all 

VGSC isoforms. For Nav1.6, heterologous co-expression of FHF2 and FHF4 isoforms 

consistently caused a shift in the voltage dependence of inactivation to positive potentials, 

whereas, differential effects were observed in current density depending on VGSC isoform 

and cell background. In ND7/23 cells FHF2 isoforms exhibited differential effects in 

response to trains of stimulation. FHF2A caused accumulation of inactivation at all 

frequencies due slowing recovery from inactivation, whereas, FHF2B protected the channel 

from inactivation at high frequencies with no change in recovery (48, 63). In this study, we 

investigate the role of FHF2 isoforms (also known as FGF13) in regulating fast resurgent 

currents because they have been shown to co-localize with Nav1.6 (the main carrier of fast 

resurgent current) in DRG neurons. Therefore we hypothesized that FHF2A inhibits fast 
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resurgent currents in sensory neurons through long-term inactivation. In contrast, FHF2B 

lacks the ability to mediate long-term inactivation and may alter inactivation favoring open 

channel block similar. Therefore, we hypothesized that FHF2B increase resurgent currents 

by delaying inactivation.

Our results show that FHF2A negatively regulates resurgent currents and enhances long-

term inactivation, whereas, FHF2B positively regulates resurgent currents and does not alter 

long-term inactivation. Data obtained from chimeric constructs of FHF2A and Navβ4 

provided insight into the importance of FHF2A’s long-term inactivation particle and the 

Navβ4 open channel blocker sequence for the direction (positive versus negative) of 

resurgent current modulation. In neurons harvested from animals with localized 

inflammation of the DRG, we observed reduced FHFAs’ expression whereas FHF2B’s 

expression was enhanced. Our findings suggest that this differential modulation of FHF2A 

and FHF2B could contribute to enhanced resurgent currents and result in sensory neuron 

hyperexcitability. Interestingly, neuron hyperexcitability associated with localized 

inflammation of the DRG was substantially reduced by FHFA peptides that induce long-

term inactivation. Overall our data indicate that FHFs are important regulators of VGSC 

activity in sensory neurons and suggest that alterations in FHF2A and FHF2B expression 

likely contribute to changes in nociception and pain.

METHODS

cDNA constructs

These studies used cDNA constructs of sodium channel auxiliary subunits, FHF2A, FHF2B 

and chimeric constructs of FHF2A and Navβ4. All constructs were tagged at the C-terminus 

with photostable monomeric Turquoise2 (pmTurquoise2) to verify expression. To generate 

the FHF2A and FHF2B tagged constructs, the coding sequence corresponding to mouse 

FHF2A (NP_034330.2) and human FHF2B (NP_378668.1) were synthesized and purchased 

from Genscript (Piscataway, NJ). Mouse FHF2A protein is 99.56% identical to human 

FHF2A (NP_004105.1) and is predicted to be 100% identical to rat FHF2A (NC_005120.4). 

Human FHF2B protein is 99.48% identical to mouse (NP_001277344.1) and rat FHF2B 

(NP_445880.1). The FHF2A sequence was cut from a pUC57 vector and inserted into 

pmTurquoise2-N1 vector with HindIII/KpnI restriction enzymes. The FHF2B sequence was 

cut from pcDNA3.1 (+) vector and inserted into pmTurquoise2-N1 vector with HindIII/

BamHI restriction enzymes. The sequences were moved in-frame by site directed 

mutagenesis (Quikchange XL II Site Directed Mutagenesis kit, Agilent Technologies).

The chimeric constructs of FHF2A and Navβ4 were designed in-house by replacing the 

long-term inactivation particle sequence (AAAIASSLIRQKRQAREREK, 20 amino acids 

(16)) with the Navβ4 open-channel blocker sequence (KKLITFILKKTREKKKECLV, 20 

amino acids (33)) to generate the F2A(β4) construct. Conversely, the open channel sequence 

in rat Navβ4 (NP_001008880.1) was replaced with the long-term inactivation particle of 

FHF2A to generate the (β4)F2A construct. The full chimeric sequences were synthetically 

made and purchased from Genscript (Piscataway, NJ). The F2A(β4) and (β4)F2A sequences 

were cut from the pUC57 vector and sub-cloned into pmTurquoise-N1 with NheI/XhoI 
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restriction enzymes. To move the sequences in frame with the fluorescent protein the stop 

codon was mutated to a glycine residue using site-directed mutagenesis.

To study Nav1.6 in isolation from endogenous TTXS channels we used a Nav1.6 TTXR 

construct previously described in (44). Briefly, the sequence corresponding to human Nav1.6 

protein (NP_055006.1) was codon-optimized and purchased from Genscript (Piscataway, 

NJ). The sequence was then sub-cloned into pcDNA3.1 (+) with KpnI/XbaI restriction 

enzymes. The Nav1.6 sequence was then modified with site directed mutagenesis to confer 

high resistance to TTX by converting tyrosine residue 371 to serine as previously described 

(24, 32). The resulting construct was named Nav1.6r. Additionally, we knocked down 

endogenous TTXR Nav1.8 channels with a small hairpin RNA (shRNA) plasmid to aid in 

the isolation of Nav1.6r currents. The Nav1.8 shRNA-IRES-dsRED plasmid encoded for 

Nav1.8 shRNA sequence (targeting sequence, GATGAGGTCGCTGCTAAG, (37) and an 

internal ribosome entry site for the translation of fluorescent protein marker dsRed (IRES-

dsRED) as previously described (3, 28).

Cell culture

DRG neurons were obtained from adult male Sprague Dawley rats. Rats were euthanized by 

CO2 exposure and secondary decapitation. The spinal column was then removed and DRG 

were harvested from the lumbar to cervical region. The nerve processes were cut from the 

excised ganglia. Ganglia were then digested in Dulbecco’ modified Eagle’s Medium 

(DMEM, Fisher Scientific) containing collagenase (1.25 mg/mL) and neutral protease (0.78 

mg/mL) for 45 minutes at 37 °C. Subsequently, the digested ganglia were centrifuged at 

1000rpm for five minutes. Digestion media was aspirated and replaced with 10% Fetal 

Bovine Serum (FBS, Hyclone) DMEM (Invitrogen) and ganglia were mechanically 

triturated with sequentially smaller glass pipettes. Triturated ganglia were spun again at 700 

rpm for five minutes. Media was aspirated and replaced with fresh 10% FBS DMEM media. 

Aliquots of cell suspension (~100uL) were loaded unto glass coverslips coated with poly-D-

lysine and laminin. After 10 minutes, cells settled and 500uL of 10% FBS DMEM was 

added to each well. For electrophysiological experiments with transfected neurons, the 10% 

FBS DMEM media was supplemented with mitotic inhibitors, 5-fluoro-2-deoxyuridine 

(50uM, Sigma Aldrich) and uridine (150uM, Sigma Aldrich), to prevent overgrowth of the 

supporting cells. Dissociated cultures were maintained at 37°C in a humidified 95% air and 

5% CO2 incubator. Media was changed every two days.

For Localized Inflammation of the DRG (LID) experiments, L4 and L5 ipsilateral DRG 

were excised from sham operated rats and inflammation induced rats at post-operative day 5. 

The above dissociation protocol and culture was followed with the exception of the digestion 

time, which was decreased to 28 minutes. Indiana University School of Medicine 

Institutional Animal Care and Use Committee approved the animal protocols described 

above.

Surgical procedure for localized inflammation of the DRG

Localized inflammation of the DRG was used as a model of radicular pain as previously 

discussed in (76) and described in (66). Adult male Sprague Dawley rats under isoflurane 
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anesthesia were used for these procedures. After deep anesthesia was verified, an initial 

incision on the back near the spinal column was made from L3–S1 to expose and visualize 

the superficial area of the spine. Then, a second deeper incision was made on one side of the 

animal approximately 1mm from the center of the spine from L4 to S1. Paraspinal muscles 

near L4/L5 were carefully teased apart until intervertebral foramen could be visualized using 

the transverse processes, ilium and dorsal/ventral ramus as guides. Aliquots of 10uL 

containing zymosan diluted in incomplete Freud Adjuvant (2mg/mL) were injected above 

L4 and L5 DRG, through a needle inserted close to the DRG through the intervertebral 

foramen. The needle was bent in a 90 degree angle ~2 mm from the tip for easier access and 

was left for two minutes after injection to prevent leakage. After injection, the area was 

sutured by layers. Sham operated animals were used as a control; the above procedure was 

followed with the exception of zymosan injection. Indiana University School of Medicine 

and University of Cincinnati Institutional Animal Care and Use Committees approved the 

surgical procedure described.

Behavioral measurements

Mechanical sensitivity was tested by applying a series of von Frey filaments to the heel 

region of the paws on animals with L5 localized inflammation, using the up-and-down 

method (5). A cutoff value of 15 grams was assigned to animals that did not respond to the 

highest filament strength used. A fine wisp of cotton was stroked mediolaterally across the 

plantar surface of the hindpaws to score the presence or absence of a brisk withdrawal 

response to a normally innocuous mechanical stimulus (light touch-evoked tactile allodynia). 

This stimulus does not evoke a response in normal animals. Cold sensitivity (cold allodynia) 

was scored as withdrawal responses to a drop of acetone applied to the ventral surface of the 

hind paw. When observed, responses to acetone or light brush strokes consisted of several 

rapid flicks of the paw and/or licking and shaking of the paw; walking movements were not 

scored as positive responses. Hypersensitivity to thermal (heat) stimuli was not examined 

because we have previously observed that this is little affected by LID (72). The tester was 

blinded as to the sham or LID status of the animals. All data presented are from the 

ipsilateral side; in this model the contralateral side shows little or no hypersensitivity in any 

of the tests used (data not shown). Behavioral time course data were analyzed using two-way 

repeated measures ANOVA with Bonferroni post hoc test to determine on which days 

experimental groups differed. The experimental protocol was approved by the Institutional 

Animal Care and Use Committee of the University of Cincinnati.

Immunocytochemistry

To study the expression pattern of FHF2A and FHF2B after inflammation, L4 and L5 

ipsilateral DRG ganglia were harvested and cultured from sham operated and inflammation 

induced animals at post-operative day 5. DRG neurons were fixed after 24 hours in culture, 

permeabilized, blocked and treated with antibodies in the following manner: Cells were 

fixed with 4% paraformaldehyde (0.1 M phosphate buffer, pH 7.4) for 20 min at room 

temperature, washed with phosphate buffered saline (PBS), permeabilized in 1% Triton 

X-100 in PBS for 20 min at room temperature, washed with PBS, blocked for 2 h (10% 

normal goat serum, 0.1% Triton X-100 in PBS) at room temperature, washed with PBS, 

incubated in primary antibodies diluted in blocking solution overnight at 4°C, washed with 
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PBS and incubated with secondary antibody in blocking solution for 2 h at room 

temperature. Primary antibodies used were Anti-Pan-FHF-A (1:200, Clone N235/22, UC 

Davis/NIH NeuroMab Facility) and monoclonal Anti-FGF13/FHF2.B (1:200, Clone 

N225A/10, UC Davis/NIH NeuroMab Facility). Secondary antibody used was Alexa Fluor® 

488 Goat Anti-Mouse IgG (Molecular Probes, Life Technologies) at 1:750 concentration. 

Coverslips were mounted unto microscope slides with Prolong Gold Antifade (Molecular 

Probes). DRG neurons were imaged using Axio Observer Z1 Widefield Microscope with a 

20X objective (ZEISS Microscopy). Images were analyzed using NIS Elements Advance 

Research (Nikon®) software by defining each cell as a region of interest and quantifying the 

mean intensity signal for FHF2A and FHF2B. The mean intensity signal was compared 

between sham and LID groups using Student’s t-test. Quantification experiments were 

carried out independently at least five times; more than 1000 cells were counted for each 

condition.

Recombinant Expression in DRG neurons

DRG neurons were transiently co-transfected with Nav1.6r, tagged auxiliary subunit and 

Nav1.8 shRNA-IRES-dsRED using the Helios Gene Gun (Bio-Rad Laboratories) 36–48 

hours after dissociation in 2:1:1 ratio respectively. As a negative control, pmTurquoise 2 (tag 

only) was co-transfected instead of the auxiliary subunits. For peptide studies, only Nav1.6r 

and Nav1.8 shRNA-IRES-dsRED were co-transfected. Expression of the Nav1.6r construct 

with Nav1.8 shRNA allowed us to study the modulation of Nav1.6r by auxiliary subunits in 

isolation from endogenous channels as previously described (3, 28). Although endogenous 

TTXR Nav1.8 channels run down in culture (17, 28), by using the Nav1.8 shRNA-IRES-

dsRED plasmid we further decreased Nav1.8 to minimize contamination. TTXR Nav1.9 

currents are not observed under our recoding parameters as previously reported (7, 11). 

Endogenous TTXS channels were blocked with 500nM.

Electrophysiology and Data Analysis

General Setup—Whole-cell patch-clamp recordings obtained with a HEKA EPC-10USB 

amplifier. Data were acquired on a Windows-based Intel 2 Core computer using the 

Patchmaster program (version 2X65; HEKA Elektronik). Fire polished glass electrodes 

(0.7–1.1 MΩ) were fabricated using a P-97 puller (Sutter), and tips were coated with dental 

wax to minimize capacitive artifacts and enhance series resistance compensation. The offset 

potential was zeroed prior to seal formation. Capacitive transients were canceled using 

computer-controlled circuitry; C-fast for pipette-capacitance correction and C-slow for cell-

capacitance compensation. Voltage errors were minimized by series resistance compensation 

>75%. Membrane currents were sampled at 20 KHz and filtered online at 10 KHz. Leak 

currents were linearly cancelled by P/-5 subtraction (pulse/number). Whole-cell patch-clamp 

recordings in voltage clamp mode were obtained 2–3.5 days after transfection at room 

temperature (~22 °C). Cells examined were selected based on fluorescence of Turquoise 

(corresponding to auxiliary subunit) and dsRed (corresponding to Nav1.8 shRNA) signal. 

For peptide studies, the dsRed signal only was used as selection criteria since no auxiliary 

subunits were co-transfected. Cells with residual Nav1.8 current greater than 3% of the peak 

current of Nav1.6r were excluded. Nav1.8 contamination was determined by examining the 

voltage-dependence of steady-state fast inactivation as described previously (3). Whole-cell 
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voltage clamp recordings were started five minutes after the whole-cell configuration was 

obtained.

For current-clamp recordings, DRG neurons were allowed to settle at their resting potential. 

Spontaneous activity was defined as firing observed during 2 minutes with zero current 

injection. DRG neurons were examined for evoked activity with a series of 2 s current 

injection from 100 pA to 500 pA in 100 pA increments. For evoked activity, the maximum 

number of action potentials elicited from each cell was determined as the maximum action 

potentials elicited from current injections from 0 to 500 pA. Electrophysiology data were 

analyzed using the software programs Origin (version 8, OriginLab), Fitmaster (v2X65, 

HEKA Electronik), Excel (Microsoft) and final graphs were made in Prism (version 6, 

GraphPad).

Recording solutions—The electrode solution consisted of 140 mM CsF, 10 mM NaCl, 

1.1 mM EGTA, and 10 mM HEPES (adjusted to pH 7.3 with CsOH). The extracellular 

bathing solution contained 130 mM NaCl, 30 mM TEA chloride, 1mM MgCl2, 3 mM KCl, 

1mM CaCl2, 0.05 mM CdCl2, 10 mM HEPES and 10 mM D-glucose (adjusted pH 7.3 with 

NaOH). For current-clamp recordings, the pipette solution contained 140 mM KCl, 0.5 mM 

EGTA, 5mM HEPES and 3 mM Mg-ATP (adjusted pH 7.3 with KOH). The extracellular 

solution contained 140 mM NaCl, 3 mM KCl, 2 mM MgCl2, 2 mM CaCl2 and 10 mM 

HEPES (adjusted pH 7.3 with NaOH). Recording solutions were adjusted using D-glucose 

to maintain physiological osmolarity values.

Peptide Experiments—To study the effects of FHF2A`s long-term inactivation particle, 

we used a peptide corresponding to amino acids residues 2–21 as reported in (16). The 

peptide, FHFA, was modified with an N-terminal acetyl group and C-terminal hydroxyl 

group yielding the following sequence: Ac-AAAIASSLIRQKRQAREREK-OH (purchased 

from Biopeptides Co). The FHFA peptide was added to the electrode solution at a 1mM 

concentration. Control groups included either having no peptide added to the intracellular 

solution or adding an inactive mutant FHFA-5Q peptide (Ac-

AAAIASSLIRQQQQAQEQEQ-OH from Biopeptides Co) to the electrode solution at a 

1mM concentration.

Steady-State Activation—Current-voltage (I/V) relationships were determined by steps 

of 50 ms, from −100 to + 80mV, in 5 mV increments. The voltage-dependence of activation 

(m∞) was determined from sodium currents elicited with I/V protocol from voltages of −100 

mV to 0 mV. Conductance (G) values were calculated at each test potential (Vm) using the 

reversal potential (Vr) with following equation, . Data was then normalized to 

the peak conductance, plotted as a function of voltage and fitted using single-phase 

Boltzmann distribution equation, . The midpoint points (V1/2) 

and slope factor (k) were obtained for each cell.
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Steady-State Inactivation—Steady-state fast inactivation (h∞) was assayed with 500 ms 

pre-pulses from −130 to 5 mV (in 5 mV increments) followed by a 20 ms test pulse to −20 

mV to assess channel availability. Current Peak currents at each pre-pulse were normalized 

to the overall peak current. Data of normalized currents as a function of voltage was fitted 

with the single phase Boltzmann distribution, , from which the 

midpoint points (V1/2) of steady-state fast inactivation and slope factor (k) were obtained for 

each cell. Additionally, current densities were estimated for each individual recording by 

dividing the peak transient currents obtained from h∞ by the membrane capacitance.

Recovery from Inactivation—Recovery from Inactivation was assayed with a two-pulse 

protocol that depolarized the membrane to −20 mV for 20 ms from holding potential 

(−100mV). The time between the pulses was increased by an additive 2n factor, where 

n=sweep number. At each time point the peak current measured in the second pulse (I2) was 

normalized to the peak current measured in the first pulse (I1), yielding fraction available. 

Fraction available  was plotted as a function of time (t) and fitted to a double 

exponential equation, , from which we obtained 

the recovery time constants for the fast (τfast) and slow component (τslow) and compared 

between groups.

Accumulation of long-term inactivation—Cells were assayed with a four-pulse 

protocol, as previously described (16), to measure long-term inactivation. Each pulse 

depolarized the membrane to −20 mV for 16ms from a holding potential of −90mV with 

−90mV 40 ms interpulse recovery phases between each depolarization pulse. Peak current 

measured at each pulse was normalized to overall peak current to yield percentage of sodium 

channels available. The % of channels available was plotted as a function of depolarization 

cycle (i.e. pulse number).

Resurgent Current—Cells were assayed with a two-pulse protocol that initially 

depolarized the membrane to +30 mV for 20 ms from the holding potential (−100mV), 

followed by repolarizing voltage steps from +15 mV to −80 for 100 ms in −5 mV increments 

to test for resurgent currents; cells were then returned to their holding potential (−100mV). 

Resurgent currents display unique characteristics of slow onset and slow decay along with a 

non-monotonic I/V relationship. Currents that did not meet these criteria were classified as 

negative for resurgent currents. Based on these criteria, the percentage of DRG that were 

positive/negative for detectable resurgent current was quantified for each condition. 

Resurgent current amplitudes were measured after 3.0 ms into the repolarizing pulse to 

avoid contamination from tail currents. Peak resurgent current amplitude at each test 

potential was normalized to peak transient current (obtained from the h∞ protocol) and 

expressed as a percentage of peak transient current. Normalized resurgent current amplitude 

was plotted as a function of voltage.
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Statistics

Data are presented as mean ± standard error of the mean (SEM). The data were tested for 

Gaussian distribution fit with D’Agostino & Pearson omnibus normality test. Data that fit 

Gaussian distribution were compared with parametric test, Student’s t-test at a 95% level of 

confidence (α=0.05). Data that did not fit Gaussian distribution were compared with a non-

parametric Mann-Whitney Test with 95% level of confidence (α=0.05). The Chi-square test 

(X2 test) was used to compare the frequency distribution of resurgent current positive/

negative neurons and repetitive action potential firing between groups at a 95% level of 

confidence (α=0.05).

RESULTS

Biophysical Properties of Nav1.6r with FHF2A and FHF2B

We first examined if in DRG neurons FHF2A could mediate the characteristic long-term 

inactivation that has been reported in other cells with FHFAs variants (16, 48). Primary 

cultured DRG neurons were biolistically co-transfected with Nav1.6r and tagged-FHF2A or 

tagged-FHF2B. As a negative control, tag only (pmTurquoise2; fluorescent protein) was 

transfected instead of a FHF subunit. Whole-cell voltage-clamp recordings of isolated 

Nav1.6r were obtained by pharmacological (addition of 500 nM TTX) and genetic 

(Nav1.8shRNA; see Methods) inhibition of endogenous DRG sodium currents. Long-term 

inactivation was measured using a four-pulse protocol consisting of depolarizations to 

−20mV for 16ms with 40ms interpulses at −90 mV as described by Dover et al, 2010 (16). 

Representative traces obtained with this long-term inactivation assay are shown in Fig. 1a 

for each group. Overexpression of FHF2A increased accumulation of Nav1.6r in long-term 

inactivated states, consistent with previous reports (16, 48). FHF2A progressively decreased 

Nav1.6r availability with each depolarization cycle relative to control (Fig. 1b, minimum 

sodium channel availability p p<0.0001: FHF2A 72 ± 3%, n=18; Control 90 ± 2%, n=28), 

whereas, FHF2B did not (p=0.62, FHF2B 91 ± 2%, n=13).

We also examined how FHF2A and FHF2B alter other biophysical properties of Nav1.6r in 

DRG neurons since in different cell backgrounds FHFs’ interaction with VGSCs have been 

reported to alter current density, inactivation, activation and recovery as previously discussed 

(43). Current-voltage (I/V) relationship was determined with a single pulse protocol that 

ranged from −100 to 80mV for 50ms. Using the I/V protocol we quantified peak current 

density and activation. Overexpression of FHF2A or FHF2B did not alter peak current 

density of Nav1.6r relative to control (Table 1, p=0.32 and p=0.37 respectively). FHF2A did 

shift the voltage dependence of activation to more positive potentials (Fig. 1c, p=0.0063), 

whereas FHF2B did not, relative to control (Table 1, p=0.50). Steady-state inactivation was 

assayed by conditioning the cells with a pre-pulse that ranged from −130 to 5mV for 500ms 

followed by a test pulse to −20mV for 20ms. Consistent with previous reports (48, 59, 60, 

63), FHF2A and FHF2B shifted the voltage dependence of inactivation to more depolarized 

potentials (Fig. 1d, p=0.0013 and p=0.026 respectively). Recovery from inactivation was 

assayed with a two-pulse step protocol that depolarized the membrane to −20mV for 20ms 

with increasing time between pulses (recovery phases). Fig. 1e shows that FHF2A slowed 

recovery from inactivation (Table 1; τfast, p=0.16 and τslow, p=0.012), whereas, FHF2B 
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enhanced recovery from inactivation relative to control (Table 1; τfast, p<0.0001 τslow, 

p=0.03). Table 1 shows a summary of recovery, inactivation, activation and current density 

data.

Differential modulation of fast resurgent currents by FHF2A and FHF2B

We next investigated resurgent current modulation by these FHF2 isoforms. To do so we 

used a two-pulse protocol that initially depolarized the cell membrane to 30mV for 20ms 

followed with a series of repolarization pulses from +15 to −80 mV for 100ms. Resurgent 

current amplitudes were normalized to classic sodium peak current (maximum current 

obtained from the steady-state inactivation protocol) and expressed as percentage of peak 

current. Representative traces of resurgent currents are shown in Fig. 2a for each group. 

Overall FHF2A reduced the fraction of resurgent current positive neurons (X2 test, p=0.039), 

whereas FHF2B did not, relative to control (Fig. 2b, p=0.60). FHF2A also reduced resurgent 

current amplitude relative to control (Fig. 2c Peak Resurgent Current Amplitude p=0.0021: 

FHF2A 0.371 ± 0.21%, n=18; Control 1.14 ± 0.27%, n=29). FHF2B exhibited the opposite 

effect, doubling peak resurgent current amplitude relative to control (p=0.0034: FHF2B 2.41 

± 0.22%, n=13).

FHFA peptide replicates long-term inactivation effects and reduced Nav1.6r mediated 
resurgent currents

FHF2A has two known potential interactions that might contribute to Nav1.6r modulation: 

1) binding to the C-terminal of sodium channels and 2) long-term inactivation particle 

binding (presumably to the inner pore region). We hypothesized that FHF2A’s long-term 

inactivation particle is the main contributor for the observed negative regulation of fast 

resurgent currents. To explore this possibility, we used a peptide (FHFA peptide) 

corresponding to amino acid residues 2–21 in FHF2A protein, previously identified as the 

long-term inactivation particle (16). FHFA peptide (1mM) was added to the internal 

recording solution as described by Dover et al, 2010. DRG neurons were transfected with 

Nav1.6r and recombinant currents were isolated as described in the methods section. Voltage 

clamp recordings were obtained five minutes after dialysis of the internal solution in the 

presence or absence of the peptide. Using the protocols previously described we examined 

current density, activation, inactivation, recovery, long-term inactivation and resurgent 

currents. Representative traces of long-term inactivation test are shown in Fig. 3a–b. Dialysis 

of the FHFA peptide greatly increased accumulation of Nav1.6r in long-term inactivated 

states (Fig. 3c, minimum sodium channel availability p<0.0001: +FHFA 29 ± 3%, n=15; 

−FHFA 84 ± 2%, n=16). Recovery from inactivation was significantly slowed in the +FHFA 

peptide group relative to the −FHFA peptide group (Fig. 3d and Table 2; τfast, p=0.034 and 

τslow, p=0.012). Addition of the FHFA peptide did not alter Nav1.6r current density 

(p=0.054), voltage dependence of activation (p=0.21) or inactivation relative to control 

(p=0.95). Table 2 shows a summary of current density, activation and inactivation data. We 

next examined resurgent currents with a two-step protocol as previously described. 

Representative traces of peak Nav1.6r resurgent currents are shown in Fig. 3e. The +FHFA 

peptide group exhibited reduced resurgent current amplitudes relative to −FHFA peptide 

group (Fig. 3f, peak resurgent current p<0.0001: +FHFA Peptide 0.3 ± 0.2, n=15; −FHFA 

Peptide 1.5 ± 0.4%, n=16). The fraction of resurgent current positive neurons was also 
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greatly reduced in the +FHFA peptide group (Chi-square test p=0.0032: 20%, n=15) relative 

to control −FHFA peptide (69%, n= 16). An additional set of experiments was performed to 

determine if these effects were specific to the FHFA peptide or could be induced by any 

peptide. Dover et al. showed that substitution of five charged residues in the N-terminus of 

FHF2A with glutamines eliminates the ability of FHF2A to induce long-term inactivation 

(16). We synthesized the corresponding FHFA-5Q peptide and added it at 1 mM to the 

internal recording solution. When neurons recorded with FHFA-5Q peptide (n=14) were 

compared to neurons recorded with no added peptide (n=7) there was no difference in terms 

of accumulation in long-term inactivated states (p=0.66), kinetics of recovery from 

inactivation (p=0.90) and resurgent current amplitude (p=0.74), indicating that FHFA 

peptide effect is dependent on the specific amino acid sequence.

Modulation of Nav1.6r by chimeric constructs of Navβ4 and FHF2A

The FHF2A long-term inactivation particle is potentially inhibiting fast resurgent currents by 

out-competing the open-channel blocker Navβ4 (3). Therefore, we investigated if replacing 

the proposed open-channel blocker sequence in Navβ4 with FHF2A’s long-term inactivation 

sequence would transfer the long-term inactivation activity and reduce resurgent currents in 

DRG neurons. Conversely, we replaced the long-term inactivation sequence in FHF2A with 

the open channel blocker in the Navβ4 protein and hypothesized that this construct would 

increase resurgent current. The sequences were codon optimized and synthetically made (see 

Methods section). The resulting chimeric constructs were named F2A(β4) for the FHF2A 

protein containing the Navβ4 open channel sequence and β4(F2A) for the Navβ4 protein 

containing the FHF2A long-term inactivation sequence (Fig. 4). Both constructs were tagged 

at the C-terminus with a fluorescent protein, pmTurquoise2, to verify expression. DRG 

neurons were biolistically transfected with Nav1.6r and a chimeric construct. As a control, 

tag only was expressed instead of a chimeric subunit. Nav1.6r currents were isolated 

following inhibition of endogenous sodium currents as previously described. Using the 

recording protocols previously described we examined the biophysical properties of Nav1.6r 

with co-expression of β4(F2A) or F2A(β4) and investigated if the chimeric constructs 

modulated resurgent currents. Representative traces from a long-term inactivation protocol 

test for each group are shown in Fig. 5a. β4(F2A) slightly increased accumulation of long-

term inactivation relative to control (Fig. 5b: minimum sodium channel availability p=0.034: 

β4(F2A) 84 ± 2%, n=12; Control 89 ± 2%, n=14), whereas, F2A(β4) did not alter 

accumulation of long-term inactivation (88 ± 2%, n=9). Expression of either chimera, 

β4(F2A) or F2A(β4) did not alter current density relative to control (Table 3, p=0.82 and 

p=0.35 respectively). In a similar pattern as seen with FHF2A, F2A(β4) expression shifted 

the voltage dependence of activation (Fig. 5c, p=0.047) and inactivation (Fig. 5d, p=0.0089) 

of Nav1.6r to positive potentials relative to control, whereas β4(F2A) did not alter either 

(Table 3, p=0.36 and p=0.29, respectively). Expression of F2A(β4) enhanced Nav1.6r 

recovery from steady-state inactivation relative to control (Fig. 5e Inset; τfast, p=0.0010 and 

τslow, p=0.36). β4(F2A) did not slow or enhance Nav1.6r recovery from inactivation 

relative to control (Fig. 5e and Table 3; τfast, p=0.50 and τslow, p=0.36).
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Differential modulation of fast resurgent currents by F2A(β4) and β4(F2A) chimeras

We next examined Nav1.6r mediated resurgent currents with a two-step protocol (Methods 

section). Resurgent current amplitude was expressed as percentage of peak current. 

Representative traces of resurgent currents for each condition are shown in Fig.6a. Fig. 6b 

shows the distribution of resurgent current positive and resurgent current negative neurons 

for each condition. Overall the percentage of resurgent current positive neurons was not 

significantly different with expression of β4(F2A) or F2A(β4) relative to control (p=0.30 

and p=0.52, respectively). The percentage of resurgent current positive neurons was 33% for 

β4(F2A), 67% for F2A(β4) and 53% for control. However, F2A(β4) expression increased 

resurgent current amplitude by three-fold factor relative to control (Fig. 6c peak resurgent 

current p=0.0023: F2A(β4) 3.1 ± 0.8%, n=9; Control 1.2 ± 0.4%, n=15). In contrast, 

β4(F2A) exhibited the opposite effect reducing resurgent current amplitude by two-fold 

factor (β4(F2A) p=0.0076: 0.4 ± 0.2%, n=12).

FHFa in a radicular inflammatory pain model

The results of overexpression of FHF2A and FHF2B, FHFA peptide and chimeric constructs 

suggest that FHF2A and FHF2B isoforms regulate resurgent currents and may contribute to 

pain pathologies. We previously reported that resurgent currents are increase in a rat model 

of radicular pain (71). In this model, localized inflammation of the DRG (LID) causes 

persistent mechanical hyperalgesia and allodynia that starts as soon as post-operative day 1 

(67–69, 71). Therefore, we chose to examine FHF2A and FHF2B expression and the effect 

of FHFA peptide on neuronal excitability using acutely cultured neurons harvested from rats 

on day 5 following LID. To examine FHF2A and FHF2B expression, Sprague Dawley Rats 

were injected with zymosan at a 2mg/mL concentration above the L4 and L5 DRG on one 

side (see Methods). Sham operated rats that underwent the same procedure with the 

exception of the injections were used as a control. In order to confirm that the LID but not 

the sham procedure used evoked pain behaviors on the day the animals were sacrificed for 

obtaining cultured DRG neurons, behavioral measures of mechanical and cold 

hypersensitivity were measured at baseline and for 5 days after DRG inflammation or sham 

surgery. As shown in Supplementary Fig. S1, static and dynamic mechanical allodynia and 

cold allodynia were significantly elevated in LID animals compared to sham animals, 

starting as early as POD1 and continuing through POD5. At post-operative day 5, L4/L5 

ipsilateral DRG were harvested from LID and Sham operated animals. FHFA and FHF2B 

levels were examined in primary DRG cultures with immunocytochemistry. One caveat with 

the FHFA antibody used is that it is not selective to the FHF2A isoform, but rather the 

antibody used targets the long-term inactivation particle which is highly conserved between 

all FHFAs. However, in adult DRG neurons, FHF4A is not expressed and FHF1A is 

downregulated in adulthood (27). FHF1A contains a nuclear localization signal that is 

functional in DRG neurons and targets the protein to the nucleus (27). In contrast, FHF2A 

nuclear localization signal is predicted to be inactive since staining is limited to the cell 

periphery and not detected in the nucleus in adult DRG neurons (48). Therefore, given that 

our model is an adult DRG neuron we expect that cross-reaction is minimal and likely most 

of the antibody signal is reflecting FHF2A expression. Representative images of FHFA 

staining in acutely cultured neurons are shown in Fig. 7a–b. Inflammation of the DRG 

reduced FHFAs levels relative to Sham control (Fig. 7c, FHF2A Mean Intensity p<0.0001; 
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LID 13.0 ± 0.3 AU., n=1989, Sham 24.8 ± 0.8 AU, n=1116). In contrast, FHF2B expression 

was modulated in the opposite direction as FHFAs. Representative images of FHF2B 

staining are show in Fig.7d–e. FHF2B was upregulated in the LID group relative to Sham 

control (Fig.7f, FHF2B Mean Intensity p<0.0001; LID 29.5 ± 1.6 AU, n=1121, Sham 21.04 

± 0.4 AU, n=1164).

Previously we have shown that local inflammation of the L4/L5 DRG increases spontaneous 

activity of Aβ neurons and resurgent currents in cultured medium diameter neurons (71). 

These effects are attenuated by Navβ4 knockdown. Here we asked if LID induced neuronal 

hyperexcitability could be affected by the FHFA peptide. For this set of experiments we 

recorded action potential activity from medium diameter neurons harvested from sham and 

LID treated rats with either 1 mM FHFA peptide or 1 mM FHFA-5Q peptide in the 

intracellular pipette solution. Neurons from sham animals did not exhibit any spontaneous 

activity (Fig. 8a–b) with either FHFA-5Q peptide (n=12) or FHFA peptide (n-10) in the 

pipette solution. By contrast, 3 of 10 neurons from LID treated animals exhibited 

spontaneous activity with FHFA-5Q peptide in the recording solution (Fig. 8c–d). This is 

similar to what was observed previously with microelectrode recordings from Aβ fibers in 

an acutely isolated whole DRG preparation (68, 71). By contrast, no spontaneous activity 

was observed in neurons when wildtype FHFA peptide was included in the internal 

recording solution (n=14) and this difference was significant (p=0.02846; Chi-square test). 

Evoked action potential firing was also examined with current injections in the four groups. 

In both sham and LID treated neurons the wildtype FHFA peptide substantially reduced the 

number of action potentials compared to the FHFA-5Q peptide (Fig. 8e–h). Significantly 

more neurons generated multiple action potentials in response to current injections with 

FHFA-5Q in the pipette than with wildtype FHFA peptide in the pipette (p=0.00104; Chi-

square test).

DISCUSSION

In this study we show that FHF2A and FHF2B differentially regulate resurgent sodium 

currents in DRG sensory neurons. The first component of our hypothesis was FHF2A limits 

the capacity of sensory neurons to generate fast resurgent currents by mediating long-term 

inactivation. Three main findings support this hypothesis. First, overexpression of FHF2A 

reduced resurgent current and increased accumulation of channels in inactivated states 

resulting in delayed channel recovery. Secondly, a peptide derived from FHF2A`s long-term 

inactivation particle recapitulated the reduction in resurgent current generation and the 

enhancement of long-term inactivation. The peptide did not modulate the voltage 

dependence of inactivation and activation as seen with full length FHF2A, suggesting these 

changes do not account for negative regulation of resurgent current. A mutant peptide 

(FHFA-5Q) was inactive. Thirdly, the F2A(β4) chimera (in which the long-term inactivation 

particle was replaced with Navβ4’s open channel blocker sequence) did not negatively 

regulate resurgent currents nor induced long-term inactivation. The chimera produced the 

opposite effect, an enhancement in resurgent current modulation, suggesting the long-term 

inactivation particle region is key for FHF2A`s resurgent current modulation.
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The second component of our hypothesis was FHF2B increases resurgent currents by 

delaying inactivation. Our results support this hypothesis. FHF2B increased resurgent 

current, shifted the voltage dependence of inactivation to positive potentials and enhanced 

channel recovery. FHF2B’s inability to mediate long-term inactivation while shifting 

inactivation to positive potentials likely increased the accessibility of the putative open 

channel blocker. The faster recovery observed with overexpression of FHF2B supports this 

possibility, since recovery when the channel undergoes open-channel block is reported to 

occur in a shorter time scale than channel recovery from fast inactivation (46). An alternative 

explanation is that FHF2B displaces the endogenous negative regulation exerted by FHF2A 

because all FHFs are predicted to bind to a conserved region in C-terminus of VGSCs (18). 

FHF2A is expressed in neurons of all size classes and is particularly predominant in small 

diameter neurons (48). The transfected neurons examined in these studies were mostly in the 

small diameter range. Therefore, it is plausible that displacement of endogenous FHF2A by 

exogenous FHF2B contributes to some extent to FHF2B’s positive regulation of fast 

resurgent currents.

Based on previous reports, the potential mechanism for FHF2A negative regulation is 

competition of the long-term inactivation particle with the Navβ4 open-channel blocker (3, 

57). The results from FHF2A and Navβ4 chimeras partially support this hypothesis, however 

the implications of the results obtained with these chimeric proteins is limited by a few 

caveats. Our assumption was that by replacing the peptide sequence of long-term 

inactivation with the open-channel blocker and vice-versa the activity would be retained in 

the resulting chimera. However, the β4(F2A) chimera failed to delay channel recovery and 

produced a very mild enhancement in accumulation of inactivated states; suggesting that the 

long-term inactivation particle is not fully functional in the β4(F2A) chimeric construct. 

Therefore, the reduction in resurgent current observed with the expression of the β4(F2A) 

chimera is likely due to a dominant negative effect of an inactive Navβ4. In a similar 

manner, there are two possible contributions to F2A(β4)’s resurgent current enhancement: 1) 

the Navβ4 open channel blocker sequence is active in the chimera and 2) loss of the long-

term inactivation particle allowed other changes in the voltage dependence to favor the 

endogenous open channel blocker interaction as seen with FHF2B. To further explore the 

first possibility, we tested the F2A(β4) chimera in a Nav1.5 HEK cell line that does not 

generate resurgent current unless the β4-peptide is introduced. We found that indeed the 

F2A(β4) chimera mediated resurgent currents (Supplementary Fig. S2) in the Nav1.5 cell-

line. This result favors the possibility that F2A(β4) chimera retains open-channel blocker 

activity. However, it would be simplistic to assume that the resurgent current enhancement is 

only due to this activity. It is likely a combined effect of removing a limiting determinant 

(i.e. long-term inactivation particle), adding an active open channel blocker sequence and the 

shift in voltage dependence of inactivation contributing to the overall enhancement of 

resurgent current. Overall, results from β4(F2A) and F2A(β4) chimeras confirmed that 

regions of the N-terminus of FHF2A and the C-terminus of Navβ4 are important modulators 

of fast resurgent currents.

FHFs binding to C-terminus of VGSC can cause changes in the biophysical properties of the 

VGSC (77). Expression of FHF2A, FHF2B or F2A(β4) shifted the voltage dependent 

inactivation to positive potentials. Since the F2A(β4) chimera lacks the long-term 
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inactivation particle sequence yet retained the ability to cause shifts in voltage dependence 

of activation and inactivation, the results suggest that these modulations are mainly an effect 

of the FHF2 core region binding to the C-terminus of Nav1.6. The shift of inactivation to 

positive potentials is consistent with previous reports of FHF2 binding to the C-terminus of 

different sodium channels including Nav1.6 (18, 48, 60, 63). FHF2A and F2A(β4) also 

shifted activation to positive potentials. Since both F2A(β4) and FHF2A but not FHF2B 

exerted this effect, it most likely that the N-terminus region that is conserved between 

F2A(β4) and FHF2A is responsible for this effect.

Interestingly, the chimeras generated for this study might serve as valuable tools for the 

study of resurgent currents in the future. The (β4)F2A chimera did not significantly alter the 

voltage dependence of activation or inactivation, recovery from inactivation, or current 

density. The main effect we detected was a significant reduction in resurgent current. As 

such, overexpression of this protein in animal models or in-vitro studies might serve as a 

tool to selectively target attenuation of resurgent currents. On the other hand, the F2A(β4) 

chimera might serve as a tool to artificially induce fast resurgent currents. The applications 

for the F2A(β4) might be limited since it alters other channel properties. However, we 

envisioned that the F2A(β4) chimera might be useful in high-throughput assays to identify 

compounds that might inhibit resurgent currents.

Overall our data suggest that FHF2A and FHF2B modulate resurgent currents in DRG 

neurons. The importance of this finding is more evident when we examine how these 

proteins are regulated in a radicular pain model induced by localized inflammation of the 

DRG. Our results show that after inflammation FHFAs isoforms are downregulated in 

acutely isolated neurons, whereas FHF2B was upregulated. We speculate that changes in 

expression of these isoforms likely contribute to the increased resurgent current generation 

and hyperexcitability reported in this model (69, 71, 73). The limitation of the antibody 

specificity precludes us from definitively contributing the effect solely to changes in the 

FHF2A isoform. However, the high conservation of the long-term inactivation particle 

between all FHFAs suggest that if other FHFAs were to interact with Nav1.6 they will likely 

have a similar negative regulation on resurgent currents. Indeed, we find that the FHFA 

peptide is able to reduce sensory neuron action potential firing and the enhanced 

spontaneous activity that is observed in acutely isolated neurons following localized 

inflammation of the DRG. FHFs modulation might also contribute to other pain pathologies. 

For example, two studies using cDNA arrays reported FHF2 cDNA levels downregulated 

with no change in FHF1 and FHF4 after peripheral nerve injury (35, 65). Using Expression 

Atlas (45) from European Bioinformatics Institute and European Molecular Biology 

Laboratory we found that FHF1 and FHF2 levels are downregulated in DRG neurons after 

spinal nerve ligation, a chronic pain model. Data corresponded to a RNAseq study by 

Hammer et al, 2010 (23). Which of the FHF1 and FHF2 isoforms contribute most to these 

changes is unknown. Our study suggests that FHFs might prove to be novel targets for 

regulating fast resurgent current in DRG neurons and further study might provide new 

insight into possible therapeutic strategies for pain.
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Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

DRG Dorsal root ganglia

INaR Resurgent sodium current

FHF Fibroblast growth factor Homologous Factor

CNS Central Nervous System

PNS Peripheral Nervous System

shRNA small hairpin Ribonucleic Acid

cDNA complementary deoxyribonucleic acid

LTI long-term inactivation

HEK Human Embryonic Kidney

VGSC Voltage Gated Sodium Channel

TTX Tetrodotoxin

TTXS Tetrodotoxin-Sensitive

TTXR Tetrodotoxin-Resistant

LID Localized Inflammation of the DRG
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Fig. 1. Biophysical properties of Nav1.6r modulated by FHF2A and FHF2B
DRG neurons were transfected with Nav1.6r and FHF2A, FHF2B or fluorescent protein tag 

(control). a, Representative traces of cycle-dependent reduction as a measure of 

accumulation of long-term inactivation (LTI) for control (black), FHF2A (blue) and FHF2B 

(purple) groups. b, The percentage of channels available as a function of depolarization 

cycle shows overexpression of FHF2A (n=19) increased accumulation of long-term relative 

to control (n=28), whereas, FHF2B (n=13) did not. Activation, inactivation and recovery 

from inactivation were assayed with a series of standard protocols (see Methods sections). c, 

Normalized conductance (G/Gmax) as a function of voltage shows that FHF2A (blue 

squares, n=16) overexpression shifted the voltage dependence of activation relative to 

control (black circles, n=25). No change is observed for FHF2B overexpression (purple 

diamonds, n=11) relative to control. d, Normalized current (I/Imax) as a function of voltage 

shows that voltage dependence of inactivation was shifted to positive potentials in FHF2A 

(n=19) and FHF2B (n=13) groups relative to control (n=27). e, Fraction of channels 

available as a function of time shows FHF2A (n=19) overexpression greatly slowed recovery 

from inactivation relative to control (n=15), whereas, FHF2B (Inset, n=12) enhanced 
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channel recovery. Abbreviations: LTI-Long-term Inactivation; Asterisks (*) represent p 

<0.0001 obtained from Student’s t-test. Data are mean ± SEM.
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Fig. 2. FHF2A and FHF2B differentially regulate fast resurgent currents
a, Representative traces of Nav1.6r mediated resurgent currents obtained from cultured DRG 

neurons with corresponding peak resurgent currents highlighted for control (black), FHF2A 

overexpression (blue) and FHF2B overexpression (purple) conditions. b, The distribution of 

resurgent current positive (+INaR)/resurgent current negative (−INaR) DRG neurons was not 

different with FHF2B (n=13) overexpression relative to control (n=29). FHF2A (n=18) 

overexpression significantly decreased the percentage of DRG neurons that generated 

resurgent currents relative to control (p<0.0005, X2 test). c, Normalized resurgent current 

amplitude as a function of voltage shows FHF2A overexpression (blue squares) decreased 

resurgent current amplitude in a range of voltages relative to control (black circles). In 

contrast, FHF2B overexpression (purple triangles) increased resurgent current amplitude in a 

range of voltages. Asterisks (*) represent p <0.05 obtained from Student’s t-test. Data are 

mean ± SEM.
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Fig. 3. FHFA peptide exhibits long-term inactivation activity and recapitulates resurgent current 
reduction effects
Nav1.6r currents were isolated in DRG neurons and recordings were obtained in the 

presence (+) or absence (−) of FHFA peptide in the recording pipette. Representative traces 

of cycle-dependent reduction as a measure of accumulation of long-term inactivation (LTI) 

are shown for −FHFA peptide group (a, black) and +FHFA peptide group (b, pink). c, The 

percentage of channels available as a function of depolarization cycles shows that addition 

of the FHFA peptide (black circles, n=15) significantly increased accumulation of channels 

in long-term inactivated states relative to −FHFA peptide group (pink squares, n=14). d, 

Recovery from inactivation was greatly slowed in +FHFA peptide group (n=15) relative to 

−FHFA peptide group (n=14). e, Representative traces of Nav1.6r mediated resurgent 

currents with peak currents highlighted for −FHFA peptide (black) and +FHFA peptide 

(pink) groups. f, Compared to −FHFA peptide (black circles, n=15), addition of the FHFA 

peptide (pink squares, n=16) reduced resurgent current amplitude. Note resurgent currents 

were normalized to peak transient currents and plotted as a function of voltage. 

Abbreviations: LTI-Long-term Inactivation. Asterisks (*) represent p<0.05 obtained from 

Student’s t-test. Data are mean ± SEM.
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Fig. 4. Chimeric constructs of FHF2A and Navβ4
a, Illustration of FHF2A and Navβ4 subunits. The Navβ4 subunit consists of an extracellular 

N-terminal domain, a single transmembrane domain and a cytosolic C-terminal domain. The 

cytosolic domain contains a sequence of amino acids proposed to mediate open channel 

block that generate resurgent currents (red sphere represents β4 peptide sequence, amino 

acids 183–203(2, 33)). The FHF2A subunit is a cytosolic protein, which contains a core 

region homologous to all FHF with a C-terminal epitope that enables interaction with the 

cytoplasmic C-terminal region of sodium channels (18). Distinct from its FHF2B 

counterpart, the FHF2A N-terminus sequence is much longer and contains a sequence 

identified as the long-term inactivation particle (blue sphere, amino acids 1–20 (16)). Arrow 

between the subunit highlights the region that was exchanged between these subunits to 

generate the chimeric constructs. b, Illustration of the resulting chimeric constructs. The 

(β4)F2A contains all components of the Navβ4 subunit with the exception of β4-peptide 

sequence, which was replaced with long-term inactivation particle sequence. The F2A(β4) 

contains all domains of the FHF2A protein except the long-term inactivation particle, which 

was replaced with the β4 peptide sequence. Inset, depicts the figure legend for the β4-

peptide and long-term inactivation particle with the corresponding amino acid sequence.
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Fig. 5. Biophysical properties of Nav1.6r modulated by β4(F2A) and F2A(β4) chimeras
Activation, inactivation and recovery from inactivation were assayed with a series of 

standard protocols (see Methods sections). a, Representative traces of cycle-dependent 

reduction as a measure of long-term inactivation (LTI) for Nav1.6r isolated currents in DRG 

neurons with co-expression of fluorescent tag (control, black), F2A(β4) (green) and β4-F2A 

(orange). b, The percentage of channels available as a function of depolarization cycle shows 

increased accumulation of long-term inactivation for β4(F2A) group (orange squares, n=12) 

relative to control (black circles, n=16), whereas no difference is observed for F2A(β4) 

group (green triangles, n=8) relative to control. c, Normalized conductance as a function of 

voltage shows that co-expression of F2A(β4) (n=8) shifted the voltage dependence of 

activation to positive potentials relative to control (n=14), whereas, no change is observed 

for the β4(F2A) group (n=12). d, Normalized current as a function of voltage shows that co-

expression of F2A(β4) (n=9) shifted the voltage dependence of steady-state inactivation to 

positive potentials relative to control (n=14), whereas, no change is observed for the 

β4(F2A) group (n=12). e, Fraction of current available as a function of time shows that 

recovery is not significantly altered with co-expression of either chimera β4(F2A) (n=12) or 
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F2A(β4) (n=9) relative to control (n=14). Asterisks (*) represent p<0.05 obtained from 

Student’s t-test. Data are mean ± SEM.
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Fig. 6. β4(F2A) and F2A(β4) differentially modulate fast resurgent currents
a, Representative traces of Nav1.6r mediated resurgent currents obtained from cultured DRG 

neurons with corresponding peak resurgent currents highlighted for control (black), β4(F2A) 

(orange) and F2A(β4) (green) groups. b, Neither co-expression of (β4)F2A (n=12) nor co-

expression of F2A(β4) (n=9) altered the distribution of resurgent current positive (+INaR)/

resurgent current negative (−INaR) DRG neurons relative to control (n=16). c, Resurgent 

current amplitude was decreased with co-expression of β4(F2A) (orange squares, n=12) in a 

range of voltages relative to control (black circles, n=15). In contrast, co-expression of 

F2A(β4) (green triangles, n=9) chimera increased resurgent current amplitude in a range of 

voltages relative to control. Note that resurgent currents were normalized to peak transient 

currents and plotted as a function of voltage. Asterisks (*) represent p <0.05 obtained from 

Student’s t-test. Summary data are mean ± SEM.
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Fig. 7. FHFA and FHF2B levels are differentially altered after local inflammation of the DRG
Examples of immunocytochemical staining for FHFAs in primary cultured DRG neurons 

from control (sham operated, a) and induced local inflammation of the DRGs (LID, b) 

animals post-operative day 5. c, DRG neurons from LID animals (n=1989) exhibited an 

increase in FHFA signal relative to sham control (n=1116). Examples of 

immunocytochemical staining for FHF2B in primary cultured DRG neurons from control 

(sham operated, d) and induced local inflammation of the DRGs (LID, e) animals post-

operative day 5. f, DRG neurons from LID animals (n=1164) exhibited a decrease in FHF2B 

signal relative to sham control (n=1121). Five animals per group were examined. Asterisks 

(*) represent p <0.0001 obtained from Student’s t-test. Summary data are mean ± SEM. 

Scale bar 50 μm.
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Fig. 8. FHFA peptide reduces excitability of DRG neurons
a-b, No spontaneous activity (-SA) was detected on DRG neurons from sham rats when 1 

mM FHFA (n = 10) or 1 mM 5Q (n = 12) was included in the pipette solution. c-d, 30% of 

DRG neurons from local inflammation of the DRGs (LID) rats showed spontaneous activity 

(+SA) in the presence of 1 mM 5Q (n = 10), while no spontaneous activity was observed in 

the presence of 1 mM FHFA (n = 14). Representative action potential traces induced by a 2-s 

injection of 400 pA current on DRG neurons from sham (e) and LID (f) rats in the presence 

of 1 mM 5Q (left panel) or 1 mM FHFA (right panel). f and h, average number of action 

potentials induced by 2-s injection of currents ranging from 100 – 500 pA.
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