
Reconstructing Propositional Proofs in Type Theory

Jonathan Prieto-Cubides

Logic and Computation Research Group,
Universidad EAFIT, Medellín, Colombia

jprieto9@eafit.edu.co

Abstract. We describe a syntactical proof-reconstruction approach to verify derivations gen-
erated by Metis prover to theorems in classical propositional logic. To verify such derivations,
we formalise in type theory each inference rule of the Metis reasoning. We developed a tool
jointly with two Agda libraries to translate Metis derivations to Agda proof-terms. These
developments allowed us to type-check with Agda, Metis derivations step-by-step.

Keywords: proof-reconstruction, type theory, automatic theorem prover, proof-assistant

1 Introduction

An automatic theorem prover (henceforth ATP) is a program that intends to prove conjectures from
axioms and inference rules of some logical system. In the last decades, ATPs are fast becoming a key
instrument in different disciplines and real applications (e. g., verifying a railway interlocking system,
an operating-system kernel, or a pseudo-random number generator for cryptography). Since some
programming errors have been found in these programs (see, for example, [27, 7, 17]), researchers
and users from academy and industry have shown an increased interest to formally prove the validity
of ATPs’ results.

In order to give confidence to the ATP users many of these systems have started to include
in their outputs the full derivations associated to the proved theorems. However, existing research
recognizes that in many cases these derivations encode non-trivial reasoning hard to reconstruct
and therefore hard to verify [33, 27].

Proof-reconstruction addresses this problem. Since many ATPs are poor-documented, this prob-
lem becomes in mostly cases a reverse engineering task to verify the prover reasoning. The usual is
the reconstruction is made by another and not by the developers of the ATP. Therefore, the presen-
tation of the derivations generated by the prover plays an important role in proof-reconstruction.

To verify such automatically generated derivation by the prover, it is convenient to have them
in a consistent format, that is, a full script describing the derivation step-by-step with exhaustive
details and without ambiguities. For example, for classical propositional logic (henceforth CPL)
from a list of at least forty ATPs—available from the Web service SystemOnTPTP of the TPTP
World1—just few of them show their proofs.

One approach to address the proof-reconstruction problem is proving each deduction of the
prover, the source system, with a formalization of the prover reasoning in a proof-assistant, the
target system. The target system is the proof checker in charge to verify the source system reasoning
for each derivation. These proof-assistants allow us to formalize the logical system used in the proofs,
i. e., logical constants, axioms, inference rules, hypotheses, and theorems. A proof-reconstruction tool
1 http://www.cs.miami.edu/~tptp/.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad EAFIT

https://core.ac.uk/display/159778089?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.cs.miami.edu/~tptp/

2 Jonathan Prieto-Cubides

provides such an integration, translating the derivation generated by the prover into the formalism
of the proof-assistant.

Previous studies have reported proof-reconstruction using proof-assistants based on higher-order
logic where the development is at a mature stage [32, 23, 24]. Another approaches has been proposed
for proof-reconstructing based on type theory in [5, 26, 27].

We describe a formal reconstruction of proofs generated by the Metis prover [21]—our source
system—in Martin-Löf type theory [30]. We formalize the subset of the Metis inference rules for the
propositional logic fragment using a syntactical treatment. The Metis reasoning was formalized in
Agda [43]—our target system—in two libraries [35, 37] and we implemented a proof-reconstruction
tool named Athena [36] written in Haskell that is able to generate Agda proof-terms for Metis
derivations. During writing this document, our formalization helps to report two programming
errors in Metis. A bug2 in the printing of the derivation and a soundness bug3 in the stripping of
the goal.

This paper has been organized in the following way. In Section 2, some limitations of type
theory are discussed from our proof-reconstruction point of view. In Section 3, we introduce the
Metis prover. In Section 4, we show our approach to reconstruct Metis derivations. Related work
is described in Section 5. Conclusions and suggestions for future work are presented in Section 6.

The source code accompanying this paper (programs, libraries, and examples) is available at
GitHub:

– The Athena program that translates proofs generated by Metis to Agda code: http://github.
com/jonaprieto/athena.

– The agda-prop library as a formalization in Agda for classical propositional logic: http://
github.com/jonaprieto/agda-prop.

– The agda-metis library as a formalization in Agda to justify Metis derivations of classical
propositional logic: http://github.com/jonaprieto/agda-prop.

The proof-reconstruction tool Athena was tested with GHC 8.2.1. Both libraries, agda-prop
and agda-metis were tested with Agda 2.5.3 and Agda standard library 0.14. Athena jointly
with agda-prop and agda-metis are able to reconstruct propositional proofs of Metis 2.3 (re-
lease 20171021). We successfully reconstruct around eighty theorems in classical propositional logic
from the TPTP collection [34] to test the developments and the formalization presented in this
research.

2 Type Theory

Type theory is a formalism for the foundation of mathematics, it has became in a key instrument
to study logic and proof theory that follows the same basis of constructive mathematics where the
witness of a statement is everything. In that direction, we could say the main actors in type theory
are the statements and their proofs.

By following the Curry-Howard correspondence (see, for example, [45]), a formula corresponds
to a type, and one proof of that formula is a term of the correspondent type. Therefore, inhabitants
types are such formulas with proofs, they are theorems.

2 Issue No. 2 at https://github.com/gilith/metis/issues/2
3 Issue No. 4 at https://github.com/gilith/metis/issues/4

http://github.com/jonaprieto/athena
http://github.com/jonaprieto/athena
http://github.com/jonaprieto/agda-prop
http://github.com/jonaprieto/agda-prop
http://github.com/jonaprieto/agda-prop
https://github.com/gilith/metis/issues/2
https://github.com/gilith/metis/issues/4

Reconstructing Propositional Proofs in Type Theory 3

Since type theory is a formal system, we have a syntax and a set of derivation rules. These rules
enables us to derive a kind of conclusions called judgments. A judgment is another way to say that
a term has a certain type. Each term has associated a derivation, we refer to this derivation as
proof-terms.

Notation. Types are written using small caps. We write the type judgments as a : a to denote
that the term a is of type a.

We produce derivation trees inside the judgments using the derivation rules. Since type theory
can be seen as typed λ-calculus with dependent function types, evaluation of λ-terms also called
normalization of the proof-terms, is a process of reductions with the system inference rules.

Therefore, the proof verification task becomes in type theory as verifying that the proof-term
has the correspondent type of the theorem. We know this process as type-checking. This feature
of type theory allow us to verify a proof generated by an ATP by reconstructing its proof-term
to type-check the proof. For such a purpose, we use a proof-assistant based on type theory like
Agda to delegate this task. discussed in [5]. Some limitations from the type theory point of view for
proof-reconstruction is described in the following sections.

2.1 Terminating functions

To reconstruct Metis inference rules in type theory, we observed that some rules or their inner
functions are implemented by general recursive functions.

Functions defined by a general recursion can not be directly translated in type theory since it is
not a guarantee they terminate. For that reason, we follow the technique described in [4] to avoid
termination problems by modifying the recursive functions to be structurally recursive.

A recursive function is structurally recursive if it calls itself with only structurally smaller
arguments [1]. General recursive functions can be rewrote into structurally recursive functions by
using for instance, the bounded recursion technique. For a yet another methods, we refer the reader
to [12, 1, 10].

The bounded technique defines a new structural recursive function based on the general recursive
function by adding an argument. The new argument is the bound, a natural number given by the
function complexity. In other words, the added argument will represent the number of times the
function needs to call itself to get the expected outcome.

Notation. We use Prop for the type of propositions. A proposition is an expression of indivisible
propositional variables (e. g., symbols ϕ0, ϕ1, · · ·), the logic constants: ⊥, >, the binary connectives
(∧,∨,⊃,⇔), and the negation (¬). We write the equality using the symbol (≡) as ϕ ≡ ψ, for
ϕ, ψ : Prop. For this equality, we assume the reflexivity, symmetry and transitivity properties.
The type of natural numbers is called Nat, and it is defined as usual, where zero and succ are its
data constructors. We use names and symbols for the arithmetic operations as usual (e. g., +, −,
∗). We use syntax sugar for zero, succ, succ zero, . . . , with the decimal representation 0, 1, 2, . . .
as well.

Hence, one approach to define a structural recursive function based on a general recursive
function f : a → b is to formulate a new function f∗ : a → Nat → b where all of its recursive
calls are done on smaller arguments.

Notation. We define some functions by pattern-matching on Prop or Nat.

4 Jonathan Prieto-Cubides

Example 1. Let us consider the following example to show the bounded recursion technique for
defining the uh function. This function is used for reconstructing a Metis inference rule in Sec-
tion 4.2.1.

uh0 : Prop→ Prop

uh0 (ϕ1 ⊃ (ϕ2 ⊃ ϕ3)) = uh0 ((ϕ1 ∧ ϕ2) ⊃ ϕ3)
uh0 (ϕ1 ⊃ (ϕ2 ∧ ϕ3)) = uh0 (ϕ1 ⊃ ϕ2) ∧ uh0 (ϕ1 ⊃ ϕ3)
uh0 ϕ = ϕ.

(1)

In (1), the first two equations call on arguments no structurally smaller. For instance, in the
first equation,

uh0(ϕ1 ⊃ (ϕ2 ⊃ ϕ3)) = uh0 ((ϕ1 ∧ ϕ2) ⊃ ϕ3),

the function uh0 calls on the (ϕ1 ∧ ϕ2) ⊃ ϕ3 argument in the right-hand side but this formula is
not a subformula of ϕ1 ⊃ (ϕ2 ⊃ ϕ3). Therefore, one way to translate uh0 to type theory is to define
a new function using a bounded recursion.

uh1 : Prop→ Nat→ Prop

uh1 (ϕ1 ⊃ (ϕ2 ⊃ ϕ3)) (succ n) = uh1 ((ϕ1 ∧ ϕ2) ⊃ ϕ3) n
uh1 (ϕ1 ⊃ (ϕ2 ∧ ϕ3)) (succ n) = uh1 (ϕ1 ⊃ ϕ2) n ∧ uh1 (ϕ1 ⊃ ϕ3) n
uh1 ϕ n = ϕ.

(2)

We bounded the recursion calls of the uh0 function using its complexity measure.
The complexity measure of a function is the number of steps the function takes to finish. Since

the uh0 function is recursive, we can define its complexity measure by defining a recursive function
instead of a closed formula for such a number. However, this function must to be structurally
recursive as well and can be defined by following the pattern-matching cases of its definition.

Therefore, we define in (3) the complexity measure function of uh0 by assigning the number of
steps to finish for each pattern-matching case. We have used the complexity measure definition for
a formula defined in [2] to define other complexity measures in this paper.

uhcm : Prop→ Nat

uhcm (ϕ1 ⊃ (ϕ2 ⊃ ϕ3)) = uhcm ϕ3 + 2
uhcm (ϕ1 ⊃ (ϕ2 ∧ ϕ3)) = max (uhcm ϕ2) (uhcm ϕ3) + 1
uhcm ϕ = 0.

(3)

Following the technique mentioned above, we define the function uh, the structural recursive
definition of the function uh0.

uh : Prop→ Prop

uh ϕ = uh1 ϕ (uhcm ϕ).

2.2 Intuitionistic logic

Type theory and intuitionistic logic are accompanying theories since they are based on the same
philosophical basis of constructive mathematics. Proving propositions in these theories demands a
witness construction for the proof. Nonetheless, classical logic does not always have constructive
proofs since some of the proofs are stated by refutation.

Reconstructing Propositional Proofs in Type Theory 5

To reconstruct proofs generated by Metis, we have formalized in type theory the classical
propositional logic in [35]. A briefly description of it is presented in [13]. In this formalization, we
have to assume the principle of excluded middle (henceforth PEM) as an axiom since Metis is a
prover for classical logic. Assuming PEM, we can justify refutation proofs by deriving from it the
reductio ad absurdum rule (henceforth RAA). The RAA rule is the formulation of the principle of
proof by contradiction, that is, a derivation of a contradiction, ⊥, from the hypothesis ¬ ϕ, is a
derivation of ϕ.

Notation. The List type is the usual inductive and parametric type for lists.

We formalise the syntactical consequence relation of CPL by an inductive family _ ` _ with
two indexes, a set of propositions (the premises) and a proposition (the conclusion), that is, Γ ` ϕ
represents that there is derivation with conclusion ϕ : Prop from the set of premises Γ : List Prop.
We implemented in [35] the syntactical consequence relation in a similar way as it was presented
in [11]. For that reason, we have included structural rules like weaken, formation and elimination
rules for connectives and the PEM axiom as the valid inference rules in Fig. 1.

assume
Γ, ϕ ` ϕ

Γ ` ϕ
weaken

Γ, ψ ` ϕ
>-intro

Γ ` >
Γ ` ⊥

⊥-elim
Γ ` ϕ

Γ, ϕ ` ⊥
¬ -intro

Γ ` ¬ ϕ
Γ ` ¬ ϕ Γ ` ϕ

¬ -elim
Γ ` ⊥

Γ ` ϕ Γ ` ψ
∧-intro

Γ ` ϕ ∧ ψ
Γ ` ϕ ∧ ψ

∧-proj1
Γ ` ϕ

Γ ` ϕ ∧ ψ
∧-proj2

Γ ` ψ
Γ ` ϕ

∨-intro1
Γ ` ϕ ∨ ψ

Γ ` ψ
∨-intro2

Γ ` ϕ ∨ ψ
Γ, ϕ ` γ Γ, ψ ` γ

∨-elim
Γ, ϕ ∨ ψ ` γ

Γ, ϕ ` ψ
⊃-intro

Γ ` ϕ ⊃ ψ
Γ ` ϕ ⊃ ψ Γ ` ϕ

⊃-elim
Γ ` ψ

PEM
Γ ` ϕ ∨ ¬ ϕ

Fig. 1. Inference rules for propositional logic.

3 Metis: Language and Proofs

Metis is an automatic theorem prover for first-order logic with equality developed by Hurd [21].
This prover is suitable for proof-reconstruction since it provides well-documented proofs to justify
its deduction steps from the basis of only six inference rules for first-order logic (see, for example,
[33, 16]). For the propositional fragment, Metis has three inference rules, see Fig. 2.

3.1 Input language

The TPTP language is the input language to encode problems used by Metis. It includes the first-
order form (denoted by fof) and clause normal form (denoted by cnf) formats [40]. The TPTP
syntax4 describes a well-defined grammar to handle annotated formulas with the following form:
4 See the complete syntax grammar at http://www.cs.miami.edu/~tptp/TPTP/SyntaxBNF.html

http://www.cs.miami.edu/~tptp/TPTP/SyntaxBNF.html

6 Jonathan Prieto-Cubides

axiom
Γ ` ϕ

assume ϕ
Γ ` ϕ ∨ ¬ ϕ

Γ ` ` ∨ ϕ Γ ` ¬ ` ∨ ψ
resolve `

Γ ` ϕ ∨ ψ

Fig. 2. Propositional logic inference rules of the Metis prover.

language(name, role, formula).,

where the language can be fof or cnf. The name serves to identify the formula within the
problem. Each formula assumes a role, this could be an axiom, conjecture, definition, plain
or an hypothesis.

The formulas include the constants $true and $false, the negation unary operator (~), and
the binary connectives (&, |, =>) to represent (>, ⊥, ¬ , ∧, ∨, ⊃) respectively.

Example 2. For instance, let us express the problem p ` ¬ (p∧¬ p)∨(q∧¬ q) in TPTP syntax. We
begin by declaring the p axiom using the axiom keyword. Next, we include the expected conclusion
using the conjecture keyword.

fof(h, axiom, p).
fof(goal, conjecture, ~ ((p & ~ p) | (q & ~ q))).

3.2 Output language

The TSTP language is an output language for derivations of ATPs [42]. A TSTP derivation is a
directed acyclic graph, a proof tree, where each leaf is a formula from the TPTP input. A node is a
formula inferred from the parent formulas. The root is the final derived formula, such a derivation
is a list of annotated formulas with the following form:

language(name, role, formula, source [,useful info]).

The source field is an inference record with the following pattern:

inference(rule, useful info, parents).

The rule in the line above stands for the inference name; the other fields are supporting argu-
ments or useful information to apply the reasoning step, and list the parents nodes.

Example 3. In the script below, strip is the name of the inference. It has no arguments and
derives from one parent node named goal. The result of this inference when it applies to the goal
formula is p.

fof(subgoal_0, plain, p, inference(strip, [], [goal])).

Notation. We adopt a customized TSTP syntax to keep as short as possible the Metis derivations
for increasing the readability of this paper.

Reconstructing Propositional Proofs in Type Theory 7

Example 4. Let us consider the following TSTP derivation using the customized TSTP syntax (see
the original TSTP derivation and customizations in Appendix A).

fof(premise, axiom, p).
fof(goal, conjecture, p).
fof(s0, p, inf(strip, goal)).
fof(neg0, ¬ p, inf(negate, s0)).
fof(n0, ¬ p, inf(canonicalize, neg0)).
fof(n1, p, inf(canonicalize, premise)).
fof(n2, ⊥, inf(simplify, [n0, n1]))
cnf(r0, ⊥, inf(canonicalize, n2)).

3.3 Metis Derivations

A derivation generated by Metis encodes a natural deduction proof, Fig. 3 is an example of such
kind of proof. With the inference rules in Fig. 1 as the only valid deduction steps, Metis attempts
to prove conjectures by refutation (i. e., falsium in the root of the TSTP derivation).

These derivations are directed acyclic graphs, trees of refutations. Each node stands for an
application of an inference rule and the leaves in the tree represent formulas in the given problem.
Each node is labeled with a name of the inference rule (e. g., canonicalize). Each edge links a
premise with one conclusion. The proof graphs have at their root the conclusion ⊥, since Metis
derivations are refutations.

negate¬p
strip¬p

axiomp
canonicalizep
simplify

⊥
canonicalize

⊥

Fig. 3. Metis derivation tree of Example 4.

3.4 Inference rules

We present the list of inference rules used by Metis in the TSTP derivations for propositional logic
in Table 1. We reconstruct these rules in Section 4. The reader may notice that the inference rules
presented in Fig 2 diverge from the rules in aforementioned table. The former rules are implemented
by the latter rules in the TSTP derivations. For instance, as far as we know, in TSTP derivations, the
axiom rule is implemented by the rules canonicalize, clausify, conjunct, and simplify.

We first present the strip inference rule since it is the rule that appears first after each con-
jecture. The other rules are sorted mainly follow their level of complexity of their definitions and
the formalization presented in Section 4.2. Some inference rules depend on the formalizations of
other rules. For instance, the simplify rule and the clausify rule need theorems developed for
the canonicalize rule. The canonicalize rule needs theorems developed in the resolve section.
But the resolve rule depends on the conjunct rule.

8 Jonathan Prieto-Cubides

Table 1. Metis inference rules.

Metis rule Purpose Theorem number

strip Strip a goal into subgoals 10

conjunct Takes a formula from a conjunction 13

resolve A general form of the resolution theorem 27

canonicalize Normalization of the formula 39

clausify Performs clausification 41

simplify Simplify definitions and theorems 44

4 Proof-Reconstruction

The proof-reconstruction approach proposed consists of a series of steps similar to the workflow
presented [39]. This process is a translation from a source system to a target system. In our case,
the system of origin, the automatic theorem prover, is Metis; the target system is a proof-assistant,
Agda. We choose Agda, but another proof-assistant with the same support of type theory and
inductive types could be used.

4.1 Workflow

The overview of the proof-reconstruction is presented in Fig. 4. The process begins with a TPTP file
that encodes a problem in CPL. We use this file as the input of the Metis prover. If the problem
is a theorem, Metis generates a derivation of the proof in TSTP format.

With the TSTP derivation from Step 2, we process the derivation with the Athena translator
tool. Athena parses the TSTP format, analyzes the derivation and generates a representation of the
natural deduction proof using a tree data structure (see the properties of this tree in Section 3.3). In
the Athena analysis, some unnecessary steps that introduce redundancies and some unused input
are removed from the proof-tree. As result, we get from Athena an Agda file of the proof with
names of functions and theorems from the Agda libraries that accompany this article: agda-prop
and agda-metis.

Finally, we type-check the Agda proof-term. If the type-checking success, the TSTP derivation
generated by Metis is correct module Agda and the proposed formalizations for the propositional
logic and for the Metis reasoning. In that case Agda outputs an interface file. Otherwise, when
type-checking fails, the failure must be investigated by the user looking at the error in the TSTP
derivation by Metis, in the translation by Athena, in the Agda formalizations mentioned above or
in the type-checker Agda.

In the remainder part of this section, a formal description using type theory is presented to
build definitions and theorems of functions necessary to reconstruct Metis inference rules.

4.2 Reconstructing Metis inference rules

In this section, we reconstruct each Metis inference rule in Table 1 via a function and its respective
theorem. We present a pattern of the formal description for these rules in Example 5.

Reconstructing Propositional Proofs in Type Theory 9

1. TPTP file
(CPL problem)

Metis
(prover)

2. TSTP file
(derivation)

Athena tool
(translator)

agda-prop
(dictionary)

agda-metis
(dictionary)

3. Agda file
(proof-term)

Agda
(type-checker)

agda-metis
agda-prop

agda-stdlib
(imports)

4.1. Interface
Agda file

4.2. Invalid
Agda file

theorem

no theorem

success

failure

Fig. 4. Proof-reconstruction overview. The rectangles nodes represent text files. The direct edges in the
diagram represent calls to programs where the input file is pointed by the edge entering and the out edge
points to the output file. The rhombus nodes represent a process with two possible outcomes.

Notation. The function name written in typewriter font refers to a Metis inference rule. The same
function name written using sans serif font refers to our formalized version to reconstruct the rule
and implemented in [37]. We use Premise and Conclusion as synonyms of the Prop type to
describe in the function types the role of the arguments.

Example 5. Let metisRule be a Metis inference rule. To reconstruct this rule, we define the
function metisRule in type theory that follows the pattern:

metisRule : Premise→ Conclusion→ Prop

metisRule ϕ ψ =

ψ, if the conclusion ψ can be derived by applying certain inference

rules to the premise ϕ;
ϕ, otherwise;

10 Jonathan Prieto-Cubides

To justify all transformations done by the metisRule rule, we prove its soundness with a theorem
like the following:

If Γ ` ϕ then Γ ` metisRule ϕ ψ, where ψ : Conclusion.

The remainder of this section will be devoted to present a formal description in type theory of
each rule presented in Table 1 using the pattern present in the example above. We follow the same
order to present the rules as the table shows.

4.2.1 Strip. To prove a goal, Metis splits the goal into disjoint cases. This process produces a
list of new subgoals, the conjunction of these subgoals implies the goal. Then, a proof of the goal
becomes, in smaller proofs, one refutation for each subgoal.

Example 6. The subgoals associated to a goal are introduced in the TSTP derivation with the
strip inference rule.

fof(goal, conjecture, (p ∧ r) ∧ q)).
fof(s1, p, inf(strip, goal)).
fof(s2, p ⊃ r, inf(strip, goal)).
fof(s3, (p ∧ r) ⊃ q, inf(strip, goal)).

In this example, the conjecture (p∧r)∧ q is stripped into tree subgoals: p, p ⊃ r and (p∧r) ⊃ q.

(p ∧ (p ⊃ r) ∧ ((p ∧ r) ⊃ q)) ⊃ ((p ∧ r) ∧ q). (4)

Metis proves each subgoal in the same order above from left to right in (4). So far, very little
attention has been paid to the role of the strip rule in TSTP derivations since Metis does not make
explicit the way it uses the subgoals to prove the conjecture.

We prove the correctness of the strip inference rule in Theorem 10. To show that theorem, we
need to prove Lemma 7 and Lemma 8.

Lemma 7. Let n : Nat be the complexity measure of the uh0 function in (1). If Γ ` uh1 ϕ n then
Γ ` ϕ where uh1 is the function defined in (2).

Proof. The proof is by induction on the cases defined by the outcome of the uh1 function.

– If n = 0, by definition in (2) we conclude Γ ` ϕ.
– For n ≥ 1, we use induction on the structure of the first argument.

• Case ϕ ≡ ϕ1 ⊃ (ϕ2 ⊃ ϕ3).

Γ ` uh1 (ϕ1 ⊃ (ϕ2 ⊃ ϕ3)) (succ n)
by (2)

Γ ` uh1 ((ϕ1 ∧ ϕ2) ⊃ ϕ3) n
by ind. hyp.

Γ ` (ϕ1 ∧ ϕ2) ⊃ ϕ3
∧⊃-to-⊃⊃

Γ ` ϕ1 ⊃ (ϕ2 ⊃ ϕ3)

using the following theorem proved in [35],

∧⊃-to-⊃⊃ : Γ ` (ϕ1 ∧ ϕ2) ⊃ ϕ3 → Γ ` ϕ1 ⊃ (ϕ2 ⊃ ϕ3).

Reconstructing Propositional Proofs in Type Theory 11

• Case ϕ ≡ ϕ1 ⊃ (ϕ2 ∧ ϕ3).

(D1)

Γ ` uh1 (ϕ1 ⊃ (ϕ2 ∧ ϕ3)) (succ n)
by (2)

Γ ` uh1 (ϕ1 ⊃ ϕ2) n ∧ uh1 (ϕ1 ⊃ ϕ3) n
∧-proj1

Γ ` uh1 (ϕ1 ⊃ ϕ2) n
by ind. hyp.

Γ ` ϕ1 ⊃ ϕ2

(D2)

Γ ` uh1 (ϕ1 ⊃ (ϕ2 ∧ ϕ3)) (succ n)
by (2)

Γ ` uh1 (ϕ1 ⊃ ϕ2) n ∧ uh1 (ϕ1 ⊃ ϕ3) n
∧-proj2

Γ ` uh1 (ϕ1 ⊃ ϕ3) n
by ind. hyp.

Γ ` ϕ1 ⊃ ϕ3

Now, using ⊃∧⊃-to-⊃∧ theorem from [35],

⊃∧⊃-to-⊃∧ : Γ ` (ϕ1 ⊃ ϕ2) ∧ (ϕ1 ⊃ ϕ3)→ Γ ` ϕ1 ⊃ (ϕ2 ∧ ϕ3),

D1 D2 ∧-intro
Γ ` (ϕ1 ⊃ ϕ2) ∧ (ϕ1 ⊃ ϕ3)

⊃∧⊃-to-⊃∧
Γ ` ϕ1 ⊃ (ϕ2 ∧ ϕ3)

• Other cases are proved in a similar way.

�

The strip0 function defined in (25) yields the conjunction of subgoals that implies the goal of
the problem in the Metis TSTP derivations. Nonetheless, this function is not a structurally recursive
function (see more details in Appendix B). Therefore, we present the strip1 function in (5) as the
structurally recursive version of the strip0 function by applying the bounded technique described in
Section 2.1. We define the strip1 function based on the reading of the Metis source code.

strip1 : Prop→ Nat→ Prop

strip1 (ϕ1 ∧ ϕ2) (succ n) = uh (strip1 ϕ1 n) ∧ uh (ϕ1 ⊃ strip1 ϕ2 n)
strip1 (ϕ1 ∨ ϕ2) (succ n) = uh ((¬ ϕ1) ⊃ strip1 ϕ2 n)
strip1 (ϕ1 ⊃ ϕ2) (succ n) = uh (ϕ1 ⊃ strip1 ϕ2 n)
strip1 (¬ (ϕ1 ∧ ϕ2)) (succ n) = uh (ϕ1 ⊃ strip1 (¬ ϕ2) n)
strip1 (¬ (ϕ1 ∨ ϕ2)) (succ n) = uh (strip1 (¬ ϕ1) n) ∧ uh ((¬ ϕ1) ⊃ strip1 (¬ ϕ2) n)
strip1 (¬ (ϕ1 ⊃ ϕ2)) (succ n) = uh (strip1 ϕ1 n) ∧ uh (ϕ1 ⊃ strip1 (¬ ϕ2) n)
strip1 (¬ (¬ ϕ1)) (succ n) = uh (strip1 ϕ1 n)
strip1 (¬ ⊥) (succ n) = >
strip1 (¬ >) (succ n) = ⊥
strip1 ϕ n = ϕ.

(5)

In a similar way as we define uhcm in (3), we define the stripcm function in Appendix B as the
complexity measure for the strip0 function. Then we define the strip function as follows in 6.

strip : Prop→ Prop

strip ϕ = strip1 ϕ (stripcm ϕ).
(6)

12 Jonathan Prieto-Cubides

Lemma 8. Let n : Nat be the complexity measure of the strip function defined in (5). If Γ ` strip1 ϕ n
then Γ ` ϕ.

Proof. The proof is by induction on the structure of the formula ϕ by following the equations in (5).
We present a straightforward case with double negation, the case for conjunctions, and last, the
case for a negated disjunction. We refer the reader to [37] for the complete proof in Agda.
• Case ϕ ≡ ¬ (¬ ϕ1).

Γ ` strip1 (¬ (¬ ϕ1)) (succ n)
by (5)

Γ ` uh (strip1 ϕ1 n)
Lemma 7

Γ ` strip1 ϕ1 n by ind. hyp.
Γ ` ϕ1

• Case ϕ ≡ ϕ1 ∧ ϕ2. We prove Γ ` ϕ1 and Γ ` ϕ2. From the conjunction of ϕ1 and ϕ2, the
expected result follows.

(D)

Γ ` strip1 (ϕ1 ∧ ϕ2) (succn)
by (5)

Γ ` uh (strip1 ϕ1 n) ∧ uh (ϕ1 ⊃ strip1 ϕ2 n)
∧-proj1

Γ ` uh (strip1 ϕ1 n)
Lemma 7

Γ ` strip1 ϕ1 n by ind. hyp.
Γ ` ϕ1

D
Γ ` ϕ1

Γ ` strip1 (ϕ1 ∧ ϕ2) (succ n)
by (5)

Γ ` uh (strip1 ϕ1 n) ∧ uh (ϕ1 ⊃ strip1 ϕ2 n)
∧-proj2

Γ ` uh (ϕ1 ⊃ strip1 ϕ2 n)
Lemma 7

Γ ` ϕ1 ⊃ strip1 ϕ2 n
⊃-elim

Γ ` strip1 ϕ2 n by ind. hyp.
Γ ` ϕ2

• Case ϕ ≡ ¬ (ϕ1 ∨ ϕ2). We prove Γ ` ¬ ϕ1 and Γ ` ¬ ϕ2. From the conjunction of ¬ ϕ1 and
¬ ϕ2 by applying De Morgan Law and the result follows.

(D)

Γ ` strip1 (¬ (ϕ1 ∨ ϕ2)) (succ n)
by (5)

Γ ` uh (strip1 (¬ ϕ1) n) ∧ uh ((¬ ϕ1) ⊃ strip1 (¬ ϕ2) n)
∧-proj1

Γ ` uh (strip1 (¬ ϕ1) n)
Lemma 7

Γ ` strip1 (¬ ϕ1) n
by ind. hyp.

Γ ` ¬ ϕ1

D
Γ ` ¬ ϕ1

Γ ` strip1 (¬ (ϕ1 ∨ ϕ2)) (succ n)
by (5)

Γ ` uh (strip1 (¬ ϕ1) n) ∧ uh ((¬ ϕ1) ⊃ strip1 (¬ ϕ2) n)
∧-proj2

Γ ` uh ((¬ ϕ1) ⊃ strip1 (¬ ϕ2) n)
Lemma 7

Γ ` (¬ ϕ1) ⊃ strip1 (¬ ϕ2) n
⊃-elim

Γ ` strip1 (¬ ϕ2) n
by ind. hyp.

Γ ` ¬ ϕ2

Reconstructing Propositional Proofs in Type Theory 13

• Other cases are proved in a similar way, see Appendix C.
�

The following theorem is convenient to substitute equals by equals in a theorem. Recall the
equality (≡) is symmetric and transitive as well. We use these properties without any mention.

Lemma 9. Substitution theorem.

Γ ` ϕ ψ ≡ ϕ
subst

Γ ` ψ

We can now formulate the result that justifies the stripping strategy of Metis to prove goals.
For the sake of brevity, we state the following theorem for the strip function when the goal has
two subgoals. In other cases, we extend the theorem in the natural way.

Theorem 10. Let n : Nat be the complexity measure of the strip function defined in (5). Let s2
and s3 be the subgoals of the goal ϕ, that is,

strip1 ϕ n ≡ s2 ∧ s3.

If Γ ` s2 and Γ ` s3 then Γ ` ϕ.

Proof.
Γ ` s1 Γ ` s2 ∧-intro

Γ ` s1 ∧ s2 strip1 ϕ n ≡ s1 ∧ s2
subst

Γ ` strip1 ϕ n
Lemma 8

Γ ` ϕ

�

Since Metis proves a conjecture by refutation, to prove each subgoal, Metis assumes the negation
of it by using the negate rule after the strip inference application that introduce such a subgoal.

Example 11. In the following TSTP derivation, note that the three subgoals s1, s2 and s3 are
assumed by the negate rule in neg1, neg2 and neg3 respectively.

fof(goal, conjecture, p ∧ r ∧ q).
fof(s1, p, inf(strip, goal)).
fof(s2, p ⊃ r, inf(strip, goal)).
fof(s3, (p ∧ r) ⊃ q, inf(strip, goal)).
fof(neg1, ¬ p, inf(negate, s1)).
...
fof(neg2, ¬ (p ⊃ r), inf(negate, s2)).
...
fof(neg3, ¬ ((p ∧ r) ⊃ q), inf(negate, s3)).

14 Jonathan Prieto-Cubides

4.2.2 Conjunct. The conjunct rule extracts from a conjunction one of its conjuncts. This rule is
a generalization of the projection rules for the conjunction connective as the following TSTP excerpt
shows.

Example 12.

fof(p1, p ∧ q ∧ (r ∨ ¬ p), ...
fof(p2, q, inf(conjunct, p1)).
fof(p3, r ∨ ¬ p, inf(conjunct, p1)).

In the first formula, p ∧ q ∧ (r ∨ ¬ p), we find a left-associative conjunction named p1. The
conjunct rule extracts q from the p1 using a left projection (∧-proj1) follow by a right projection
(∧-proj2). After, the conjunct rule extracts r ∨ ¬ p by using a right projection on p1.

Theorem 13. Let ψ : Conclusion. If Γ ` ϕ then Γ ` conjunct ϕ ψ, where

conjunct : Premise→ Conclusion→ Prop

conjunct ϕ ψ =

ψ, if ϕ ≡ ψ;
ψ, if ϕ ≡ ϕ1 ∧ ϕ2 and ψ ≡ conjunct ϕ1 ψ;
ψ, if ϕ ≡ ϕ1 ∧ ϕ2 and ψ ≡ conjunct ϕ2 ψ;
ϕ, otherwise.

Proof.

• Case ϕ ≡ ψ. Γ ` conjunct ϕ ψ normalizes to Γ ` ψ. Then, we get the desire conclusion by
applying the subst lemma.

• Case ϕ ≡ ϕ1 ∧ ϕ2. If we can get ψ ≡ conjunct ϕi ψ for some i = 1, 2, then,

Γ ` ϕ1 ∧ ϕ2 ∧-proji
Γ ` ϕi by ind. hyp.

Γ ` conjunct ϕi ψ ψ ≡ conjunct ϕi ψ
subst

Γ ` ψ
• Otherwise, the last case follows from the hypothesis.

�

4.2.3 Resolve. Logic equivalence between propositions is a major issue to justify prover reasoning
steps. Since we left out semantics to treat only the syntax aspects of propositional logic, our approach
shows logic equivalence by converting propositions to their conjunctive normal form, and reordering
those and the inner disjunctions to match them. Below, we provide Lemma 19, Lemma 20, Lemma 23
to perform such reordering tasks, the omitted proofs can be found in [37].

First, we define the assoc� function in (7) to convert a disjunction or a conjunction into its
right-associative form. The square symbol (�) can be the conjunction symbol or the disjunction
symbol. We use assoc∧ to convert conjunctions and assoc∨ for disjunctions.

assoc� : Prop→ Prop

assoc� ((ϕ1 � ϕ2) � ϕ3) = assoc� (ϕ1 � (ϕ2 � ϕ3))
assoc� (ϕ1 � ϕ2) = ϕ1 � assoc� ϕ2
assoc� ϕ = ϕ.

(7)

Reconstructing Propositional Proofs in Type Theory 15

Lemma 14. If Γ ` ϕ then Γ ` assoc� ϕ.

Remark. In TPTP syntax, the formulas are in left-associative form by default. Despite of that
convention, Metis assumes the formulas to be in right-associative form by default. This is a matter
to take into account for the proof-reconstruction.

The build∨ function defined in (8) intends to construct a disjunction from another disjunction,
specifically, this function will try to rearrange the disjuncts in the source formula to match with
the target disjunction formula.

Lemma 15. If Γ ` ϕ and ψ : Conclusion then Γ ` build∨ ϕ ψ, where

build∨ : Premise→ Conclusion→ Prop

build∨ ϕ ψ =

ψ, if ϕ ≡ ψ;
ψ, if ψ ≡ ψ1 ∨ ψ2 and ψi ≡ build∨ ϕ ψi for some i = 1, 2;
ϕ, otherwise.

(8)

From now on, we assume all propositions to be right-associative unless otherwise stated.
The factor function in (9) simplifies a special case of disjunction, the repeated disjuncts (e. g.,

factor (ϕ ∨ ϕ) = ϕ). Notice that other cases like ϕ ∨ (ψ ∨ ϕ) do not reduce to ψ ∨ ϕ. We use
this function in Lemma 17.

Lemma 16. If Γ ` ϕ then Γ ` factor ϕ, where

factor : Prop→ Prop

factor ϕ =
{
ϕ1, if ϕ ≡ ϕ1 ∨ ϕ2 and ϕ1 ≡ factor ϕ2;
ϕ, otherwise.

(9)

To construct a disjunction ψ from a disjunction ϕ, we have used ideas from the description in [8]
to prove equality between nested disjunctions. We define the sbuild∨ function in (10) that uses every
disjunct from the source formula, ϕ, to build up the target disjunction ψ.

Lemma 17. If Γ ` ϕ and ψ : Conclusion then Γ ` sbuild∨ ϕ ψ, where

sbuild∨ : Premise→ Conclusion→ Prop

sbuild∨ (ϕ1 ∨ ϕ2) ψ = factor (build∨ ϕ1 ψ ∨ build∨ ϕ2 ψ)
sbuild∨ ϕ ψ = build∨ ϕ ψ.

(10)

Example 18. We build the disjunction (p∨ q)∨ r from the disjunction r∨ (q∨p) using Lemma 17.

(D)

Γ ` q
∨-intro2

Γ ` p ∨ q
∨-intro1

Γ ` (p ∨ q) ∨ r

Γ ` p
∨-intro1

Γ ` p ∨ q
∨-intro1

Γ ` (p ∨ q) ∨ r
∨-elim

Γ, q ∨ p ` (p ∨ q) ∨ r

Γ ` r ∨-intro2
Γ ` (p ∨ q) ∨ r

D
Γ, q ∨ p ` (p ∨ q) ∨ r

∨-elim
Γ, r ∨ (q ∨ p) ` (p ∨ q) ∨ r

⊃-intro
Γ ` r ∨ (q ∨ p) ⊃ (p ∨ q) ∨ r

16 Jonathan Prieto-Cubides

Remark. Notice that using sbuild∨ we can build not only a disjunction with the same disjuncts of
the source formula but also a complete different disjunction by adding new disjuncts to the source
formula via introduction rules for disjunctions.

The following lemma aims to reorder nested disjunctions by forcing the formula to be in right-
associative form in order to apply Lemma 17.

Lemma 19. If Γ ` ϕ and ψ : Conclusion then Γ ` reorder∨ ϕ ψ , where

reorder∨ : Premise→ Conclusion→ Prop

reorder∨ ϕ ψ = sbuild∨ (assoc∨ ϕ) ψ.
(11)

Proof. Use Lemma 14 and Lemma 17. �

Now, we define the reorder∧ function in (12) to reorder nested conjunctions. This will help us in
the end of this section to reorder conjunctive normal forms.

Lemma 20. If Γ ` ϕ and ψ : Conclusion then Γ ` reorder∧ ϕ ψ, where

reorder∧ : Premise→ Conclusion→ Prop

reorder∧ ϕ ψ =

ϕ, if ϕ ≡ ψ;
ψ1 ∧ ψ2, if ψ ≡ ψ1 ∧ ψ2, ψ1 ≡ reorder∧ ϕ ψ1;

and ψ2 ≡ reorder∧ ϕ ψ2;
ϕ, if ψ ≡ ψ1 ∧ ψ2;
conjunct ϕ ψ, otherwise.

(12)

Example 21.
reorder∧ (p ∧ q ∧ r) (r ∧ q ∧ p) = (r ∧ q ∧ p),
reorder∧ (p ∧ q ∧ r) (r ∧ r ∧ p) = (r ∧ q ∧ p),
reorder∧ (p ∧ q ∧ r) (k ∧ q ∧ p) = (p ∧ q ∧ r),
reorder∧ ((p ∨ q) ∧ r) ((r ∧ (q ∨ p)) = ((p ∨ q) ∧ r).

(13)

In the last example in (13), we could not build the conjunction r ∧ (q ∨ p) since p ∨ q is not
syntactical equal to q∨p. We solve this issue in Lemma 23 by using the disj function defined in (14).
The purpose of this function consists of extracting a disjunction from a conjunction, but without
matter the order of the inner disjunctions.

Lemma 22. If Γ ` ϕ and ψ : Conclusion then Γ ` disj ϕ ψ, where

disj : Premise→ Conclusion→ Prop

disj ϕ ψ =

ψ, if ϕ ≡ ψ;
ψ, if ψ ≡ reorder∨ ϕ ψ;
ψ, if ψ ≡ ψ1 ∧ ψ2, ψ1 ≡ disj ϕ ψ1,

and ψ2 ≡ reorder∨ ϕ ψ2;
ψ, if ϕ ≡ ϕ1 ∧ ϕ2, ψ ≡ disj ϕ1 ψ;
ψ, if ϕ ≡ ϕ1 ∧ ϕ2, ψ ≡ disj ϕ2 ψ;
ϕ, otherwise.

(14)

Reconstructing Propositional Proofs in Type Theory 17

We are able now to reorder conjunctive normal forms using the reorder∧∨ function defined in (15)
by using the previous lemma.

Lemma 23. If Γ ` ϕ and ψ : Conclusion then Γ ` reorder∧∨ ϕ ψ, where

reorder∧∨ : Premise→ Conclusion→ Prop

reorder∧∨ ϕ ψ =

ψ, if ϕ ≡ ψ;
ψ, if ψ ≡ ψ1 ∧ ψ2, ψ1 ≡ reorder∧∨ ϕ ψ1,

and ψ2 ≡ reorder∧∨ ϕ ψ2;
ϕ, if ψ ≡ ψ1 ∧ ψ2;
disj ϕ ψ, otherwise.

(15)

Now, we are ready to reconstruct the resolve rule using Lemma 23. As we see in the following,
the resolve rule is the Metis version of the resolution theorem. This rule takes into account, two
propositions that contain a positive literal ` and its negation ¬ ` respectively. Then, it produces the
resolvent, a disjunction of two propositions: the first proposition after removing the literal ` and
the second proposition after removing its negation ¬ `.

Definition 24. A literal is an propositional variable (positive literal) or a negation of an proposi-
tional variable (negative literal).

Notation. We use Lit as synonym of Prop type to refer literals.

The positive literal ` must occur in the formula from the first derivation and the negative
literal ¬ ` must occur in the formula from the second derivation, see the pattern of the resolve rule
in Fig. 2.

Example 25.

cnf(r4, ¬ r ∨ p ∨ q, ...
cnf(r5, p ∨ q ∨ r, ...
cnf(r6, p ∨ q, inf(resolve, r, [r5, r4])).

In the excerpt above, we apply resolution to the first two formulas, ¬ r∨p∨ q and p∨ q∨ r. The
last line tells us the literal used for resolution is r. Syntactically speaking, we can not derive neither
the conclusion p ∨ q in r6 nor apply the resolution theorem with r4 and r5 since the formulas do
not fit the pattern required.

If the scenario would have other like replacing r5 by

cnf(r5, r ∨ p ∨ q, ...

The resolve rule have could derive (p ∨ q) ∨ (p ∨ q), but again, that is not the expected result.

Therefore, we perform a sequence of rearrangements inside the involved formulas to match with
the expected pattern by the resolve inference rule in Fig. 2.

Using reordering after applying a customized version of the resolution theorem defined in (16)
we get the expected result.

18 Jonathan Prieto-Cubides

Lemma 26. If Γ ` ϕ then Γ ` rsol ϕ, where

rsol : Prop→ Prop

rsol ϕ =

ϕ2, if ϕ ≡ (ϕ1 ∨ ϕ2) ∧ (¬ ϕ1 ∨ ϕ2);
ϕ2 ∨ ϕ4, if ϕ ≡ (ϕ1 ∨ ϕ2) ∧ (¬ ϕ1 ∨ ϕ4);
ϕ, otherwise.

(16)

Theorem 27. Let ` be a literal, ` : Lit, and ψ : Conclusion. If Γ ` ϕ1 and Γ ` ϕ2 then
Γ ` resolve ϕ1 ϕ2 ` ψ, where

resolve : Premise→ Premise→ Lit→ Conclusion→ Prop

resolve ϕ1 ϕ2 ` ψ = rsol (reorder∨ ϕ1 (` ∨ ψ) ∧ reorder∨ ϕ2 (¬ ` ∨ ψ)).
(17)

Proof.

Γ ` ϕ1
Lemma 23

Γ ` reorder∨ ϕ1 (` ∨ ψ)
Γ ` ϕ2

Lemma 23
Γ ` reorder∨ ϕ2 (¬ ` ∨ ψ)

∧-intro
Γ ` reorder∨ ϕ1 (` ∨ ψ) ∧ reorder∨ ϕ2 (¬ ` ∨ ψ)

Lemma 26
Γ ` rsol (reorder∨ ϕ1 (` ∨ ψ) ∧ reorder∨ ϕ2 (¬ ` ∨ ψ))

by (17)
Γ ` resolve ϕ1 ϕ2 ` ψ

�

Example 28. Continuing with the problem presented in Example 25, we can use Theorem 27 to
derive Γ ` p ∨ q.

Γ ` p ∨ q ∨ r Γ ` ¬ r ∨ p ∨ q
Theorem 27

Γ ` resolve (p ∨ q ∨ r) (¬ r ∨ p ∨ q) r (p ∨ q)
by (17)

Γ ` rsol (reorder∨ (p ∨ q ∨ r) (r ∨ (p ∨ q)) ∧ reorder∨ (¬ r ∨ p ∨ q) (¬ r ∨ (p ∨ q))
by (11)

Γ ` rsol ((r ∨ (p ∨ q)) ∧ (¬ r ∨ (p ∨ q)))
by (16)

Γ ` p ∨ q

4.2.4 Canonicalize. The canonicalize rule is an inference that transforms a formula to a its
negative normal form or its conjunctive normal form depending on the role that the formula plays
in the problem as we will explain in a moment. However, in both cases, this rule removes inside of
the formula any redundancy as long as possible (i. e., tautologies or definitions).

Definition 29. The negative normal form of a formula is the logical equivalent version of it in
which negations appear only in the literals and the formula does not contain any implications.

Definition 30. The conjunctive normal form of a formula also called clausal normal form is the
logical equivalent version expressed as a conjunction of clauses where a clause is the disjunction of
zero or more literals.

Reconstructing Propositional Proofs in Type Theory 19

The canonicalize rule is used by Metis to introduce the subgoals in their refutation proofs
but also helps to simplify formulas at intermediate steps in the derivations. As far as we know,
the canonicalize rule implements a conjunctive normal form conversion with simplifications of
tautologies and definitions. Otherwise, when an axiom, definition or hypothesis is needed to prove
some goal, this rule gets the negative normal form of the formula. The canonicalize rule jointly
with the clausify rule perform the so-called clausification process mainly described in [41].

To reconstruct the canonicalize rule, we adapted some ideas from the Metis source code. The
presentation of this reconstruction is as follows. We firstly describe functions to remove redundancies
inside of the formula. After, we present the negative normal form conversion in Lemma 34 and the
conjunctive normal form in Lemma 36. At the end of this section, we state Theorem 39 to reconstruct
the canonicalize rule.

Now, we say that there are redundancies in a formula when some of the theorems in Fig. 5 can
be applied inside of it.

Γ ` ϕ ∨ ⊥
Γ ` ϕ

Γ ` ϕ ∨ >
Γ ` >

Γ ` ϕ ∨ ¬ ϕ
Γ ` >

Γ ` ϕ ∨ ϕ
Γ ` ϕ

Γ ` ϕ ∧ ⊥
Γ ` ⊥

Γ ` ϕ ∧ >
Γ ` ϕ

Γ ` ϕ ∧ ϕ
Γ ` ϕ

Γ ` ϕ ∧ ¬ ϕ
Γ ` ⊥

Fig. 5. Theorems to remove redundancies inside of a formula.

Notation. In a disjunction, ϕ ≡ ϕ1 ∨ ϕ2 ∨ · · · ∨ ϕn, we say ψ ∈∨ ϕ, if there is some i = 1, · · · , n
such that ψ ≡ ϕi. Note that ψ ∈∨ ϕ is another representation for the equality ψ ≡ reorder∨ ϕ ψ.

In right-associative disjunctions we remove the redundancies in Fig. 6 using Lemma 31. We
assume the formulas to be right-associative unless otherwise stated.

Γ ` ϕ ∨ ⊥
Γ ` ϕ

Γ ` ϕ ∨ >
Γ ` >

Γ ` ϕ ∨ ϕ
Γ ` ϕ

Γ ` ϕ ∨ ¬ ϕ

Γ ` >

Fig. 6. Theorems to remove redundancies inside of a disjunction.

Lemma 31. Let ϕ : Prop be a right-associative formula. If Γ ` ϕ then Γ ` simplify∨ ϕ, where

20 Jonathan Prieto-Cubides

simplify∨ : Prop→ Prop

simplify∨ (⊥ ∨ ϕ) = simplify∨ ϕ
simplify∨ (ϕ ∨ ⊥) = simplify∨ ϕ
simplify∨ (> ∨ ϕ) = >
simplify∨ (ϕ ∨ >) = >

simplify∨ (ϕ1 ∨ ϕ2) =

>, if ϕ1 ≡ ¬ ψ for some ψ : Prop and ψ ∈∨ ϕ2;
>, if (¬ ϕ1) ∈∨ ϕ2;
simplify∨ ϕ2, if ϕ1 ∈∨ ϕ2;
>, if simplify∨ ϕ2 ≡ >;
ϕ1, if simplify∨ ϕ2 ≡ ⊥;
ϕ1 ∨ simplify∨ ϕ2, otherwise.

simplify∨ ϕ = ϕ.

(18)

Example 32. The formula ϕ∨ (ψ ∨ (ϕ∨ϕ))∨ϕ in (19) has redundancies. To remove such redun-
dancies we first use Lemma 14 to get the right-associative version of the formula. Then, we can use
the simplify∨ function to get the logical equivalent formula ψ ∨ ϕ.

Γ ` ϕ ∨ (ψ ∨ (ϕ ∨ ϕ)) ∨ ϕ
Lemma 14

Γ ` assoc∨ (ϕ ∨ (ψ ∨ (ϕ ∨ ϕ)) ∨ ϕ)
by (7)

Γ ` ϕ ∨ (ψ ∨ (ϕ ∨ (ϕ ∨ ϕ)))
Lemma 31

Γ ` simplify∨ (ϕ ∨ (ψ ∨ (ϕ ∨ (ϕ ∨ ϕ))))
(18)

Γ ` ψ ∨ ϕ

(19)

Now, we have removed redundancies in disjunctions by applying the simplify∨ function. In a
similar way, we define the simplify∧ function to work with conjunctions.

Notation. In a conjunction, ϕ ≡ ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn, we say ψ ∈∧ ϕ, if there is some i = 1, · · · , n
such that ψ ≡ ϕi. Note that ψ ∈∧ ϕ is another representation of the equality ψ ≡ conjunct ϕ ψ.

In right-associative conjunctions we remove the redundancies in Fig. 7 using Lemma 33.

Γ ` ϕ ∧ >
Γ ` ϕ

Γ ` ϕ ∧ ⊥
Γ ` ⊥

Γ ` ϕ ∧ ϕ
Γ ` ϕ

Γ ` ϕ ∧ ¬ ϕ

Γ ` ⊥

Fig. 7. Theorems to remove redundancies inside of a conjunction.

Lemma 33. Let ϕ : Prop be a right-associative formula. If Γ ` ϕ then Γ ` simplify∧ ϕ, where

Reconstructing Propositional Proofs in Type Theory 21

simplify∧ : Prop→ Prop

simplify∧ (⊥ ∧ ϕ) = ⊥
simplify∧ (ϕ ∧ ⊥) = ⊥
simplify∧ (> ∧ ϕ) = simplify∧ ϕ
simplify∧ (ϕ ∧ >) = simplify∧ ϕ

simplify∧ (ϕ1 ∧ ϕ2) =

⊥, if ϕ1 ≡ ¬ ψ for some ψ : Prop and ψ ∈∧ ϕ2;
⊥, if (¬ ϕ1) ∈∧ ϕ2;
simplify∧ ϕ2, if ϕ1 ∈∧ ϕ2;
ϕ1, if simplify∧ ϕ2 ≡ >;
⊥, if simplify∧ ϕ2 ≡ ⊥;
ϕ1 ∧ simplify∧ ϕ2, otherwise.

simplify∧ ϕ = ϕ.

(20)

Now, we are ready to define the negative normal form of a formula with simplifications by
applying to it the nnf function defined in Lemma 34 (see more details in Appendix D). This definition
is mainly based on the Metis source code to normalize formulas. To define such a function in type
theory we used bounded recursion as we describe in Section 2.1.

nnf1 : Prop→ Nat→ Prop

nnf1 (ϕ1 ∧ ϕ2) (succ n) = simplify∧ (assoc∧ (nnf1 ϕ1 n ∧ nnf1 ϕ2 n))
nnf1 (ϕ1 ∨ ϕ2) (succ n) = simplify∨ (assoc∨ (nnf1 ϕ1 n ∨ nnf1 ϕ2 n))
nnf1 (ϕ1 ⊃ ϕ2) (succ n) = simplify∨ (assoc∨ (nnf1 ((¬ ϕ1) ∨ ϕ2) n))
nnf1 (¬ (ϕ1 ∧ ϕ2)) (succ n) = simplify∨ (assoc∨ (nnf1 ((¬ ϕ1) ∨ (¬ ϕ2)) n))
nnf1 (¬ (ϕ1 ∨ ϕ2)) (succ n) = simplify∧ (assoc∧ (nnf1 ((¬ ϕ1) ∧ (¬ ϕ2)) n))
nnf1 (¬ (ϕ1 ⊃ ϕ2)) (succ n) = simplify∧ (assoc∧ (nnf1 ((¬ ϕ2) ∧ ϕ1) n))
nnf1 (¬ (¬ ϕ)) (succ n) = nnf1 ϕ1 n
nnf1 (¬ >) (succ n) = ⊥
nnf1 (¬ ⊥) (succ n) = >
nnf1 ϕ zero = ϕ

(21)

Lemma 34. If Γ ` ϕ then Γ ` nnf ϕ, where

nnf : Prop→ Prop

nnf ϕ = nnf1 ϕ (nnfcm ϕ).

The nnfcm complexity measure function is defined in Appendix D.

To get the conjunctive normal form, we make sure the formula is a conjunction of disjunctions.
For such a purpose, we use distributive laws in Lemma 35 to get that form after applying the nnf
function.

22 Jonathan Prieto-Cubides

Lemma 35. Γ ` ϕ then Γ ` dist ϕ, where

dist : Prop→ Prop

dist (ϕ1 ∧ ϕ2) = dist ϕ1 ∧ dist ϕ2
dist (ϕ1 ∨ ϕ2) = dist∨ (dist ϕ1 ∨ dist ϕ2)
dist ϕ = ϕ

and
dist∨ : Prop→ Prop

dist∨ ((ϕ1 ∧ ϕ2) ∨ ϕ3) = dist∨ (ϕ1 ∨ ϕ2) ∧ dist∨ (ϕ2 ∨ ϕ3)
dist∨ (ϕ1 ∨ (ϕ2 ∧ ϕ3)) = dist∨ (ϕ1 ∨ ϕ2) ∧ dist∨ (ϕ1 ∨ ϕ3)
dist∨ ϕ = ϕ.

We get the conjunctive normal form by applying the nnf function follow by the dist function.

Lemma 36. If Γ ` ϕ then Γ ` cnf ϕ, where

cnf : Prop→ Prop

cnf ϕ = dist (nnf ϕ).

Proof. Composition of Lemma 35 and Lemma 34. �

Since all the transformations in Lemma 34 and Lemma 35 came from logical equivalences in
propositional logic, we state the following lemmas used in the reconstruction of the simplify rule
in Lemma 42 and in Theorem 39 for the canonicalize rule.

Lemma 37. If Γ ` nnf ϕ then Γ ` ϕ.

Lemma 38. If Γ ` cnf ϕ then Γ ` ϕ.

Now, we are ready to reconstruct the canonicalize rule. This inference rule defined in (22) per-
forms normalization for a proposition. That is, depending on the role of the formula in the problem,
it converts that formula to its negative normal form or its conjunctive normal form. In both cases,
canonicalize simplifies the formula by removing redundancies inside of it as we widely described
above for theorems in Fig. 5. When the formula plays the axiom or definition role, the canonicalize
rule transforms the source formula to its negative normal form. Otherwise, this rule converts the
formula to its conjunctive normal form.

Since this rule mostly consists of dealing with clauses, to reconstruct this rule, our strategy
mainly consists of checking the equality of negative normal form between the source and the target
formula. If it fails, we try to reorder the conjunctive normal form of the source formula to match
with the conjunctive normal form of the target formula. It definition is as follows.

Theorem 39. Let ψ : Conclusion. If Γ ` ϕ then Γ ` canonicalize ϕ ψ, where

canonicalize : Premise→ Conclusion→ Prop

canonicalize ϕ ψ =

ψ, if ψ ≡ ϕ;
ψ, if ψ ≡ nnf ϕ;
ψ, if cnf ψ ≡ reorder∧∨ (cnf ϕ) (cnf ψ);
ϕ, otherwise.

(22)

Reconstructing Propositional Proofs in Type Theory 23

Proof.

• Case ϕ ≡ ψ. By substitution theorem we conclude Γ ` ψ.
• Case ψ ≡ nnf ϕ.

Γ ` ϕ
Lemma 34

Γ ` nnf ϕ ψ ≡ nnf ϕ
subst

Γ ` ψ
• Case cnf ψ ≡ reorder∧∨ (cnf ϕ) (cnf ψ).

Γ ` ϕ
Lemma 36

Γ ` cnf ϕ
Lemma 23

Γ ` reorder∧∨ (cnf ϕ) (cnf ψ) cnf ψ ≡ reorder∧∨ (cnf ϕ) (cnf ψ)
subst

Γ ` cnf ψ
Lemma 38

Γ ` ψ

�

4.2.5 Clausify. The clausify rule is an alternative rule to transform a formula into its clausal
normal form but without performing simplifications with tautologies or definitions. Recall, this
kind of conversion was addressed by the canonicalize rule. It is important to notice that this
kind of conversions between one formula to its clausal normal form are not unique, and Metis has
customized approaches to perform that transformations. Therefore, we perform a reordering of the
conjunctive normal form given by the cnf function defined in Lemma 36 with the reorder∧∨ function
from Lemma 23 to the input formula of the rule.

Example 40. In the following TSTP derivation by Metis, we see how clausify transforms the n0
formula to get n1 formula.

fof(n0, ¬ p ∨ (q ∧ r) ...
fof(n1, (¬ p ∨ q) ∧ (¬ p ∨ r), inf(clausify, n0)).

Theorem 41. Let ψ : Conclusion. If Γ ` ϕ then Γ ` clausify ϕ ψ, where

clausify : Premise→ Conclusion→ Prop

clausify ϕ ψ =
{
ψ, if ϕ ≡ ψ;
reorder∧∨ (cnf ϕ) ψ, otherwise.

Proof. If ϕ ≡ ψ, Γ ` clausify ϕ ψ normalizes to Γ ` ψ. The conclusion follows by applying the subst
lemma. Otherwise, we use Lemma 23 and Lemma 36. �

4.2.6 Simplify. The simplify rule is an inference that performs simplification of definitions and
tautologies. This rule transverses a list of previous derivations by applying Lemma 31, Lemma 33,
among others. This rule works to find a contradiction in the first place, or a new formula (often
smaller than its input formulas) to use later in the derivation.

We observe based on the analysis of different cases in the TSTP derivations that simplify can
be modeled by a function with three arguments: two source formulas and the target formula.

24 Jonathan Prieto-Cubides

Since the main purpose of the simplify rule is simplification of formulas, we have defined the
reduce` function to help removing the negation of a given literal ` from a input formula.

reduce` : Prop→ Lit→ Prop

reduce` (ϕ1 ∧ ϕ2) ` = simplify∧ (reduce` ϕ1 ` ∧ reduce` ϕ2 `)
reduce` (ϕ1 ∨ ϕ2) ` = simplify∨ (reduce` ϕ1 ` ∨ reduce` ϕ2 `)

reduce` ϕ ` =
{
⊥, if ϕ is a literal and ` ≡ nnf(¬ ϕ);
ϕ, otherwise.

(23)

Lemma 42. Let ` be a literal and ϕ : Prop. If Γ ` ϕ and Γ ` ` then Γ ` reduce` ϕ `.

Proof. This proof is by induction on the structure of ϕ.

• Case ϕ ≡ ϕ1 ∧ ϕ2.

Γ ` ϕ1 ∧ ϕ2 ∧-proj1
Γ ` ϕ1 Γ ` `

by ind. hyp.
Γ ` reduce` ϕ1 `

Γ ` ϕ1 ∧ ϕ2 ∧-proj2
Γ ` ϕ2 Γ ` `

by ind. hyp.
Γ ` reduce` ϕ2 `

∧-intro
Γ ` reduce` ϕ1 ` ∧ reduce` ϕ2 `

Lemma 33
Γ ` simplify∧ (reduce` ϕ1 ` ∧ reduce` ϕ2 `)

• Case ϕ ≡ ϕ1 ∨ ϕ2.

Γ, ϕ1 ` ϕ1

Γ ` `
weaken

Γ, ϕ1 ` ` by ind. hyp.
Γ, ϕ1 ` reduce` ϕ1 ` ∨-intro1

Γ, ϕ1 ` reduce` ϕ1 ` ∨ reduce` ϕ2 `

Γ, ϕ2 ` ϕ2

Γ ` `
weaken

Γ, ϕ2 ` ` by ind. hyp.
Γ, ϕ2 ` reduce` ϕ2 ` ∨-intro2

Γ, ϕ2 ` reduce` ϕ1 ` ∨ reduce` ϕ2 `(D) ∨-elim
Γ, ϕ1 ∨ ϕ2 ` reduce` ϕ1 ` ∨ reduce` ϕ2 ` ⊃-intro

Γ ` ϕ1 ∨ ϕ2 ⊃ (reduce` ϕ1 ` ∨ reduce` ϕ2 `)

D Γ ` ϕ1 ∨ ϕ2
⊃-elim

Γ ` reduce` ϕ1 ` ∨ reduce` ϕ2 `
Lemma 31

Γ ` simplify∨ (reduce` ϕ1 ` ∨ reduce` ϕ2 `)

• Case ϕ is a literal and ` ≡ nnf (¬ ϕ).

Γ ` ` ` ≡ nnf (¬ ϕ)
subst

Γ ` nnf (¬ ϕ)
Lemma 37

Γ ` ¬ ϕ Γ ` ϕ
¬ -elim

Γ ` ⊥
• Otherwise use the same hypothesis Γ ` ϕ. �

Reconstructing Propositional Proofs in Type Theory 25

The simplify function is defined in (24). If some input formula is equal to the target formula,
we derive that formula. If some formula is ⊥, we derive the target formula by using the ⊥ − elim
inference rule. Otherwise, the simplification functions take place if the second input formula is a
conjunction or a disjunction. Otherwise, if the second input formula in the sources is a literal, we
use the reduce` function and Lemma 42.

simplify : Premise→ Premise→ Conclusion→ Prop

simplify ϕ1 ϕ2 ψ =

ψ, if ϕi ≡ ⊥ for some i = 1, 2;
ψ, if ϕi ≡ ψ for some i = 1, 2;
simplify∧ (simplify ϕ1 ϕ21 ψ) ϕ22 ψ, if ϕ2 ≡ ϕ21 ∧ ϕ22;
simplify∨ (simplify ϕ1 ϕ21 ψ ∨ simplify ϕ1 ϕ22 ψ) if ϕ2 ≡ ϕ21 ∨ ϕ22;
reduce` ϕ1 ϕ2, if ϕ2 is a literal;
ϕ1, otherwise.

(24)

Lemma 43. Let ψ : Conclusion. If Γ ` ϕ1 and Γ ` ϕ2 then Γ ` simplify ϕ1 ϕ2.

Proof. This proof is by induction on the structure of ϕ.

• Case ϕi ≡ ψ for some i = 1, 2. If ϕi ≡ ψ then by subst lemma since Γ ` ϕi we derive Γ ` ψ.

• Case ϕi ≡ ⊥ for some i = 1, 2.
Γ ` ϕi ϕi ≡ ⊥

subst
Γ ` ⊥ ⊥-elim
Γ ` ψ

• Case ϕ2 ≡ ϕ21 ∧ ϕ22.

Γ ` ϕ1

Γ ` ϕ21 ∧ ϕ22 ∧-proj1
Γ ` ϕ21 by ind. hyp.

Γ ` simplify ϕ1 ϕ21 ψ

Γ ` ϕ21 ∧ ϕ22 ∧-proj2
Γ ` ϕ22 by ind. hyp.

Γ ` simplify (simplify ϕ1 ϕ21 ψ) ϕ22 ψ

• Case ϕ2 ≡ ϕ21 ∨ ϕ22.

Γ ` ϕ1
weaken

Γ, ϕ21 ` ϕ1 Γ, ϕ21 ` ϕ21 by ind. hyp.
Γ, ϕ21 ` simplify ϕ1 ϕ21 ψ(D1) ∨-intro1

Γ, ϕ21 ` simplify ϕ1 ϕ21 ψ ∨ simplify ϕ1 ϕ21 ψ

Γ ` ϕ1
weaken

Γ, ϕ22 ` ϕ1 Γ, ϕ22 ` ϕ22 by ind. hyp.
Γ, ϕ22 ` simplify ϕ1 ϕ22 ψ(D2) ∨-intro2

Γ, ϕ22 ` simplify ϕ1 ϕ22 ψ ∨ simplify ϕ1 ϕ22 ψ

26 Jonathan Prieto-Cubides

D1 D2 ∨-elim
Γ, ϕ21 ∨ ϕ22 ` simplify ϕ1 ϕ21 ψ ∨ simplify ϕ1 ϕ22 ψ(D3) ⊃-intro

Γ ` ϕ21 ∨ ϕ22 ⊃ (simplify ϕ1 ϕ21 ψ ∨ simplify ϕ1 ϕ22 ψ)

D3

Γ ` ϕ21 ∨ ϕ22 ⊃ (simplify ϕ1 ϕ21 ψ ∨ simplify ϕ1 ϕ22 ψ) Γ ` ϕ21 ∨ ϕ22
⊃-elim

Γ ` simplify ϕ1 ϕ21 ψ ∨ simplify ϕ2 ϕ22 ψ
Lemma 31

Γ ` simplify∨ (simplify ϕ1 ϕ21 ψ ∨ simplify ϕ2 ϕ22 ψ)

• Case ϕ2 is a literal. Use Lemma 42 with ϕ = ϕ1 and ` = ϕ2. �

Theorem 44. Let ψ : Conclusion. Let ϕi : Premise such that Γ ` ϕi for i = 1, · · · , n and
n ≥ 2. Then Γ ` simplify γn−1 ϕn ψ where γ1 = ϕ1, and γi ≡ simplify γi−1 ϕi ψ.

Proof. We prove this theorem by induction on n.
• Case n = 2. Use Lemma 43.
• Case n > 2. Suppose this theorem is valid for n, that is, for i = 1, · · · , n, Γ ` simplify γn−1 ϕn ψ.
Let us prove it for n+ 1.

Γ ` simplify γn−1 ϕn ψ γn ≡ simplify γn−1 ϕn ψ
subst

Γ ` γn Γ ` ϕn+1
by ind. hyp.

Γ ` simplify γn ϕn+1 ψ

�

Remark. Besides the fact that List Prop → Prop is the type that most fit with the simplify
rule, we choose a different option. In the translation from TSTP to Agda, we take the list of derivations
and we apply the rule by using a left folding (the foldl function in functional programming) with
the simplify function over the list of ϕ1, ϕ2, · · · , ϕn that avoids us to define a new theorem type to
support List Prop type in the conclusion side.

Example 45. Let us review the following TSTP excerpt where simplify was used twice.

fof(n0, (¬ p ∨ q) ∧ ¬ r ∧ ¬ q ∧ (p ∨ (¬ s ∨ r)), ...
fof(n1, p ∨ (¬ s ∨ r), inf(conjunct, n0)).
fof(n2, ¬ p ∨ q, inf(conjunct, n0)).
fof(n3, ¬ q, inf(conjunct, n0)).
fof(n4, ¬ p, inf(simplify, [n2, n3])).
fof(n5, ¬ r, inf(conjunct, n0)).
fof(n6, ⊥, inf(simplify, [n1, n4, n5])).

1. The simplify rule derives ¬ p in n4 from n2 and n3 derivations.

simplify (¬ p ∨ q) (¬ q) (¬ p) = ¬ p.

Reconstructing Propositional Proofs in Type Theory 27

2. To derive ⊥ in n6 we use Theorem 44 and we get the following proof.

Γ ` p ∨ (¬ s ∧ r) Γ ` ¬ p
Theorem 44

Γ ` ¬ s ∧ r Γ ` ¬ r
Theorem 44

Γ ` ⊥

We have finished the formalization of every inference rule in a Metis derivation, we are able to
justify step-by-step any proof for a problem in propositional logic. For instance, we tested success-
fully the translation by Athena jointly with the Agda formalizations of the rules mentioned above
with more than eighty representative theorems in propositional logic. An interested reader can test
the problems [34] in the Athena tool repository [36].

5 Related Work

Many approaches have been proposed for proof-reconstruction and some tools have been imple-
mented in the last decades. We first mention some tools in type theory and later we listed some
proof-reconstruction tools for classical logic.

Kanso in [25, 26] presents a proof-reconstruction in Agda for propositional logic. Its tool support
proof-reconstruction for EProver and Z3 ATPs following a similar work-flow as we presented in
Section 4.1. Nonetheless, its approach employs semantics for logic equivalences. We have avoided
the use of propositions meanings towards a future work to support other logics where a syntactical
approach plays an important role (for an example of such logics, we refer the reader to [2]). Foster
and Struth [18] describe the proof-reconstruction in Agda for Waldmeister [20], a prover for pure
equational logic. As far as we know, no other proof-reconstruction has been carried out neither in
Agda nor with Metis prover.

Another important proof-assistant in type theory is Coq [44]. We found the SMTCoq [3, 15] tool
which provides a certified checker for proof witness coming from the SMT solver veriT [9] and
adds a new tactic named verit, that calls veriT on any Coq goal. Also for Coq, given a fixed but
arbitrary first-order signature, Bezem, Hendriks, and Nivelle in [5] transform a proof produced by
the first-order automatic theorem prover Bliksem [29] in a Coq proof-term.

There are some successful attempts using proof-assistants for classical logic instead of type
theory. Let us mention some representative of such tools. This description is mainly based on Sicard-
Ramírez and Ospina-Giraldo [38].

The Isabelle proof-assistant has the Sledgehammer tool. This program provides a full inte-
gration between automatic theorem provers [6, 17, 8] and Isabelle/HOL [28], the specialization of
Isabelle for higher-order logic. A modular proof-reconstruction workflow is presented jointly with
the full integration of Leo-II and Satallax provers with Isabelle/HOL in Eén and Sörensson [14].

Hurd [22] integrates the first-order resolution prover Gandalf with the high-order theorem prover
HOL [31]. Its GANDALF_TAC tactic is able to reconstruct Gandalf proofs by using a LCF model. For
HOL Light, a version of HOL but with a simpler logic core, the SMT solver CVC4 was integrated.
Kaliszyk and Urban [24] reconstruct proofs from different ATPs with the PRocH tool by replaying
detailed inference steps from the ATPs with internal inference methods implemented in HOL Light.

28 Jonathan Prieto-Cubides

6 Conclusions and Future Work

We presented a proof-reconstruction approach in type theory for the propositional fragment of
the Metis prover. We provided for each Metis inference rule a formal description in type theory
following a syntactical approach. This formalizations are mainly exposed in Section 4.2.

We built the Athena translator tool written in Haskell that generates Agda proof-terms of
Metis derivations. Agda files generated by this translator imports Agda formalizations of the Metis
reasoning [35, 37].

The reconstruction approach in this study was designed to use only syntactical aspects of the
logic. This decision was in the beginning a drawback since it demands more detailed proofs, a
description of every transformation or deduction step performed by the prover, which is rarely
included in the output of these programs, see Section 4.2. Nevertheless, we chose that syntactical
treatment instead of using semantics to extend this work towards the support of first-order logic or
other non-classical logics. For first-order logic, recall satisfiability is undecidable and its syntactical
aspect plays an important role to reconstruct proofs.

One of the main contribution of this study was increasing the trustworthiness of the automatic
prover Metis. Justifying a proof by a theorem prover has a real significant impact for these automatic
tools. The reverse engineering task to grasp the prover reasoning can reveal important issues or bugs
in many parts of these systems (e. g., preprocessing, reasoning, or deduction modules). During this
research, we had the opportunity to contribute to Metis by reporting some bugs—see Issues No. 2,
No. 4, and commit 8a3f11e in Metis’ official repository.5 Fortunately, all these problems were fixed
quickly by Hurd in Metis 2.3 (release 20170822).

Future work

Further research directions include, but are not limited to:

– extend the proof-reconstruction presented in this paper to
• support Metis inference rules with equality (e. g., equality).
• support other ATPs for propositional logic like EProver or Z3. This development can be

carried out by following the EProver description on Kanso’s Ph.D. thesis [25].
• support Metis first-order proofs.

– improve some functions in Section 4.2
• by investigating the consequences of removing the clausify inference rule by the canonicalize

rule.
• by increasing the coverage of the simplify rule. Since is fairly complex its implementation

in the Metis source code, some cases could be omitted in Section 4.2.6.

Acknowledgments. Research on this paper was fully supported by Universidad EAFIT in Medel-
lín, Colombia. I would like to thank for this funding and its support for my master studies. This
project was a product of the Logic and Computation Research Group at Universidad EAFIT. My
special thanks to Andrés Sicard-Ramiréz to give me the opportunity to work on these exciting
topics but also for its patience, discussions, and very valuable comments during all this research.

5 https://github.com/gilith/metis.

https://github.com/gilith/metis

REFERENCES 29

I thank Joe Leslie-Hurd for his support and comments about Metis. I also acknowledge the
work carried out by Alejandro Gómez-Londoño [19] used as the basis for our TSTP parsing module
in [36].

Last but not least, I thankfully acknowledge Andreas Abel and Chalmers University of Tech-
nology at Goteborg, Sweden for inviting me to be part of the Agda Implementors’ Meeting XXV
where I presented part of this research in the meeting.

References

[1] Andreas Abel and Thorsten Altenkirch. A Predicative Analysis of Structural Recursion. Jour-
nal of Functional Programming 12.01 (2002), pp. 1–41. doi: 10.1017/S0956796801004191
(cit. on p. 3).

[2] Juan C. Agudelo-Agudelo. Translating Non-classical Logics into Classical Logic by Using
Hidden Variables. Logica Universalis 11.2 (2017), pp. 205–224. doi: 10.1007/s11787-017-
0168-1 (cit. on pp. 4, 27).

[3] Michael Armand, Germain Faure, Benjamin Grégoire, Chantal Keller, Laurent Théry, and
Benjamin Werner. A Modular Integration of SAT/SMT Solvers to Coq through Proof Wit-
nesses. In: Certified Programs and Proofs (CPP 2011). Ed. by Jean-Pierre Jouannaud and
Zhong Shao. Vol. 7080. Lecture Notes in Computer Science. Springer, 2011, pp. 135–150. doi:
10.1007/978-3-642-25379-9_12 (cit. on p. 27).

[4] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development:
Coq’Art: The Calculus of Inductive Constructions. Springer, 2004. doi: 10.1007/978-3-
662-07964-5 (cit. on p. 3).

[5] Marc Bezem, Dimitri Hendriks, and Hans de Nivelle. Automated Proof Construction in Type
Theory Using Resolution. Journal of Automated Reasoning 29.3-4 (2002), pp. 253–275. doi:
10.1023/A:1021939521172 (cit. on pp. 2, 3, 27, 36).

[6] Jasmin Blanchette, Sascha Böhme, and Lawrence C. Paulson. Extending Sledgehammer with
SMT Solvers. Journal of Automated Reasoning 51.1 (June 2013), pp. 109–128. doi: 10.1007/
s10817-013-9278-5 (cit. on p. 27).

[7] Sascha Böhme and Tjark Weber. Designing Proof Formats: A User’s Perspective - Experience
Report. In: First International Workshop on Proof eXchange for Theorem Proving - PxTP
2011. 2011. url: http://hal.inria.fr/hal-00677244 (cit. on p. 1).

[8] Sascha Böhme and Tjark Weber. Fast LCF-Style Proof Reconstruction for Z3. In: Interactive
Theorem Proving (ITP 2010). Ed. by Matt Kaufmann and Lawrence C. Paulson. Vol. 6172.
Lecture Notes in Computer Science. Springer, 2010, pp. 179–194. doi: 10.1007/978-3-642-
14052-5_14 (cit. on pp. 15, 27).

[9] Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe, and Pascal Fontaine. veriT:
An Open, Trustable and Efficient SMT-Solver. In: Automated Deduction (CADE-22). Ed.
by Renate A. Schmidt. Vol. 5663. Lecture Notes in Artifical Intellingence. Springer, 2009,
pp. 151–156. doi: 10.1007/978-3-642-02959-2_12 (cit. on p. 27).

[10] Ana Bove and Venanzio Capretta. Recursive Functions with Higher Order Domains. In: Typed
Lambda Calculi and Applications (TLCA 2005). Ed. by Paweł Urzyczyn. Vol. 3461. Lecture
Notes in Computer Science. Springer, 2005, pp. 116–130. doi: 10.1007/11417170_10 (cit. on
p. 3).

http://dx.doi.org/10.1017/S0956796801004191
http://dx.doi.org/10.1007/s11787-017-0168-1
http://dx.doi.org/10.1007/s11787-017-0168-1
http://dx.doi.org/10.1007/978-3-642-25379-9_12
http://dx.doi.org/10.1007/978-3-662-07964-5
http://dx.doi.org/10.1007/978-3-662-07964-5
http://dx.doi.org/10.1023/A:1021939521172
http://dx.doi.org/10.1007/s10817-013-9278-5
http://dx.doi.org/10.1007/s10817-013-9278-5
http://hal.inria.fr/hal-00677244
http://dx.doi.org/10.1007/978-3-642-14052-5_14
http://dx.doi.org/10.1007/978-3-642-14052-5_14
http://dx.doi.org/10.1007/978-3-642-02959-2_12
http://dx.doi.org/10.1007/11417170_10

30 REFERENCES

[11] Leran Cai, Ambrus Kaposi, and Thorsten Altenkirch. Formalising the Completeness Theorem
of Classical Propositional Logic in Agda. Unpublished. 2015. url: https://akaposi.github.
io/proplogic.pdf (cit. on p. 5).

[12] T. Coquand. Pattern Matching With Dependent Types. 1992. doi: 10.1.1.37.9541 (cit. on
p. 3).

[13] Dirk van Dalen. Logic and Structure. Universitext. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 1994. doi: 10.1007/978-3-662-02962-6 (cit. on p. 5).

[14] Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. In: Theory and Applications
of Satisfiability Testing (SAT 2003). Ed. by Enrico Giunchiglia and Tacchella. Armando.
Vol. 2919. Lecture Notes in Computer Science. Springer, 2004, pp. 116–130. doi: 10.1007/
978-3-540-24605-3_37 (cit. on p. 27).

[15] B. Ekici, A. Mebsout, C. Tinelli, C. Keller, and G. Katz. SMTCoq: A plug-in for integrating
SMT solvers into Coq. stanford.edu (2017). url: http://web.stanford.edu/~guyk/pub/
CAV2017_C.pdf (cit. on p. 27).

[16] Michael Färber and Cezary Kaliszyk. Metis-based Paramodulation Tactic for HOL Light. In:
GCAI 2015. Global Conference on Artificial Intelligence Metis-based. Vol. 36. 2015, pp. 127–
136 (cit. on p. 5).

[17] Mathias Fleury and Jasmin Blanchette. Translation of Proofs Provided by External Provers.
Tech. rep. Techniche Universität München, 2014. url: http://perso.eleves.ens-rennes.
fr/~mfleur01/documents/Fleury_internship2014.pdf (cit. on pp. 1, 27).

[18] Simon Foster and Georg Struth. Integrating an Automated Theorem Prover in Agda. In:
NASA Formal Methods (NFM 2011). Ed. by Mihael Bobaru et al. Vol. 6617. Lecture Notes
in Computer Science. Springer, 2011, pp. 116–130. doi: 10.1007/978-3-642-20398-5_10
(cit. on p. 27).

[19] Alejandro Gómez-Londoño. Proof Reconstruction: Parsing Proofs. Tech. rep. Universidad
EAFIT, 2015. url: http://repository.eafit.edu.co/handle/10784/5484 (cit. on p. 29).

[20] Thomas Hillenbrand, Arnim Buch, Roland Vogt, and Bernd Löchner. WALDMEISTER -
High-Performance Equational Deduction. Journal of Automated Reasoning 18.2 (1997), pp. 265–
270. doi: 10.1023/A:1005872405899 (cit. on p. 27).

[21] Joe Hurd. First-order Proof Tactics In Higher-order Logic Theorem Provers. Design and
Application of Strategies/Tactics in Higher Order Logics, number NASA/CP-2003-212448 in
NASA Technical Reports (2003), pp. 56–68. url: http://www.gilith.com/research/
papers (cit. on pp. 2, 5).

[22] Joe Hurd. Integrating Gandalf and HOL. In: Theorem Proving in Higher Order Logics (TPHOLs
2001). Ed. by Yves Bertot, Gilles Dowek, Laurent Théry, and Christine Paulin. Vol. 1690.
Lecture Notes in Computer Science. Springer, 2001, pp. 311–321. doi: 10.1007/3- 540-
48256-3_21 (cit. on p. 27).

[23] Clément Hurlin, Amine Chaieb, Pascal Fontaine, Stephan Merz, and Tjark Weber. Practi-
cal Proof Reconstruction for First-Order Logic and Set-Theoretical Constructions. In: Pro-
ceedings of the Isabelle Workshop 2007. Ed. by Lucas Dixon and Moa Johansson. Bremen,
Germany, 2007, pp. 2–13 (cit. on p. 2).

[24] Cezary Kaliszyk and Josef Urban. PRocH: Proof Reconstruction for HOL Light. In: Auto-
mated Deduction (CADE-24). Ed. by Maria Paola Bonacina. Vol. 7898. Lecture Notes in
Artifical Intellingence. Springer, 2013, pp. 267–274. doi: 10.1007/978-3-642-38574-2_18
(cit. on pp. 2, 27).

https://akaposi.github.io/proplogic.pdf
https://akaposi.github.io/proplogic.pdf
http://dx.doi.org/10.1.1.37.9541
http://dx.doi.org/10.1007/978-3-662-02962-6
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://web.stanford.edu/~guyk/pub/CAV2017_C.pdf
http://web.stanford.edu/~guyk/pub/CAV2017_C.pdf
http://perso.eleves.ens-rennes.fr/~mfleur01/documents/Fleury_internship2014.pdf
http://perso.eleves.ens-rennes.fr/~mfleur01/documents/Fleury_internship2014.pdf
http://dx.doi.org/10.1007/978-3-642-20398-5_10
http://repository.eafit.edu.co/handle/10784/5484
http://dx.doi.org/10.1023/A:1005872405899
http://www.gilith.com/research/papers
http://www.gilith.com/research/papers
http://dx.doi.org/10.1007/3-540-48256-3_21
http://dx.doi.org/10.1007/3-540-48256-3_21
http://dx.doi.org/10.1007/978-3-642-38574-2_18

REFERENCES 31

[25] Karim Kanso. Agda as a Platform for the Development of Verified Railway Interlocking
Systems. PhD thesis. Department of Computer Science. Swansea University, 2012. url: http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.310.1502 (cit. on pp. 27, 28).

[26] Karim Kanso and Anton Setzer. A Light-Weight Integration of Automated and Interactive
Theorem Proving. Mathematical Structures in Computer Science 26.1 (2016), pp. 129–153.
doi: 10.1017/S0960129514000140 (cit. on pp. 2, 27).

[27] Chantal Keller. A Matter of Trust: Skeptical Communication Between Coq and External
Provers. PhD thesis. École Polytechnique, 2013. url: https://hal.archives-ouvertes.
fr/pastel-00838322/ (cit. on pp. 1, 2).

[28] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof Assistant
for Higher-order Logic. Vol. 2283. Springer Science & Business Media, 2002 (cit. on p. 27).

[29] Hans de Nivelle. Bliksem 1.10 User Manual. 2003. url: http://www.ii.uni.wroc.pl/
~nivelle/software/bliksem. (cit. on p. 27).

[30] Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in Martin-Löf’s Type
Theory. Oxford University Press, 1990 (cit. on p. 2).

[31] Michael Norrish and Konrad Slind. The HOL system description. 2017. url: https : / /
sourceforge.net/projects/hol/files/hol/kananaskis-11/kananaskis-11-reference.
pdf/download (cit. on p. 27).

[32] Lawrence C. Paulson and Jasmin Blanchette. Three Years Of Experience with Sledgehammer,
A Practical Link Between Automatic And Interactive Theorem Provers. In: PAAR@ IJCAR.
2010, pp. 1–10 (cit. on p. 2).

[33] Lawrence C. Paulson and Kong Woei Susanto. Source-level Proof Reconstruction For Inter-
active Theorem Proving. In: TPHOLs. Vol. 4732. Springer. 2007, pp. 232–245 (cit. on pp. 1,
5).

[34] Jonathan Prieto-Cubides. A Collection of Propositional Problems in TPTP Format. June
2017. doi: 10.5281/ZENODO.817997 (cit. on pp. 2, 27, 37).

[35] Jonathan Prieto-Cubides. A Library for Classical Propositional Logic in Agda. 2017. doi:
10.5281/zenodo.398852 (cit. on pp. 2, 5, 10, 11, 28).

[36] Jonathan Prieto-Cubides. A Translator Tool for Metis Derivations in Haskell. 2017. doi:
10.5281/zenodo.437196 (cit. on pp. 2, 27, 29).

[37] Jonathan Prieto-Cubides. Metis Prover Reasoning for Propositional Logic in Agda. 2017. doi:
10.5281/zenodo.398862 (cit. on pp. 2, 9, 12, 14, 28).

[38] Andrés Sicard-Ramírez and Juan-Fernando Ospina-Giraldo. First-Order Proof Reconstruction
(Research Proposal). Universidad EAFIT. 2016 (cit. on p. 27).

[39] Nik Sultana, Christoph Benzmüller, and Lawrence C. Paulson. Proofs and Reconstructions.
In: Frontiers of Combining Systems (FroCoS 2015). Ed. by Carsten Lutz and Silvio Ranise.
Vol. 9322. Lecture Notes in Computer Science. Springer, 2015, pp. 256–271. doi: 10.1007/
978-3-319-24246-0_16 (cit. on p. 8).

[40] Geoff Sutcliffe. The TPTP Problem Library and Associated Infrastructure. Journal of Au-
tomated Reasoning 43.4 (July 2009), p. 337. doi: 10.1007/s10817-009-9143-8 (cit. on
p. 5).

[41] Geoff Sutcliffe and Stuart Melville. The Practice of Clausification in Automatic Theorem
Proving. South African Computer Journal 18 (1996), pp. 57–68 (cit. on p. 19).

[42] Geoff Sutcliffe, Stephan Schulz, Koen Claessen, and Allen Van Gelder. Using the TPTP Lan-
guage for Writing Derivations and Finite Interpretations. In: International Joint Conference
on Automated Reasoning (IJCAR 2006). Ed. by Ulrich Furbach and Natarajan Shankar.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.310.1502
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.310.1502
http://dx.doi.org/10.1017/S0960129514000140
https://hal.archives-ouvertes.fr/pastel-00838322/
https://hal.archives-ouvertes.fr/pastel-00838322/
http://www.ii.uni.wroc.pl/~nivelle/software/bliksem.
http://www.ii.uni.wroc.pl/~nivelle/software/bliksem.
https://sourceforge.net/projects/hol/files/hol/kananaskis-11/kananaskis-11-reference.pdf/download
https://sourceforge.net/projects/hol/files/hol/kananaskis-11/kananaskis-11-reference.pdf/download
https://sourceforge.net/projects/hol/files/hol/kananaskis-11/kananaskis-11-reference.pdf/download
http://dx.doi.org/10.5281/ZENODO.817997
http://dx.doi.org/10.5281/zenodo.398852
http://dx.doi.org/10.5281/zenodo.437196
http://dx.doi.org/10.5281/zenodo.398862
http://dx.doi.org/10.1007/978-3-319-24246-0_16
http://dx.doi.org/10.1007/978-3-319-24246-0_16
http://dx.doi.org/10.1007/s10817-009-9143-8

32 REFERENCES

Vol. 4130. Lecture Notes in Artifical Intellingence. Springer, 2006, pp. 67–81. doi: 10.1007/
11814771_7 (cit. on p. 6).

[43] The Agda Developement Team. Agda 2.4.2.3. 2015. url: http://wiki.portal.chalmers.
se/agda/pmwiki.php (cit. on p. 2).

[44] The Coq Developement Team. The Coq Proof Assistant. Reference Manual. 2015 (cit. on
p. 27).

[45] Philip Wadler. Propositions as Types. Communications of the ACM 58.12 (2015), pp. 75–84
(cit. on p. 2).

http://dx.doi.org/10.1007/11814771_7
http://dx.doi.org/10.1007/11814771_7
http://wiki.portal.chalmers.se/agda/pmwiki.php
http://wiki.portal.chalmers.se/agda/pmwiki.php

REFERENCES 33

Appendix A Customized TSTP syntax

We adopted a special TSTP syntax to improve the readability of the TSTP examples shown in this
document. Some of the modifications to the original presentation of TSTP syntax in Section 3.2 are
the following.

– The formulas names are sub indexed (e. g., instead of axiom_0, we write axiom0).
– We use inf instead of inference field.
– We shorten names generated automatically by Metis, (e. g., s0 instead of subgoal_0 or n0

instead of normalize_0).
– We remove the plain role.
– We remove empty fields in the inference information.
– The brackets in the argument of a unary inference are removed (e. g., instead of inf(rule, [], [n0])),

we write inf(rule, [], n0))).
– If the inference rule does not need arguments except its parent nodes, we remove the field of use-

ful information (e. g., inf(canonicalize, premise) instead of inf(canonicalize, [], premise)).
– We use the symbols (>, ⊥, ¬ , ∧, ∨, ⊃) for formulas instead of ($false, $true, ~, &, |, =>)

TPTP symbols.
– When the purpose to show a TSTP derivation does not include some parts of the derivation we

use the ellipsis (...) to avoid such unnecessary parts.

For example, let us consider the TSTP derivation generated by Metis in Fig. 8 and its customized
version in Fig. 9

fof(premise, axiom, p).
fof(goal, conjecture, p).
fof(subgoal_0, plain, p, inference(strip, [], [goal])).
fof(negate_0_0, plain, ~ p, inference(negate, [], [subgoal_0])).
fof(normalize_0_0, plain, ~ p,

inference(canonicalize, [], [negate_0_0])).
fof(normalize_0_1, plain, p,

inference(canonicalize, [], [premise])).
fof(normalize_0_2, plain, $false,

inference(simplify, [], [normalize_0_0, normalize_0_1]))
cnf(refute_0_0, plain, $false,

inference(canonicalize, [], [normalize_0_2])).

Fig. 8. Metis’ TSTP derivation for the problem p ` p.

34 REFERENCES

fof(premise, axiom, p).
fof(goal, conjecture, p).
fof(s0, p, inf(strip, goal)).
fof(neg0, ¬ p, inf(negate, s0)).
fof(n0, ¬ p, inf(canonicalize, neg0)).
fof(n1, p, inf(canonicalize, premise)).
fof(n2, ⊥, inf(simplify, [n0, n1]))
cnf(r0, ⊥, inf(canonicalize, n2)).

Fig. 9. Metis’ TSTP derivation using a customized syntax

REFERENCES 35

Appendix B Bounded Recursion of the strip Function

In Section 4.2.1 we describe the strip function to get the subgoals of a certain a goal. We define the
first version of this function with the strip0 function in (25) but the reader can note that this function
is not a structurally recursive function. Therefore, we define a structurally recursive function of this
function in (5).

strip0 : Prop→ Prop

strip0 (ϕ1 ∧ ϕ2) = uh (strip0 ϕ1) ∧ uh (ϕ1 ⊃ strip0 ϕ2)
strip0 (ϕ1 ∨ ϕ2) = uh ((¬ ϕ1) ⊃ strip0 ϕ2)
strip0 (ϕ1 ⊃ ϕ2) = uh (ϕ1 ⊃ strip0 ϕ2)
strip0 (¬ (ϕ1 ∧ ϕ2)) = uh (ϕ1 ⊃ strip0 (¬ ϕ2))
strip0 (¬ (ϕ1 ∨ ϕ2)) = uh (strip0 (¬ ϕ1)) ∧ uh ((¬ ϕ1) ⊃ strip0 (¬ ϕ2))
strip0 (¬ (ϕ1 ⊃ ϕ2)) = uh (strip0 ϕ1) ∧ uh (ϕ1 ⊃ strip0 (¬ ϕ2))
strip0 (¬ (¬ ϕ1)) = uh (strip0 ϕ1)
strip0 (¬ ⊥) = >
strip0 (¬ >) = ⊥
strip0 ϕ = ϕ.

(25)

The complexity measure of strip0 is given by the stripcm function defined in (B).

stripcm : Prop→ Nat→ Prop

stripcm (ϕ1 ∧ ϕ2) = max (stripcm ϕ1) (stripcm ϕ2) + 1
stripcm (ϕ1 ∨ ϕ2) = stripcm ϕ2 + 1
stripcm (ϕ1 ⊃ ϕ2) = stripcm ϕ2 + 1
stripcm (¬ >) = stripcm (¬ ϕ2) + 1
stripcm (¬ ⊥) = max (stripcm (¬ ϕ1)) (stripcm (¬ ϕ2)) + 1
stripcm (¬ (ϕ1 ∧ ϕ2)) = max (stripcm ϕ1) (stripcm (¬ ϕ2)) + 1
stripcm (¬ (ϕ1 ∨ ϕ2)) = max (stripcm (¬ ϕ1)) (stripcm (¬ ϕ2)) + 1
stripcm (¬ (ϕ1 ⊃ ϕ2)) = stripcm ϕ1 + 1
stripcm (¬ (¬ ϕ)) = 1
stripcm ϕ = 1

Appendix C Another Case in the Proof of the strip Inference Rule

• Case ϕ ≡ ϕ1 ⊃ ϕ2.

assume
Γ, ϕ1 ` ϕ1

Γ ` strip1 (ϕ1 ⊃ ϕ2) (succ n)
by (5)

Γ ` uh (ϕ1 ⊃ strip1 ϕ2 n)
Lemma 7

Γ ` ϕ1 ⊃ strip1 ϕ2 n
weaken

Γ, ϕ1 ` ϕ1 ⊃ strip1 ϕ2 n
⊃-elim

Γ, ϕ1 ` strip1 ϕ2 n by ind. hyp.
Γ, ϕ1 ` ϕ2 ⊃-intro.
Γ ` ϕ1 ⊃ ϕ2

36 REFERENCES

Appendix D Bounded Recursion of the nnf Function

In Section 4.2.4 we discuss a custom negative normal form of a formula. To convert a formula to
such a normal form, we define the function nnf0 in (26).

nnf0 : Prop→ Prop

nnf0 (ϕ1 ∧ ϕ2) = simplify∧ (assoc∧ (nnf0 ϕ1 ∧ nnf0 ϕ2))
nnf0 (ϕ1 ∨ ϕ2) = simplify∨ (assoc∨ (nnf0 ϕ1 ∨ nnf0 ϕ2))
nnf0 (ϕ1 ⊃ ϕ2) = simplify∨ (assoc∨ (nnf0 ((¬ ϕ1) ∨ ϕ2)))
nnf0 (¬ (ϕ1 ∧ ϕ2)) = simplify∨ (assoc∨ (nnf0 ((¬ ϕ1) ∨ (¬ ϕ2))))
nnf0 (¬ (ϕ1 ∨ ϕ2)) = simplify∧ (assoc∧ (nnf0 ((¬ ϕ1) ∧ (¬ ϕ2))))
nnf0 (¬ (ϕ1 ⊃ ϕ2)) = simplify∧ (assoc∧ (nnf0 ((¬ ϕ2) ∧ ϕ1)))
nnf0 (¬ (¬ ϕ)) = nnf0 ϕ1
nnf0 (¬ >) = ⊥
nnf0 (¬ ⊥) = >
nnf0 ϕ = ϕ

(26)

However, then nnf0 function is not a structurally recursive function. Therefore, we define a
bounded recursion in (21) using as the second argument for the bounded recursion its complexity
measure. The nnfcm function in (27) computes that complexity measure.

nnfcm : Prop→ Nat→ Prop

nnfcm (ϕ1 ∧ ϕ2) = nnfcm ϕ1 + nnfcm ϕ2 + 1
nnfcm (ϕ1 ∨ ϕ2) = nnfcm ϕ1 + nnfcm ϕ2 + 1
nnfcm (ϕ1 ⊃ ϕ2) = 2 · nnfcm ϕ1 + nnfcm ϕ2 + 1
nnfcm (¬ (ϕ1 ∧ ϕ2)) = nnfcm (¬ ϕ1) + nnfcm (¬ ϕ2) + 1
nnfcm (¬ (ϕ1 ∨ ϕ2)) = nnfcm (¬ ϕ1) + nnfcm (¬ ϕ2) + 1
nnfcm (¬ (ϕ1 ⊃ ϕ2)) = nnfcm (¬ ϕ1) + 1
nnfcm (¬ (¬ ϕ)) = nnfcm ϕ1 + nnfcm (¬ ϕ2) + 3
nnfcm (¬ >) = 1
nnfcm (¬ ⊥) = 1
nnfcm ϕ = 1

(27)

Another approach to define the negative normal form in type theory without using a complexity
measure for the bounded recursion would modify the definition of nnf defined in [5]. The authors
avoid the termination problem by using the polarity of the formula as an additional argument of its
negative normal form function. However, be aware the polarity function is not standard and Metis
has its own definition.

REFERENCES 37

Appendix E A Complete Example

E.1 Installing Athena

Athena is the proof-reconstruction tool that accompanying this paper. This tool is written in
Haskell and it was tested with GHC 8.2.1. To install Athena, the package manager cabal is re-
quired as well. Athena was tested with cabal 1.24.0.

Let us download the Athena repository running the following command:

$ git clone https://github.com/jonaprieto/athena.git
$ cd athena

To install Athena run the following command.

$ make install

To install the Agda libraries, agda-prop, agda-metis, and the Agda standard library, run the
following command:

$ make install-libraries
$ ls lib/
agda-metis agda-prop agda-stdlib

E.2 Installing the Metis Prover

To install the Metis prover v2.3 (release 20171021), we refer the reader to its official repository at
https://github.com/gilith/metis.

As an alternative to install the prover from the Metis sources, we have provided a Haskell
client to use this prover but also other provers with Online-ATPs tool6. To install this tool run the
following command:

$ make online-atps
$ online-atps --version
Online-atps version 0.1.1

E.3 TPTP problem

Let us consider the following theorem7:

(p⇒ q) ∧ (q ⇒ p) ` (p ∨ q)⇒ (p ∧ q) (28)

This problem can be encode in TPTP syntax (file problem.tptp) as follows:

$ cat problem.tptp
fof(premise, axiom, (p => q) & (q => p)).
fof(goal, conjecture, (p | q) => (p & q)).

6 https://github.com/jonaprieto/online-atps.
7 Problem No. 13 in Disjunction Section in [34].

https://github.com/gilith/metis
https://github.com/jonaprieto/online-atps

38 REFERENCES

E.4 Metis derivation

To obtain the Metis derivation of the TPTP problem showed above, make sure your Metis version is
supported by running the following command. Recall we support the version 2.3 (release 20171021).

$ metis --version
metis 2.3 (release 20171021)

To generate the TSTP derivation of problem.tptp run the following command:

$ metis --show proof problem.tptp > problem.tstp
$ cat problem.tstp
...
fof(premise, axiom, ((p => q) & (q => p))).
fof(goal, conjecture, ((p | q) => (p & q))).
fof(subgoal_0, plain, ((p | q) => p), inference(strip, [], [goal])).
fof(subgoal_1, plain, (((p | q) & p) => q), inference(strip, [], [goal])).
fof(negate_0_0, plain, (~ ((p | q) => p)),

inference(negate, [], [subgoal_0])).
...

If we are using the Online-ATPs tool run the following command:

online-atps --atp=metis problem.tptp > problem.tstp

Using our customized TSTP syntax, the above Metis solution looks like:

fof(premise, axiom, (p ⊃ q) ∧ (q ⊃ p)).
fof(goal, conjecture, (p ∨ q) ⊃ (p ∧ q))).
fof(s1, (p ∨ q) ⊃ p, inf(strip, goal)).
fof(s2, ((p ∨ q) ∧ p) ⊃ q, inf(strip, goal)).
fof(neg1, ¬ ((p ∨ q) ⊃ p), inf(negate, s1)).
fof(n00, (¬ p ∨ q) ∧ (¬ q ∨ p), inf(canonicalize, premise)).
fof(n01, ¬ q ∨ p, inf(conjunct, n00)).
fof(n02, ¬ p ∧ (p ∨ q), inf(canonicalize, neg1)).
fof(n03, p ∨ q, inf(conjunct, n02)).
fof(n04, ¬ p, inf(conjunct, n02)).
fof(n05, q, inf(simplify,[n03, n04])).
cnf(r00, ¬ q ∨ p, inf(canonicalize, n01)).
cnf(r01, q, inf(canonicalize, n05)).
cnf(r02, p, inf(resolve, q, [r01, r00])).
cnf(r03, ¬ p, inf(canonicalize, n04)).
cnf(r04, ⊥, inf(resolve, p, [r02, r03])).
fof(neg2, ¬ (((p ∨ q) ∧ p) ⊃ q), inf(negate, s2)).
fof(n10, ¬ q ∧ p ∧ (p ∨ q), inf(canonicalize, neg2)).
fof(n11, (¬ p ∨ q) ∧ (¬ q ∨ p), inf(canonicalize, premise)).
fof(n12, ¬ p ∨ q, inf(conjunct, n11)).
fof(n13, ⊥, inf(simplify,[n10, n12])).
cnf(r10, ⊥, inf(canonicalize, n13)).

REFERENCES 39

E.5 Generating the Agda proof-term

Table 2. Metis inference rules implemented in agda-metis.

Metis rule Theorem number Implementation

strip 10 strip-thm

conjunct 13 conjunct-thm

resolve 27 resolve-thm

canonicalize 39 canonicalize-thm

clausify 41 clausify-thm

simplify 44 simplify-thm

To obtain the Agda proof-term of the Metis derivation run the following command:

$ athena problem.tstp

The correspondent Agda file will be created in the same directory that contains problem.tstp
using the same name but the extension of Agda, that is, .agda.

$ cat problem.agda
--
-- Athena version 0.1-b3d15b8.
-- TSTP file: problem.tstp.
--

module problem where

--

open import ATP.Metis 2 public
open import Data.PropFormula 2 public

--

-- Variables.

p : PropFormula
p = Var (# 0)

q : PropFormula

40 REFERENCES

q = Var (# 1)

-- Axiom.

premise : PropFormula
premise = ((p ⊃ q) ∧ (q ⊃ p))

-- Premise.

Γ : Ctxt
Γ = [premise]

-- Conjecture.

goal : PropFormula
goal = ((p ∨ q) ⊃ (p ∧ q))

-- Subgoals.

subgoal0 : PropFormula
subgoal0 = ((p ∨ q) ⊃ p)

subgoal1 : PropFormula
subgoal1 = (((p ∨ q) ∧ p) ⊃ q)

--
-- Proof of subgoal #0.
--

proof0 : Γ ` subgoal0
proof0 =

(RAA
(resolve-thm ⊥ p

(resolve-thm p q
(simplify-thm q

(conjunct-thm (p ∨ q)
(canonicalize-thm ((¬ p) ∧ (p ∨ q))

(assume {Γ = Γ} (¬ subgoal0))))
(conjunct-thm (¬ p)

(canonicalize-thm ((¬ p) ∧ (p ∨ q))
(assume {Γ = Γ} (¬ subgoal0)))))

(conjunct-thm ((¬ q) ∨ p)
(canonicalize-thm (((¬ p) ∨ q) ∧ ((¬ q) ∨ p))

(weaken (¬ subgoal0)
(assume {Γ = ∅} premise)))))

(conjunct-thm (¬ p)

REFERENCES 41

(canonicalize-thm ((¬ p) ∧ (p ∨ q))
(assume {Γ = Γ} (¬ subgoal0))))))

--
-- Proof of subgoal #1.
--

proof1 : Γ ` subgoal1
proof1 =

(RAA
(simplify-thm ⊥

(canonicalize-thm ((¬ q) ∧ (p ∧ (p ∨ q)))
(assume {Γ = Γ} (¬ subgoal1)))

(conjunct-thm ((¬ p) ∨ q)
(canonicalize-thm (((¬ p) ∨ q) ∧ ((¬ q) ∨ p))

(weaken (¬ subgoal1)
(assume {Γ = ∅} premise))))))

--
-- Proof of the goal.
--

proof : Γ ` goal
proof =
⊃-elim

strip-thm
(∧-intro proof0 proof1)

--

Now, we are ready to verify the Metis derivation by type-checking with Agda the reconstructed
proof showed above. Make sure the Agda version is 2.5.3.

$ agda --version
Agda version 2.5.3
$ agda problem.agda

As we can see in the Agda code showed above, the term proof, the proof-term of the Metis
derivation is referring to the proof-terms proof0 and proof1. Recall, Metis stripes the goal into
subgoals to prove it. Therefore, these terms are the proof-terms for the refutations of the subgoals s1
and s2. We show in the following sections the respective natural deduction trees for these refutations.

E.6 Refutation tree for the subgoal s1

For this subgoal, its respective TSTP derivation is the following:

fof(premise, axiom, (p ⊃ q) ∧ (q ⊃ p)).

42 REFERENCES

fof(goal, conjecture, (p ∨ q) ⊃ (p ∧ q))).
fof(s1, (p ∨ q) ⊃ p, inf(strip, goal)).
...
fof(neg1, ¬ ((p ∨ q) ⊃ p), inf(negate, s1)).
fof(n00, (¬ p ∨ q) ∧ (¬ q ∨ p), inf(canonicalize, premise)).
fof(n01, ¬ q ∨ p, inf(conjunct, n00)).
fof(n02, ¬ p ∧ (p ∨ q), inf(canonicalize, neg1)).
fof(n03, p ∨ q, inf(conjunct, n02)).
fof(n04, ¬ p, inf(conjunct, n02)).
fof(n05, q, inf(simplify,[n03, n04])).
cnf(r00, ¬ q ∨ p, inf(canonicalize, n01)).
cnf(r01, q, inf(canonicalize, n05)).
cnf(r02, p, inf(resolve, q, [r01, r00])).
cnf(r03, ¬ p, inf(canonicalize, n04)).
cnf(r04, ⊥, inf(resolve, p, [r02, r03])).
...

The refutation tree is the following:

D1

assume ¬s1
Γ,¬s1 ` ¬s1

Theorem 39
Γ,¬s1 ` ¬p ∧ (p ∨ q)

Theorem 13
Γ,¬s1 ` ¬p(R1) Theorem 27 with ` = p

Γ,¬s1 ` ⊥
RAA.

Γ ` s1

D2

Γ,¬s1 ` ¬q ∨ p

D3

Γ,¬s1 ` p ∨ q
D4

Γ,¬s1 ` ¬p
Theorem 44

Γ,¬s1 ` q(D1) Theorem 27 with ` = q
Γ,¬s1 ` p

axiom premise
Γ ` (p ⊃ q) ∧ (q ⊃ p)

weaken
Γ,¬s1 ` (p ⊃ q) ∧ (q ⊃ p)

(D2) Theorem 39
Γ,¬s1 ` (¬p ∨ q) ∧ (¬q ∨ p)

Theorem 13
Γ,¬s1 ` ¬q ∨ p

assume
Γ,¬s1 ` ¬s1(D3) Theorem 39

Γ,¬s1 ` ¬p ∧ (p ∨ q)
Theorem 13

Γ,¬s1 ` p ∨ q

assume ¬s1
Γ,¬s1 ` ¬s1(D4) Theorem 39

Γ,¬s1 ` ¬p ∧ (p ∨ q)
Theorem 13

Γ,¬s1 ` ¬p

REFERENCES 43

E.7 Refutation tree for the subgoal s2

For this subgoal, its respective TSTP derivation is the following:

fof(premise, axiom, (p ⊃ q) ∧ (q ⊃ p)).
...
fof(s2, ((p ∨ q) ∧ p) ⊃ q, inf(strip, goal)).
...
fof(neg2, ¬ (((p ∨ q) ∧ p) ⊃ q), inf(negate, s2)).
fof(n10, ¬ q ∧ p ∧ (p ∨ q), inf(canonicalize, neg2)).
fof(n11, (¬ p ∨ q) ∧ (¬ q ∨ p), inf(canonicalize, premise)).
fof(n12, ¬ p ∨ q, inf(conjunct, n11)).
fof(n13, ⊥, inf(simplify,[n10, n12])).
cnf(r10, ⊥, inf(canonicalize, n13)).

The refutation tree is the following:

assume (¬s2)
Γ,¬s2 ` ¬s2

Theorem 39
Γ,¬s2 ` ¬q ∧ p ∧ (p ∨ q)

axiom premise
Γ ` (p ⊃ q) ∧ (q ⊃ p)

weaken
Γ,¬s2 ` (p ⊃ q) ∧ (q ⊃ p)

Theorem 39
Γ,¬s2 ` (¬p ∨ q) ∧ (¬q ∨ p)

Theorem 13
Γ,¬s2 ` ¬p ∨ q(R2) Theorem 44

Γ,¬s2 ` ⊥
RAA.

Γ ` s2

E.8 The proof of the goal

Theorem 10
Γ ` (s1 ∧ s2) ⊃ goal

R1

Γ ` s1

R2

Γ ` s2 ∧-intro
Γ ` s1 ∧ s2

⊃-elim
Γ ` goal

	Reconstructing Propositional Proofs in Type Theory
	Introduction
	Type Theory
	Terminating functions
	Intuitionistic logic

	Metis: Language and Proofs
	Input language
	Output language
	Metis Derivations
	Inference rules

	Proof-Reconstruction
	Workflow
	Reconstructing Metis inference rules
	Strip.
	Conjunct.
	Resolve.
	Canonicalize.
	Clausify.
	Simplify.

	Related Work
	Conclusions and Future Work
	References
	Customized TSTP syntax
	Bounded Recursion of the strip Function
	Another Case in the Proof of the strip Inference Rule
	Bounded Recursion of the nnf Function
	A Complete Example
	Installing Athena
	Installing the Metis Prover
	TPTP problem
	Metis derivation
	Generating the Agda proof-term
	Refutation tree for the subgoal s1
	Refutation tree for the subgoal s2
	The proof of the goal

