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2 Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600 - Université Pierre et Marie Curie
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Abstract – We report experimental measurements and theoretical analysis of Shubnikov-de Haas
(SdH) oscillations in a Dirac cone system: the α-(BEDT-TTF)2I3 organic metal under hydrostatic
pressure. The measured SdH oscillations reveal anomalies at high magnetic fields B where the 1/B
oscillations periodicity is lost above 7T. We interpret these unusual results within a theoretical
model that takes into account intrinsic distortions of the α-(BEDT-TTF)2I3 Dirac cones such as
a parabolic particle-hole asymmetric correction. Others possible causes, such as a cone tilting or a
Zeeman effect, are carefully ruled out. The observations are consistent among α-(BEDT-TTF)2I3
samples with different Fermi levels.

Copyright c© EPLA, 2017

Introduction. – The isolation of graphene in 2004 [1,2]
opened a new field of research for condensed-matter physi-
cists, called Dirac physics that continues to fascinate
today. Belonging to the family of the first synthe-
sized quasi-2D organic conductors, the α-(BEDT-TTF)2I3
(=αI3) material, which consists of an alternation of in-
sulating planes (iodine planes) and conductive planes
(BEDT-TTF planes), has been known and studied since
the 1980s [3–7]. However, a renewed interest in this
salt has followed the highlighting of Dirac charge carri-
ers emerging under hydrostatic pressure [8]. Indeed, band
structure calculations and magnetotransport experiments
have revealed the presence of Dirac fermions under high
pressure (P > 1.5GPa) in αI3. However, Dirac physics
in αI3 differs from that in graphene by several aspects.
First of all, the Dirac cones in αI3 are tilted leading to
a renormalization of the cone velocity, which is one order
of magnitude smaller than in graphene [8–11], due also
to a larger lattice spacing. Then, contrary to the case of
graphene, its three-dimensional layered structure renders
an experimental control in αI3 of the homogenous Fermi

level, e.g., by the application of a gate voltage, extremely
difficult. Finally, in terms of charge carriers, the αI3 physi-
cal properties are more complicated than in graphene due
to a coexistence between Dirac and massive fermions in
the vicinity of the Fermi level. This coexistence of dif-
ferent carrier types, theoretically predicted by ab initio
band structure calculations [12], has recently been veri-
fied experimentally by electronic transport measurements,
performed in the classical regime [13,14].

In this paper, we present magnetotransport measure-
ments of two types of αI3 crystals under high hydrostatic
pressure (P > 1.5GPa), that is in the presence of Dirac
fermions, and in the quantum regime. At low magnetic
fields, we observe typical SdH oscillations in the αI3 mag-
netoresistance, as already reported in the literature [15].
Beyond this standard behavior of the SdH oscillations, we
show that, at higher magnetic fields (B > 7T), these mea-
sured quantum oscillations become unusual with a devia-
tion from their 1/B periodicity. This means that the usual
Landau plot (i.e., the index ñ of minima in the magne-
toresistance as a function of 1/B) is no longer linear in
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the high field limit. This kind of particular behavior has
very recently been seen for surface states of 3D topolog-
ical insulator samples [16–18]. However, here we show
that the effect is much stronger in αI3 than in topological
insulators.

The remainder of the paper is organized as follows. In
the first part, we present the experimental setup and the
results of the magnetotransport measurements, performed
in the quantum regime. In the second part, in order to
interpret these particular experimental results, we develop
a theoretical model based on the specificity of the αI3 band
structure.

Experimental transport measurements in the
quantum regime. – Single crystals of αI3 were synthe-
sized by electrocrystallisation. In this study, two kinds of
sample have been measured: a thick crystal (sample A)
and thin crystals fixed onto a polyethylene naphthalate
(PEN) substrate (samples B). Their typical size is 1mm2

in the (a, b)-plane with a thickness (c-direction) of 10μm
and 100 nm for the samples A and B, respectively. The
temperature has been controlled by means of a dilution
fridge. The magnetoresistance (longitudinal signal) and
the Hall resistance (transverse signal) have been measured
under a magnetic field B oriented along the c-direction,
perpendicular to the αI3 conductive planes. The mag-
netic field was swept between −14T and 14T, at fixed
temperature around 200mK and under high hydrostatic
pressure between 2.2GPa and 2.6GPa. The resistance
measurements have been performed simultaneously, using
a low-frequency ac lock-in technique, with different types
of contacts geometry. For the sample A, we used six gold
contacts deposited by Joule evaporation on both sides of
the sample and, for the samples B, a Hall cross with eight
electrical contacts. The insets of fig. 1 show the images
of the measured sample A and one measured sample B.
The hydrostatic pressure was applied at room tempera-
ture in a NiCrAl clamp cell using Daphne 7373 silicone oil
as pressure-transmitting medium and was determined at
room temperature by a manganine resistance gauge in the
pressure cell, close to the sample.

Typical results of the magnetotransport measurements
in the quantum regime are presented in fig. 1. To correct
the alignment mismatch of the patterned contacts, the lon-
gitudinal resistance has been symmetrized with respect to
the magnetic field B. We observe clearly the appearance
of quantum oscillations on the classical parabolic contri-
bution of the αI3 magnetoresistance (see fig. 1). Are these
measured quantum oscillations 1/B periodic, as usual SdH
oscillations? Are Dirac carriers at the origin of these os-
cillations? To answer these two questions, our analysis is
based on the study of the magnetoresistance signal and is
similar to the one presented in ref. [15]. We plotted the
index of the oscillations peaks ñ (integer for the minima
and half-integer for the maxima) as a function of the in-
verse of their magnetic-field-B position and we obtained
the Landau plots, for both αI3 crystal types, presented in

Fig. 1: (Colour online) Typical curves of αI3 magnetoresis-
tance measurements in quantum regime. Quantum oscilla-
tions appear on the parabolic classical contribution of the
magnetoresistance signal. Top: thick αI3 crystal. Bottom:
thin αI3 crystal fixed onto a PEN substrate (for details on
samples and SdH oscillations, see the supplementary material
Supplementarymaterial.pdf, part 1). Insets: photographs of
measured samples.

fig. 2. In the range of the studied pressure, the effect of
the latter is negligible (see fig. 2, bottom).

At low magnetic fields, the data points are aligned on
the Landau plots, and the measured quantum oscillations
are thus indeed 1/B-periodic SdH oscillations. Using the
usual associated theory [19], the main harmonic of the
oscillating part of the magnetoresistance can be written as

ΔRxx = A(B) cos (2πF/B + π + ϕ) , (1)

where F is the magnetic frequency of the oscillations and ϕ
is the phase offset associated with the Berry phase, which
is 0 for massive fermions and π for Dirac fermions [2,20].
Notice furthermore that ϕ is not necessarily quantized and
can take a continuous value between 0 and π in the case of
more complex band structures [18,21]. With the previous
choice for the index of the oscillations peaks, the inter-
cept of the Landau plot ñ0 indicates directly the phase
offset (ϕ = 2πñ0). The linear extrapolations of our data
in the low-magnetic-field region of the Landau plots give
a half-integer ñ0, namely a Berry phase equal to π, for
both measured αI3 crystal types. So, Dirac fermions are
involved in the measured quantum oscillations in agree-
ment with the previous reported results [15]. Moreover,
the magnetic frequency F —the slope of the linear fit—
is equal to 2T and to 8.5T for sample A and the B-type
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Fig. 2: (Colour online) Construction of Landau plots (i.e., ñ as
a function of 1/B) from the analysis of the measured quantum
oscillations in αI3. At low magnetic fields, the oscillations are
1/B periodic: they are SdH oscillations. The determination of
their phase offset, connected to the Berry phase, indicates that
the Dirac charge carriers are involved in the measured oscilla-
tions. At higher magnetic fields, we observe a loss of the 1/B
periodicity. (dark grey line: theoretical fit of the experimental
data points.)

samples, respectively. Also, this magnetic frequency F
is an intrinsic signature of the 2D charge carriers den-
sity, n2D. Indeed, these two quantities are related by the
following mathematical expression: F = (φ0/4) × n2D,
where φ0 = h/e = 4.14 × 10−15 Tm2 is the flux quan-
tum and the numerical factor 4 comes from the fourfold
valley and spin degeneracy. By applying this formula,
we find n2D ≈ 2 × 1011 cm−2 for sample A, which cor-
responds to a value well within previous experimental
studies of undoped thick crystals [5,13] and doped thin
crystals [15]. Meanwhile, for the B-type samples, we find
n2D ≈ 8 × 1011 cm−2 in agreement with ref. [15].

The most salient feature in our magnetotransport data
in fig. 2 is the deviation from the linear behavior at high
magnetic fields (B > 7T), where the SdH oscillations are
no longer 1/B-periodic. The theoretical explanation of
this deviation is the object of the following section.

Theoretical interpretation of the measured SdH
oscillations. – Several theoretical explanations can be
invoked to explain the loss of 1/B periodicity at high mag-
netic fields. First, we could think of identifying a magnetic
frequency to a given charge carrier type depending on B,
similarly, for example, to a recent analysis of SdH oscilla-
tions measured in some topological insulator samples [22].
In the αI3 case, we would have then a first magnetic fre-
quency due to the Dirac carriers and a second one due
to the massive carriers. We can dismiss this hypothesis

because the smooth change of periodicity that we have
measured (see fig. 2) is not compatible with the appear-
ance of a second charge carriers type involved in the oscil-
lations at a precise magnetic-field value.

Secondly, we could envision a modification of the 1/B
periodicity due to a cone tilting effect. Previous theoret-
ical works showed that taking into account only the αI3
Dirac cone tilt gives the same Landau levels structure as in
the graphene case with a mere renormalization of the cone
velocity (v → v(1 − β2)3/4, where β is the dimensionless
tilt parameter of typical value in the range of 0.3 . . . 0.8
(see footnote 1)) [9–11]. This means that the cone tilt-
ing alone preserves the 1/B periodicity of the quantum
oscillations for any field values and does not allow one to
explain the experimental results.

In a third scenario, we could consider a Zeeman effet. In
a first approximation, in αI3, this effect is negligible as the
g-factor is close to 2 [23] (see also part 2 of the supplemen-
tary material Supplementarymaterial.pdf (SM)). More-
over, theoretical calculations show that the effect of taking
into account this Zeeman contribution leads to a correc-
tion of the Landau plot which has the opposite curvature
compared to measurements (for more calculation details,
see the SM, part 2). This third hypothesis is therefore not
satisfactory either.

The experimental results described above indicate that
it is a behavior proper to the band structure of αI3 which
was probed at high magnetic fields. Indeed, in two differ-
ent αI3 crystal types, one thick (sample A) and the other
thin ones fixed onto a PEN substrate (samples B), the
same qualitative deviation from the usual SdH theory ap-
pears. The origin of this unusual behavior resides then in
the intrinsic properties of the αI3: contrary to the case of
an ideal linear cone, the Dirac cone is distorted in the αI3
band structure under pressure [12]. In order to investi-
gate the role of the particular band structure of αI3 on its
quantum oscillations and a possible deviation from their
1/B periodicity, let us consider the following Hamiltonian
(for a given valley and spin projection):

H = v (Πxσx + Πyσy) +
�Π2

2m
σ0, (2)

where v ≈ 3.5 × 104 m/s [24] is directly the renormalized
cone velocity and �Π = �p + e �A(�r) is the gauge-invariant
kinetic momentum. For simplicity, we neglect here the
explicit role of the Dirac cone tilt and absorb it into the
renormalized velocity. The first term of eq. (2), which
describes the usual Dirac carriers such as in graphene, is
completed by a curvature term which formalizes the dis-
tortion of the αI3 Dirac cone. The mass parameter m
of this curvature term can be positive or negative, de-
pending on the curvature concavity as presented in fig. 3.
Note that this Hamiltonian breaks particle-hole symme-
try, in agreement with previous published results [25,26]

1The precise value for the tilt parameter is yet under debate and,
to the best of our knowledge, has not been clearly determined.
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Fig. 3: (Colour online) We describe theoretically the distor-
sion of the Dirac cone in αI3 by a curvature term with a mass
parameter m. Left: linear Dirac cone, as in the case of the
graphene; middle: distorted Dirac cone (m > 0); right: dis-
torted Dirac cone (m < 0).

(the possibility of a (�Π2/2m)σz term in our phenomeno-
logical model, which preserves particle-hole symmetry, has
been ruled out because it gives a curvature of the Landau
plot with a wrong concavity as compared to the exper-
imental results —see part 2 of the SM). The Hamilto-
nian (2) was also used to describe graphene in [27] and
is very close to the Rashba model [28]. Here, we only
consider the inner —and neglect the outer— Fermi sur-
face, as done for surface states of 3D topological insulators
and contary to the Rashba model, see discusion and fig. 2
in [18].

From eq. (2), the Landau levels En can readily be
calculated [21,27–29],

En = h̄ωmn ±

√
(h̄ωv)2n +

(
h̄ωm

2

)2

, (3)

where ωm = eB/m, ωv =
√

2ev2B/h̄ and the Landau level
index n is a positive integer such as n ≥ 1 (for n = 0, E0 =
+ h̄ωm

2 independently of the valley, see part 2 of the SM for
more details). The positive part of eq. (3) corresponds to
the conduction band contribution and, the negative part,
to that of the valence band. We remind that the maxima of
both the magnetoconductance and the magnetoresistance
correspond to half-filled Landau levels, i.e., to peaks in
the density of states [20,30]. They appear when EF = En,
where EF is the Fermi energy. So, we have the following
relation between the usual experimental ñ and theoretical
n Landau level index convention: ñ = n + 1/2.

By inverting eq. (3), the index n is rewritten as a func-
tion of the Fermi energy EF and the magnetic field B. In
the case of the αI3, the energy parameter EF is fixed dur-
ing the crystals growth and can be positive or negative,
depending on the natural doping induced by the samples
fabrication methods. The Landau level index n is then
only a function of the magnetic field B:

n(B) =
(

m2v2

h̄e
+

mEF

h̄e

)/
B

−

⎛
⎝

√(
m2v2

h̄e

)2

+ 2
mEF

h̄e

m2v2

h̄e
+

(
B

2

)2
⎞
⎠ /

B

Table 1: Parameters for both αI3 sample types in the case of
s = +1, for which the Fermi energy EF and the mass parameter
m have the same sign. We denote as me the bare electron mass
and we recall that we have taken v ≈ 3.5 × 104 m/s [24].

Quantity Sample A Samples B
F (T) 2.5 ± 0.5 8.5 ± 0.5
C (T−1) −0.22 ± 0.02 −0.17 ± 0.03
n2D (cm−2) (2.4 ± 0.5) × 1011 (8.3 ± 0.5) × 1011

TF (K) 140 ± 44 570 ± 130
|m| (me) 0.030 ± 0.005 0.022 ± 0.005

=

(
|m|2 v2

h̄e
+ s

|m| |EF |
h̄e

)/
B

−

√√√√(
|m|2 v2

h̄e

)2

+2s
|m| |EF |

h̄e

|m|2 v2

h̄e
+

(
B

2

)2/
B, (4)

with s = sign(EF )sign(m).
Finally, knowing that the parabolic distortion term of

the Hamiltonian (2) is a correction compared to the Dirac
cone term, we performed an expansion in powers of B (i.e.,
at small 1/m) of eq. (4) and we obtained an approximate
expression of the Landau level index n as a function of the
magnetic field B, with two fitting parameters F and C:

n(B) ≈ F × 1
B

+ n0 × B0 + C × B + O(B3), (5)

with⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F =
|m|2 v2

h̄e

(
1 + s

|EF |
|m| v2

−
√

1 + 2s
|EF |
|m| v2

)
,

C = − h̄e

8 |m|2 v2

1√
1 + 2s |EF |

|m|v2

.

(6)

The first term of eq. (5) is the magnetic frequency F re-
sponsible for the usual SdH theory dependence on 1/B,
while the second term C is the curvature which represents
the deviation from this 1/B dependence, and therefore the
1/B periodicity. Notice furthermore that the constant, B-
field–independent, offset (proportional to B0) is n0 = 0
here, in agreement with Dirac carriers.

We applied this phenomenological model to our magne-
totransport measurements and the result of the fit is pre-
sented in fig. 2 for both measured αI3 crystal types. There
is a good agreement between the theoretical fit and the ex-
perimental data (see fig. 2), moreover the obtained F value
is in agreement with the low-field linear slope. In table 1
are listed the quantities n2D, TF and m deduced from the
two fitting parameters. The mass parameter m, which
describes the intrinsic distortion of the αI3 Dirac cone is
well found to be roughly the same (within the fitting un-
certainty) for both types of αI3 samples (see table 1) by
choosing s = +1 (for details of the fitting, see the SM,
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part 3). Then, EF and m have the same sign and the na-
ture of the doping (hole or electron doping) is also the
same for both measured αI3 crystal types. The Fermi tem-
perature TF in the case of the samples B is higher than
that of the sample A, which indicates a more important
doping in the B-type samples. This is a consequence of
the PEN substrate as had been stated elsewhere [15].

Conclusion. – To conclude, we presented αI3 mag-
netotransport measurements performed on two different
sample types, in the quantum regime and under high hy-
drostatic pressure. We mesured quantum SdH oscillations
in the αI3 magnetoresistance and unveil an unusual be-
havior under high magnetic fields with a loss of the char-
acteristic 1/B periodicity above 7T. We show, within a
theoretical model that takes into account deviations from
the linear shape of the αI3 Dirac cones, that this anomaly
can be attributed to a parabolic band correction breaking
particle-hole symmetry. For both measured αI3 sample
types, there is a good agreement between the experimen-
tal data and the theoretical fit, which gives reasonable and
consistent fit parameters. Indeed, we find a curvature pa-
rameter m independent (within the fitting uncertainty) of
the measured αI3 sample type with different Fermi levels.
The proposed interpretation then provides a suitable back-
ground to understand these unusual experimental results.
We can also note that the distortion of the band structure
Dirac cones is at quite low energies which would be a chal-
lenge for an independent comparison with ab initio band
structure calculations.
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EPL, 105 (2014) 57005.

[22] Veyrat L., Iacovella F., Dufouleur J., Nowka

C., Funke H., Yang M., Escoffier W., Goiran M.,

Eichler B., Schmidt O. G., Büchner B., Hampel S.
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